

IBM C/C++ Tools

Programming Guide

Version 2.0

S61G-1181-00

ÉÂÔ IBM C/C++ Tools

Programming Guide

Version 2.0

S61G-1181-00

| Second Edition (March 1993)

| This edition applies to Version 2.0 of IBM C/C++ Tools (Programs 61G1176

| and 61G1426) and to all subsequent releases and modifications until otherwise

| indicated in new editions. Make sure you are using the correct edition for the

| level of the product.

Changes or additions to the text and illustrations are indicated by a vertical line

to the left of the change or addition.

Requests for publications and for technical information about IBM products

should be made to your IBM Authorized Dealer or your IBM Marketing

Representative. Publications are not stocked at the address given below.

A form for readers’ comments is provided at the back of this publication. If the

form has been removed, address your comments to:

| IBM Canada Ltd. Laboratory

| Information Development

| 21/986/844/TOR

| 844 Don Mills Road

| North York, Ontario, Canada. M3C 1V7

| You can also send your comments by facsimile to (416) 448-6057 addressed to

| the attention of the RCF Coordinator. If you have access to Internet, you can

| send your comments electronically to torrcf@vnet.ibm.com; IBMLink, to

| toribm(torrcf); IBM/PROFS, to torolab4(torrcf); IBMMAIL, to

| ibmmail(caibmwt9)

| If you choose to respond through Internet, please include either your entire

| Internet network address, or a postal address.

When you send information to IBM, you grant IBM a nonexclusive right to use

or distribute the information in any way it believes appropriate without incurring

any obligation to you.

 Copyright International Business Machines Corporation 1992, 1993. All

rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights —

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP

Schedule Contract with IBM Corp.

IBM is a registered trademark of International Business Machines Corporation,

Armonk, N.Y.

 Note!

Before using this information and the product it supports, be sure to

read the general information under “Notices” on page xv.

 iii

iv IBM C/C++ Tools: Programming Guide

 Contents

Notices . xv

Programming Interface Information xv

Trademarks and Service Marks . xvi

| Summary of Changes . xvii

| Changes to the Product . xvii

| Changes to the C/C++ Tools Library xxii

| Changes to this Publication . xxiii

Part 1. General Information . 1

Chapter 1. About This Book . 3

Who Should Read This Book . 3

Portability Considerations . 3

How to Read the Syntax Diagrams 4

Syntax for Commands, Preprocessor Directives, and Statements 4

Syntax for Compiler Options . 7

Related Publications . 7

| Online Publications . 9

Chapter 2. Overview of the C/C++ Tools Product 11

C/C++ Tools Features . 11

C and C++ Language Industry Standards 13

Shipped Code . 14

Compiler . 15

Runtime Libraries . 15

| C++ Class Libraries . 16

| Browser . 16

Debugger . 17

| Execution Trace Analyser (EXTRA) 17

Installation Program . 17

Sample Programs . 18

Online Help . 19

IBM WorkFrame/2 Support . 20

Hardware, Software, and Operating System Requirements 20

Related Products . 21

 Copyright IBM Corp. 1992, 1993 v

| Enhanced Editor (EPM) . 22

| WorkFrame/2 Product . 22

OS/2 2.0 Developer’s Toolkit . 22

Chapter 3. An Introduction to Using the C/C++ Tools Compiler 23

| Compiling a Sample C Program . 23

| Compiling a Sample C++ Program 25

Part 2. Compiling and Linking Your Program 27

| Chapter 4. Compiling Your Program 29

Using the icc Command . 30

Compiling Programs with Multiple Source Files 31

| Using Response Files . 32

Controlling Compiler Input . 33

File Types . 33

OS/2 Environment Variables for Compiling 34

Setting Environment Variables . 36

Source File Names in ICC . 38

Controlling #include Search Paths 38

#include Syntax . 38

#include File Name Syntax . 39

Ways to Control the #include Search Paths 40

#include Search Order . 40

Setting the Source Code Language Level 41

Controlling Compiler Output . 44

Object Files . 45

Executable Files . 47

Compiler Listings . 48

Temporary Files . 49

Messages . 50

Return Codes . 50

| Precompiled Header Files . 51

| Using the Intermediate Code Linker 52

| Using the /Gu Option . 54

| Error Checking . 55

| Inlining User Code . 56

| Using Keywords . 56

| Using the /Oi Option . 57

vi IBM C/C++ Tools: Programming Guide

| Benefits of Inlining . 59

| Drawbacks of Inlining . 60

| Restrictions on Inlining . 60

Setting the Calling Convention . 62

Choosing Your Runtime Libraries 63

Static and Dynamic Linking . 64

Using the Multithread Library . 65

Enabling Subsystem Development 66

Controlling the Logo Display on Compiler Invocation 67

Controlling Stack Allocation and Stack Probes 67

Setting the Stack Size . 67

Automatic Stack Growth . 68

Stack Probes . 68

Chapter 5. Using Compiler Options 71

Specifying Compiler Options . 71

Using Parameters with Compiler Options 73

Scope of Compiler Options . 75

ICC Combined with Options Entered on the Command Line . . 76

Related Options . 76

Conflicting Options . 77

| Language-Dependent Options . 77

Specifying Options with Multiple Source Files 78

Compiler Options for Presentation Manager Programming . . . 79

Examples of Compiler Options for Choosing Libraries 79

Compiler Option Classification . 81

Output File Management Options 82

File Names and Extensions . 84

Examples of File Management Options 85

#include File Search Options . 86

Using the #include File Search Options 86

Listing File Options . 88

Including Information about Your Source Program 90

Including Information about Variables 90

Debugging and Diagnostic Information Options 92

| Using the /Wgrp Diagnostic Options 96

| Examples of /Wgrp Options . 99

Source Code Options . 100

Using the /Sd Option . 105

| Using the /Tdp Option for Template Resolution 106

 Contents vii

Preprocessor Options . 107

Using the Preprocessor . 110

Code Generation Options . 111

Using the /Ge Option . 118

Other Options . 120

Examples of Other Options . 121

| Chapter 6. Finishing Your Program 123

Linking Independently of the Compiler 123

| Creating Runtime DLLs . 125

| Binding Runtime Messages to Your Application 126

| Creating Online Documentation 127

| Using the Resource Compiler . 128

| Using the NMAKE Utility . 129

Part 3. Running Your Program . 131

Chapter 7. Setting Runtime Environment Variables 133

PATH . 133

DPATH . 134

LIBPATH . 134

TMP . 135

TEMPMEM . 135

COMSPEC . 136

TZ . 136

Chapter 8. Running Your Program 139

Passing Data to a Program . 139

| Declaring Arguments to main 140

Expanding Global File-Name Arguments 141

Redirecting Standard Streams . 143

Redirection from within a Program 144

Redirection from the Command Line 145

Returning Values from main . 146

| Part 4. Coding Your Program . 147

Chapter 9. Input/Output Operations 149

Standard Streams . 149

viii IBM C/C++ Tools: Programming Guide

Stream Processing . 150

Text Streams . 150

Binary Streams . 151

Differences between Storing Data as a Text or Binary Stream 152

Memory File Input/Output . 154

Memory File Restrictions and Considerations 155

Buffering . 156

Opening Streams Using Data Definition Names 157

Specifying a ddname with the SET Command 157

Describing File Characteristics Using Data Definition Names . 158

fopen Defaults . 161

Precedence of File Characteristics 161

Closing Files . 162

Input/Output Restrictions . 162

I/O Considerations when You Use Presentation Manager 163

| Chapter 10. Optimizing Your Program 165

| Improving Program Performance 165

| Choosing Compiler Options . 165

| Specifying Linker Options . 167

| Choosing Libraries . 168

| Allocating and Managing Memory 168

| Using Strings and String Manipulation Functions 169

| Performing Input and Output . 170

| Designing and Calling Functions 171

| Other Coding Techniques . 172

| C++-Specific Considerations . 174

| Reducing Program Size . 175

| Choosing Compiler Options . 175

| Using Libraries and Library Functions 177

| Other Coding Techniques . 177

| Optimizing for Both Speed and Size 178

| Choosing Compiler Options . 178

Chapter 11. Creating Multithread Programs 179

What Is a Multithread Program? 179

Libraries for Multithread Programs 180

Using the Multithread Libraries . 181

Reentrant Functions . 182

Nonreentrant Functions . 184

 Contents ix

Process Control Functions . 187

Signal Handling in Multithread Programs 188

Global Data and Variables . 188

Compiling and Linking Multithread Programs 193

Sample Multithread Program . 194

Chapter 12. Building Dynamic Link Libraries 195

Creating DLL Source Files . 196

Example of a DLL Source File 197

Initializing and Terminating the DLL Environment 197

Creating a Module Definition File 198

Example of a Module Definition File 198

| Defining Code and Data Segments 201

| Defining Functions to be Exported 201

Compiling and Linking Your DLL 203

Using Your DLL . 205

Sample Definition File for an Executable Module 206

Sample Program to Build a DLL 207

Writing Your Own _DLL_InitTerm Function 209

Example of a User-Created _DLL_InitTerm Function 211

| Creating Resource DLLs . 215

Creating Your Own Runtime Library DLLs 216

Example of Creating a Runtime Library 219

Part 5. Advanced Topics . 223

| Chapter 13. Using Templates in C++ Programs 225

| Generating Template Function Definitions 225

| Example of Generating Template Function Definitions 227

| Using the Compiler's Automatic Template Generation Facility . . 228

| Using Template-Implementation Files 229

| Generating Template-Include Files 231

| Structuring Your Program for Templates Manually 233

| Using Static Data Members in Templates 235

Chapter 14. Calling Conventions 237

_Optlink Calling Convention . 238

Features of _Optlink . 238

Tips for Using _Optlink . 240

x IBM C/C++ Tools: Programming Guide

General-Purpose Register Implications 241

Examples of Passing Parameters 243

_System Calling Convention . 264

Examples Using the _System Convention 265

| _Pascal and _Far32 _Pascal Calling Conventions 272

| Examples Using the _Pascal Convention 272

| Chapter 15. Developing Virtual Device Drivers 281

| Creating Code to Run at Ring Zero 282

| Using Virtual Device Driver Calling Conventions 283

| Using _Far32 _Pascal Function Pointers 283

| Creating a Module Definition File 285

Chapter 16. Calling Between 32-Bit and 16-Bit Code 287

Declaring 16-Bit Functions . 288

Declaring Segmented Pointers . 289

Declaring Shared Objects . 290

Converting Structures . 291

Compiler Option for 16-Bit Declarations 292

Calling Back to 32-Bit Code from 16-Bit Code 292

Restrictions on 16-Bit Calls and Callbacks 293

Example of Calling a 16-Bit Program 294

Understanding 16-Bit Calling Conventions 297

Similarities between the 16-Bit Conventions 297

Differences between the 16-Bit Conventions 298

Return Values from 16-Bit Calls 299

Chapter 17. Developing Subsystems 303

Creating a Subsystem . 304

Subsystem Library Functions 304

Calling Conventions for Subsystem Functions 306

Building a Subsystem DLL . 306

Writing Your Own Subsystem _DLL_InitTerm Function 307

Compiling Your Subsystem . 310

Restrictions When You Are Using Subsystems 310

Example of a Subsystem DLL . 310

Creating Your Own Subsystem Runtime Library DLLs 313

Chapter 18. Signal and OS/2 Exception Handling 317

Handling Signals . 318

 Contents xi

Default Handling of Signals . 319

Establishing a Signal Handler . 321

| Writing a Signal Handler Function 322

Signal Handling in Multithread Programs 325

Signal Handling Considerations 326

| Handling OS/2 Exceptions . 328

C/C++ Tools Default OS/2 Exception Handling 328

OS/2 Exception Handling in Library Functions 331

| Creating Your Own OS/2 Exception Handler 334

| Prototype of an OS/2 Exception Handler 335

| Processing Exception Information 336

| Example of Exception Handling 341

Registering an OS/2 Exception Handler 344

Handling Signals and OS/2 Exceptions in DLLs 348

| Signal and Exception Handling with Multiple Library

| Environments . 350

| Using OS/2 Exception Handlers for Special Situations 351

| OS/2 Exception Handling Considerations 352

| Restricted OS/2 APIs . 353

| Handling Floating-Point Exceptions 354

Interpreting Machine-State Dumps 356

Part 6. Appendixes . 361

Appendix A. ANSI Notes on Implementation-Defined Behavior 363

| Implementation-Defined Behavior Common to Both C and C++ . 363

Identifiers . 363

Characters . 364

Strings . 364

Integers . 365

Floating-Point Values . 366

Arrays and Pointers . 366

Registers . 367

Structures, Unions, Enumerations, Bit-Fields 367

Qualifiers . 368

Declarators . 368

Statements . 368

Preprocessor Directives . 368

Library Functions . 369

xii IBM C/C++ Tools: Programming Guide

Error Handling . 371

Signals . 371

Translation Limits . 372

Streams and Files . 373

Memory Management . 374

Environment . 374

Localization . 375

Time . 375

| C++-Specific Implementation-Defined Behavior 375

| Classes, Structures, Unions, Enumerations, Bit Fields 375

| Linkage Specifications . 376

| Member Access Control . 376

| Special Member Functions . 376

| Migrating Headers from 16-bit C to 32-bit C/C++ 377

| Structures . 377

| Function Prototypes . 377

| Required Conditional Compilation Directives 378

| Migrating Headers from (32-bit) C Set/2 Version 1 to (32-bit) C++ 378

| Creating New Headers to Work with Both C and C++ (32-bit) . . 379

Appendix B. C/C++ Tools Macros and Functions 381

Predefined Macros . 381

Intrinsic Functions . 383

Appendix C. Mapping . 385

Name Mapping . 385

| Demangling (Decoding) C++ Function Names 386

| Using the Demangling Functions 386

| Using the CPPFILT Utility . 388

Data Mapping . 389

| Appendix D. Solving Common C Problems 401

Writing a Program . 401

Compiling a Program . 403

Linking a Program . 405

Running a Program . 407

Problems with DLLs . 407

Problems with Files . 409

Problems with Functions . 409

Problems with Library Functions 414

 Contents xiii

Problems with Macros . 419

Problems with Threads . 420

Problems with One Statement 421

Problems with Groups of Statements 422

If You Don't Know Where to Start 424

If You Need More Help . 429

Appendix E. Component Files 431

C/C++ Tools Files . 432

Glossary . 441

Bibliography . 455

The IBM C/C++ Tools Library . 455

C and C++ Related Publications 455

IBM WorkFrame/2 Publications . 455

IBM OS/2 2.0 Publications . 455

IBM OS/2 2.0 Technical Library 456

Other Books You Might Need . 456

BookManager READ/2 Publications 456

Systems Application Architecture Publications 456

Index . 457

xiv IBM C/C++ Tools: Programming Guide

 Notices

References in this publication to IBM products, programs, or services

do not imply that IBM intends to make these available in all countries in

which IBM operates. Any reference to an IBM licensed program in this

publication is not intended to state or imply that only IBM’s licensed

program may be used. Any functionally equivalent product, program, or

service that does not infringe any of IBM's intellectual property rights

may be used instead of the IBM product, program, or service.

Evaluation and verification of operation in conjunction with other

products, except those expressly designated by IBM, is the user's

responsibility.

IBM may have patents or pending patent applications covering subject

matter in this document. The furnishing of this document does not give

you any license to these patents. You can send license inquiries, in

writing, to the IBM Director of Commercial Relations, IBM Corporation,

Purchase, NY 10577.

Programming Interface Information

This book is intended to help you create programs using the

C/C++ Tools product. It primarily documents General-Use

Programming Interface and Associated Guidance Information provided

by the C/C++ Tools product.

General-Use programming interfaces allow the customer to write

programs that obtain the services of the C/C++ Tools compiler,

debugger, browser, execution trace analyzer, and class libraries.

However, this book also documents Diagnosis, Modification, and Tuning

Information. Diagnosis, Modification, and Tuning Information is

provided to help you debug your programs.

Warning: Do not use this Diagnosis, Modification, and Tuning

Information as a programming interface because it is subject to change.

Diagnosis, Modification, and Tuning Information is identified where it

occurs by an introductory statement to a chapter or section.

 Copyright IBM Corp. 1992, 1993 xv

Trademarks and Service Marks

The following terms used in this publication are trademarks or service

marks of IBM Corporation in the United States or other countries. They

are denoted by an asterisk (*) when they first appear in the text.

The following terms used in this publication are trademarks or service

marks of other corporations in the United States or other countries.

They are denoted by a double asterisk (**) when they first appear in the

text.

BookManager

C/2

C Set/2

Common User Access

CUA

IBM

Operating System/2

OS/2

Personal System/2

Presentation Manager

PS/2

SAA

Systems Application Architecture

WorkFrame/2

Microsoft Microsoft Corporation

| Pentium Intel Corporation

xvi IBM C/C++ Tools: Programming Guide

| Summary of Changes

| This section summarizes the differences between the IBM* C/C++ Tools

| product and its predecessor, the IBM C Set/2* Version 1.0. It also

| describes changes made to this document S61G-1181, from the

| previous version S10G-4444. All technical changes to this document

| are marked in the text by a vertical bar in the left margin.

| Changes to the Product
| � All C/C++ Tools components now support the C++ language in

| addition to C.

| � The following components have been added to the product:

| – Execution trace analyzer (EXTRA)

| – Source code browser

| – Class libraries (I/O Stream, Task, Complex Mathematics,

| Collection Class, and User Interface)

| � The migration language level has been eliminated. All functions

| that were part of the migration libraries in the C Set/2 V1.0 product

| are now standard extensions.

| � The diagnostic messages have been revised, along with the

| compiler options and #pragma directives that control them, to give

| the user more control over which diagnostics are to be performed.

| Some messages have been reduced in severity from warning to

| informational.

| � Support for storing temporary files in memory (memory files) is now

| optional and can be enabled using the /Sv compiler option.

| � Support for building virtual device drivers has been added, including

| support for the _Far32 _Pascal calling convention and 48-bit

| function pointers. See Chapter 15, “Developing Virtual Device

| Drivers” on page 281.

| � Inlining of user code is supported with the /Oi option (see page

| 116) and _Inline and inline keywords (see the IBM C/C++�Tools:

| Online Language Reference, referred to hereafter as the Online

| Language Reference).

 Copyright IBM Corp. 1992, 1993 xvii

| � A keyword and a #pragma directive have been implemented to

| declare a function is to be exported. See the Online Language

| Reference for a description of _Export and #pragma export.

| � Anonymous unions are supported. See the Online Language

| Reference for a description.

| � An intermediate code linker has been added to the compiler. It

| combines all intermediate (or temporary) files for all the files

| specified in the icc command. The compiler then uses the

| combined file for optimization. See “Using the Intermediate Code

| Linker” on page 52 for more information.

| � The following compiler options have been modified:

| Option| Description| Page

| /Kn| These options, which control diagnostic

| messages, are now mapped to the /Wgrp options.

| They are not supported for use with C++ files,

| and will not be supported at all in future releases

| of the C/C++ Tools product.

| 92

| /La| Includes a layout of struct and union variables

| referenced by the user. In Version 1.0, it

| included layouts of all struct and union

| variables.

| 88

| /Lx| Generates a cross-reference table of all variables

| referenced by the user. In Version 1.0, it

| generated a cross-reference of all global and

| external variables, plus all local variables

| referenced by the user.

| 89

| /Sm| Controls compiler interpretation of 16-bit

| keywords. In Version 1.0, it set the language

| level to migration to allow all migration

| constructs.

| 101

| /Ss| For C files only, allows use of double slashes

| (//) for comments. This option is ignored for C++

| files.

| 102

xviii IBM C/C++ Tools: Programming Guide

| � The following compiler options have been added:

| Option| Description| Page

| /Fb| Produces a browser listing file.| 82

| /Fi| Controls creation of precompiled header files.| 83

| /Ft| Controls generation of header files for template

| functions and class declarations.

| 83

| /Fw| Controls generation and use of intermediate files.| 84

| /Gh| Generates code enabled for EXTRA and other

| profiling tools.

| 112

| /Gi| Generates code for fast integer execution.| 113

| /Gu| Passes information to the intermediate linker.| 114

| /Gv| Controls handling of DS and ES registers.| 114

| /Gw| Controls generation of FWAIT instruction after

| each floating-point load instruction.

| 115

| /Gx| Removes C++ exception handling information.| 115

| /G5| Optimizes code for use with a Pentium**

| microprocessor.

| 115

| /Lb| Includes a layout of all struct and union

| variables.

| 88

| /Ly| Generates a cross-reference table of all global

| and external variables, plus all local variables

| referenced by the user.

| 89

| /Nd| Specifies names of default data and constant

| segments.

| 116

| /Nt| Specifies name of default text segments.| 116

| /Oi| Controls inlining of user code.| 116

| /Ol| Controls use of the intermediate code linker.| 117

| /Om| Controls size of the working set of the compiler.| 117

| /Op| Controls optimizations involving the stack pointer.| 117

| /Os| Controls use of the instruction scheduler.| 117

| /Pe| Suppresses #line directives in preprocessor

| output.

| 109

| /Sc| Sets the language level to be compatible with

| earlier versions of the C++ language.

| 100

| /Si| Controls use of precompiled header files.| 101

| /Su| Controls size of enum variables.| 103

| /Sv| Enables memory file support.| 103

| /Tc| Tells icc to compile the following file as a C file.| 103

| /Td| Tells icc to compile all following source files as

| C or C++ files.

| 104

| /Tp| Tells icc to compile the following file as a C++

| file.

| 104

 Summary of Changes xix

| � The following #pragma directives have been added or modified:

| checkout Is now mapped to #pragma info. This directive is

| currently valid for C files only and will not be

| supported in future releases.

| define Forces the definition of a template class without

| defining an object of the class. Valid for C++ files

| only.

| disjoint Lists identifiers that are not aliased to each other

| within the scope of their use. Valid for C++ files

| only.

| entry Specifies entry point to the program being built.

| export Declares a DLL function to be exported and

| specifies the name for the function outside of the

| DLL.

| implementation Tells the compiler where to find the function

| template definitions corresponding to the

| declarations in the file including the #pragma

| directive. Valid for C++ files only.

| import Specifies a DLL function to be imported using

| either a name or an ordinal number.

| info Controls diagnostic messages. This directive

| replaces the #pragma checkout directive.

| isolated_call Lists functions that do not alter data objects visible

| at the time of the function call. Valid for C++ files

| only.

| langlvl No longer has the option mig to set the language

| level to migration. It has a new option compat for

| compatibility with earlier versions of the C++

| language.

| undeclared In a template-include file, separates functions that

| were instantiated with a declaration and those

| instantiated with a call. Used only by the compiler

| and only for C++ files.

| Option| Description| Page

| /Ts| Generates code to allow the debugger to

| maintain the call stack across all calls.

| 94

| /Tx| Controls information generated when an

| exception occurs.

| 94

| /Wgrp| Controls diagnostic messages.| 96

xx IBM C/C++ Tools: Programming Guide

| All #pragma directives are described in the Online Language

| Reference.

| � The <builtin.h> header file has been added.

| � The following functions have been added to the C runtime library:

| – Trigonometric and transcendental functions that exploit the

| 80387 processor:

| _facos Calculates arccosine.

| _fasin Calculates arcsine.

| _fcos Calculates cosine.

| _fcossin Calculates cosine and sine.

| _fpatan Calculates arctangent.

| _fptan Calculates tangent.

| _fsin Calculates sine.

| _fsincos Calculates sine and cosine.

| _fsqrt Calculates square root.

| _fyl2x Calculates y to the base-2 logarithm of x.

| _fyl2xp1 Calculates y to the base-2 logarithm of x plus 1.

| _f2xm1 Calculates 2 to the power of x, minus 1.

| – Low-level functions for port input and output:

| _inp Reads a byte from an input port.

| _inpd Reads a doubleword from an input port.

| _inpw Reads an unsigned short value from an input port.

| _outp Writes a byte to an output port.

| _outpd Writes a doubleword to an output port.

| _outpw Writes a unsigned short value to an output port.

| – Functions that affect interrupt procedures:

| _disable Disables external interrupts.

| _enable Enables external interrupts.

| _getTIBvalue Returns a value from the Thread Information

| Block (TIB).

| _interrupt Calls interrupt procedure.

 Summary of Changes xxi

| – Functions that affect process control:

| _threadstore Accesses a pointer to the user's thread-specific

| storage.

| All functions are documented in the C Library Reference.

| Changes to the C/C++ Tools Library
| The C/C++ Tools library has been expanded and reorganized:

| � Reference information has been provided primarily online in IPF

| format. Guidance information is provided in hardcopy format.

| Hardcopy and BookManager* READ versions of the documentation

| can be ordered from IBM using the order form enclosed in your

| C/C++ Tools package.

| For the most part, the online references correspond directly to

| hardcopy documents. The exception is the IBM C/C++�Tools:

| Online Language Reference, which combines information from both

| the IBM C/C++�Tools: C Language Reference and IBM C/C++�Tools:

| C++ Language Reference hardcopy documents.

| � Publications have been added for the new components as follows:

| – IBM C/C++�Tools: Execution Trace Analyzer Introduction

| – IBM C/C++�Tools: Browser Introduction

| – IBM C/C++�Tools: C++ Language Reference

| – IBM C/C++�Tools: Standard Class Library Reference

| – IBM C/C++�Tools: User Interface Class Library Reference

| – IBM C/C++�Tools: Collection Class Library Reference

| � The IBM C Set/2 Version 1.0 User’s Guide has been renamed to

| the IBM C/C++�Tools: Programming Guide.

| � The IBM C Set/2 Version 1.0 Debugger Tutorial has been rewritten

| and changed to the IBM C/C++�Tools: Debugger Introduction. The

| tutorial is now online and is accessible through the debugger Help

| menu.

| � An online tutorial is also provided for the browser.

| � The document IBM C Set/2 and WorkFrame/2: An Integrated

| Development Environment is no longer part of the C/C++ Tools

| library. In its place, an online tutorial is provided with the IBM

| WorkFrame/2* product.

xxii IBM C/C++ Tools: Programming Guide

| � The definitions of the C language and runtime library have been

| placed in separate documents (the IBM C/C++�Tools: Online

| Language Reference or IBM C/C++�Tools: C Language Reference

| and IBM C/C++�Tools: C Library Reference respectively). All

| information in the IBM C Set/2 User’s Guide (now the IBM

| C/C++�Tools: Programming Guide) and IBM C Set/2 Migration

| Guide that described language or library extensions has been

| moved to the appropriate reference guide.

| � The SAA CPI C Reference - Level 2 (SC09-1308-02) is no longer

| part of the C/C++ Tools library, but you can order it separately.

| Changes to this Publication
| The changes made in this publication are:

| � The name has been changed from the IBM C Set/2 User’s Guide to

| the IBM C/C++�Tools: Programming Guide.

| � Chapter 18, “Signal and OS/2 Exception Handling” on page 317

| has been completely rewritten.

| � The chapter on library functions has been moved to the IBM

| C/C++�Tools: C Library Reference.

| � The chapter on language extensions to SAA (including #pragma

| directives) has been moved to the IBM C/C++�Tools: Online

| Language Reference and the appropriate language reference.

| � Chapters have been added on the following topics:

| – Finishing your application, including binding messages and

| resources (Chapter 6, “Finishing Your Program” on page 123).

| – Optimizing your program for performance and for size

| (Chapter 10, “Optimizing Your Program” on page 165).

| – Using templates in C++ programs (Chapter 13, “Using

| Templates in C++ Programs” on page 225).

| – Creating virtual device drivers (Chapter 15, “Developing Virtual

| Device Drivers” on page 281).

| – Troubleshooting and support (Appendix D, “Solving Common C

| Problems” on page 401).

| � The appendixes that documented error messages have been

| removed. Error messages are documented in the IBM C/C++�Tools:

| Online Language Reference.

 Summary of Changes xxiii

| � Information has been added to describe the new features listed

| under Changes to the Product.

| � Minor technical and editorial corrections have been made.

xxiv IBM C/C++ Tools: Programming Guide

 General Information

 Part 1. General Information

| This part of the Programming Guide provides general information about

the IBM C/C++ Tools product, including its features and components,

installation, related publications. It also gives an example of how to

compile, link, and run a short program.

Chapter 1. About This Book . 3

Who Should Read This Book . 3

Portability Considerations . 3

How to Read the Syntax Diagrams 4

Related Publications . 7

Chapter 2. Overview of the C/C++ Tools Product 11

C/C++ Tools Features . 11

C and C++ Language Industry Standards 13

Shipped Code . 14

Hardware, Software, and Operating System Requirements 20

Related Products . 21

Chapter 3. An Introduction to Using the C/C++ Tools Compiler 23

| Compiling a Sample C Program . 23

| Compiling a Sample C++ Program 25

 Copyright IBM Corp. 1992, 1993 1

 General Information

2 IBM C/C++ Tools: Programming Guide

 General Information

Chapter 1. About This Book

This book tells you how to use the IBM C/C++ Tools product (referred

to throughout the book as C/C++ Tools) to compile, link, and run C and

C++ programs on the 32-bit Operating System/2* (OS/2*) operating

system (OS/2 2.0 or later release).

| Use this book with the other publications described in “Related

| Publications” on page 7.

Who Should Read This Book

This book is written for application and systems programmers who want

| to use the C/C++ Tools product to develop and run C or C++

| applications. It assumes you have a working knowledge of the C or

| C++ programming language, the OS/2 operating system, and related

products as described in “Related Products” on page 21.

 Portability Considerations

If you will be using the C/C++ Tools product to develop C applications

to be compiled and run on other Systems Application Architecture*

(SAA*) systems, you should follow the SAA standards as outlined in the

SAA Common Programming Interface C Language Reference,

SC09-1308-02. If you will be using the C/C++ Tools product to develop

code according to the American National Standards Institute (ANSI)

standard, you should also refer to the ANSI guidelines. If you will be

developing code according to the International Standards Organization

| (ISO) standard, refer to the ISO guidelines. General information about

| writing portable C code is included in the Portability Guide for IBM C,

| SC09-1405.

When following ANSI, ISO, or SAA standards, do not use the

extensions specific to the C/C++ Tools compiler as described in the C

Library Reference.

 Copyright IBM Corp. 1992, 1993 3

 How to Read Syntax Diagrams

| At this time, there is no universal standard for the C++ language

| comparable to the C standards. If portability of your C++ programs is

| important, isolate those parts of your code that use the Collection and

| User Interface class libraries, which are specific to the C/C++ Tools

| product, so you can easily remove or replace them when migrating your

| programs.

If you will be using the C/C++ Tools product for the development of

applications that will run only under the OS/2 operating system, you

may want to exploit the OS/2 services and APIs and the C/C++ Tools

multithread features (see Chapter 11, “Creating Multithread Programs”

on page 179).

How to Read the Syntax Diagrams

This book uses two methods to show syntax. One is for commands,

preprocessor directives, and statements; the other is for compiler

options.

Syntax for Commands, Preprocessor Directives, and
Statements

� Read the syntax diagrams from left to right, from top to bottom,

following the path of the line.

The ►►─── symbol indicates the beginning of a command, directive,

or statement.

The ───► symbol indicates that the command, directive, or

statement syntax is continued on the next line.

The ►─── symbol indicates that a command, directive, or statement

is continued from the previous line.

The ───►◄ symbol indicates the end of a command, directive, or

statement.

Diagrams of syntactical units other than complete commands,

directives, or statements start with the ►─── symbol and end with

the ───► symbol.

Note: In the following diagrams, STATEMENT represents a C or C++

command, directive, or statement.

4 IBM C/C++ Tools: Programming Guide

 How to Read Syntax Diagrams

� Required items appear on the horizontal line (the main path).

►►──STATEMENT──required_item───────────────────────────────►◄

� Optional items appear below the main path.

►►──STATEMENT─ ──┬ ┬─────────────── ──────────────────────────►◄
 └ ┘─optional_item─

� If you can choose from two or more items, they appear vertically, in

a stack.

If you must choose one of the items, one item of the stack appears

on the main path.

►►──STATEMENT─ ──┬ ┬─required_choice1─ ───────────────────────►◄
 └ ┘─required_choice2─

If choosing one of the items is optional, the entire stack appears

below the main path.

►►──STATEMENT─ ──┬ ┬────────────────── ───────────────────────►◄
 ├ ┤─optional_choice1─
 └ ┘─optional_choice2─

The item that is the default appears above the main path.

 ┌ ┐─default_item───
►►──STATEMENT─ ──┴ ┴─alternate_item─ ─────────────────────────►◄

� An arrow returning to the left above the main line indicates an item

that can be repeated.

 ┌ ┐───────────────────
►►──STATEMENT─ ───▼ ┴─repeatable_item─ ────────────────────────►◄

A repeat arrow above a stack indicates that you can make more

than one choice from the stacked items, or repeat a single choice.

� Keywords appear in nonitalic letters and should be entered exactly

as shown (for example, pragma).

Variables appear in italicized lowercase letters (for example,

identifier). They represent user-supplied names or values.

 Chapter 1. About This Book 5

 How to Read Syntax Diagrams

� If punctuation marks, parentheses, arithmetic operators, or other

such symbols are shown, you must enter them as part of the

syntax.

Note: The white space is not always required between tokens, but it is

recommended that you include at least one blank between tokens

unless specified otherwise.

The following syntax diagram example shows the syntax for the #pragma

comment directive. (See the Online Language Reference or C Language

Reference for information on the #pragma directive.)

▌1▐ ▌2▐ ▌3▐ ▌4▐ ▌5▐ ▌6▐ ▌9▐ ▌10▐

 ►►─#──pragma──comment──(─┬─────compiler────────────────────────┬──)─►◄
 │ │
 ├─────date────────────────────────────┤
 │ │
 ├─────timestamp───────────────────────┤
 │ │
 └──┬──copyright──┬──┬─────────────────┤
 │ │ │ │
 └──user───────┘ └──,─"characters"─┘

 ▌7▐ ▌8▐

The syntax diagram is interpreted in the following manner:

▌1▐ This is the start of the syntax diagram.

▌2▐ The symbol # must appear first.

▌3▐ The keyword pragma must appear following the # symbol.

▌4▐ The keyword comment must appear following the keyword

pragma.

▌5▐ An opening parenthesis must be present.

▌6▐ The comment type must be entered only as one of the types

indicated: compiler, date, timestamp, copyright, or user.

▌7▐ If the comment type is copyright or user, and an optional

character string is following, a comma must be present after the

comment type.

▌8▐ A character string must follow the comma.

▌9▐ A closing parenthesis is required.

6 IBM C/C++ Tools: Programming Guide

 Related Publications

▌10▐ This is the end of the syntax diagram.

The following examples of the #pragma comment directive are

syntactically correct according to the diagram shown above:

 #pragma comment(date)
 #pragma comment(user)

#pragma comment(copyright,"This text will appear in the module")

Syntax for Compiler Options
� Optional elements are enclosed in square brackets [].

� When you have a list of items from which you can choose one, the

logical OR symbol (|) separates the items.

� Variables appear in italicized lowercase letters (for example, num).

 Examples
Syntax Possible Choices

/L[+|-] /L

/L+

/L-

/Lt"string" /Lt"Listing File for Program Test"

Note that, for options that use a plus (+) or minus (-) sign, if you do not

specify a sign, the plus is assumed. For example, the /L and /L+

options are equivalent.

 Related Publications

| The following publications provide more information about the

| C/C++ Tools product and how to use it:

� IBM C/C++�Tools: Browser Introduction, S61G-1397, shows you

how to use the C/C++ Tools browser.

� IBM C/C++�Tools: Execution Trace Analyzer Introduction,

S61G-1398, introduces the execution trace analyzer EXTRA.

� IBM C/C++�Tools: Debugger Introduction, S61G-1184, provides an

introduction to the C/C++ Tools debugger.

 Chapter 1. About This Book 7

 Related Publications

� IBM C/C++�Tools: Reference Summary, S61G-1441, summarizes

the C/C++ Tools language syntax, reserved keywords, library

functions, and compiler options.

| � IBM C/C++�Tools: Class Libraries Reference Summary, S61G-1186,

| summarizes the functions provided by the C/C++ Tools class

| libraries.

� IBM C/C++�Tools: Installation, S61G-1363, describes the installation

procedure.

� IBM C/C++�Tools: License Information, S71G-1453, summarizes the

features and gives warranty information.

| The following reference documents provide more information about the

| C/C++ Tools implementation of the C and C++ languages and libraries,

| including class libraries. These reference documents are provided in

| online (.INF) format, and can be ordered in hardcopy using the order

| form included with the C/C++ Tools product:

| � IBM C/C++�Tools: Online Language Reference, DDE4LRM.INF,

| presents the C/C++ Tools definition of both the C and C++

| programming languages. This reference includes information from

| both the IBM C/C++�Tools: C Language Reference, S61G-1399,

| and the IBM C/C++�Tools: C++ Language Reference, S61G-1185.

| � IBM C/C++�Tools: C Library Reference, DDE4CLIB.INF or

| S61G-1183, describes the C/C++ Tools C library functions.

| � IBM C/C++�Tools: Standard Class Library Reference, DDE4SCL.INF

| or S61G-1180, describes the C++ I/O Stream, Task, and Complex

| Mathematics class libraries.

| � IBM C/C++�Tools: Collection Class Library Reference,

| DDE4CCL.INF or S10G-1178, describes the Collection class library.

| � IBM C/C++�Tools: User Interface Class Library Reference,

| DDE4UIL.INF or S61G-1179, describes the User Interface class

| library.

| These publications are referred to throughout this book without the IBM

| C/C++ Tools prefix.

8 IBM C/C++ Tools: Programming Guide

 Related Publications

| The following publications are not included with the C/C++ Tools

| product, but contain information about it and may be helpful:

| � Portability Guide for IBM C, SC09-1405, describes how to move

| code from one platform to another, and how to write portable code.

| The second edition of this document will include information on the

| C/C++ Tools product.

| � SAA CPI C Reference - Level 2, SC09-1308-02, presents the SAA

| definition of the C language.

| Additional publications that may be helpful to the C/C++ Tools user are

| listed in “Bibliography” on page 455.

| Online Publications
| The C/C++ Tools product provides online publications in two different

| formats, IPF and BookManager* READ.

| Information Presentation Facility (IPF) Books
| IPF is the online help mechanism provided by the OS/2 operating

| system. The C/C++ Tools product provides several online references in

| IPF format:

| � The Online Language Reference, DDE4LRM.INF, is a summary of

| C and C++ language constructs, compiler options, and messages.

| � The C Library Reference, DDE4CLIB.INF, describes the C library

| functions.

| � The Standard Class Library Reference, DDE4SCL.INF, describes

| the I/O Stream, Task, and Complex Mathematics class libraries.

| � The Collection Class Library Reference, DDE4CCL.INF, describes

| the Collection class library.

| � The User Interface Class Library Reference, DDE4UIL.INF,

| describes the User Interface class library.

| To access an online reference, use the view command. For example,

| to view the C Language Reference, at the command line in the

| C:\IBMC\HELP directory type:

| view DDE4CLRM.INF

 Chapter 1. About This Book 9

 Related Publications

| To get help for a specific item, type the name of the item after the file

| name. The system searches the table of contents and index of the C

| Language Reference. If the item exists, it opens the panel about that

| item. For example:

| view DDE4HELP.INF operator precedence

| opens the panel about operator precedence.

| The Enhanced Editor (EPM) included with the OS/2 2.0 operating

| system has provided macros that enable it to provide context-sensitive

| help using the online references. To enable this help, specify the /w

| option when you invoke the editor:

| epm myfile.c /w

| To obtain help for a keyword or construct, highlight the word and press

| Ctrl-H. This opens the online reference at the panel for that construct.

| BookManager Books
| BookManager READ/2 (73F6023) is a separately orderable OS/2

| product that allows you to read online documentation. It features

| hypertext links between related topics. You can also search documents

| for keywords to quickly locate the information that you need. The

| following publications in their entirety can be ordered in BookManager

| READ format, accompanied by the IBM Library Reader, which allows

| you to read the books without purchasing BookManager READ/2:

| Programming Guide (this manual)

C Language Reference (S61G-1399)

| C Library Reference (S61G-1183)

| C++ Language Reference (S61G-1185)

| Debugger Introduction (S61G-1184)

| Execution Trace Analyzer Introduction (S61G-1398)

| Browser Introduction (S61G-1397)

| Standard Class Library Reference (S61G-1180)

| User Interface Class Library Reference (S61G-1179)

| Collection Class Library Reference (S61G-1178)

10 IBM C/C++ Tools: Programming Guide

 C/C++ Tools Features

Chapter 2. Overview of the C/C++ Tools Product

This chapter summarizes the C/C++ Tools features and briefly

describes the included software, compiler, runtime libraries, debugger,

and the hardware and software needed. It also discusses related

product offerings.

 C/C++ Tools Features

Compiler and Library Features

| � Full C++ support, including templates and exception handling

| � Multithread support for the C and C++ runtime libraries

| � Support for the standard class libraries (I/O Stream, Task,

| Complex Mathematics)

| � Class libraries for building your own classes (Collection) and for

| Presentation Manager* (PM) programming (User Interface).

� Multitasking support for creating multiple processes

� Static or dynamic linking of the runtime libraries

� Fully reentrant libraries

� Ability to create user dynamic link libraries (DLLs)

� Subsystem development capabilities

� Support of low-level input/output functions

| � Exploitation of 32-bit processor features, including Pentium

| microprocessor support

| � Ability to inline user functions

| � Intermediate code linking for improved performance

| � Optimization including instruction scheduling, loop unrolling, and

| floating-point register usage

| � Generation and use of precompiled header files

� Ability to call 16-bit code from C/C++ Tools 32-bit code

� Support of callbacks from 16-bit code to 32-bit code

� Memory files for temporary storage

� Support of NaN, Infinity, and the 80-bit long double type as

defined by Institute of Electrical and Electronics Engineers

(IEEE)

� Double-byte character set (DBCS) support

� Compiler options specified on the command line or in an

environment variable

 Copyright IBM Corp. 1992, 1993 11

 C/C++ Tools Features

� Language-level compiler options to enforce SAA or ANSI

standards

� Additional features, including language and library extensions,

to ease migration from other compilers.

 Debugger Features

The C/C++ Tools debugger is a 32-bit source level debugger that

uses the OS/2 Presentation Manager (PM) windowing services. It

concurrently manages both the application and the debugger

windows. The debugger provides the following features:

| � Support for both C and C++ programs

� Multiple program views, including source, disassembly, and

disassembly with source annotated

� Simple and complex breakpoint capabilities

� Monitor windows for local, global, and automatic variables

� Pointer and indirect referencing

� Hierarchical structure display, including nested structures

� Display of monitored variables in context

� Ability to monitor storage and the call stack

| � C++ class monitors, class inheritance view, and class details

| notebook

| � PM window analysis

| � Message queue monitoring

| � Tool bar for run, step, and display of registers, stack, and

| storage

� Display of processor and math coprocessor registers

� Support of DBCS.

| Execution Trace Analyzer (EXTRA) Features

| The execution trace analyzer (EXTRA) is an execution trace tool to

| help you tune your program's performance. EXTRA analyzes your

| program as it runs, and then displays the trace data in a variety of

| formats. EXTRA offers the following features:

| � Graphical and meaningful presentation of performance

| information

| � Support for both C and C++ programs

| � Interactive display of data

| � Timestamp accuracy of 838 nanoseconds per clock tick

12 IBM C/C++ Tools: Programming Guide

 C/C++ Tools Features

| � Ability to show sequencing of procedures across multiple

| threads

| � Ability to cross-correlate displays

| � Ability to trace calls to the operating system.

| Browser Features

| The C/C++ Tools browser is a program-examining tool that uses

| PM services to help you study your program components. With the

| browser you can:

| � List program components by scope, kind, or attributes

| � Graphically display relationships between program components,

| including class inheritance hierarchies and function calls

| � View and edit the source code associated with a program

| element.

 Problem Determination

| In addition to the debugger and EXTRA tool, the C/C++ Tools

product provides a number of problem determination aids:

� Debug memory management functions.

| � Detection of possible programming errors using the /Wgrp

| diagnostic compiler options.

| � Source code listings. These listings can include expanded

macros, and the layout of structures.

| � Assembler listings. These listings include annotated source.

� Precise diagnostic messages to aid problem analysis.

| � Use of the intermediate code linker to detect interfile

| programming errors.

C and C++ Language Industry Standards

The C/C++ Tools product is designed according to the specifications of

| the American National Standard for Information Systems / International

| Standards Organization – Programming Language C, ANSI/ISO

| 9899-1990[1992], as understood and interpreted by IBM as of

December 1992. Behavior that the ANSI C Standard declares as

implementation-defined is described in Appendix A, “ANSI Notes on

Implementation-Defined Behavior” on page 363.

 Chapter 2. Overview of the C/C++ Tools Product 13

 Shipped Code

The C/C++ Tools product also implements the Systems Application

Architecture (SAA) C Level 2 definition, which is a superset of the ANSI

standard. For more information on the SAA C standard, see the SAA

CPI C Reference - Level 2.

| At this time, there is no universal standard for the C++ language

| comparable to C standards. However, an ANSI committee is

| developing a C++ language standard. Its September 17, 1992 working

| paper, Draft Proposed American National Standard for Information

| Systems — Programming Language C++, X3J16/92-0060, was used as

| a base document for developing the C/C++ Tools C++ compiler. The

| C/C++ Tools C++ compiler will continue to change its design in

| accordance with the ANSI standard as it evolves.

 Shipped Code

The following code is available as part of the C/C++ Tools product:

| � 32-bit C/C++ compiler

| � C and C++ runtime libraries

| � Standard C++ class libraries (I/O Stream, Task, and Complex

| Mathematics)

| � User Interface class library

| � Collection class library

| � Class browser

� 32-bit PM debugger

| � Execution trace analyzer (EXTRA)

 � Installation program

� Sample programs and tutorials

� Online help and documentation

� IBM WorkFrame/2 support

� A READ.ME file with supplemental information about the product.

14 IBM C/C++ Tools: Programming Guide

 Shipped Code

 Compiler
The C/C++ Tools compiler analyzes the C or C++ source program and

translates the source code into machine instructions known as object

| code. The source file extension determines whether the file is compiled

| as a C program (.c extension) or a C++ program (.cpp or .cxx

| extension). (Note that by default, files with unrecognized extensions

| are treated as C source files.) The object code can then be linked

| using the LINK386 linker shipped with the C/C++ Tools product to

create an executable module that can be run.

For more information on compiling and linking. your program, see

Part 2, “Compiling and Linking Your Program” on page 27. For more

information on running your program, see Part 3, “Running Your

Program” on page 131.

 Runtime Libraries
In addition to the standard runtime libraries, the C/C++ Tools product

offers:

| � Libraries for developing subsystems that do not use the runtime

| environment.

| � Import libraries for the C/C++ Tools dynamic link libraries (DLLs).

| � Libraries that allow you to create your own customized library DLLs.

| (See Chapter 12, “Building Dynamic Link Libraries” on page 195

| for more information.)

You can link the runtime libraries to your program either statically or

dynamically.

For information on the functions available in the standard runtime

| libraries, see the C Library Reference. The subsystem libraries are

discussed in Chapter 17, “Developing Subsystems” on page 303 of this

book.

 Chapter 2. Overview of the C/C++ Tools Product 15

 Shipped Code

| C++ Class Libraries
| The C/C++ Tools product includes 3 sets of class libraries:

| Standard Class Libraries

| The Standard class libraries include the Complex Mathematics,

| I/O Stream, and Task Libraries. These libraries are described

| in the Standard Class Library Reference.

| Collection class library

| The Collection class library is a generic C++ container class

| library. It provides a variety of abstract and concrete

| implementations of common data structures. You can use and

| reuse the Collection classes as "building blocks" in your

| programs.

| User Interface class library

| The User Interface class library is an object-oriented

| encapsulation of PM programming. This library helps make

| developing PM user interfaces easier by providing a number of

| classes that you can use, reuse, and extend for your

| applications. The program model that the User Interface library

| is based on is more suitable to the C++ language than the

| traditional procedural programming model.

| Browser
| The browser is a PM static analysis tool that lets you look at your

| source code in many different ways. For example, you can display

| program elements such as source files, functions, and classes, and

| display program relationships in a graphical format.

| The class browser is described in Browser Introduction. An online

| tutorial is also available to get you started with the browser, and

| contextual online help is provided.

16 IBM C/C++ Tools: Programming Guide

 Shipped Code

 Debugger
The C/C++ Tools debugger is included to help you test and analyze

your code. It is a source level debugger that uses PM services. It

gives you multiple views of the program, including source and

disassembly code, and helps you:

� Step through a program

 � Set breakpoints

� Monitor variables, storage, expressions, and stacks

 � Manipulate threads.

For more information about the debugger, refer to the Debugger

Introduction. Contextual online help and an online tutorial are also

available.

| Execution Trace Analyser (EXTRA)
| EXTRA is a tool that analyzes your program as it runs and displays the

| trace data. It features a number of different graphical displays that help

| you identify possible performance problem areas in your code.

| EXTRA is described in Execution Trace Analyzer Introduction.

| Contextual online help and an online tutorial are also provided.

 Installation Program
You can install the C/C++ Tools product with the interactive installation

program included with the product. The installation program allows you

to choose the options you want to install and where you want to install

them. It can also update your CONFIG.SYS file. Online help is

provided throughout the program to assist you with the installation.

You can also use the installation program to reinstall or add new

options at a later time.

For a full description of the installation procedure, see the C/C++�Tools

Installation card.

 Chapter 2. Overview of the C/C++ Tools Product 17

 Shipped Code

 Sample Programs
A number of examples of program code are included with the

C/C++ Tools product:

� Sample source programs that demonstrate the following types of

source code:

| 1. A program in both C and C++ that demonstrates how to perform

| the same function using the different languages and how to

| compile, link, and run. See Chapter 3, “An Introduction to

| Using the C/C++ Tools Compiler” on page 23.

2. A program to demonstrate the multithread capabilities of the

C/C++ Tools compiler. See “Sample Multithread Program” on

page 194.

3. A program to build a single-thread dynamic link library (DLL).

See “Creating DLL Source Files” on page 196.

4. A program to demonstrate how to make calls to, or to be called

from, 16-bit code. See “Example of Calling a 16-Bit Program”

on page 294.

5. A program to build a subsystem DLL. See “Example of a

Subsystem DLL” on page 310.

| 6. A program to demonstrate the use of C++ templates. See the

| Online Language Reference or C++ Language Reference.

| 7. A program that uses the C++ exception handling facilities. See

| the Online Language Reference or C++ Language Reference.

| � A set of make files that compile and link the above sample

| programs. Each sample program has two make files. One links

| the libraries statically; the other links them dynamically.

| Note: You must have the Toolkit installed to use the make files.

| To build a sample, use NMAKE with the appropriate make file. For

| example, to build SAMPLE1A, type:

| NMAKE all /f SAMPLE1A

18 IBM C/C++ Tools: Programming Guide

 Shipped Code

| The parameter all ensures that the entire sample is built. After

| you have finished with the sample, you can use NMAKE again with

| the parameter clean to remove all files generated by the first

| NMAKE command. For example:

| NMAKE clean /f SAMPLE1A

| removes all files generated by NMAKE for SAMPLE1A.

� A set of module definition (.DEF) files that were used to link the

C/C++ Tools library DLLs and that provide an example of how to

create your own .DEF files and DLLs. For more information about

.DEF files, see the Toolkit documentation for the LINK386 program.

| � Sample programs for the browser and debugger. See the

| documentation for these tools for more information about these

| samples.

| � Sample programs for the Collection and User Interface class

| libraries. See the class library documentation for more information

| about these samples.

 Online Help
The C/C++ Tools product offers two kinds of online help:

� Online references that contain information about declarations and

definitions, preprocessor directives, include files, compiler options

and messages, library functions, and class libraries. You can

access the references through the view command. If you use the

OS/2 2.0 Enhanced editor (EPM), you can get help for a particular

item by putting the cursor on the item and pressing Ctrl-H.

� Contextual and overview help for the debugger, EXTRA, and

browser. Help is provided to explain the various functions and tell

you how to use them. You can access the help for a tool from any

window within that tool by highlighting an item and pressing F1, or

from the Help pull-down.

For more information about the online references and other online

publications, see “Online Publications” on page 9.

 Chapter 2. Overview of the C/C++ Tools Product 19

IBM WorkFrame/2 Support
The C/C++ Tools product provides a number of files that enable it to

integrate into the IBM WorkFrame/2 product Version 1.1 or higher

(referred to in this book as WorkFrame/2). Among these files are the

C/C++ Tools language profile, which is used to associate WorkFrame/2

projects with the C/C++ Tools product, and the compiler options DLL,

which presents the C/C++ Tools options through a graphical interface.

Also included are several directories of sample files for the

WorkFrame/2 product, named HELLO2, GREP, MAHJONGG,

PMLINES, and TOUCH.

| If you install these files when you install the C/C++ Tools files (by

| selecting the WorkFrame/2 support option), the installation program

creates projects and control (.PRJ) files for the samples under the

WorkFrame/2 main directory.

Hardware, Software, and Operating System Requirements

The IBM C/C++ Tools product requires a workstation with a 32-bit

| processor (80386, 80486, or Pentium microprocessor) running the OS/2

| 2.0 or later operating system.

The OS/2 2.0 Developer’s Toolkit, referred to in this document as the

Toolkit, is also a prerequisite, primarily because it contains the system

linker that the compiler uses, as well as the system header files and

import libraries that increase the capabilities of the compiler, and the

| NMAKE utility that helps manage the build process for projects.

The IBM C/C++ Tools Version J2.0 product requires a workstation

running the IBM OS/2 Version J2.0 operating system. The IBM OS/2

Developer’s Toolkit Version J2.0 is also a prerequisite.

20 IBM C/C++ Tools: Programming Guide

 Related Products

To effectively use the C/C++ Tools compiler and debugger, you need a

| minimum of 8M of RAM for C applications and 12M for C++

| applications. You must also set your swap path to a directory with at

| least 10MB free for C applications or 14M for C++ applications. A full

installation of the C/C++ Tools or C/C++ Tools Version J2.0 files

requires about 30MB of disk space, broken down in the following

manner:

Compiler and libraries 8MB

Debugger 6MB

| EXTRA 2MB

| Browser 2MB

| Standard class libraries .5MB

| Collection class library 1MB

| User Interface class library 5MB

| Online information 4.5MB

WorkFrame/2 support 1MB

| When you install the product, the installation program tells you how

| much space you have available on the selected drive and how much

| space is required for the options you select.

If you have an 80386 processor, an 80387 math coprocessor is

recommended because it will greatly increase the speed of floating

| point operations. If you have an 80486SX processor, an 80487 math

| coprocessor is recommended.

 Related Products

In addition to providing contextual help through the EPM editor and

using PM services for the debugger interface, the C/C++ Tools product

also works with the WorkFrame/2 product (61G1177, 61G1427) as

described in “IBM WorkFrame/2 Support” on page 20. It is also

complemented by the tools the OS/2 2.0 Developer’s Toolkit (10G3355,

10G4335) as described in “Hardware, Software, and Operating System

Requirements” on page 20 and in Chapter 6, “Finishing Your Program”

on page 123.

 Chapter 2. Overview of the C/C++ Tools Product 21

 Related Products

| Enhanced Editor (EPM)
| The Enhanced editor, referred to in this book as EPM, supports

| context-sensitive help for C/C++ Tools source files. It uses the files

| DDE4C.NDX, DDE4CPP.NDX, DDE4CCL.NDX, and DDE4UIL.NDX,

| provided by the C/C++ Tools product, to map each keyword to the

| command to open the appropriate online reference at the help panel for

| that keyword.

| WorkFrame/2 Product
The PM-based WorkFrame/2 product is a complementary offering to the

C/C++ Tools compiler and tools, and provides an adaptable,

project-oriented development environment.

The C/C++ Tools product provides compiler options dialogs to be used

from the WorkFrame/2 environment, and includes a number of sample

projects that demonstrate the capabilities of the WorkFrame/2 and

C/C++ Tools combination. An online tutorial is also provided with the

WorkFrame/2 product to help you use the C/C++ Tools product in the

WorkFrame/2 context.

You can easily customize the WorkFrame/2 interface to integrate your

own 16-bit and 32-bit tools and create a personalized environment.

OS/2 2.0 Developer’s Toolkit
The Toolkit provides header files for the OS/2 APIs and the

OS2386.LIB. If your applications use any operating system services,

you need these header files and library. The Toolkit also contains the

LINK386 linker and NMAKE utility. In addition, it provides many tools

| that integrate fully into the WorkFrame/2 environment. For a short

| description of the Toolkit tools most commonly used with the

| C/C++ Tools product, see Chapter 6, “Finishing Your Program” on

| page 123.

22 IBM C/C++ Tools: Programming Guide

 Sample C Program

Chapter 3. An Introduction to Using the C/C++ Tools
Compiler

This chapter shows the basic steps for compiling, linking, and running C

and C++ programs, using two of the C/C++ Tools sample programs.

| PMLINES is a PM program that displays a standard window and then

| draws lines in the window. Both the line and background colors

| change. Two versions of PMLINES are shipped with the C/C++ Tools

| product, one written in C and one in C++. (A debugger version of the

| program, DPMLINES, is also included.)

| Note: You must have the Toolkit installed in order to build and run the

| PMLINES programs. To run the C++ version, you must also have

| installed the User Interface class library.

| Compiling a Sample C Program

| The PMLINES C program, SAMPLE1A, uses C/C++ Tools library

| functions, OS/2 APIs, and application-defined functions. It creates and

| displays a standard window, uses simple menus and dialog boxes, uses

| a second thread, and displays graphics.

| The SAMPLE1A.C source file:

| � Includes the C/C++ Tools header files <string.h>, <stdlib.h>, and

| the Toolkit header file <os2.h>.

| � Calls functions from the C/C++ Tools subsystem library

| DDE4NBS.LIB and APIs from the Toolkit library OS2386.LIB.

| � Includes the user header file "pmlines.h", which defines a number

| of macros and identifiers.

 Copyright IBM Corp. 1992, 1993 23

 Sample C Program

| � Prototypes and defines the following application functions which all

| call OS/2 APIs:

| InitTitle Initializes the window title and task switch list.

| ClientWindowProc Uses a switch statement and PM APIs to

| handle user input, such as a request to change

| the line color.

| DrawingThread Draws the lines.

| HelpDlgProc Accesses the help dialog.

| DisplayMessage Displays error messages.

| � Creates a second thread for the DrawingThread function.

| The SAMPLE1A program also makes use of a resource file,

| SAMPLE1A.RES, that defines the resources it uses, such as icons.

| If you installed the sample programs, the C source files for SAMPLE1A

| are found in the SAMPLES\SAMPLE1A directory under the main

| installation directory. Two make files that build the sample are also

| provided, MAKE1AS for static linking and MAKE1AD for dynamic linking.

| To compile and link SAMPLE1A, at the prompt in the

| SAMPLES\SAMPLE1A directory, use NMAKE with the appropriate

| make file. For example:

| NMAKE all /f MAKE1AS

| To compile and link the program yourself, use the following commands.

| Each step is discussed in detail in Part 2, “Compiling and Linking Your

| Program” on page 27.

| Command| Description

| icc /Rn /B"/PM:pm" SAMPLE1A.C| Compiles and links SAMPLE1A.C using

| the default options and the

| subsystem library, and passes the

| /PM:pm option to the linker to specify

| it is a PM program.

| Note: The icc command invokes the linker for you. For information on linking

| separately from the compile step, see “Linking Independently of the Compiler”

| on page 123.

| rc SAMPLE1A.RES SAMPLE1A.EXE| Binds the necessary resources into

| the executable file.

24 IBM C/C++ Tools: Programming Guide

 Sample C++ Program

| To run the program, type SAMPLE1A at the command prompt.

| Compiling a Sample C++ Program

| The PMLINES C++ program, SAMPLE1B, uses primarily the User

| Interface class library to create and display a standard window, handle

| events, use a second thread, and display graphics. It also

| demonstrates the use of native PM APIs with User Interface class

| library objects.

| The SAMPLE1B.CPP source file:

| � Includes the Toolkit header file <os2.h>.

| � Includes the User Interface class library header files <iapp.hpp>,

| <ireslib.hpp>, <itrace.hpp>, and <imsgbox.hpp>.

| � Includes the user header files "pmlines.h", which defines a number

| of symbols and constants, and "pmlines.hpp", which contains the

| user class declarations.

| � Constructs the main window using the application-defined MyWindow

| class.

| � Constructs the client window using the application-defined

| MyClientWindow class.

| � Creates a second thread for the DrawLines function, which is a

| member of the MyClientWindow class.

| � Uses a switch statement and the User Interface class library event

| handling classes to handle user input, such as a request to change

| the line color, as well as to display messages.

| � Defines the DrawLines function using direct calls to OS/2 APIs.

| The SAMPLE1B.HPP header file:

| � Uses preprocessor directives to ensure it is only included once.

| � Includes a number of User Interface class library header files.

| � Declares the class MyWindow, which is a subclass of the User

| Interface class library IFrameWindow class. This class declares the

| event handlers for the window.

 Chapter 3. An Introduction to Using the C/C++ Tools Compiler 25

 Sample C++ Program

| � Declares the class MyClientWindow, which is also a subclass of

| IFrameWindow. This class declares the member function DrawLines

| that draws the lines on the screen and also provides the functions

| needed to set window dimensions, window colors and to issue

| events to the second thread.

| Like SAMPLE1A, SAMPLE1B also uses a resource file, SAMPLE1B.RES,

| to define the resources it needs.

| If you installed the sample programs, the C++ source files for

| SAMPLE1B are found in the SAMPLES\SAMPLE1B directory under the

| main installation directory. Two make files are also provided, MAKE1BS

| for static linking and MAKE1BD for dynamic linking.

| To compile and link SAMPLE1B, at the prompt in the

| SAMPLES\SAMPLE1B directory, use NMAKE with the appropriate

| make file. For example:

| NMAKE all /f MAKE1BS

| To compile and link the program yourself, use the following commands.

| Each step is discussed in detail in Part 2, “Compiling and Linking Your

| Program” on page 27.

| To run the program, type SAMPLE1B at the command prompt.

| Command| Description

| icc /B"/PM:pm" SAMPLE1B.CPP| Compiles and links SAMPLE1B.C using

| the default options and passes the

| /PM:pm option to the linker to specify

| it is a PM program.

| Note: The icc command invokes the linker for you. For information on linking

| separately from the compile step, see “Linking Independently of the Compiler”

| on page 123.

| rc SAMPLE1B.RES SAMPLE1B.EXE| Binds the necessary resources into

| the executable file.

26 IBM C/C++ Tools: Programming Guide

 Compiling Your Program

Part 2. Compiling and Linking Your Program

This part of the Programming Guide describes the input to the compiler,

how to compile and link programs, how to set compiler options, and

how to use the compiler listing. It also describes static and dynamic

| linking of programs. In addition, it discusses some of the other Toolkit

| tools you may want to use to complete your application.

| Chapter 4. Compiling Your Program 29

Using the icc Command . 30

Controlling Compiler Input . 33

OS/2 Environment Variables for Compiling 34

Controlling #include Search Paths 38

Setting the Source Code Language Level 41

Controlling Compiler Output . 44

| Using the Intermediate Code Linker 52

| Inlining User Code . 56

Setting the Calling Convention . 62

Choosing Your Runtime Libraries 63

Controlling the Logo Display on Compiler Invocation 67

Controlling Stack Allocation and Stack Probes 67

Chapter 5. Using Compiler Options 71

Specifying Compiler Options . 71

Scope of Compiler Options . 75

Compiler Option Classification . 81

Output File Management Options 82

#include File Search Options . 86

Listing File Options . 88

Debugging and Diagnostic Information Options 92

Source Code Options . 100

Preprocessor Options . 107

Code Generation Options . 111

Other Options . 120

| Chapter 6. Finishing Your Program 123

Linking Independently of the Compiler 123

| Creating Runtime DLLs . 125

 Copyright IBM Corp. 1992, 1993 27

 Compiling Your Program

| Binding Runtime Messages to Your Application 126

| Creating Online Documentation 127

| Using the Resource Compiler . 128

| Using the NMAKE Utility . 129

28 IBM C/C++ Tools: Programming Guide

 Compiling Your Program

| Chapter 4. Compiling Your Program

The icc command invokes the C/C++ Tools compiler, which takes your

C or C++ source code as input and produces an intermediate code file,

a preprocessed file, or an object file. Also, the icc command by default

invokes the LINK386 linker to link the object file into an executable

module or a dynamic link library (DLL). This chapter describes the icc

command and how to use it to compile and link your C and C++ code.

| It also describes how to use the intermediate code linker to improve the

| optimization of your code.

You can invoke icc like any other OS/2 program, such as from an OS/2

command line or using a .CMD file. You can also invoke the compiler

from within a program by using the system function. For example:

 system("icc myprog.c");

See the C Library Reference for more information about the system

function.

Note: The icc command uses the LINK386 linker. To compile without

linking, use the icc command with the /C+ option. Then you

can link your program yourself, using either the LINK386 linker

| or any other linker that processes IBM 32-bit object files. See

| “Linking Independently of the Compiler” on page 123 for the

| LINK386 syntax. More information about LINK386 is provided in

| the Toolkit online Tools Reference.

| If you are linking C++ files, you must invoke the linker through

| icc to ensure that template functions and classes are resolved

| correctly. You must also specify the /Tdp compiler option.

 Copyright IBM Corp. 1992, 1993 29

 Using the icc Command

Using the icc Command

The syntax for the icc command is as follows:

|

| ►►──icc─ ──┬ ┬──@response_file ─── ───►◄
| │ │┌ ┐───
| │ ││ │┌ ┐────────────────── ┌ ┐──────────────────
| └ ┘| ───▼ ┴───▼ ┴┬ ┬────────────── ──┬ ┬─────────────────── ───▼ ┴┬ ┬──────────────
| ├ ┤──/local_optn ─ ├ ┤─source──────────── └ ┘| ──/global_optn
| └ ┘──/global_optn ├ ┤─intermediate_file─
| ├ ┤─object────────────
| ├ ┤─library───────────
| └ ┘─def_file──────────

Depending on how you want to compile your files and how you have

set up the ICC environment variable, many of the parameters used with

the icc command are optional when you issue the command from a

command line.

For example, to compile and link the program bob.c, you would enter

the following:

 icc bob.c

An object code file bob.obj, and an executable file bob.exe are created.

Local and global compiler options are discussed in “Scope of Compiler

Options” on page 75.

To see an online list of all the C/C++ Tools compiler options type at the

OS/2 command line:

 icc ?

| This listing is printed to stderr, but you can use the OS/2 redirection

| symbols to redirect it to stdout or to a file.

Note: The listing generated by this command is not intended to be

used as a programming interface.

30 IBM C/C++ Tools: Programming Guide

 Using the icc Command

Compiling Programs with Multiple Source Files
To compile programs that use more than one source file, specify all the

file names on the command line. For example, to compile a program

with three source files (mainprog.c, subs1.c, and subs2.c), type:

icc mainprog.c subs1.c subs2.c

The source file containing the main module can be anywhere in the list.

The executable module will have the same file name as the first file

name but with the extension .EXE.

| You can compile a combination of C and C++ files, for example:

| icc cprog.c cppprog.cpp cxxprog.cxx othprog.oth

| The file extension determines whether the file is compiled as a C file

| (.c or any other unrecognized extension) or as a C++ file (.cpp or .cxx).

| Given the preceding command line, cprog.c and othprog.oth are

| compiled as C files, and cppprog.cpp and cxxprog.cxx are compiled as

| C++ files.

| You can also use the /Tc, /Tp, and /Td options to specify whether a file

| is a C or C++ file, regardless of its extension. The /Tc and /Tp options

| apply only to the file name immediately following the option, and specify

| that the file is a C file (/Tc) or a C++ file (/Tp). For example, given the

| following command line:

| icc /Tc cprog.cpp cppprog.cpp /Tp cxxprog.c

| cprog.cpp is compiled as a C file, and cppprog.cpp and cxxprog.c are

| compiled as C++ files.

| The /Td option applies to all files that follow on the command line. Use

| /Tdc to specify that all source and unrecognized files that follow are to

| be treated as C files, or /Tdp to specify that they are to be treated as

| C++ files. You can specify /Td to return to the default handling of files.

| For example, given the following command line:

| icc /Tdp cxxprog.c othprog.oth /Td newprog.new

| cxxprog.c and othprog.oth are compiled as C++ files, and newprog.new

| is compiled as a C file because /Td reset the default handling of files

| (files with unrecognized extensions are treated as C files).

 Chapter 4. Compiling Your Program 31

 Using Response Files

| Using Response Files
| Instead of specifying compiler options and source files on the OS/2

| command line, you can use a response file as input to icc. A response

| file is a flat file that contains a string of options and file names be

| passed to icc. The string does not specify icc itself. For example,

| given the command line:

| icc /Sa /Fl catherine.c

| the response file would contain the string:

| /Sa /Fl catherine.c

| The command string can span multiple lines. No continuation character

| is required. The string can also be longer than the limit imposed by the

| OS/2 command line. In some situations you may have to use a

| response file to accommodate a long command line, such as when you

| use the intermediate code linker or compile C++ code containing

| templates.

| Because the compiler appends a space to the end of each line in the

| response file, be careful where you end a line. If you end a line in the

| middle of an option or file name, the compiler may not interpret the file

| as you intended. For example, given the following response file:

| /Sa /F
| l catherine.c

| the compiler would construct the command line:

| icc /Sa /F l catherine.c

| The compiler would then generate an error that the /F option is not

| valid, and would try to compile and link the files l.obj and

| catherine.c.

| You cannot specify another response file within the response file.

| A response file can have any valid file name and extension. To use the

| response file, specify it on the icc command line preceded by the at

| sign (@). For example:

| icc @d:\response.fil

32 IBM C/C++ Tools: Programming Guide

 File Types

| No space can appear between the at sign and the file name. If you

| use a response file, you cannot specify other options or file names on

| the icc command line. Options and file names set in the ICC

| environment variable are still used.

Controlling Compiler Input

This section describes the methods you can use to control input to the

compiler.

 File Types
The C/C++ Tools compiler uses file extensions to distinguish between

the different types of file it uses. The default file extensions are:

.asm assembler listing file

| .brs browser file

| .c C source file

| .cpp C++ source file

| .cxx C++ source file

.ctn temporary file

.def definition file

.dll dynamic link library

.exe executable file

.h header file

.hpp header file

.i preprocessor output file

.l temporary file

.lst listing file

.lib library file

| .m temporary file

.map map file

.obj object file

.w intermediate file

.wh intermediate file

.wi intermediate file

| .wli temporary file

 Chapter 4. Compiling Your Program 33

 OS/2 Environment Variables

For example, when you are using C/C++ Tools defaults, the command:

icc module1.c module2.obj mylib.lib mydef.def

compiles the source code file module1.c and produces the object file

module1.obj. When the linker is invoked, the object files module1.obj

(created during this invocation of the compiler) and module2.obj

(created previously), the library file mylib.lib and the definition file

mydef.def are passed to the linker. The result is an executable file

called module1.exe.

OS/2 Environment Variables for Compiling

The C/C++ Tools compiler makes use of the OS/2 environment

variables to provide path information and default values for compiler

options. If the C/C++ Tools installation program updated your

CONFIG.SYS file, many of the environment variables were set to

default values for the compiler. If the program did not update

CONFIG.SYS, you can set these values by running the CSETENV.CMD

file in your OS/2 session before using the compiler.

Note: Some environment variables, for example ICC, are optional.

They are not added to your CONFIG.SYS file or to CSETENV.CMD. If

you want to use them, you can add them to either of these files and set

them to the required value.

| The environment variables described in this section are called the

compiler environment variables. A number of environment variables

are also used at run time. See Chapter 7, “Setting Runtime

Environment Variables” on page 133 for information on the runtime

environment variables.

The following OS/2 environment variables affect the operation of the

C/C++ Tools compiler during compilation.

PATH

The PATH variable names the directory (or directories, separated

by semicolons) searched for executable modules when the

compiler is invoked. This variable should include the directories

containing the C/C++ Tools compiler and LINK386 executable

modules.

34 IBM C/C++ Tools: Programming Guide

 OS/2 Environment Variables

DPATH

The compiler searches for help and message files in the

directories specified by this variable.

INCLUDE

The compiler searches for the header files in the directories listed

by this variable.

LIB

This variable should include the directories containing the

| C/C++ Tools libraries (.LIB files) that are used by the linker. If

| you call any OS/2 APIs, OS2386.LIB from the Toolkit must also

| be specified by the LIB variable.

TMP

This variable contains the path where the C/C++ Tools compiler

places all its temporary work files. If this variable is undefined,

| the compiler uses the current directory. If you installed the

| compiler on a LAN, temporary files are stored in your local

| directory. The work files created by the compiler are normally

erased at the end of compilation; however, if an interruption

occurs during compiling, these work files may still exist after the

compilation ends. If you set the TMP variable, you eliminate the

possibility of work files being scattered around your file system.

See also Chapter 5, “Using Compiler Options” on page 71 for

information on the /Fd compiler option, which you can use to

control whether temporary files are stored in shared memory or on

| disk. (Note that if you are compiling a C++ program, you must

| store temporary files on disk.)

| Setting TMP to point to a virtual disk (also called a RAM disk)

may improve compilation time. See the OS/2 documentation for

information on using the VDISK device driver to create a virtual

disk.

ICC

You can use this variable to specify default compiler options as

well as source file names. See “Specifying Compiler Options” on

page 71 for a more detailed description of the ICC variable.

 Chapter 4. Compiling Your Program 35

 OS/2 Environment Variables

Setting Environment Variables
Environment variables are given values using the OS/2 SET command.

| The LIBPATH variable and all DEVICE statements must be set in

CONFIG.SYS. For all other variables, you can use the SET command in

three places:

CONFIG.SYS file

You can add the environment variables to the CONFIG.SYS file.

If the environment variable already exists in CONFIG.SYS, add

the C/C++ Tools values to the existing variable. You can also

have the C/C++ Tools installation program update CONFIG.SYS

for you.

Environment variables specified in CONFIG.SYS are in effect for

every session you start. This is a good place to specify variables

that you want to apply each time you compile.

CSETENV.CMD file

This is an OS/2 command file that is created by the C/C++ Tools

installation program. You must use this command file each time

you start a session in which you are going to use the C/C++ Tools

product. The variables are in effect only for the session in which

you use the CSETENV.CMD file.

If you use the installation defaults (that do not update

CONFIG.SYS), CSETENV.CMD contains the following statements:

| @REM DEVICE=C:\IBMCPP\SYS\DDE4XTRA.SYS
| @REM LIBPATH=C:\IBMCPP\DLL;
| SET PATH=C:\IBMCPP\BIN;%PATH%
| SET DPATH=C:\IBMCPP\LOCALE;C:\IBMCPP\HELP;C:\IBMCPP\SYS;%DPATH%
| SET LIB=C:\IBMCPP\LIB;%LIB%
| SET INCLUDE=C:\IBMCPP\INCLUDE;C:\IBMCPP\IBMCLASS;%INCLUDE%
| SET HELP=C:\IBMCPP\HELP;%HELP%
| SET BOOKSHELF=C:\IBMCPP\HELP;%BOOKSHELF%
| SET HELPNDX=DDE4C.NDX+DDE4CPP.NDX+DDE4UIL.NDX+DDE4CCL.NDX+%HELPNDX%;
| SET TMP=C:\IBMCPP\TMP
| SET TZ=EST5EDT,0,0,0,0,0,0,0,0,0

36 IBM C/C++ Tools: Programming Guide

 OS/2 Environment Variables

Adding environment variables of your choice to this file is a way of

specifying variables that you always use without having to type

them individually on the command line. The variables in this file

override environment variables in the CONFIG.SYS file. You can

| append the original value of a variable using %variable%, as

| shown in this PATH statement:

| SET PATH=C:\IBMCPP\BIN;%PATH%

command line

When the SET command is used on the OS/2 command line, the

values you specify are in effect only for that OS/2 session. They

override values previously specified in CONFIG.SYS or by

CSETENV.CMD. You can append the original value of a variable

using %variable%, as shown above in the example for PATH.

Example of Setting Environment Variables
The following example could be used in the CSETENV.CMD file or on

the command line.

If the executable files that make up the compiler are in C:\IBMCPP\BIN,

the following command adds this directory to the PATH variable:

 SET PATH=C:\IBMCPP\BIN;%PATH%

This command makes C:\IBMCPP\BIN the first directory searched by the

OS/2 operating system (after the current directory). To put the new

directory at the end of the search sequence, put %PATH% before the new

directory name.

 Chapter 4. Compiling Your Program 37

 Controlling #include Search Paths

Source File Names in ICC
In addition to compiler options, you can also put file names into the ICC

variable. For example, if you specify:

SET ICC=test.c check.c

the command

 icc main.c

causes test.c, check.c, and main.c to be compiled and linked, in that

| order. You can also specify intermediate files (created with the /Fw

| option) in ICC. They are treated like source files.

All the library, object, or module definition files that appear in ICC will

be passed to the linker when it is invoked.

Controlling #include Search Paths

The #include preprocessor directive allows you to retrieve source

statements from secondary input files and incorporate them into your

program.

You can nest #include directives in an included file. There is a limit of

128 levels of nesting in the C/C++ Tools compiler.

Compiler options and environment variables let you choose the disk

directories searched by the compiler when it looks for #include files.

This section describes how to specify #include file names and how to

set up search paths for these files.

 #include Syntax

►►──#include─ ──┬ ┬──<filename> ───────────────────────────►◄
└ ┘──"filename"

In the above figure, angle brackets indicate a system #include file,

and quotation marks indicate a user #include file.

38 IBM C/C++ Tools: Programming Guide

 #include File Name Syntax

#include File Name Syntax
You can specify any valid OS/2 file name in a #include directive. The

file name must be sufficiently qualified for the compiler to be able to

locate the file. In some cases, an unqualified or partially qualified file

name may be sufficient; in others, you may have to include the entire

path name.

If a path name is too long to fit on one line, you can place a

continuation character, or backslash (\), at the end of the unfinished line

to indicate that the current line continues onto the next line. The

backslash can follow or precede a directory separator, or divide a

name. For example, to include the following file as a user #include file:

 c:\cset\include\mystuff\subdir1\subdir2\subdir3\myfile.h

You could insert one of the following #include directives in your

program:

 #include "c:\cset\include\mystuff\subdir1\sub\
 dir2\subdir3\myfile.h"

or

 #include "c:\cset\include\mystuff\subdir1\\
 subdir2\subdir3\myfile.h"

Notes:

1. The continuation character must be the last non-white-space

character on the line. (White space includes any of the space, tab,

new-line, or form-feed characters.) The line cannot contain a

comment.

2. The continuation character, although the same character as the

directory separator, does not take the place of a directory separator

or imply a new directory.

 Chapter 4. Compiling Your Program 39

 #include Search Order

Ways to Control the #include Search Paths
You can control the #include search paths in three ways:

� Use the /I, /Xc, and /Xi compiler options on the command line

when invoking the compiler.

� Use the /I, /Xc, and /Xi compiler options in the ICC environment

variable.

� Specify the search paths in the INCLUDE environment variable.

For more information on the compiler options /I, /Xc, and /Xi, see

“#include File Search Options” on page 86.

#include Search Order
When the compiler encounters either a user or system #include file

statement with a fully-qualified file name, it looks only in the directory

specified by the name.

When the compiler encounters a user #include file specification that is

not fully qualified, it searches for the file in the following places in the

order given:

1. The directory where the original top-level file was found.

2. Any directories specified using /I that have not been removed

through the use of /Xc. Directories specified in the ICC

environment variable are searched before those specified on the

command line.

3. Any directories specified using the INCLUDE environment variable,

provided that the /Xi option is not currently in effect.

When the compiler encounters a system #include file specification that

is not fully qualified, it searches for the file in the following places in the

order given:

1. Any directories specified using /I that have not been removed

through the use of /Xc. Directories specified in the ICC

environment variable are searched before those specified in

command line.

2. Any directories specified using the INCLUDE environment variable,

provided that the /Xi option is not currently in effect.

40 IBM C/C++ Tools: Programming Guide

 Setting the Language Level

Accumulation of Options
The #include search options are cumulative between the ICC and

INCLUDE environment variables and the command line. For example,

given the following ICC and INCLUDE environment variables

 ICC=/I\rosanne
 INCLUDE=c:\kent;\alan

and the following command line

icc /Xi+ /Ic:\connie test.c /Xi- /Xc /Id:\dal f:\moe\marko\jay.c

any system #include files referenced in the file test.c will be searched

for first in the directory \rosanne and then in the directory c:\connie.

Because the /Xi+ option was specified, none of the directories set in

the INCLUDE environment variable will be searched.

Using the same example, any user #include files referenced in test.c

would be searched for first in the current directory, then in the directory

\rosanne, and then in c:\connie.

Any system #include files referenced in the file f:\moe\marko\jay.c

will be searched for first in the d:\dal directory, then in the c:\kent

directory, and finally the \alan directory. The directories specified in

the INCLUDE variable are searched because the /Xi- option overrides

the /Xi+ option specified previously. The /Xc option removes the

directories \rosanne and c:\connie from the current search path.

Any user #include files referenced in jay.c will be searched for in the

following directories, in the given order: f:\moe\marko, d:\dal, c:\kent,

and \alan.

Setting the Source Code Language Level

You can set the language level of your source code to one of four

language levels, which are described below. You can set the level

using compiler options either on the command line or in ICC, or by

| using a #pragma langlvl directive. Note that a #pragma langlvl

| directive set in your source code overrides any language-level compiler

| options specified on the command line or in ICC. When you set the

language level, you also define the macro associated with that level.

 Chapter 4. Compiling Your Program 41

 Setting the Language Level

The language levels are:

1. ANSI - Allow only language constructs that conform to ANSI C

standards or for C++ code, that conform to the standards in the

ANSI working paper on C++ standards. All non-ANSI constructs

cause compiler errors.

Use this language level to write code that is portable across

ANSI-conforming systems.

To allow only ANSI constructs, use the /Sa option or #pragma

langlvl(ansi), which define the macro __ANSI__.

2. SAA Level 2 - Allow only language constructs that conform to SAA

| Level 2 C standards. This language level is valid for C code only,

| because there is no SAA standard for C++. SAA constructs include

all those allowed under the ANSI language level, because the SAA

C standard conforms to the ANSI standard. All non-SAA constructs

cause compiler errors. See the SAA CPI C Reference - Level 2 for

a full description of the SAA C standard.

Use this language level to write code that is portable across SAA

systems.

To allow only SAA constructs, use the /S2 option or #pragma

langlvl(saal2), which define the macro __SAA_L2__.

Note: You can also use #pragma langlvl(saa), which defines the

macro __SAA__. This level allows constructs that conform to the

most recent SAA C definition. Because Level 2 is currently the

most recent definition, the __SAA__ and __SAA_L2__ macros are

equivalent at this time.

| 3. Extended - Allow all C/C++ Tools language constructs. These

include all constructs that fall under the ANSI and SAA Level 2

language levels and the C/C++ Tools extensions to those

standards.

This is the default language level.

To explicitly state this default (for example, on the command line to

override a setting in ICC), use the /Se option or #pragma

langlvl(extended), which define the macro __EXTENDED__.

42 IBM C/C++ Tools: Programming Guide

 Setting the Language Level

| 4. Compatible - Allow constructs and expressions that were allowed

| by earlier levels of the C++ language. This language level is valid

| for C++ code only.

| When the language level is set to compatible:

| � Classes declared or defined within classes or declared within

| argument lists are given the scope of the closest non-class.

| � typedefs and enumerated types declared within a class are

| given the scope of the closest non-class.

| � The overload keyword is recognized and ignored.

| � An expression showing the dimension in a delete expression is

| parsed and ignored. For example, given:

| delete [20] p;

| 20 is ignored.

| � Conversions from const void\ and volatile void\ to void\

| are allowed. At other language levels, these conversions would

| require an explicit cast.

| � Where a conversion to a reference type uses a compiler

| temporary type, the reference need not be to a const type.

| � You can bypass initializations as long as they are not

| constructor initializations.

| � You can return a void expression from a function that returns

| void.

| � operator++ and operator-- without the second zero argument

| are matched with both prefix and postfix ++ and --.

| � You can use the $ character in identifiers. Note that you can

| also use $ in C++ files when the language level is set to

| extended.

| � In a cast expression, the type to which you are casting can

| include a storage class specifier, function-type specifier (inline

| or virtual), template specifier, or typedef. At other language

| levels, the type must be a data type, class, or enumerated type.

| � You can have a trailing comma in a list of enumerators, for

| example, enum E {e , };.

| � Given the expression class A \a = new(x) A[100];, the

| compiler looks for a member operator new because the

| placement syntax (new(x)) is used. The member operators are

| not typically used to allocate arrays.

| � You can use the comma operator.

 Chapter 4. Compiling Your Program 43

 Compiler Output

| � You can declare a member function using both the inline and

| static keywords, for example, inline static void sandra ::

| pete(void);. The static keyword is ignored.

| � No error is generated if a function declared to return a non-void

| type does not contain at least one return statement. Such a

| function can also contain return statements with no value

| without generating an error.

| � If two pointers to functions differ only in their linkage types, they

| are considered to be compatible types.

| Use this language level to write code that is portable to systems

| with older implementations of C++, or to port older code to the

| C/C++ Tools product.

| To allow older C++ constructs, use the /Sc option or #pragma

| langlvl(compat), which define the macro __COMPAT__.

If you want to write portable C code to be compiled and run on different

SAA platforms, you should use the /S2 option. The SAA C standards

conform to the ANSI standards, but also feature some additional

| elements. If you will be compiling and running your code primarily on

| the personal computer platform, you should use the /Se option. If you

will be compiling and running your code on other non-SAA platforms,

you should use the /Sa option.

Controlling Compiler Output

The icc program can generate the following output:

� An object module for each C/C++ source file input.

� One executable module (or dynamic link library).

� A listing file for each C/C++ source file that contains information

about the compilation.

| � Preprocessed header files.

| � Template-include files. See “Generating Template-Include Files” on

| page 231 for more information about these files.

� A linker map file.

44 IBM C/C++ Tools: Programming Guide

 Compiler Output

� A preprocessor output file for each C/C++ source file. You can use

this output file for debugging information.

Note: This information is not intended to be used as a

programming interface.

� An assembler listing file for each C/C++ source file. The format of

the listing is in the style of the MASM 5.1 assembler output. The

C/C++ source is annotated in the listing. Assembler listings will not

always compile, especially if reserved MASM keywords are used as

external variables or functions.

Note: This listing is not intended to be used as a programming

interface.

| � A browser listing file for use by the C/C++ Tools browser.

| � Intermediate code files. Three files (.w, .wh, .wi) are produced per

| source file.

| Note: These files are not intended to be used as a programming

| interface.

 � Temporary files.

Note: These files are not intended to be used as a programming

interface.

� Diagnostic information about possible programming errors.

Note: This information is not intended to be used as a

programming interface.

� Messages (for example, the IBM logo and help messages).

 Object Files
The object files that are produced by the C/C++ Tools compiler can be

linked to create either executable (.EXE) files or dynamic link libraries

| (.DLL files). Use the /Ge+ option to create an executable file or /Ge- to

| create a DLL. See “Code Generation Options” on page 111 for more

information on using compiler options to specify the type of object file to

be created.

 Chapter 4. Compiling Your Program 45

 Compiler Output

Optimization Level of Object Code
The C/C++ Tools compiler can perform many optimizations, such as

local optimizations, common subexpression elimination, and loop

optimizations on object code. Use the /O+ option to enable

| optimization. By default, optimization is turned off (/O-). You can also

| control the inlining of user code with the /Oi option, the use of the

| intermediate code linker with the /Ol option, the inclusion of

| optimizations that involve the instruction pointer with the /Op option, and

| the use of the instruction scheduler with the /Os option.

See “Code Generation Options” on page 111 for more information on

using compiler options to control optimization. For more information on

how you can optimize your code, see Chapter 10, “Optimizing Your

Program” on page 165.

Generating Debugger Information
The information necessary for running the C/C++ Tools debugger can

be placed in the object file produced by the compiler using the /Ti+

| option. To include the debugger information in the executable file or

| DLL, use the /DE linker option. If you use icc to invoke the linker and

| specify /Ti+, the /DE option is automatically passed to the linker.

| When you use /Ti+, do not turn on optimization (/O+, /Oi+, or /Os+).

| Because the compiler produces debugging information as if the code

| were not optimized, the information may not accurately describe an

| optimized program being debugged, and the debugger will not operate

| properly.

| Because of the effects of optimization, debugging information generated

| with optimization is limited to setting breakpoints at function entry and

| function exit and stepping through the program at assembly level.

| Accurate symbol and type information is not always available.

| To make full use of the C/C++ Tools debugger, set optimization off and

| use the /G3 option. (Note that these are the defaults.)

See “Debugging and Diagnostic Information Options” on page 92 for

more information on using compiler options to control the generation of

debugging information.

46 IBM C/C++ Tools: Programming Guide

 Compiler Output

| Generating EXTRA Information
| To include the information required by EXTRA in the object file, use

| both the /Ti+ and /Gh+ options. To include the EXTRA information in

| the executable file or DLL, use the /DE linker option. If you use icc to

| invoke the linker and specify /Ti+, the /DE option is automatically

| passed to the linker.

| When /Gh+ is specified, the compiler generates a call to a profiling hook

| function as the first instruction in the prolog of each function. There are

| two profiling hook functions:

| _ProfileHook32 Profile hook for all 32-bit functions.

| _ProfileHook16 Profile hook for all 16-bit callback functions. These

| functions are defined with either the _Far16 _Cdecl or

| _Far16 _Pascal linkage keywords.

| Other profiler vendors who plan to support the C/C++ Tools product

| must provide their own profiling hook functions to gather all necessary

| runtime information .

 Executable Files
By default, the compiler generates one executable file for each compiler

invocation. If you specify /C+, the compiler generates an object file that

you can then link separately to create an executable file.

There are two types of executable files:

� Those that run in the C/C++ Tools runtime environment.

This is the default, and most C and C++ applications run under this

environment. It supports all the C/C++ Tools runtime functions and

automatically provides initialization, exception management, and

termination routines for C and C++.

� Those that run as subsystems.

Programs developed as subsystems can only make use of a subset

of the C/C++ Tools runtime library. You have to take care of

initialization, exception management, and termination using OS/2

services and APIs.

 Chapter 4. Compiling Your Program 47

 Compiler Output

Subsystems are intended for developing applications that cannot

have a resident environment, such as Presentation Manager display

and printer drivers. If your application does not require the

C/C++ Tools runtime environment, you can also use the subsystem

library to reduce your program's size and improve its performance.

To compile a subsystem executable file, use the /Rn option.

For more information on subsystems and their uses, see

Chapter 17, “Developing Subsystems” on page 303. For

information on the compiler options used to produce subsystems

see “Code Generation Options” on page 111.

You can use a number of compiler options to change the executable

file created by the compiler. See “Code Generation Options” on

page 111 for information on using compiler options to specify the type

of executable file you want to create.

 Compiler Listings
When you compile a program, you can produce a listing file that

contains information about the source program and the compilation.

You can use this listing to help you debug your programs.

Note: The compiler listing file is not intended to be used as a

programming interface.

At the very minimum, the listing will show the options used by the

compiler, any error messages, and a standard header that shows:

� The product number

� The compiler version and release number

� The date and time compilation commenced

� A list of the compiler options in effect.

For information on how to use compiler options to specify the

information and format of this file, see “Listing File Options” on

page 88.

48 IBM C/C++ Tools: Programming Guide

 Compiler Output

 Temporary Files
The C/C++ Tools compiler creates and uses temporary files during

compilation. Temporary files are usually erased at the end of a

successful compilation.

| When you compile C++ files, the temporary files are stored on disk.

| When you compile C files, they can be stored either on disk or in

shared memory. Although the compiler runs faster using shared

memory, if you do not have a lot of memory available (for example, you

have many OS/2 programs running or very little memory installed),

there is no benefit in using shared memory. The time saved by using

shared memory over disk may only be apparent for compilation of large

programs.

To specify that the temporary files are stored on disk rather than in

shared memory, use the following command:

icc /Fd+ myprog.c

The temporary files created by the compiler are erased at the

successful end of compilation; however, if the compilation is interrupted,

these files may be left on the disk. They are located in the path

specified by the TMP environment variable. If you use memory files

and they overflow to the disk, they will also be located in the path

specified by TMP. If this variable is undefined, the compiler uses the

current directory. For more information on the TMP variable, see “OS/2

Environment Variables for Compiling” on page 34 and Chapter 7,

“Setting Runtime Environment Variables” on page 133.

Compilation time may be improved if you specify a virtual disk as the

| location for the temporary files. Copying the compiler files from the BIN

| directory onto a virtual disk can also improve compilation time. See the

OS/2 documentation for information on using the VDISK device driver to

create a virtual disk.

 Chapter 4. Compiling Your Program 49

 Compiler Output

 Messages
You can use compiler options to control:

1. The level of error message that the compiler outputs and that

increments the error count maintained by the compiler (with the /Wn

option).

2. How many errors are allowed before the compiler stops compiling

(with the /Nn option).

| 3. The diagnostics run against the code (with the /Wgrp option).

See “Debugging and Diagnostic Information Options” on page 92 for

more information on using the compiler options to control messages.

 Return Codes
The C/C++ Tools compiler returns the highest return code it receives

from executing the various phases of compilation. These codes are:

Code Meaning

0 The compilation was completed, and no errors were detected.

Any warnings have been written to stdout. Your executable

file should run successfully.

12 Error detected; compilation may have been completed;

successful execution impossible.

16 Severe error detected; compilation terminated abnormally;

successful execution impossible.

20 Unrecoverable error detected; compilation terminated

abnormally and abruptly; successful execution impossible. If

the error code is greater than 20, contact your IBM service

representative.

For every compilation, the compiler generates a return code that

indicates to the operating system the degree of success or failure it

achieved.

50 IBM C/C++ Tools: Programming Guide

 Precompiled Header Files

| Precompiled Header Files
| You can use the /Fi+ compiler option to create or recreate precompiled

| versions of every source header file used during that compilation.

| The precompiled version of each header file is created in a subdirectory

| called CSET2PRE under the directory containing the original header

| file. For example, the precompiled version of d:\brolley\luc.h is

| placed in the directory d:\brolley\CSET2PRE. If the subdirectory does

| not exist, the compiler creates it for you. The file name given the

| precompiled header file is the same as the original name. The

| timestamp is also the same as that of the original file so the compiler

| can ensure that the precompiled file is current.

| To use the precompiled header files, specify the /Si+ option. For each

| #include statement, the compiler determines which header file is

| required using the usual #include search path. (See “#include Search

| Order” on page 40 for more information on the #include search path.)

| It then looks for the precompiled version in the CSET2PRE subdirectory

| under the directory containing the original header file. It uses the

| precompiled version if it exists and is current. For example, given:

| � d:\brolley\local contains luc.h and emily.h

| � d:\brolley\temp contains emily.h

| � The search path is d:\brolley\temp;d:\brolley\local

| � The source file contains the statements:

| #include "luc.h"
| #include "emily.h"

| the compiler looks for the precompiled header files as follows:

| � luc.h in the directory d:\brolley\local\CSET2PRE

| � emily.h in the directory d:\brolley\temp\CSET2PRE.

| Note that a precompiled header file is only used if the original header

| file exists. If the original file has been deleted, renamed, or moved to

| another directory, the precompiled version is not used. For example, if

| you erase d:\brolley\temp\emily.h, the compiler does not use the

| precompiled header file in d:\brolley\temp\CSET2PRE. Instead it

| continues along the search path, finds d:\brolley\local\emily.h, and

| uses the precompiled header file for this file if it exists and is current.

 Chapter 4. Compiling Your Program 51

 Using the Intermediate Code Linker

| You can use /Fi+ and /Si+ together to automatically create and

| maintain precompiled header files for your application. If you use the

| options consistently, precompiled header files are created if they do not

| exist, and used if they do. When a source file is changed, the

| precompiled version is automatically regenerated.

| You can create a precompiled header file when you compile a C

| program and use it when you compile C++ code, providing the content

| of the header file is valid for both languages. The converse is also

| true. For more information on writing header files that can be used for

| both C and C++, see the appendix on C – C++ Compatibility in the C++

| Language Reference.

| When you use precompiled header files, keep the following restrictions

| in mind:

| � To create a precompiled header file, the compiler process must

| have write permission to the CSET2PRE subdirectory or permission

| to create the subdirectory if it does not exist. To use a precompiled

| header, the compiler process must have read permission for that

| file.

| � Precompiled header files do not appear in any listing files.

| � If you specify /P+ to run the preprocessor only, the /Fi and /Si

| options are ignored.

| Using the Intermediate Code Linker

| The intermediate code linker combines the information in all .w, .wh,

| and .wi intermediate code files into one set of files that is then used by

| the compiler to optimize the code and generate an object module.

| In addition to the optimizations performed by the intermediate linker

| itself, using this linker exposes more of your program to the optimizer at

| a time. The optimizer can then generate more efficient code. Using

| the intermediate linker can result in improved code optimization,

| especially where inlining is used, and better program performance.

| Note that using the intermediate linker on code being compiled into an

| executable file results in better performance improvements than if the

| same code were being compiled into a DLL or library.

52 IBM C/C++ Tools: Programming Guide

 Using the Intermediate Code Linker

| To use the intermediate linker, specify the /Ol+ option on the icc

| command line. For best results, use the /Gu option, as described in

| “Using the /Gu Option” on page 54,and specify /O+ to turn optimization

| on.

| Note: Because optimization limits the generation of debugging

| information, use /O- if you want to debug your program. The /Ol

| option does not affect debugging information.

| Given the following command:

| icc /O+ /Ol+ vij.c thomas.c tim.c

| the compiler:

| 1. Compiles each source file into a set of intermediate code files (.w,

| .wh, and .wi files).

| 2. Invokes the intermediate code linker to link the intermediate code

| files of all three source files.

| 3. Optimizes the code.

| 4. Creates one object module for all three files and names it after the

| first file specified on the command line (vij.obj). (You can change

| the name of the object file using the /Fo option.)

| 5. Invokes LINK386 to create an executable module (vij.exe). (You

| can change the name of the executable file using the /Fe option.)

| If you want to link your object files separately, use the /C+ option on

| the icc command line. You can then invoke LINK386 as you would

| for any other object file.

| Alternatively, you can use the /Fw+ option to create and save the

| intermediate code files to be linked by the intermediate linker at a later

| time. When you use /Fw+, compilation stops when the intermediate

| files are created. For example:

| icc /Fw+ brian.c jim.c

| creates only the intermediate files for brian.c and jim.c. No object or

| executable modules are created.

 Chapter 4. Compiling Your Program 53

 Using the Intermediate Code Linker

| The /Fw option also takes an optional file-name parameter that lets you

| specify the file name for the intermediate files. For example:

| icc /Fwtony jeff.c

| names the resulting intermediate files for jeff.c to tony.w, tony.wh,

| and tony.wi. Note that there is no space allowed between /Fw and the

| file-name parameter.

| You can specify existing intermediate files on the icc command line to

| run the intermediate linker and complete the compilation. You need

| only specify the name of the .w file; the .wh and .wi files are included

| automatically. No option is required. For example, the command:

| icc brian.w jim.w

| links all intermediate files for brian.c and jim.c, creates an object file,

| and invokes LINK386 to create an executable module.

| Note: You cannot use compiler options related to source files with

| intermediate files because the source has already been partially

| compiled. For example, you cannot produce a listing file from

| intermediate files or set the language level for the program.

| You can also combine intermediate and source files on the command

| line to run the intermediate linker on all the files and complete the

| compilation. No option is required. For example:

| icc brian.w jim.c

| Note: If you use the intermediate code linker on a large application,

| you will require more system resources than if you were simply

| compiling. For example, compiling and intermediate linking a

| 40000-line application requires a working set of approximately 25M. If

| your executable module or DLL contains more than 100000 lines of

| code, using the intermediate code linker is not recommended.

| Using the /Gu Option
| One of the optimizations performed by the intermediate linker is to

| discard any defined data or functions that are:

| � Not referenced in the files included in the link.

| � Not defined as exports either by the _Export keyword, by #pragma

| export, or in the .DEF file. (Note: If you define exports in the .DEF

| file, you must include the file name in the icc command line.)

54 IBM C/C++ Tools: Programming Guide

 Using the Intermediate Code Linker

| If you call functions in files not included in the intermediate link, such as

| library functions or OS/2 APIs, this optimization cannot be performed

| because the data and functions could possibly be used by one of these

| external functions. Because library functions and APIs rarely use data

| defined in user code, the result is often poorly optimized code.

| To ensure that all unreferenced data and functions are discarded, use

| the /Gu+ option. This option tells the intermediate linker that any

| external functions that are referenced will not use anything defined in

| the files being linked. Use the _Export keyword to mark any definitions

| that will be used in a separate compilation unit.

| In addition, /Gu+ causes all external functions and data that are not

| exported to be defined as static, which can result in better

| optimization.

| Error Checking
| Another benefit of using the intermediate code linker is enhanced error

| checking of all files included in the intermediate link step. The

| intermediate linker can find errors that would otherwise generate linker

| errors or unexpected runtime behavior, such as:

| � Redefinition of variables and functions

| � Inconsistent declarations or definitions of the same function

| (including differences in return type, linkage, number of arguments,

| and argument properties)

| � Type mismatches between different declarations or definitions of

| the same variable, with the exception of:

| – Differences in integer type of the same length (int and long)

| – Some mismatches within structures and unions

| – Mismatches between array declarations where one of the

| declarations is an external reference.

 Chapter 4. Compiling Your Program 55

 Inlining User Code

| Inlining User Code

| By default, the compiler inlines certain library functions, meaning that it

| replaces the function call with the actual code for the function at the

| point where the call was made. These library functions are called

| intrinsic or built-in functions.

| You can also request that the compiler inline the code for your own

| functions. There are two ways to inline user code:

| 1. Using the _Inline keyword to specify which functions you want to

| have inlined. You must specify the /Oi option to turn inlining on.

| The C++ language provides the function specifier inline that you

| can use in the same manner as _Inline. The _Inline keyword is

| not supported for use in C++ programs.

| 2. Using the /Oi option with a value parameter to automatically inline

| functions smaller than the value specified.

| Note: Requesting that a function be inlined makes it a candidate for

| inlining but does not necessarily mean that the function will be inlined.

| In all cases, whether a function is actually inlined is up to the compiler.

| Using Keywords
| For C files, use the _Inline keyword to qualify either the prototype or

| definition of the functions you want to have inlined. For example:

| _Inline int james(int a);

| specifies that you want james to be inlined.

| In C++ files, use the inline function specifier in the same way as

| _Inline. For example:

| inline int angelique(char c);

| declares angelique is to be inlined.

56 IBM C/C++ Tools: Programming Guide

 Inlining User Code

| The _Inline and inline keywords hav3 the same meaning and syntax

| as the storage class static. When you turn inlining on (with the /Oi+

| or /Oivalue option), the keywords have the added meaning of causing

| the function they qualify to be inlined. In addition, C++ member

| functions that are defined in a class declaration are considered

| candidates for inlining by the compiler.

| Using the /Oi Option
| The /Oi option controls whether user functions are inlined or invoked

| through a function call:

| /Oi- No user code is inlined.

| /Oi+ Functions qualified with the _Inline or inline keyword are

| inlined.

| /Oivalue Functions qualified with the _Inline or inline keyword are

| inlined, as are all other functions that are less than or equal

| to value in abstract code units (ACUs) as measured by the

| compiler. This option is called auto-inlining.

| The default is /Oi-. When optimization is turned on (/O+), the default

| becomes /Oi+.

| Note: The /Oi option does not affect the inlining of intrinsic

| C/C++ Tools library functions. To disable the inlining of library

| functions, parenthesize the function call, for example:

| (strcpy)(str1, str2);

| You cannot disable inlining for user functions, meaning you

| cannot request that specific functions not be inlined. In

| addition, some library functions are implemented as built-in

| functions, meaning there is no backing code in the library. You

| cannot parenthesize calls to these functions.

| See the C Library Reference for a list of all the intrinsic and

| built-in library functions.

| In general, choosing the functions you want inlined yields better results

| than auto-inlining.

 Chapter 4. Compiling Your Program 57

 Inlining User Code

| If you use auto-inlining, value has a range between 0 and 65535 ACUs.

| The number of ACUs that comprise a function is proportional to the size

| and complexity of the function. For example, the following function is

| 33 ACUs:

| int florence(char a, int b)
| {
| if(a != 10)
| b++;
| else
| b += 10;
| return(a);
| }

| The next function is 51 ACUs:

| int sanjay(long par1, long par2)
| {
| while(par1)
| {
| if(par2)
| test3();
| par1--;
| }

| if(par1)
| testing();
| par1 += par2;
| }

| Messages are generated to tell you which functions are inlined based

| on the value you specified. You can then adjust the value if necessary.

| Messages are not generated for functions qualified with _Inline or

| inline, or for C++ functions defined in a class declaration.

| When you turn inlining on for C programs, small functions (of 50 ACUs

| or less) of static storage class that are called only once are also

| inlined. They are not inlined for C++ programs. You can use /Oivalue

| with a very small value to display the names of these functions.

| Note: The value required to inline a specific function may be slightly

| larger when /O+ is specified than when /O- is specified.

58 IBM C/C++ Tools: Programming Guide

 Inlining User Code

| Benefits of Inlining
| Inlining user code eliminates the overhead of the function call and

| linkage, and also exposes the function's code to the optimizer, resulting

| in faster code performance. Inlining produces the best results when:

| � The overhead for the function is nontrivial, for example, when

| functions are called within nested loops.

| � The inlined function provides additional opportunities for

| optimization, such as when constant arguments are used.

| For example, given the following function:

| void glen(int a, int b)
| {
| if (a == 10)
| {
| switch(b)
| {
| case 1: .
| :
| case 20: puts("b is 20");
| break;
| case 30: .
| :
| default: .
| :
| }
| }
| }

| and assuming your program calls glen several times with constant

| arguments, for example, glen(10, 20);, each call to glen causes

| the if and switch expressions to be evaluated. If glen is inlined,

| the compiler can then optimize the function. The evaluation of the

| if and switch statements can be done at compile time and the

| function code can then be reduced to only the puts statement from

| case 20.

| The best candidates for inlining are small functions that are called

| often. Use EXTRA or a profiler to determine which functions to inline to

| obtain the best results.

 Chapter 4. Compiling Your Program 59

 Inlining User Code

| To improve performance further:

| � Use constant arguments in inlined functions whenever possible.

| Functions with constant arguments provide more opportunities for

| optimization.

| � If you have a function that is called many times from a few

| functions, but infrequently from others, create a copy of the function

| with a different name and inline it only in the functions that call it

| often.

| � Turn optimization on.

| Drawbacks of Inlining
| Inlining user code usually results in a larger executable module

| because the code for the function is included at each call site.

| Because of the extra optimizations that can be performed, the

| difference in size may be less than the size of the function multiplied by

| the number of calls.

| Inlining can also result in slower program performance, especially if you

| use auto-inlining. Because auto-inlining looks only at the number of

| ACUs for a function, the functions that are inlined are not always the

| best candidates for inlining. As much as possible, use the _Inline or

| inline keyword to choose the functions to be inlined.

| When you use inlining, you need more stack space. When a function is

| called, its local storage is allocated at the time of the call and freed

| when it returns to the calling function. If that same function is inlined,

| its storage is allocated when the function that calls it is entered, and is

| not freed until that calling function ends. Ensure that you have enough

| stack space for the local storage of the inlined functions.

| Restrictions on Inlining
| The following restrictions apply to inlining:

| � You cannot inline functions that use a variable number of

| arguments.

| � You cannot inline functions with _System linkage that make use of

| the __parmdwords function.

| � For C++, you cannot declare a function as inline after it has been

| called.

60 IBM C/C++ Tools: Programming Guide

 Inlining User Code

| � To use _Inline or inline, the code for the function to be inlined

| must be in the same source file as the call to the function. To

| inline across source files you must either:

| 1. Place the function definition (qualified with _Inline) in a header

| file that is included by all source files where the function is to

| be inlined.

| 2. Use the intermediate code linker (with the /Ol+ option) and

| auto-inlining. The intermediate code linker is described in

| “Using the Intermediate Code Linker” on page 52.

| � If you plan to debug your executable module, use /Oi- to turn off

| inlining. Inlining can make debugging difficult; for example, if you

| set a breakpoint at the entry of a function that is inlined, the

| breakpoint is not set at the point where the function is inlined in

| another function.

| � EXTRA treats an inlined function as part of the function in which it

| is inlined.

| � A function is not inlined during an inline expansion of itself. For a

| function that is directly recursive, the call to the function from within

| itself is not inlined. For example, given three functions to be

| inlined, A, B, and C, where:

| – A calls B

| – B calls C

| – C calls back to B

| the following inlining takes place:

| – The call to B from A is inlined.

| – The call to C from B is inlined.

| – The call to B from C is not inlined because it is made from within

| an inline expansion of B itself.

 Chapter 4. Compiling Your Program 61

 Setting the Calling Convention

Setting the Calling Convention

| The C/C++ Tools compiler supports four 32-bit calling conventions, and

three 16-bit conventions:

32-bit: _Optlink

_System

| _Pascal

| _Far32 _Pascal

16-bit: _Far16 _Cdecl

_Far16 _Pascal

_Far16 _Fastcall

| Note: The _Far32 _Pascal convention can only be used in C programs

| and only when the /Gr+ option is specified.

| The default is _Optlink for calls to 32-bit code. You must explicitly

| specify a calling convention for all 16-bit calls. If you specify only

| _Far16, the convention defaults to _Far16 _Cdecl. You can change the

default for 32-bit code to _System by using the /Ms compiler option. The

/Mp option explicitly sets the calling convention to _Optlink. See “Code

Generation Options” on page 111 for more information on these

compiler options.

You can also set the calling convention for individual functions using

| either linkage keywords or, for C programs only, the #pragma linkage

| directive.

For example, to declare kathryn as a function with the _System calling

convention, you could use the following statement using a linkage

keyword:

int _System kathryn(int i);

or in a C program, the following #pragma directive:

#pragma linkage(kathryn, system)

Note that, when using the #pragma linkage directive, you must declare

the function separately. Using linkage keywords is generally quicker

and easier than using #pragma linkage directives.

62 IBM C/C++ Tools: Programming Guide

Both the keywords and the #pragma linkage directive take precedence

over the compiler option used. If both methods are used and specify

different conventions for the same function, an error message is

generated.

| Note: You cannot change the calling convention for C++ member

| functions. Member functions always use the _Optlink convention.

The linkage keywords and #pragma linkage directive are described in

more detail in the Online Language Reference. For more information

on the calling conventions and how they work, see Chapter 14, “Calling

Conventions” on page 237.

Choosing Your Runtime Libraries

You can use compiler options to control the linking process by changing

the type of runtime library you link to. If you do not specify any options,

the compiler uses the library that produces single-thread executable

modules that are statically linked. You can link to another library by

specifying the appropriate options. You would link to another library to:

� Dynamically link your program (discussed in the following section).

� Create a multithread executable module. (See Chapter 11,

“Creating Multithread Programs” on page 179.)

� Develop a subsystem. (See Chapter 17, “Developing Subsystems”

on page 303.)

� Create a DLL for use with another executable module. (See

Chapter 12, “Building Dynamic Link Libraries” on page 195.)

 Chapter 4. Compiling Your Program 63

The naming conventions used for the libraries are intended to help

identify their function. The libraries are named as follows:

| For example, the library DDE4SBS.LIB is the standard single-thread

| library for building both executable modules and DLLs, while

| DDE4NBSI.LIB is the standard import library for creating a subsystem.

| For a list of all libraries and files shipped with the C/C++ Tools product,

| see Appendix E, “Component Files” on page 431.

Character

Position

Significance

1234 5 6 7 8

DDE4 Product prefix

 S
 M
 N

Single-thread library

Multithread library

Subsystem library (no runtime environment)

 B Builds both executables and DLLs

 S| Standard library

 I
 O

Import library

Object library (contains initialization routines)

| Statically bound library (no eighth letter)

Static and Dynamic Linking
Static linking means that code for all the runtime functions called in

your program is linked with your program in the executable module or

DLL. The .EXE or .DLL files will be larger because there is a copy of

the runtime functions in each file. These programs will take up more

storage, and if you run them at the same time, there will also be a copy

of the library functions in memory for each program. Statically-linked

programs, however, are easier to distribute because the library

| functions are part of the executable module. See Note 1 below.

Dynamic linking does not include the actual code for the library

functions in the .EXE or .DLL file. The full code for the library function

is resolved at load time and the amount of disk space required by your

executable modules is reduced.

64 IBM C/C++ Tools: Programming Guide

| You need to link to the appropriate runtime library for the kind of linking

| you are doing. The compiler option used to control whether your

module links to the runtime library statically or dynamically is /Gd.

The default is /Gd-, which statically links the runtime library in the

executable module. Static linking uses the static version of the runtime

library.

To dynamically link the runtime library in an executable file, specify the

/Gd+ option. The correct version of the runtime library will be

dynamically linked to your executable module.

| Under the C/C++ Tools licensing agreement, you cannot ship the

| C/C++ Tools DLLs with a product that you develop. If you do not want

| to statically link to the C/C++ Tools library, you can create your own

| version of the C/C++ Tools runtime DLLs, as described in “Creating

| Your Own Runtime Library DLLs” on page 216.

Notes:

1. When you use static linking, all external names beginning with Dos,

Vio, or Kbd (exactly as shown) become reserved external identifiers.

They are not reserved if you use dynamic linking.

2. You can also link dynamically to your own DLLs. Creating and

using your own DLLs is discussed in Chapter 12, “Building

Dynamic Link Libraries” on page 195.

| 3. When you use the /Gd+ compiler option, you must also use the

| /NOI linker option. The icc command specifies this linker option by

| default.

Using the Multithread Library
More than one thread may use the same runtime functions. To avoid

contention for internal resources, the library ensures that only one

thread at a time is active in the critical section of a function. Although

this support is mandatory in a multithread program, it is unnecessary in

a single-thread program.

 Chapter 4. Compiling Your Program 65

This section describes only the compiler options you use to choose the

single-thread or multithread version of the library. There is more

information on creating a multithread program in Chapter 11, “Creating

Multithread Programs” on page 179.

If you want to create an executable file with multithread capabilities:

1. Specify the /Gm+ option when you compile.

2. Use the multithread library when you link the object files.

If you want to create an executable file designed for a single thread

only:

1. Use the default option /Gm- when you compile.

2. Use the single-thread library when you link the object files.

Assuming you used the correct compiler option, the default library for

that option is linked. If you override the default libraries with the /NOD

linker option, you must explicitly give the name of all libraries you are

using on the linker command line.

Enabling Subsystem Development
If you are creating a subsystem, the appropriate libraries are selected

when you specify the /Rn option, which is described on page 117.

Functions in the subsystem libraries are intended for use in

single-thread applications only. No multithread support is provided. If

you want to use the subsystem libraries in multithread programs, you

must provide your own protection and serialization using OS/2

semaphores. You must also provide your own buffering for input and

output.

See Chapter 17, “Developing Subsystems” on page 303 for information

on developing subsystems.

66 IBM C/C++ Tools: Programming Guide

 Setting Stack Size

Controlling the Logo Display on Compiler Invocation

By default, the C/C++ Tools logo appears on stderr when the compiler

is invoked. You can stop the logo from appearing on icc invocation by

specifying the /Q+ option. To request explicitly that the logo appear,

specify the /Q- option.

Controlling Stack Allocation and Stack Probes

Under the OS/2 operating system, the stack is fully allocated for the first

thread of a process. For all subsequent threads, the operating system

allocates the stack as a sparse object that grows in size as required.

Setting the Stack Size
You can set the stack size in one of three ways:

1. Specify the /B"/STACK:size" compiler option.

2. Specify the /STACK:size parameter on the linker command line.

3. Use a module definition file (.DEF) file for the first thread of an

application, and the _beginthread function call for threads created

later.

See “Creating a Module Definition File” on page 198 for more

information on .DEF files. See the C Library Reference for a description

of the _beginthread function.

| The default stack size is 32K for the first thread. Setting the stack size

using one of the options listed above overrides the default value. For

example, specifying the linker option

 /STACK:65536

sets the stack size to be 64K.

| If your program calls 16-bit code, you can set the stack for the 16-bit

| code using the #pragma stack16 directive, described in the Online

| Language Reference. Because the 16-bit stack is allocated from the

| 32-bit stack, you must ensure that the 32-bit stack is large enough for

| both your 32-bit and 16-bit code.

 Chapter 4. Compiling Your Program 67

Automatic Stack Growth
For all threads other than the first, the operating system allocates the

stack as a sparse object. The total stack size is the size you specified

or the multiple of 4K that is closest to, but greater than, the size you

specified. The page with the largest address is committed, and the

page below it is set up as a guard page. No other pages are

committed.

When the guard page is accessed, an out of stack exception is

generated. The system responds by attempting to get another guard

page below the one previously allocated.1

If this attempt is successful, the original guard page becomes a normal

stack page and the stack grows automatically. This process continues

until a new guard page can no longer be allocated.

If the system cannot set a new guard page, because it has reached the

size limit passed to the linker by an option or through _beginthread, a

guard page allocation failure exception is generated. The same

exception is generated when the _alloca function runs out of memory.

Note: The last 4K of the stack (the final guard page) is reserved to

allow handling of exception conditions. If a guard page exception

occurs and not enough stack remains to handle the exception, the

program is terminated. For more information about exceptions, see

Chapter 18, “Signal and OS/2 Exception Handling” on page 317.

 Stack Probes
For the stack growth mechanism to work correctly, each 4K page must

be accessed in the correct order. To ensure the correct access, the

C/C++ Tools compiler generates one or more stack probes in the prolog

of each procedure with automatic storage greater than 2K. (Stack

probes start after 2K because exception handling may require up to 2K

of stack storage.)

1 For the purposes of this discussion, the stack grows down.

68 IBM C/C++ Tools: Programming Guide

The stack probe instructions allow the guard-page exception

| mechanism to enlarge the stack if necessary. If an attempt is made to

| access the stack below the guard page, stack probes ensure that each

| page of the stack up to that access point is allocated correctly. Without

| stack probes, accessing the stack below the guard page causes an

| exception and the process terminates. The compiler ensures that

structures greater than 4K that are passed by value are placed on the

stack to allow this mechanism to work.

Support for automatic stack growth is provided by default as needed.

Note: The _alloca function allocates storage on the stack. Unless

you specify the /Gs+ option, the compiler generates stack

probes to allocate the required memory.

You do not need to use stack probes if:

� Your program has only one thread. The stack is fully allocated for

the first thread.

� You can guarantee that the stack will always be allocated. For

example, you could write a guard routine to run once at the

beginning of each thread and serially access each page up to the

last page, leaving that page as a guard page.

| � Your local variables require less than 2K of storage on the stack.

To turn off stack-probe generation, specify the /Gs+ compiler option.

(See “Code Generation Options” on page 111 for the option

description.) Because stack probes go into the prolog of every function

with more than 2K of stack storage, your program will run faster with

the stack probes turned off. If your program only makes occasional

uses of large automatic storage and the entire stack has been

allocated, not using stack probes may result in inefficient use of

available memory.

 Chapter 4. Compiling Your Program 69

70 IBM C/C++ Tools: Programming Guide

 Specifying Compiler Options

Chapter 5. Using Compiler Options

You can use compiler options to alter many different aspects of the

compilation and linking of your program. This chapter describes the

C/C++ Tools compiler options and tells you how to use them.

Specifying Compiler Options

Compiler options are not case sensitive, so you can specify the options

in lower-, upper-, or mixed case. For example, you can specify the /Rn

option as /rn. You can also substitute a dash (-) for the slash (/)

preceding the option. For example, -Rn is equivalent to /Rn. Lower-

and uppercase, dashes, and slashes can all be used on one command

line, as in:

icc /ls -RN -kA /Li prog.c

You can specify compiler options in the following ways:

� On the command line

Compiler options specified on the command line override any

previously specified in the ICC environment variable (as described

below and in “OS/2 Environment Variables for Compiling” on

page 34).

For example, to compile a source file with the no-optimization

option, enter:

icc /O- myprog.c

If you have more than one source file in your program, see

“Compiling Programs with Multiple Source Files” on page 31 for

information on specifying options.

� In the ICC environment variable

Frequently used command-line options can be stored in the ICC

environment variable. This method is useful if you find yourself

repeating the same command-line options every time you compile.

You can also specify source file names in ICC.

 Copyright IBM Corp. 1992, 1993 71

 Specifying Compiler Options

The ICC environment variable can be set either from the command

line, in a command (.CMD) file, or in the CONFIG.SYS file. If it is

set on the command line or by running a command file, the options

will only be in effect for the current session. If it is set in the

CONFIG.SYS file, the options will be in effect every time you use

icc unless you override them using a .CMD file or by specifying

options on the command line.

For example, to specify that a source listing be generated for all

compilations and that the macro DEBUG be defined to be 1, use the

following command at the OS/2 prompt (or in your CONFIG.SYS

file if you want these options every time you use the compiler):

 SET ICC=/Ls+ /DDEBUG::1

(The double colon must be used because the "=" sign is not

allowed in OS/2 environment variables.)

Now, type icc prog1.C to compile prog1.C. The macro DEBUG will

be defined as 1, and a source listing will be produced.

Options specified on the command line override the options in the

ICC variable. For example, the following compiler invocation voids

the effect of the ICC setting in the last example:

icc /Ls- /UDEBUG fred.c

See “OS/2 Environment Variables for Compiling” on page 34 for

more information about using ICC and other environment variables.

� In the WorkFrame/2 environment

If you have installed the WorkFrame/2 product, you can set

compiler options using the options dialogs. You can use the

dialogs when you create or modify a project.

Options you select while creating or changing a project are saved

with that project.

For more information on setting options and using the WorkFrame/2

product, refer to the WorkFrame/2 documentation.

72 IBM C/C++ Tools: Programming Guide

 Compiler Option Parameters

Using Parameters with Compiler Options
| For all compiler options that take parameters, the following rules apply:

| � If a parameter is required, zero or more spaces may appear

| between the option and the parameter. For example, both

| /FeMyexe.exe and

| /Fe Myexe.exe are valid.

| � If a parameter is optional, no space is allowed between the option

| and parameter. For example, /FlMylist.lst is valid, but /Fl

| Mylist.lst is not.

The syntax of the compiler options varies according to the type of

parameter that is used with the option. There are four types of

parameters:

 � Strings

 � File names

 � Switches

 � Numbers.

 Strings
If the option has a string parameter, the string must be enclosed by a

pair of double quotation marks if there are spaces in the string. For

example, /V"Version 1.0" is correct. If there are no spaces in the

string, the quotation marks are not necessary. For example, both /VNew

and /V"New" are valid.

If the string contains double quotation marks, precede them with the

backslash (\) character. For example, if the string is abc"def, specify it

on the command line as "abc\"def". This combination is the only

escape sequence allowed within string options. Do not end a string

with a backslash, as in "abc\".

Do not put a space between the option and the string.

 Chapter 5. Using Compiler Options 73

 Compiler Option Parameters

 File Names
If you want to use a file that is in the current directory, specify only the

file name. If the file you want to use is not in the current directory,

specify the path and file name. For example, if your current directory is

E:\, your source file is E:\myprog.c, and you compile using the

defaults, your executable file will be called myprog.exe. If you want to

put your executable file into the F:\ directory and call it newprog.exe,

use the following command:

icc /FeF:\newprog.exe myprog.c

If you do not specify an extension for the executable file, .EXE is

assumed.

If your file name contains spaces (as permitted by the High

Performance File System(HPFS)) or any elements of the HPFS

extended character set, the file name must be enclosed in double

| quotation marks. In such a case, do not put a space between the

option and a file name or directory.

 Switches
Some options are used with plus (+) or minus (-) signs. If you do not

use either sign, the compiler processes the option as if you had used

the + sign. When you use an option that uses switches, you can

combine them. For example, the following two option specifications

have the same result:

/La+ /Le+ /Ls+ /Lx-
 /Laesx-

Note that the - sign applies only to the switch immediately preceding it.

 Numbers
When an option uses a number as a parameter, do not put a space

between the option and the number. When an option uses two

numbers as parameters, separate the numbers with a comma. Do not

leave a space between the numbers and the comma. For example:

 /Sg10,132

74 IBM C/C++ Tools: Programming Guide

 Scope of Compiler Options

Scope of Compiler Options

The compiler options are categorized according to how they are

processed. The categories are:

 � Local

 � Global

 � Cumulative.

 Local
A local option applies only to the source files that follow the option.

The last, or rightmost, occurrence of these options is the one that is in

effect for the source file or files that follow it.

Most compiler options are local. The exceptions are listed under the

Global heading. In the following example, the file module1.c will be

compiled with the option /Fa- because this option follows /Fa+.

icc /Fa+ /Fa- module1.c

Note: The /D (define a preprocessor macro) is different from the other

local variables in that the first definition of a macro is the one that is

used. If a preprocessor macro is defined more than once, a warning

appears.

 Global
A global option applies to all the source files on the command line. If a

global option is specified more than once, the last occurrence of the

option is the one in effect. A global option can follow the last file on the

command line.

The following options are global:

/B /C /Fe /Fm /Gu /H /Mp /Ms /Ol /Q /Sd /Sn

 Chapter 5. Using Compiler Options 75

 Scope of Compiler Options

 Cumulative
| The local option /I and the global option /B have a special

| characteristic. Each time you specify one of them, the parameters you

| specify are appended to the parameters previously stated. For

example, the command

icc /Ia: /Ib:\cde /Ic:\fgh prog.c

causes the following search path to be built:

 a:;b:\cde;c:\fgh

ICC Combined with Options Entered on the Command Line
When you specify compiler options both in ICC and on the command

line, the compiler evaluates both sets of options. When the compiler is

invoked:

1. The string associated with ICC is retrieved.

2. The command line is retrieved.

3. The command line is appended to the ICC string, combining the

two into a single command line.

4. This combined command line is read from left to right, and the

compiler option precedence rules are applied.

5. The files are compiled and linked using the options as interpreted in

the previous step.

 Related Options
Some options are required with other options:

� If you specify any of the /Le, /Li, or /Lj options, you must also

specify the /Ls option.

� If you specify the /Gr option, you must also specify the /Rn option.

| To use EXTRA, you must specify both the /Gh and /Ti options.

76 IBM C/C++ Tools: Programming Guide

 Scope of Compiler Options

 Conflicting Options
Some options are incompatible with other options. If options specified

on the command line are in conflict, the following rules apply:

| � The /Fc option takes precedence over the /Fa, /Fb, /Fe, /Fm,

| /Fo, /Ft, /Fw, /Ol, /P, /Pc, /Pd, and /Pe options.

| � The /P, /Pc, /Pd, and /Pe options take precedence over the /Fa,

| /Fb, /Fe, /Fl, /Fm, /Fo, and /Ft options, the /Fw, /Gu, and /Ol

| options, the /Fi and /Si options, and all listing file (/L) options.

| � The /Rn option takes precedence over the /Gm, /Sh, and /Sv

| options.

� The /Fo- option takes precedence over the /Ti option.

| � The /C option takes precedence over the /Fe and /Fm options.

| � The /O- option takes precedence over the /Os+ options.

| � The /Li and /Lj options take precedence over the /Fi and /Si

| options.

| � The /Lj+ option takes precedence over the /Li option.

| Language-Dependent Options
| Some C/C++ Tools options are only valid when compiling C programs,

| while others only apply to C++ programs. The following options are

| valid for C programs only:

| /Fd- Store internal work files in shared memory. C++ files must be

| compiled with /Fd+.

| /Gv Control handling of DS and ES registers for virtual device driver

| development. VDD support is provided for C only.

| /Kn Control diagnostic messages. The /Wgrp options replace the /Kn

| options and provide greater control over the messages. The /Kn

| options are mapped to the /Wgrp options for you in C programs,

| but are not supported for C++ programs. The /Wgrp options are

| supported for both C and C++.

| /Sg Set margins for input files. This option is provided primarily for

| compatibility with IBM C/370. C++ does not require any such

| compatibility.

 Chapter 5. Using Compiler Options 77

 Scope of Compiler Options

| /Sq Set sequence numbers for input files. This option is provided

| primarily for compatibility with IBM C/370. C++ does not require

| any such compatibility.

| /Sr Set type conversion rules. The C++ language only supports the

| new type conversion rules defined by the ANSI standard.

| /Ss Allow use of double slashes for comments. C++ allows double

| slashes to indicate comments as part of the language.

| /S2 Allow only SAA Level 2 C constructs. There is no SAA definition

| of the C++ language.

| The following options are valid for C++ programs only:

| /Fb Control generation of browser files.

| /Ft Control generation of files for template resolution. The C

| language does not support templates.

| /Gx Control inclusion of C++ exception handling information. The C

| language does not include specific constructs for exception

| handling.

| /Sc Allows constructs compatible with earlier versions of the C++

| language. These constructs are not allowed in C.

Specifying Options with Multiple Source Files
When you are compiling programs with multiple source files, an option

is in effect for all the source files that follow it. For example, if you

enter the following command:

icc /O+ main.c /Fa sub1.c /Lx /O- sub2.c

� The file main.c will be compiled with the option /O+.

� The file sub1.c will be compiled with the options /O+ and /Fa+.

� The file sub2.c will be compiled with the options /O-, /Fa+ and

/Lx.

The name of the executable module will be the same as the name of

the first source file (main) but with the extension .EXE.

78 IBM C/C++ Tools: Programming Guide

 Examples of Compiler Options

Compiler Options for Presentation Manager Programming
If you are using the C/C++ Tools product to develop PM applications,

you will probably want to use the following options:

Option Description

| /Se Allow all C/C++ Tools language extensions. (This is the

| default.)

/Gm Use the multithread libraries.

/Gs- Do not remove stack probes. (This is the default.)

| /Wpro Produce diagnostic messages about unprototyped functions.

Examples of Compiler Options for Choosing Libraries
Figure 1 on page 80 shows the combinations of compiler options you

use to create a particular type of module, according to:

� Static or dynamic linking

 � Threading level:

 – Single-thread (/Gm-)

 – Multithread (/Gm+)

� Library being used:

 – Standard (/Re)

 – Subsystem (/Rn)

� Module being built:

 – Executable (/Ge+)

 – DLL (/Ge-)

The defaults used by the compiler are:

� /Gd- (Use static linking)

� /Gm- (Use the single-thread library)

| � /Re (Use the standard library)

� /Ge+ (Build an executable module).

 Chapter 5. Using Compiler Options 79

 Examples of Compiler Options

Figure 1. Combinations or Compiler Options for Specifying Libraries

Linking Type Threading Library

used

Module

Type

Options required in addition

to defaults

Static Single Standard EXE None

Static Single Standard DLL /Ge-

Static Multi Standard EXE /Gm+

Static Multi Standard DLL /Gm+ /Ge-

Static N/A Subsystem EXE /Rn

Static N/A Subsystem DLL /Rn /Ge-

Dynamic Single Standard EXE /Gd+

Dynamic Single Standard DLL /Gd+ /Ge-

Dynamic Multi Standard EXE /Gd+ /Gm+

Dynamic Multi Standard DLL /Gd+ /Gm+ /Ge-

Dynamic N/A Subsystem EXE /Gd+ /Rn

Dynamic N/A Subsystem DLL /Gd+ /Rn /Ge-

80 IBM C/C++ Tools: Programming Guide

 Compiler Option Classification

Compiler Option Classification

The compiler options are divided into groups by function. The following

list tells you which options are in each group. For information on each

option, see the page numbers listed here.

� “Output File Management Options” on page 82

/F

� “#include File Search Options” on page 86

/I /X

� “Listing File Options” on page 88

/L

� “Debugging and Diagnostic Information Options” on page 92

/K /N /W /Ti /Ts /Tx

� “Source Code Options” on page 100

/S /Tc /Td /Tp

� “Preprocessor Options” on page 107

/D /P /U

� “Code Generation Options” on page 111

/G /M /O /R

� “Other Options” on page 120

/B /C /H /J /Q /V

The tables that follow describe the options grouped by function.

| In the tables, the Default column states the action the compiler takes if

no option is specified; the Changing Default column shows how you

can change the default.

Where necessary, an option is described in greater detail following the

table.

 Chapter 5. Using Compiler Options 81

 Output File Management Options

Output File Management Options

Use the options listed in this section to control the files that the compiler

produces.

Note: You do not have to specify the plus symbol (+) when specifying

an option. For example, the forms /Fa+ and /Fa are equivalent.

Figure 2 (Page 1 of 3). Output File Management Options

Option Description Default Changing Default

/Fa[+|-]

/Faname

Produce and name an

assembler listing file that

has the source code as

comments.

Note: This listing is not

guaranteed to compile.

/Fa-

Do not create an

assembler listing file.

/Fa[+]

Create an assembler listing

file that has the same name

as the source file, with the

extension .asm.

/Faname

Create the listing file

name.asm.

| /Fb[+|-]| Produce a browser file.

| Note: This option is

| valid for C++ files only.

| /Fb-

| Do not create a browser

| file.

| /Fb[+]

| Create a browser file. The

| file has the same name as

| the source file with the

| extension .brs.

/Fc[+|-] Perform syntax check

only.

/Fc-

Compile and produce

output files according to

other options.

/Fc[+]

Do only a syntax check.

The only output files you

can produce when this

option is in effect are listing

(.lst) files.

/Fd[+|-] Specify work file storage

area.

/Fd-

Store internal work files in

shared memory.

| Note: When you compile

| C++ code, /Fd+ becomes

| the default. You cannot

| specify /Fd- for C++ code.

/Fd[+]

Store internal work files on

| disk in the directory

| specified by the TMP

| variable.

/Fename Specify name of

executable file or DLL.

Give the executable file

the same name as the

first source file, with the

extension .exe or .dll.

/Fename

Name the executable file

name.exe or name.dll.

82 IBM C/C++ Tools: Programming Guide

 Output File Management Options

Figure 2 (Page 2 of 3). Output File Management Options

Option Description Default Changing Default

| /Fi[+|-]| Control creation of

| precompiled header files.

| /Fi-

| Do not create a

| precompiled header file.

| /Fi[+]

| Create a precompiled

| header file if none exists or

| if the existing one is

| out-of-date.

/Fl[+|-]

/Flname

Produce and name a

listing file.

/Fl-

| Do not create a listing file.

| /Fl[+]

| Give the listing the same file

| name as the source file,

| with the extension .lst.

/Flname

Name the listing file

name.lst.

/Fm[+|-]

/Fmname

Produce and name a

linker map file.

/Fm-

Do not create a map file.

/Fm[+]

Create a linker map file with

the same file name as the

source file, with the

extension .map.

/Fmname

Create map file name.map.

Note: Use the /B"/map"

option to get a more

detailed map file.

/Fo[+|-]

/Foname

| Produce and name an

| object file.

/Fo[+]

Create an object file, and

give it the same name as

the source file, with the

extension .obj.

/Fo-

Do not create an object file.

/Foname

Create object file name.obj.

| /Ft[+|-]

| /Ftdir

| Control generation of files

| for template resolution.

| Note: This option is valid

| for C++ files only. The C

| language does not support

| the use of templates.

| /Ft+

| Generate files for template

| resolution in the TEMPINC

| subdirectory under the

| current directory.

| /Ft[-]

| Do not generate files for

| template resolution.

| /Ftdir

| Generate the files and place

| them in the directory dir.

 Chapter 5. Using Compiler Options 83

 Output File Management Options

Figure 2 (Page 3 of 3). Output File Management Options

Option Description Default Changing Default

| /Fw[+|-]

| /Fwname

| Control generation and

| use of intermediate code

| files.

| /Fw-

| Perform regular

| compilation; do not save

| intermediate code files.

| /Fw[+]

| Create intermediate code

| files only; do not complete

| compilation.

| /Fwname

| Create intermediate code

| files only and name them

| name.w, name.wh, and

| name.wi; do not complete

| compilation.

File Names and Extensions
If you do not specify an extension for the file management options that

take a file name as a parameter, the default extension is used. For

example, if you specify /Flcome, the listing file will be called come.lst.

Although you can specify an extension of your own choosing, you

should use the default extensions. See “File Types” on page 33 for

more information on default extensions.

If you use an option without using an optional name parameter, the

name of the following source file and the default extension is used, with

the exception of the /Fm option. If you do not specify a name with /Fm,

the name of the first file given on the command line is used, with the

default extension .map.

Note: If you use the /Fe option, you must specify a name or a path

for the file. If you specify only a path, the file will have the

same name as the first source file on the command line, with

the path specified.

See “Using Parameters with Compiler Options” on page 73 for more

information on using file names as parameters with options.

84 IBM C/C++ Tools: Programming Guide

 Output File Management Options

Examples of File Management Options
� Perform syntax check only:

icc /Fc+ myprog.c

� Name the object file:

icc /Fobarney.obj fred.c

This names the object file barney.obj instead of the default,

fred.obj.

� Name the executable file:

icc /Febarney.exe fred.c

This names the object file barney.exe instead of the default,

fred.exe.

� Name the listing file:

icc /Floutput.my /L fred.c

This creates a listing output called output.my instead of fred.lst.

� Name the linker map file:

icc /Fmoutput.map fred.c

This creates a linker map file called output.map instead of

fred.map.

� Name the assembler listing file:

icc /Fabarney fred.c

This names the output barney.asm. instead of fred.asm.

 Chapter 5. Using Compiler Options 85

 #include File Search Options

#include File Search Options

Use these options to control which paths are searched when the

compiler looks for #include files. The paths that are searched are the

result of the information in the INCLUDE environment variable and in

ICC, combined with how you use the following compiler options.

Figure 3. #include File Search Options

Option Description Default Changing Default

/Ipath[;path] Specify #include search

path(s).

Search directory of

| source file (for user files

| only), and then search

paths given in the

INCLUDE environment

variable.

/Ipath[;path]

Search path[;path].

/Xc[+|-] Specify whether to

search paths specified

using /I.

/Xc-

Search paths specified

using /I.

/Xc[+]

Do not search paths

specified using /I.

/Xi[+|-] Control INCLUDE

environment variable

search paths.

/Xi-

Search the paths

specified in the

INCLUDE environment

variable.

/Xi[+]

Do not search the paths

specified by the INCLUDE

environment variable.

Using the #include File Search Options
The /I option must be followed by one or more directory names. A

space may be included between /I and the directory name. If you

specify more than one directory, separate the directory names with a

semicolon.

If you use the /I option more than once, the directories you specify are

appended to the directories you previously specified. For example:

 /Id:\hdr;e:\ /I f:\

is equivalent to

 /Id:\hdr\;e:\;f:\;

86 IBM C/C++ Tools: Programming Guide

 #include File Search Options

If you specify search paths using /I in both the ICC environment

variable and on the command line, all the paths are searched. The

paths specified in ICC are searched before those specified on the

command line.

Once you use the /Xc option, the paths previously specified by using /I

cannot be recovered. You have to use the /I option again if you want

to reuse the paths canceled by /Xc.

The /Xi option has no effect on the /Xc and /I options. For further

information on #include files and search paths, see “Controlling

#include Search Paths” on page 38.

 Chapter 5. Using Compiler Options 87

 Listing File Options

Listing File Options

The options listed below allow you to control whether or not a listing file

is produced, the type of information in the listing, and the appearance

of the file.

Note: The following options only modify the appearance of a listing;

they do not cause a listing to be produced. Use them with one of the

other listing file options or the /Fl option to produce a listing:

/Le /Li /Lj /Lp /Lt /Lu

| If you specify any of the /Le, /Li, or /Lj options, you must also

| specify the /Ls option.

Figure 4 (Page 1 of 2). Listing Output Options

Option Description Default Changing Default

/L[+|-] Produce a listing file. /L-

Do not produce a listing

file.

/L[+]

Produce a listing file with

only a prolog and error

messages.

/La[+|-] Include a layout of all

| referenced struct and

| union variables, with

offsets and lengths.

/La-

Do not include a layout.

/La[+]

Include a layout.

| /Lb[+|-]| Include a layout of all

| struct and union

| variables.

| /Lb-

| Do not include a layout.

| /Lb[+]

| Include a layout.

/Le[+|-] Expand all macros. /Le-

Do not expand macros.

/Le[+]

Expand macros.

/Lf[+|-] Set all listing options on

or off.

/Lf-

Set all listing options off.

/Lf[+]

Set all listing options on.

/Li[+|-] Expand user #include

files.

/Li-

Do not expand user

#include files.

/Li[+]

Expand user #include

files.

/Lj[+|-] Expand user and system

#include files.

/Lj-

Do not expand user and

system #include files.

/Lj[+]

Expand user and system

#include files.

88 IBM C/C++ Tools: Programming Guide

 Listing File Options

Figure 4 (Page 2 of 2). Listing Output Options

Option Description Default Changing Default

/Lpnum Set page length. /Lp66

Set page length to 66

lines.

/Lpnum

Specify num lines per page

of listing. num must be

between 15 and 65535

inclusive.

/Ls[+|-] Include the source code. /Ls-

Do not include the

source code.

/Ls[+]

Include the source code.

/Lt"string" Set title string.| Set title string to the

| name of the source file.

/Lt"string"

Set title string to string.

Maximum string length is

256 characters.

/Lu"string" Set subtitle string. /Lu""

Set no subtitle (null

string).

/Lu"string"

Set subtitle string to string.

Maximum string length is

256 characters.

/Lx[+|-] Generate a

cross-reference table of

| referenced variable,

structure, and function

names, that shows line

numbers where names

are declared.

/Lx-

Do not generate a

cross-reference table.

/Lx[+]

Generate a cross-reference

table.

| /Ly[+|-]| Generate a

| cross-reference table of

| all variable, structure,

| and function names, plus

| all local variables

| referenced by the user.

| /Ly-

| Do not generate a

| cross-reference table.

| /Ly[+]

| Generate a cross-reference

| table.

Note: You can also specify titles using the #pragma title and

subtitle directives, but these titles do not appear on the first page of

the listing output.

 Chapter 5. Using Compiler Options 89

 Listing File Options

Including Information about Your Source Program
You can use three options to include information about your source

program in the listing file:

/Ls[+] Includes your source program in the listing file.

/Li[+] Shows the included text after the user #include

directives.

/Lj[+] Shows the included text after both user and system

#include directives.

If you use HPFS and have very long file names, there

may not be enough room for the file names on the lines

showing the included code. Counters are used in the

INCLUDE column of the listing output, and the file name

corresponding to each number is given at the bottom of

the source listing.

Note: The /Li and /Lj options do not work in combination. If you

specify the /Lj option, /Li[+] and /Li- have no effect.

Including Information about Variables
The options that produce information about the variables used in your

program provide the following amount of detail:

/La[+] Includes a table of all the referenced struct and union

variables in the source program. The table shows how

each structure and union in the program is mapped. It

contains the following information:

� The name of the structure or union and the

elements within each.

� The byte offset of each element from the beginning

of the structure or union. The bit offset for unaligned

bit data is also given.

� The length of each element.

� The total length of each structure, union, and

substructure in both packed and unpacked formats.

| /Lb[+] Includes a table of all struct and union variables in the

| program. The table contains the same type of

| information as the one generated by /La[+].

90 IBM C/C++ Tools: Programming Guide

 Listing File Options

/Le[+] Includes all expanded macros in the listing file.

/Lx[+] Includes a cross-reference table that contains a list of

| the referenced identifiers in the source file together with

the numbers of the lines in which they appear.

| /Ly[+] Includes a cross-reference table that contains a list of all

| identifiers referenced by the user and all external

| identifiers, together with the numbers of the lines in

| which they appear.

 Chapter 5. Using Compiler Options 91

 Debugging and Diagnostic Options

Debugging and Diagnostic Information Options

The options listed here are useful for debugging your programs.

Note: The /Wgrp options and /Kn options generate the same

messages. The /Wgrp options give you greater control over the

types of messages generated. The /Kn options are provided for

compatibility with C Set/2 V1.0 only, and are mapped for you to

| the correct /Wgrp options. They are not supported for use in

| C++ programs, and will not be supported in future versions of

| the C/C++ Tools product.

The information generated by the C/C++ Tools debugger and

| the /Kn and /Wgrp options is provided to help you diagnose

problems in your code. Do not use the diagnostic information

as a programming interface.

Figure 5 (Page 1 of 4). Debugging Options

Option Description Default Changing Default

/Ka[+|-] Control messages

about variable

assignments that can

result in a loss of

precision.

| Maps to the /Wtrd

| option.

/Ka-

Suppress messages

about assignments that

may cause a loss of

precision.

/Ka[+]

Produce messages

about inappropriate

assignments of long

values.

/Kb[+|-] Control messages

about basic diagnostics

generated by /K

options.

| Maps to the /Wgen

| option.

| Note: Many of the

| messages considered

| general diagnostics in

| the C Set/2 V1.0

| product are now

| controlled by a specific

| /W option.

/Kb-

Suppress basic

diagnostic messages.

/Kb[+]

Produce basic diagnostic

messages.

92 IBM C/C++ Tools: Programming Guide

 Debugging and Diagnostic Options

Figure 5 (Page 2 of 4). Debugging Options

Option Description Default Changing Default

/Kc[+|-] Control preprocessor

warning messages.

| Maps to the /Wppc

| option.

/Kc-

Suppress preprocessor

warning messages.

/Kc[+]

Produce preprocessor

warning messages.

/Ke[+|-] Control messages

about enum usage.

| Maps to the /Wenu

| option.

/Ke-

Suppress messages

about enum usage.

/Ke[+]

Produce messages

about enum usage.

/Kf[+|-] Set all diagnostic

messages options on

or off.

| Maps to the /Wall

| option.

/Kf-

Set all diagnostic

messages options off.

/Kf[+]

Set all diagnostic

messages options on.

/Kg[+|-] Control messages

about the appearance

and usage of goto

statements.

| Maps to the /Wgot

| option.

/Kg-

Suppress messages

about goto statements.

/Kg[+]

Produce messages

about goto statements.

/Ki[+|-] Control messages

about variables that

are not explicitly

initialized.

| Maps to the /Wini and

| /Wuni options.

/Ki-

Suppress messages

about uninitialized

variables.

/Ki[+]

Produce messages

about uninitialized

variables.

/Ko[+|-] Control diagnostic

messages about

portability.

| Maps to the /Wpor

| option.

/Ko-

Suppress portability

messages.

/Ko[+]

Produce portability

messages.

/Kp[+|-] Control messages

about function

parameters that are

not used.

| Maps to the /Wpar

| option.

/Kp-

Suppress messages

about unused function

parameters.

/Kp[+]

Produce messages

about unused function

parameters.

 Chapter 5. Using Compiler Options 93

 Debugging and Diagnostic Options

Figure 5 (Page 3 of 4). Debugging Options

Option Description Default Changing Default

/Kr[+|-] Control messages

about mapping of

names to the linkage

editor.

| Maps to the /Wtru

| option.

/Kr-

Suppress messages

about name mapping.

/Kr[+]

Produce messages

about name mapping.

/Kt[+|-] Control preprocessor

trace messages.

| Maps to the /Wppt

| option.

/Kt-

Suppress preprocessor

trace messages.

/Kt[+]

Produce preprocessor

trace messages.

/Kx[+|-] Control messages

| about variables and

| functions that have

external declarations,

but are never used.

| Maps to the /Wext and

| /Wuse options.

/Kx-

Suppress messages

about unreferenced

| external variables and

| functions.

/Kx[+]

Produce messages

about unreferenced

| external variables and

| functions.

/Nn Set maximum number

of errors before

compilation aborts.

Set no limit on number

of errors.

/Nn

End compilation when

error count reaches n.

/Ti[+|-] Generate C/C++ Tools

debugger information.

/Ti-

Do not generate

debugger information.

/Ti[+]

Generate debugger

information.

| /Ts[+|-]| Generate code to allow

| the debugger to

| maintain the call stack

| across all calls that do

| not chain the EBP, that

| is, system calls.

| /Ts-

| Do not generate code

| to allow the debugger

| to maintain the call

| stack.

| /Ts[+]

| Generate code to allow

| the debugger to maintain

| the call stack.

| /Tx[+|-]| Control information

| generated when an

| exception occurs.

| /Tx-

| Provide only the

| exception message

| and address when an

| exception occurs; do

| not provide a complete

| machine-state dump.

| /Tx[+|-]

| Provide a complete

| machine-state dump

| when an exception

| occurs.

94 IBM C/C++ Tools: Programming Guide

 Debugging and Diagnostic Options

Figure 5 (Page 4 of 4). Debugging Options

Option Description Default Changing Default

| /W<grp>[+|-][grp]| Control diagnostic

| messages.

| /Wall-

| Do not generate

| diagnostic messages.

| /Wgrp

| Generate messages in

| the grp group. More

| than one group may be

| specified. See Using the

| /Wgrp Diagnostic Options

| which follows for

| descriptions of the

| different groups of

| messages.

/W[0|1|2|3] Set the type of

message the compiler

produces and that

causes the error count

to increment.

/W3

Produce all message

types.

/W0

Produce only severe

errors.

/W1

Produce severe errors

and errors.

/W2

Produce severe errors,

errors, and warnings.

| Note: If you use the /Ti option to generate debugger information, it is

| recommended that you turn optimization off (/O-). (This

| recommendation does not apply if you are using /Ti to

| generate information for EXTRA.) Because of the nature of the

optimizations performed, many of the functions of the debugger

will not operate properly on optimized code. Because the

compiler produces debugging information as if the code were

not optimized, the information may not accurately describe an

optimized program being debugged.

Because of the effects of optimization, debugging information

generated with optimization is limited to setting breakpoints at

| function entry and function exit and stepping through the

program at assembly level. Accurate symbol and type

information is not always available.

To make full use of the C/C++ Tools debugger, set optimization

| off and use the /G3 option. (Note that these are the defaults.)

 Chapter 5. Using Compiler Options 95

 Debugging and Diagnostic Options

| Using the /Wgrp Diagnostic Options
Use these options to examine your source code for possible

programming errors, weak programming style, and other information

| about the structure of your program. When you specify /Wall[+], all

suboptions are turned on and all possible diagnostic messages are

reported. Because even a simple program that contains no errors can

| produce many informational messages, you may not want to use /Wall

| very often. You can use the suboptions alone or in combination to

specify the type of messages that you want the compiler to report.

| Suboptions can be separated by an optional + sign. To turn off a

| suboption, you must place a - sign after it. You can also combine the

| /W[0|1|2|3] options with the /Wgrp options.

| The following table lists the message groups and the message numbers

| that each controls, as well as the /Kn option that formerly controlled

| each message. Messages generated for C files begin with EDC0, while

| messages for C++ files begin with EDC3.

| Figure 6 (Page 1 of 3). /Wgrp Options

| grp| /Kn

| Option

| Controls Messages About| Messages

| all| /Kf| All diagnostics.| All message numbers listed in this

| table.

| cls| (none)| Use of classes| EDC3110, EDC3253, EDC3266

| cmp| (none)| Possible redundancies in unsigned

| comparisons.

| EDC3138, EDC3139, EDC3140

| cnd| /Kb| Possible redundancies or problems

| in conditional expressions.

| EDC0816, EDC0821, EDC0822,

| EDC3107, EDC3130

| cns| /Kb| Operations involving constants.| EDC0823, EDC0824, EDC0838,

| EDC0839, EDC0865, EDC0866,

| EDC0867, EDC3131, EDC3219

| cnv| /Kb| Conversions.| EDC3313

| cpy| (none)| Problems generating copy

| constructors.

| EDC3199, EDC3200

| eff| /Kb| Statements with no effect.| EDC0811, EDC0812, EDC0813,

| EDC0814, EDC0815, EDC3165,

| EDC3215

96 IBM C/C++ Tools: Programming Guide

 Debugging and Diagnostic Options

| Figure 6 (Page 2 of 3). /Wgrp Options

| grp| /Kn

| Option

| Controls Messages About| Messages

| enu| /Ke| Consistency of enum variables.| EDC0830, EDC0831, EDC3137

| ext| /Kb and

| /Kx

| Unused external definitions.| EDC0803, EDC0804, EDC0810,

| EDC3127

| gen| /Kb| General diagnostics.| EDC0807, EDC0809, EDC0826,

| EDC0835, EDC0868, EDC0869,

| EDC3101

| gnr| (none)| Generation of temporary variables.| EDC3151

| got| /Kg| Usage of goto statements.| EDC0832, EDC0837

| ini| /Ki| Possible problems with

| initialization.

| EDC0861, EDC0862, EDC0863,

| EDC0864

| lan| (none)| Effects of the language level.| EDC3116

| obs| /Kb| Features that are obsolete.| EDC0827, EDC0828

| ord| /Kb| Unspecified order of evaluation.| EDC0829

| par| /Kp| Unused parameters.| EDC0800, EDC3126

| por| /Ko, /Kb| Nonportable language constructs.| EDC0464, EDC0819, EDC0820,

| EDC3132, EDC3133, EDC3135,

| EDC3136, EDC3307

| ppc| /Kc| Possible problems with using the

| preprocessor.

| EDC0836, EDC0841, EDC0842,

| EDC0843, EDC0844, EDC0845,

| EDC0846, EDC0847, EDC0848

| ppt| /Kt| Trace of preprocessor actions.| EDC0851, EDC0852, EDC0853,

| EDC0854, EDC0855, EDC0856,

| EDC0857, EDC0858, EDC0859,

| EDC0860, EDC0870

| pro| /Kb| Missing function prototypes.| EDC0185

| rea| /Kb| Code that cannot be reached.| EDC0825, EDC3119

| ret| /Kb| Consistency of return statements.| EDC0833, EDC0834, EDC3128

| trd| /Ka| Possible truncation or loss of data

| or precision.

| EDC0817, EDC0818, EDC3108,

| EDC3135, EDC3136

| tru| /Kr| Variable names truncated by the

| compiler.

| EDC0244

 Chapter 5. Using Compiler Options 97

 Debugging and Diagnostic Options

| Figure 6 (Page 3 of 3). /Wgrp Options

| grp| /Kn

| Option

| Controls Messages About| Messages

| und| (none)| Casting of pointers to or from an

| undefined class.

| EDC3098

| uni| /Ki| Uninitialized variables.| EDC0808

| use| /Kb, /Kx| Unused auto and static variables.| EDC0801, EDC0802, EDC0805,

| EDC0806, EDC3002, EDC3099,

| EDC3100

| vft| (none)| Generation of virtual function

| tables.

| EDC3280, EDC3281, EDC3282

| More information about the messages generated by the /Wgrp options

| is available in the Online Language Reference.

98 IBM C/C++ Tools: Programming Guide

 Debugging and Diagnostic Options

| Examples of /Wgrp Options
| � Produce all diagnostic messages:

| icc /Wall blue.c
| icc /Wall+ blue.c

| � Produce diagnostic messages about:

| – Consistency of declarations

| – Unreferenced parameters

| – Missing function prototypes

| – Uninitialized variables

| by turning on the appropriate suboptions:

| icc /Wdcl+par+pro+uni blue.c
| icc /Wdclparprouni blue.c

| � Produce all diagnostic messages except:

| – Warnings about assignments that can cause a loss of precision

| – Preprocessor trace messages

| – External variable warnings

| by turning on all options, and then turning off the ones you do not

| want:

| icc /Wall+trd-ppt-ext- blue.c

| � Produce only basic diagnostics, with all other suboptions turned off:

| icc /Wgen+ blue.c

| � Produce only basic diagnostics and suppress all messages with a

| severity of "informational" (/W2):

| icc /Wgen2 blue.c

 Chapter 5. Using Compiler Options 99

 Source Code Options

Source Code Options

These options allow you to control how the C/C++ Tools compiler

interprets your source file. This control is especially useful, for

| example, if you are concerned with migrating code or ensuring

| consistency with a particular language standard.

Figure 7 (Page 1 of 5). Source Code Options

Option Description Default Changing Default

| /S[a|c|e|2] Set language level. See

“Setting the Source

Code Language Level”

on page 41.

/Se

| Allow all C/C++ Tools

| language extensions.

/Sa

Conform to ANSI

standards.

| /Sc

| Allow constructs

| compatible with older

| levels of the C++

| language. See “Setting

| the Source Code

| Language Level” on

| page 41 for details on the

| constructs allowed.

| Note: This option is valid

| only for C++ files.

/S2

Conform to SAA Level 2

standards.

| Note: This option is valid

| only for C files.

/Sd[+|-] Set default file

extension. See “Using

the /Sd Option” on

page 105 for more

information.

/Sd-

Set the default file

extension as .obj.

/Sd[+]

Set the default file

extension as .c.

100 IBM C/C++ Tools: Programming Guide

 Source Code Options

Figure 7 (Page 2 of 5). Source Code Options

Option Description Default Changing Default

/Sg[l][,<r|\>]

/Sg-

Set left and right

margins of the input file

and ignore text outside

these margins. Useful

when using source files

created on other

systems that contain

characters that you want

to ignore.

| Note: This option is

| only valid for C files.

/Sg-

Do not set any margins:

use the entire input file.

/Sg[l][,r|\]

Set left margin to l. The

right margin can be the

value r, or an asterisk can

be used to denote no right

margin. l and r must be

between 1 and 65535

inclusive, and r must be

greater than or equal to l.

/Sh[+|-] Allow use of ddnames. /Sh-

Do not allow ddnames.

/Sh[+]

Allow use of ddnames.

| /Si[+|-]| Control use of

| precompiled header

| files.

| /Si-

| Do not use precompiled

| header files.

| /Si[+]

| Use precompiled header

| files if they exist and are

| current.

| /Sm[+|-]| Control compiler

| interpretation of

| unsupported 16-bit

| keywords, such as near

| and far.

| /Sm-

| Treat unsupported 16-bit

| keywords like any other

| identifier.

| /Sm[+]

| Ignore unsupported 16-bit

| keywords.

/Sn[+|-] Allow use of double-byte

character set (DBCS).

/Sn-

Do not allow DBCS.

/Sn[+]

Allow use of DBCS.

/Sp[1|2|4] Specify alignment or

packing of data items

within structures and

unions.

/Sp4

Align structures and

unions along 4-byte

boundaries (normal

alignment).

/Sp[1|2]

Align structures and

unions along 1-byte or

| 2-byte boundaries. /Sp is

equivalent to /Sp1.

 Chapter 5. Using Compiler Options 101

 Source Code Options

Figure 7 (Page 3 of 5). Source Code Options

Option Description Default Changing Default

/Sq[l][,<r|\>]

/Sq-

Specify columns in

which sequence

numbers appear, and

ignore text in those

columns. This option

can be used when

importing source files

from systems that use

sequence numbers.

| Note: This option is

| only valid for C files.

/Sq-

Use no sequence

numbers.

/Sq[l][,r]

Sequence numbers

appear between columns

l and r of each line in the

input source code. l and

r must be between 1 and

65535 inclusive, and r

must be greater than or

equal to l. If you do not

want to specify a right

column, use an asterisk

for r.

/Sr[+|-] Set type conversion

rules.

| Note: This option is

| valid for C files only.

/Sr-

Use new-style rules for

type conversion.

New-style rules

preserve accuracy.

/Sr[+]

Use old-style rules for

type conversion. Old-style

rules preserve the sign.

They do not conform to

ANSI standards.

/Ss[+|-] Allow use of double

slashes (//) for

comments.

| Note: This option is

| only valid for C files.

| C++ allows double

| slashes to indicate

| comments as part of the

| language.

/Ss-

Do not allow double

slashes to indicate

comments.

/Ss[+]

Allow the double slash

format to indicate

comments. This type of

comment is ended by a

carriage return.

102 IBM C/C++ Tools: Programming Guide

 Source Code Options

Figure 7 (Page 4 of 5). Source Code Options

Option Description Default Changing Default

| /Su[+|-|1|2|4]| Control size of enum

| variables.

| /Su-

| Use the SAA rules, that

| is, make all enum

| variables the size of the

| smallest integral type

| that can contain all

| variables.

| /Su[+]

| Make all enum variables 4

| bytes.

| /Su1

| Make all enum variables 1

| byte.

| /Su2

| Make all enum variables 2

| bytes.

| /Su4

| Make all enum variables 4

| bytes.

| /Sv[+|-]| Allow use of memory

| files.

| /Sv-

| Do not allow memory

| files.

| /Sv[+]

| Allow use of memory files.

| /Tc| Specify that the

| following file is a C file.

| Important: The /Tc

| option must be

| immediately followed by

| a file name, and applies

| only to that file.

| Compile .cpp and .cxx

| files as C++ files, and .c

| and all other

| unrecognized files as C

| files.

| /Tc

| Compile the following file

| as a C source file,

| regardless of its

| extension.

 Chapter 5. Using Compiler Options 103

 Source Code Options

Figure 7 (Page 5 of 5). Source Code Options

Option Description Default Changing Default

| /Td[c|p]| Specify default language

| (C or C++) for files.

| /Td

| Compile .cpp and .cxx

| files as C++ files, and .c

| and all other

| unrecognized files as C

| files.

| /Tdc

| Compile all source and

| unrecognized files that

| follow on the command

| line as C files.

| /Tdp

| Compile all source and

| unrecognized files that

| follow on the command

| line as C++ files, and

| ensure that template

| functions are resolved

| correctly. See “Using the

| /Tdp Option for Template

| Resolution” on page 106

| below.

| Note: You can specify

| /Td anywhere on the

| command line to return to

| the default rules for the

| files that follow it.

| /Tp| Specify that the

| following file is a C++

| file.

| Important: The /Tp

| option must be

| immediately followed by

| a file name, and applies

| only to that file.

| Compile .cpp and .cxx

| files as C++ files, and .c

| and all other

| unrecognized files as C

| files.

| /Tp

| Compile the following file

| as a C++ source file,

| regardless of its

| extension.

104 IBM C/C++ Tools: Programming Guide

 Source Code Options

Using the /Sd Option
This option specifies whether a file without an extension should be

considered a C source file or an object file, and whether it should be

compiled and linked or just linked. When using the default (/Sd-), you

must specify the extension when using a source file:

 icc anthony.c
 icc efrem.cpp

If you omit the extension, the C/C++ Tools compiler assumes that the

file is an object file (.obj) and does not compile it, but only invokes the

linker. The following commands are equivalent (assuming that /Sd+ has

not been specified elsewhere, such as in ICC).

 icc dale
 icc dale.obj

icc /Sd- dale

If you want the default file extension to be the default source file

| extension, use the /Sd+ option. For example, the following two

| commands are equivalent:

 icc alistair.c
icc /Sd+ alistair

| Note: The /Tc and /Tp options override the setting of /Sd. If you

| specify either /Tc or /Tp followed by a file name without an

| extension, the compiler looks for the name specified, without

| an extension, and treats the file as a C file (if /Tc was

| specified) or a C++ file (if /Tp was specified). For example,

| given the following command:

| icc /Tp xiaohu

| the compiler searches for the file xiaohu and compiles it as a

| C++ file.

 Chapter 5. Using Compiler Options 105

 Source Code Options

| Using the /Tdp Option for Template Resolution
| When you link C++ object or intermediate code files, you must use icc

| to invoke the linker and you must specify the /Tdp option. For example:

| icc /Tdp /Ol tammy.w trish.w
| icc /Tdp wang.obj

| This ensures that any template functions you use are resolved correctly,

| among other things. You can use the /B option to pass options to the

| linker.

106 IBM C/C++ Tools: Programming Guide

 Preprocessor Options

 Preprocessor Options

The options listed here let you control the use of the preprocessor.

| Note that the /Pc, /Pd, and /Pe options are actually suboptions of /P.

| Specifying /Pc- is the same as specifying /P+c- and causes the

| preprocessor only to be run.

Figure 8 (Page 1 of 3). Preprocessor Options

Option Description Default Changing Default

/Dname[::n]

/Dname[═n]

Define preprocessor

macros to specified

values.

Define no macros on

command line.

/Dname[::n]
or
/Dname[═n]

Define preprocessor macro

name to the value n. If n

is omitted, the macro is set

to a null string. Macros

defined on the command

line override macros

defined in the source code.

/P[+|-] Control the preprocessor. /P-

Run the preprocessor

and compiler. Do not

generate preprocessor

output.

/P[+]

Run the preprocessor only.

Create a preprocessor

output file that has the

same name as the source

file, with the extension .i.

 Chapter 5. Using Compiler Options 107

 Preprocessor Options

Figure 8 (Page 2 of 3). Preprocessor Options

Option Description Default Changing Default

/Pc[+|-] Preserve source code

comments in

preprocessor output.

| /P-

| Run the preprocessor

| and compiler. Do not

| generate preprocessor

| output.

| /Pc-

| Run the preprocessor only.

| Create a preprocessor

| output file and strip out any

| comments. The output file

| has the same name as the

| source file with the

| extension .i.

/Pc[+]

Run the preprocessor only.

Create a preprocessor

output file that includes the

comments from the source

code. The output file has

the same name as the

source file with the

extension .i.

/Pd[+|-] Redirect preprocessor

output.

| /P-

| Run the preprocessor

| and compiler. Do not

| generate preprocessor

| output.

| /Pd-

| Run the preprocessor only.

| Do not redirect

| preprocessor output. Write

| preprocessor output to a

| file that has the same

| name as the source file,

| with the extension .I.

/Pd[+]

Run the preprocessor only.

Send the preprocessor

output to stdout.

108 IBM C/C++ Tools: Programming Guide

 Preprocessor Options

Figure 8 (Page 3 of 3). Preprocessor Options

Option Description Default Changing Default

| /Pe[+|-]| Suppress #line

| directives in

| preprocessor output.

| /P-

| Run the preprocessor

| and compiler. Do not

| generate preprocessor

| output.

| /Pe-

| Run the preprocessor only.

| Generate #line directives

| in the preprocessor output.

| The output file has the

| same name as the source

| file with the extension .i.

| /Pe[+]

| Run the preprocessor only.

| Suppress creation of #line

| directives in preprocessor

| output. The output file has

| the same name as the

| source file with the

| extension .i.

| /U<name|\>| Undefine macros.| Retain macros.| /Uname

| Undefine macro name.

| /U\

| Undefine all macros.

| Note: /U does not affect

| the macros __DATE__,

| __TIME__, __TIMESTAMP__,

| __FILE__, and __FUNCTION,

| nor does it undefine

| macros defined in source

| code.

 Chapter 5. Using Compiler Options 109

 Preprocessor Options

Using the Preprocessor
Preprocessor directives, such as #include, allow you to include C or

C++ code from another source file into yours, to define macros, and to

expand macros. See the C Language Reference for a list of

preprocessor directives and information on how to use them.

If you run only the preprocessor, you can use the preprocessor output

(which has all the preprocessor directives executed, but no code

compiled) to debug your program. For example, all macros are

expanded, and the code for all files included by #include directives

appears in your program.

By default, comments in the source code are not included in the

preprocessor output. To preserve the comments, use the /Pc option.

| For C programs, if you use // to begin your comments, you must also

specify the /Ss option to include those comments in the preprocessor

output.

| The /P, /Pc, /Pd, and /Pe options can be used in combination with each

| other. For example, to preserve comments, suppress #line directives,

| and redirect the preprocessor output to stdout, specify /Pcde.

110 IBM C/C++ Tools: Programming Guide

 Code Generation Options

Code Generation Options

These options allow you to specify the type of code that the compiler

will produce. The types of code include:

� Dynamically linked runtime libraries (See Chapter 12, “Building

Dynamic Link Libraries” on page 195.)

� Statically linked runtime libraries

 � Single-thread programs

� Multithread programs (See Chapter 11, “Creating Multithread

Programs” on page 179.)

� Subsystems. (See Chapter 17, “Developing Subsystems” on

page 303.)

| Notes:

| 1. The /Oi[+] option is more effective when /O[+] is also specified.

| 2. Using optimization (/O[+]) limits your use of the C/C++ Tools

| debugger to debug your code. The /Ti option is not recommended

| for use with optimization.

Figure 9 (Page 1 of 7). Code Generation Options

Option Description Default Changing Default

/Gd[+|-] Specify static or dynamic

linking of the runtime

library.

/Gd-

Statically link the runtime

library. All external names

beginning with the letters

Dos, Kbd, and Vio are

reserved. This restriction

does not apply when

compiling with /Gd+.

/Gd[+]

Dynamically link to the

runtime library.

/Ge[+|-] Specify creation of an

.EXE or a .DLL file.

/Ge[+]

Build an .EXE file.

/Ge-

Build a .DLL file.

 Chapter 5. Using Compiler Options 111

 Code Generation Options

Figure 9 (Page 2 of 7). Code Generation Options

Option Description Default Changing Default

/Gf[+|-] Specify fast floating-point

execution.

If your program does not

need to abide by ANSI

rules regarding the

processing of double and

float types, you can use

this option to increase

your program's

| performance. Because

| the fast floating-point

| method does not perform

| all the conversions

| specified by the ANSI

| standards, the results

| obtained may differ from

| results obtained using

| ANSI methods, but are

| often more precise.

/Gf-

Do not use fast

floating-point execution.

/Gf[+]

Use fast floating-point

execution.

| /Gh[+|-]| Generate code enabled

| for EXTRA and other

| profiling tools.

| /Gh-

| Do not enable code for

| EXTRA.

| /Gh[+]

| Enable code to be run by

| EXTRA and other profiling

| tools by generated profiler

| hooks in function prologs.

| Note: To enable code for

| EXTRA, you must also

| specify /Ti.

112 IBM C/C++ Tools: Programming Guide

 Code Generation Options

Figure 9 (Page 3 of 7). Code Generation Options

Option Description Default Changing Default

| /Gi[+|-]| Specify fast integer

| execution.

| If you are shifting bits by a

| variable amount, you can

| use fast integer execution

| to ensure that for values

| greater than 31, the bits

| are shifted by the result of

| a modulo 32 of the value.

| Otherwise, the result of

| the shift is 0.

| Note: If your shift value

| is a constant greater than

| 32, the result will always

| be 0.

| /Gi-

| Do not use fast integer

| execution.

| /Gi[+]

| Use fast integer execution.

/Gm[+|-] Choose single or

multithread libraries.

/Gm-

Link with the single-thread

version of the library (no

multithread capabilities).

/Gm[+]

Link with the multithread

version of the library.

/Gn[+|-]| Control generation of

| default library information

| in object.

/Gn-

| Provide linker information

| about the default libraries

| according to other /G

| options.

/Gn[+]

| Do not provide linker

| information about default

| libraries. All libraries must

be explicitly specified at link

time.

/Gr[+|-]| Generate object code that

| runs at ring 0. Use this

option if you are writing

code, such as device

drivers or operating

systems, that will run at

ring 0 instead of ring 3.

/Gr-

Do not allow object code

to run at ring 0.

/Gr[+]

Allow object code to run at

ring 0.

/Gs[+|-] Remove stack probes

from the generated code.

| /Gs-

Do not remove stack

probes.

| /Gs[+]

Remove stack probes.

 Chapter 5. Using Compiler Options 113

 Code Generation Options

Figure 9 (Page 4 of 7). Code Generation Options

Option Description Default Changing Default

/Gt[+|-] Enable tiled memory and

store variables such that

they may be passed to

16-bit functions.

/Gt-

Do not enable variables to

be passed to 16-bit

functions.

/Gt[+]

Enable all variables to be

passed to 16-bit functions.

Static and external variables

are mapped into 16-bit

segments. Variables larger

than 64K will be aligned on,

but will still cross, 64K

| boundaries. When this

| option is specified, the

| memory management

| functions calloc, free,

| malloc, and realloc are

| mapped to the tiled versions

| _tcalloc, _tfree, _tmalloc,

| and _trealloc.

| /Gu[+|-]| Tell intermediate linker

| whether external functions

| use data defined in the

| intermediate link.

| /Gu-

| External functions may

| use data defined in the

| intermediate files being

| linked.

| /Gu[+]

| The data is used only within

| the intermediate files being

| linked, with the exception of

| data that is exported using

| _Export, #pragma export, or

| a .DEF file. See “Using the

| Intermediate Code Linker”

| on page 52 for more

| information about the

| intermediate code linker.

| /Gv[+|-]| Control handling of DS

| and ES registers for virtual

| device driver

| development.

| Note: This option is valid

| for C files only. Virtual

| device driver development

| is not supported for C++

| programs.

| /Gv-

| Do not perform any

| special handling of the DS

| and ES registers.

| /Gv[+]

| Save the DS and ES

| registers on entry to an

| external function, set them

| to the selector for DGROUP,

| then restore them on exit

| from the function. For more

| information on developing

| virtual device drivers, see

| Chapter 15, “Developing

| Virtual Device Drivers” on

| page 281

114 IBM C/C++ Tools: Programming Guide

 Code Generation Options

Figure 9 (Page 5 of 7). Code Generation Options

Option Description Default Changing Default

| /Gw[+|-]| Control generation of

| FWAIT instruction after

| each floating-point load

| instruction.

| /Gw-

| Do not generate FWAIT

| instruction after each

| floating-point load

| instruction.

| /Gw[+]

| Generate FWAIT instruction

| after each floating-point load

| instruction. This allows the

| program to take a

| floating-point stack overflow

| exception immediately after

| the load instruction that

| caused it.

| Note: This option is not

| recommended because it

| increases the size of your

| executable file and greatly

| decreases its performance.

| /Gx[+|-]| Controls removal of C++

| exception handling

| information.

| Note: This option is valid

| for C++ files only.

| /Gx-

| Do not remove C++

| exception handling

| information.

| /Gx[+]

| Remove C++ exception

| handling information.

| /G[3|4|5] Specify type of processor. /G3

Optimize code for use with

a 386 processor. The

| code will run on a 486 or

| Pentium microprocessor.

| The compiler includes any

| 486 or Pentium

| microprocessor

| optimizations that do not

| detract from the

| performance on the 386

| processor. If you do not

| know what processor your

| application will be run on,

| use this option.

/G4

Optimize code for use with a

486 processor. The code

| will run on a 386 or Pentium

| microprocessor. The

| compiler includes any

| Pentium microprocessor

| optimizations that do not

| detract from the

| performance on the 486

| processor.

| /G5

| Optimize code for use with a

| Pentium Microprocessor.

| The code will run on a 386

| or 486 processor.

 Chapter 5. Using Compiler Options 115

 Code Generation Options

Figure 9 (Page 6 of 7). Code Generation Options

Option Description Default Changing Default

/M[p|s] Set calling convention.

See Chapter 14, “Calling

Conventions” on

page 237 for more

information.

/Mp

Use _Optlink linkage for

functions. You must

include the Toolkit header

files to call OS/2 APIs.

/Ms

Use _System linkage for

functions. You must include

the C/C++ Tools library

header files to call

C/C++ Tools functions.

| /Ndname| Specify names of default

| data and constant

| segments.

| Use the default names

| DATA32 and CONST32.

| /Ndname

| Use the names

| nameDATA32 and

| nameCONST32. You can

| then give the segments

| special attributes. The

| renamed segments are not

| placed in the default data

| group.

| /Ntname| Specify name of default

| code or text segment.

| Use the default name

| CODE32.

| /Ntname

| Use the name

| nameCODE32. You can

| then give the segment

| special attributes.

/O[+|-] Control optimization. /O-

Do not optimize code.

/O[+]

Optimize code.

| /Oi[+|-|]

| /Oivalue

| Control inlining of user

| code.

| /Oi-

| Do not inline any user

| code.

| Note: When /O+ is

| specified, /Oi+ becomes

| the default.

| /Oi[+]

| Inline all user functions

| qualified with the _Inline or

| inline keyword.

| /Oivalue

| Inline all user functions

| qualified with the _Inline or

| inline keyword or that are

| smaller than value in

| abstract code units. See

| “Inlining User Code” on

| page 56 for more

| information.

116 IBM C/C++ Tools: Programming Guide

 Code Generation Options

Figure 9 (Page 7 of 7). Code Generation Options

Option Description Default Changing Default

| /Ol[+|-]| Control use of

| intermediate code linker.

| /Ol-

| Do not pass code through

| the intermediate linker.

| /Ol[+]

| Pass code through the

| intermediate linker before

| generating an object file.

| See “Using the Intermediate

| Code Linker” on page 52 for

| more information.

/Om[+|-] Control size of working set

for compiler. See the

READ.ME file for a

complete description of

this option.

/Om-

Do not limit working set

size.

/Om[+]

Limit working set size to

approximately 35M.

| /Op[+|-]| Control disabling of

| optimizations involving the

| stack pointer.

| /Op+

| Perform optimizations

| involving the stack pointer.

| /Op-

| Do not perform

| optimizations that involve

| the stack pointer. Code that

| directly manipulates the

| stack pointer should be

| compiled with this option.

| This option is not

| recommended because it

| decreases the performance

| of your executable file.

| /Os[+|-]| Control use of instruction

| scheduler.

| /Os-

| Do not invoke the

| instruction scheduler.

| Note: When /O+ is

| specified, /Os+ becomes

| the default.

| /Os+

| Invoke the instruction

| scheduler.

| Note: You cannot specify

| /Os+ and /O-.

/R[e|n]| Control executable

| runtime environment.

/Re

Generate executable code

that runs in a C/C++ Tools

runtime environment.

/Rn

Generate executable code

that can be used as a

subsystem without a runtime

environment.

 Chapter 5. Using Compiler Options 117

 Code Generation Options

Using the /Ge Option
The C/C++ Tools libraries provide two initialization routines, one for

executable modules and one for DLLs. For each object file, the

compiler must include a reference to the appropriate initialization

routine. The name of this routine is then passed to the linker when the

file is linked. Use the /Ge option at compile time to tell the compiler

which routine to reference.

| The /Ge- option causes the compiler to generate a reference to

| _dllentry for every module compiled. The /Ge+ option generates a

| reference to _exeentry only if a main function is found in the source. If

| no main function is included, no linking reference is generated.

If you want to create a library of objects that can be linked into either

an executable file or a DLL, use the /Ge+ option when you compile.

Typically, none of these objects would contain a reference to main.

If one of the objects did contain a reference to main, you can override

the /Ge option when you link your files. Create a source file that

defines the routine already referenced in your object file. In the same

file, add a dummy statement that references the correct initialization

routine. Then compile this file and link it with your other object files.

118 IBM C/C++ Tools: Programming Guide

 Code Generation Options

For example, if you compiled tammy.obj using the /Ge+ option, but want

to link it to create a DLL, your extra source file would contain

statements like the following:

int _exeentry = 1;
extern int _dllentry;

int main(void)
{
 int x;

...
x = _dllentry;

...
}

The reference to _exeentry in tammy.obj is resolved by this file, and

this file's reference to _dllentry causes the linker to link in the correct

initialization routine.

 Chapter 5. Using Compiler Options 119

 Other Options

 Other Options

| Use these options to control linker parameters, logo display, default

| char type, and other C/C++ Tools options.

Figure 10. Other Options

Option Description Default Changing Default

/B"options" Specify parameters to be

passed to linker.

See the Toolkit Tools

Reference for information

about the options you

can pass to the LINK386

linker.

/B""

| Pass only the icc default

| parameters to the linker.

| See “Linking

| Independently of the

| Compiler” on page 123

| for a description of the

| options passed to the

| linker by default.

/B"options"

Pass options string to the

| linker as parameters. The

| icc default parameters are

| also passed.

/C[+|-] Perform compile only, or

perform compile and link.

/C-

Perform compile and

invoke linker.

/C[+]

Perform compile only, no

link.

/Hnum Set significant length of

external names.

/H255

Set the first 255

characters of external

names to be significant.

/Hnum

Set the first num

characters of external

names to be significant.

The value of num must be

between 6 and 255

inclusive.

/J[+|-] Set default char type. /J[+]

Set unspecified char

variables to unsigned

char.

/J-

Set unspecified char

variables to signed char.

/Q[+|-] Display compiler logo

when invoking compiler.

/Q-

Display logo on stderr.

/Q[+]

Do not display logo.

/V"string" Include a version string

in the object and

executable files.

/V""

Set no version string.

/V"string"

Set version string to string.

The length of the string

can be up to 256

characters.

| ?| Display list of compiler

| options with descriptions.

| Compile and produce

| output files according to

| other options.

| ?

| Display list of compiler

| options with descriptions.

120 IBM C/C++ Tools: Programming Guide

 Other Options

Examples of Other Options
� Passing a parameter to the linker:

icc /B"/NOI" fred.c

The /NOI option tells the linker to preserve the case of external

names in fred.obj.

� Imbedding a version string or copyright:

icc /V"Version 1.0" fred.c

This imbeds the version notice in fred.obj.

 Chapter 5. Using Compiler Options 121

 Other Options

122 IBM C/C++ Tools: Programming Guide

 Linking Independently of the Compiler

| Chapter 6. Finishing Your Program

| This chapter describes the linker and other tools and how to invoke

| them.

| Once the compiler has created object modules out of your source files,

| use the linker to link them together with the C/C++ Tools runtime

| libraries to create an executable module or DLL. By default, icc

| invokes the linker for you. To compile and link in separate steps, use

| the /C+ option to force icc to perform only the compile step. You can

| then invoke LINK386 separately to link your program.

| If you are creating an application for others to use, you must consider

| that the machines your program will run on may not have access to the

| same resources your machine has. As a result, you may also need to

| invoke the resource compiler, message binding, and help facilities for

| your program.

Linking Independently of the Compiler

By default, the icc program invokes the linker automatically. It passes

a number of default options and any options you specify using the /B

compiler option.

If you want to link your program yourself, use the /C+ option with the

icc command to specify compile only. You can then invoke the

LINK386 program directly.

| Important: If you are compiling C++ code that uses templates, you

| must invoke the linker through icc and not as a separate link step.

| You must also specify the /Tdp compiler option. This ensures that the

| compiler correctly resolves all template function definitions.

 Copyright IBM Corp. 1992, 1993 123

 Linking Independently of the Compiler

The syntax for the LINK386 command is:
|

 ┌ ┐──┬ ┬─── ─
| ┌ ┐───────────── │ │└ ┘─+─
| ►►──LINK386─ ───▼ ┴┬ ┬───────── ───▼ ┴─object─ ───►
| └ ┘| ──/option

►─ ──┬ ┬── ────────────►◄
| └ ┘| ─,─ ──┬ ┬──────── ──┬ ┬───
| └ ┘─target─ └ ┘| ─,─ ──┬ ┬───── ──┬ ┬───
| └ ┘─map─ │ │┌ ┐──┬ ┬─── ──────
| │ ││ │└ ┘─+─
| └ ┘| ─,─ ───▼ ┴──┬ ┬───────── ──┬ ┬─────────────────
| └ ┘─library─ └ ┘| ─,─ ──┬ ┬──────────
| └ ┘─def_file─

You can specify multiple options, objects, and libraries. If you specify

multiple objects or libraries, separate them with a space or with a plus

sign (+). At least one object is required, but the other parameters are

optional. If you do not specify a parameter, the default is used. To

skip a parameter and specify the following one, specify only the comma

(,) as a placeholder.

The semicolon (;) ends the command line wherever it appears. For

example, to link stan.obj using all the defaults, use the following

command:

 LINK386 stan.obj;

The linker command and options are described in detail in the Toolkit

online Tools Reference.

| When icc invokes the linker, it passes a number of linker options by

| default. If you link your program separately, you may want to specify

| these options:

| /NOI Maintain case sensitivity for identifier names. If you link

| dynamically to the runtime libraries or if you use any C++

| functions, you must use this option or your program will

| not load.

124 IBM C/C++ Tools: Programming Guide

 Creating Runtime DLLs

| /BASE:65536 Specify the starting address of the program. Because

| the OS/2 operating system always loads executable

| programs at 64K, you can give the linker the address

| 65536 (or 0x10000). If the linker knows where the

| program will be loaded, it can resolve relocation

| information at link time, resulting in a smaller and faster

| executable module. Use this option only when compiling

| .EXE files.

| /ALIGN:16 Align segments on 16-byte boundaries inside the .EXE or

| .DLL file. This option reduces the size of the module,

| which in turn reduces load time.

| /EXEPACK Pack the .EXE or .DLL file. This option reduces the size

| of the module, which in turn reduces load time.

| Note: If you do not want to use the linker options passed by icc, you

| must link your program independently of icc.

If you use #pragma alloc_text or the /Nt option and plan to debug your

code with the debugger, do not use the /PACKCODE linker option to

group neighboring code segments. This option can interfere with the

debugging of your program. It is not passed to the linker by default.

| Creating Runtime DLLs

| If your application uses functions from the C/C++ Tools libraries, you

| need to ensure the code for those libraries is always available to your

| application. You cannot ship the C/C++ Tools DLLs themselves with

| your application because of the product licensing agreement and

| because if more than one application included the C/C++ Tools DLLs,

| but at different levels, at least one application would be using the wrong

| level.

 Chapter 6. Finishing Your Program 125

 Binding Runtime Messages

| If you are shipping your application to other users who do not have

| access to the library DLLs, you can use one of three methods to

| include the C/C++ Tools library code:

| 1. Statically bind every module to the library (.LIB) files.

| This method increases the size of your modules and slows the

| performance because the library environment has to be initialized

| for each module. Having multiple library environments also makes

| signal handling, file I/O, and other operations more complicated.

| 2. Use the DLL rename utility included with the C/C++ Tools product

| to rename the library DLLs and make the necessary changes in

| your executable files that call the DLLs.

| This method is described in detail in the READ.ME file.

| 3. Create your own runtime DLLs.

| This method provides one common runtime environment for your

| entire application. It also lets you apply changes to the runtime

| library without relinking your application, meaning that if the

| C/C++ Tools DLLs change, you need only rebuild your DLL.

| For a description of how to build your own runtime DLL, see “Creating

| Your Own Runtime Library DLLs” on page 216. If you are using the

| subsystem libraries, see “Creating Your Own Subsystem Runtime

| Library DLLs” on page 313.

| Binding Runtime Messages to Your Application

| If you are shipping your application to other users, you will also need to

| bind the C/C++ Tools runtime messages to your application. Use the

| MSGBIND utility from the Toolkit to bind the messages.

| The MSGBIND command has the following syntax:

|

| ►►──MSGBIND──input_file─────────────────────────────────►◄

| The input_file identifies the executable file to which the messages are

| to be bound, the message file where the messages reside, and the

| message numbers to bind.

126 IBM C/C++ Tools: Programming Guide

 Creating Online Documentation

| The C/C++ Tools runtime messages file are named DDE4.MSG (C

| runtime messages) and DDE46.MSG (Task Library runtime messages)

| and are located in the HELP directory under the main C/C++ Tools

| directory. For both of these files, the message numbers are the same

| as the message identifiers. The C runtime messages are numbered

| EDC5000 to EDC5167, and the Task Library messages are numbered

| EDC7001 to EDC7108.

| For a detailed description and example of an input_file, as well as more

| information about MSGBIND, see the Toolkit online Tools Reference.

| Creating Online Documentation

| The Information Presentation Facility (IPF) is an Toolkit tool that you

| can use to create online information, to specify how it will appear on the

| screen, to connect various parts of the information, and to provide help

| information that can be requested by the user. IPF features include:

| � A tagging language that formats text and provides ways to connect

| information and customize the information display.

| � A compiler that creates online documents and help windows.

| � A viewing program that displays formatted online documents (view).

| The syntax for the IPF compiler command is:

|

| ┌ ┐────────────────
| ►►──IPFC──source_file─ ───▼ ┴┬ ┬──────────── ─────────────────►
| └ ┘| ─/──options─

| ►─ ──┬ ┬──────────────────────── ──────────────────────────►◄
| └ ┘| ─>──output_message_file─

| Enabling help for applications requires programming code that

| communicates with IPF and with the PM APIs to display help windows.

| For more information on creating help for applications, see the Toolkit

| online Information Presentation Facility Reference.

 Chapter 6. Finishing Your Program 127

 Using the Resource Compiler

| Using the Resource Compiler

| The OS/2 Resource Compiler is a tool you can use to add application

| resources, such as strings, pointers, menus, bitmaps, and dialog

| templates, to a PM application. You can bind these resources directly

| to your executable file or build them into a DLL which is then called by

| the executable file at run time. You use OS/2 APIs to load the

| resources into the application.

| The command to invoke the Resource Compiler has the following

| syntax:

|

| ┌ ┐───────────────
| ►►──RC─ ───▼ ┴┬ ┬─────────── ─input_file─ ──┬ ┬───────────── ───►◄
| └ ┘| ─/──option─ └ ┘─output_file─

| You can type RC alone at the command line to get help for the

| command.

| Using the Resource Compiler, you can define and modify the resources

| for an executable file without affecting the file itself, meaning you do not

| need to recompile the file. You can create multiple customized

| applications by adding different resources to a single executable file.

| The Resource Compiler is especially useful for international

| applications. You can define all language-dependent data, such as

| message strings, as resources. You can then modify the existing

| application for a different language by binding different resources to it.

| It is often easier to create a resource DLL than to bind your resources

| into your executable file. With a DLL, the maintenance of resources is

| easier and there is less duplication of resources. You may even be

| able to use a common resource DLL for multiple applications. The

| steps for creating a resource DLL are described in “Creating Resource

| DLLs” on page 215.

128 IBM C/C++ Tools: Programming Guide

 Using the NMAKE Utility

| Using the NMAKE Utility

You can use the Toolkit make utility NMAKE to invoke the compiler and

linker and any other tools you use. The NMAKE program simplifies

compiling programs that have more than one source file, especially

when there have been changes to only some of the files. NMAKE

| saves time by performing actions on only the files that have changed,

and on the files that incorporate or depend on the changed files.

NMAKE uses a make file to determine what actions are to be

performed on which files. You can write your own make files, or, if you

have the WorkFrame/2 product, you can use its Make File Creation

utility to create your make files.

Make File Creation Restrictions: When you create a make file using

| the WorkFrame/2 Make File Creation utility, only the #include

| preprocessor directive is recognized. All other preprocessor

directives (for example, #if, #define) are ignored.

If a #include directive is used in conjunction with other

preprocessor directives, it may be interpreted in a different way

than was intended. For example:

� Given the following directives:

#define XXX "kim.h"
#include XXX

the Make File Creation utility cannot determine the name of

the file to be included because it does not process the

#define directive. In this situation, an error message is

generated.

 Chapter 6. Finishing Your Program 129

 Using the NMAKE Utility

� For the following example, no error message is generated,

but the results may not be as expected:

#if XXX
#include "kim.h"
#else
#include "alex.h"
#endif

Because the conditional directives are ignored, the make file

created will have a dependency on both kim.h and alex.h.

For more information on NMAKE, see the Toolkit documentation. For

more information on the Make File Creation utility, see the

WorkFrame/2 online help.

130 IBM C/C++ Tools: Programming Guide

 Running Your Program

Part 3. Running Your Program

This part describes how to set environment variables for running your

program, how to specify runtime options, and how to redirect standard

input/output.

Chapter 7. Setting Runtime Environment Variables 133

PATH . 133

DPATH . 134

LIBPATH . 134

TMP . 135

TEMPMEM . 135

COMSPEC . 136

TZ . 136

Chapter 8. Running Your Program 139

Passing Data to a Program . 139

Expanding Global File-Name Arguments 141

Redirecting Standard Streams . 143

Returning Values from main . 146

 Copyright IBM Corp. 1992, 1993 131

 Running Your Program

132 IBM C/C++ Tools: Programming Guide

 Runtime Environment Variables

Chapter 7. Setting Runtime Environment Variables

You can set the runtime environment for the C/C++ Tools compiler by

using OS/2 environment variables. Most of these variables can be set

from the command line, in your CONFIG.SYS file, or in a command file

using the SET command, or from within your program using the _putenv

function.

The functions that access these environment variables are not available

when you are using the subsystem libraries. To access the

environment variables when using the subsystem libraries, you must

use OS/2 APIs. See the Toolkit online PM Programming Reference for

more information about OS/2 APIs.

Note: You can put an optional semicolon at the end of the commands

| that set the environment variables so that you can later append values

| to the variables from the command line.

Some of the variables discussed in this chapter are also used at

compile time. The compiler environment variables are described in

“OS/2 Environment Variables for Compiling” on page 34. For more

information on environment variables in general, see the OS/2 2.0

documentation.

 PATH

The system, _exec, and _spawn functions use this environment variable

to search for .EXE and .CMD files not in the current directory. You can

set it by entering PATH as a command or using the SET command. For

example, the following two commands are equivalent:

 SET PATH=c:\ibmc;e:\ian;d:\steve
 PATH=c:\ibmc;e:\ian;d:\steve

If you set the PATH variable in your CONFIG.SYS file, you must use

the SET command.

 Copyright IBM Corp. 1992, 1993 133

 Runtime Environment Variables

You can specify one or more directories with this variable. Given the

above example, the path searched would be the current directory, and

then the directories c:\ibmc, e:\ian, and d:\steve, in that order.

| For further information on the functions that use PATH, refer to the C

| Library Reference.

 DPATH

This environment variable is used at run time to locate information to

support the setlocale function. Also, if the runtime messages are not

bound to the executable module, the program searches for them first in

the current directory, and then in the directory or directories specified by

| the DPATH variable. (The list of C/C++ Tools message files can be

| found in Appendix E, “Component Files” on page 431.)

For example, given the following DPATH value:

 DPATH=c:\kevin;d:\michel

the program would search the current directory, and then the c:\kevin

and d:\michel directories, in that order.

The DPATH variable can be set by entering DPATH as a command or by

using the SET command. If you set DPATH in your CONFIG.SYS file,

you must use the SET command.

 LIBPATH

If you link dynamically to the C/C++ Tools libraries, the operating

system searches the directories specified by this environment variable

to find .DLL files required by the program. The library DLLs and any

user DLLs must be in one of the directories specified by the LIBPATH.

134 IBM C/C++ Tools: Programming Guide

 Runtime Environment Variables

This variable can only be specified in the CONFIG.SYS file. For

example:

 LIBPATH=c:\cmlib;c:\ibmc\dll;c:\ibmc\lib

sets the DLL search path to the c:\cmlib, c:\ibmc\dll, and

c:\ibmc\lib directories. LIBPATH cannot be specified using the SET

command. For more information on DLLs, see Chapter 12, “Building

| Dynamic Link Libraries” on page 195. For a list of all C/C++ Tools

| DLLs, see Appendix E, “Component Files” on page 431.

 TMP

The directory specified by this variable holds temporary files, such as

those created using the tmpfile function. (See the C Library

| Reference for a description of tmpfile.) You must set the TMP variable

| to use the C/C++ Tools compiler.

Set the TMP variable with the SET command in the CONFIG.SYS file or

on the command line. For example:

 SET TMP=c:\ibmc\tmp

You can specify only one directory using the TMP variable.

 TEMPMEM

Use this variable to control whether temporary files are created as

memory files or as disk files. It can be set using the SET command in

the CONFIG.SYS file or on the command line. For example:

 SET TEMPMEM=on

| If the value specified is on (in upper-, lower-, or mixed case), and you

| compile with the /Sv+ option, the temporary files will be created as

memory files. If TEMPMEM is set to any other value, the temporary

| files will be disk files. If you do not compile with /Sv+, memory file

| support is not available and your program will end with an error when it

| tries to open a memory file.

If TEMPMEM is used by a program, its value must be set in the

environment before the program starts. You cannot set it from within

the program.

 Chapter 7. Setting Runtime Environment Variables 135

 Runtime Environment Variables

 COMSPEC

The system function uses this variable to locate the command

interpreter. When the OS/2 operating system is installed, the

installation program sets the COMSPEC variable in the CONFIG.SYS

file to the name and path of the command interpreter. To change the

COMSPEC variable, use the SET command in CONFIG.SYS. For

example:

 SET COMSPEC=c:\mydir\mycmd.exe

sets the command interpreter as mycmd.exe in the c:\mydir directory.

| For more information on the system function, refer to the C Library

| Reference.

 TZ

This variable is used to describe the time zone information to be used

by the locale. It is set using the SET command, and has the following

format:

 SET TZ=SSS[+|-]nDDD[,sm,sw,sd,st,em,ew,ed,et,shift]

The values for the TZ variable are defined below. The default values

given are for the built-in "C" locale defined by the ANSI C standard.

Figure 11 (Page 1 of 2). TZ Environment Variable Parameters

Variable Description Default Value

SSS Standard time zone identifier. This

must be three characters, must begin

with a letter, and can contain spaces.

EST

n Difference (in hours) between the

standard time zone and coordinated

universal time (CUT), formerly

Greenwich mean time (GMT). A

positive number denotes time zones

west of the Greenwich meridian, a

negative number denotes time zones

east of the Greenwich meridian.

5

136 IBM C/C++ Tools: Programming Guide

 Runtime Environment Variables

For example:

 SET TZ=CST6CDT

sets the standard time zone to CST, the daylight saving time zone to

CDT, and sets a difference of 6 hours between CST and CUT. It does

not set any values for the start and end of daylight saving time.

When TZ is not present, the default is EST5EDT, the "C" locale value.

When only the standard time zone is specified, the default value of n

(difference in hours from GMT) is 0 instead of 5.

If you give values for any of sm, sw, sd, st, em, ew, ed, et, or shift, you

must give values for all of them. If any of these values is not valid, the

entire statement is considered not valid, and the time zone information

is not changed.

The value of TZ can be accessed and changed by the _tzset function.

| See the C Library Reference for more information on _tzset.

Figure 11 (Page 2 of 2). TZ Environment Variable Parameters

Variable Description Default Value

DDD Daylight saving time (DST) zone

identifier. This must be three

characters, must begin with a letter,

and can contain spaces.

EDT

sm Starting month (1 to 12) of DST. 4

sw Starting week (-4 to 4) of DST. 1

sd Starting day of DST.

0 to 6 if sw != 0

1 to 31 if sw = 0

0

st Starting time (in seconds) of DST. 3600

em Ending month (1 to 12) of DST. 10

ew Ending week (-4 to 4) of DST. -1

ed Ending day of DST.

0 to 6 if ew != 0

1 to 31 if ew = 0

0

et Ending time of DST (in seconds). 7200

shift Amount of time change (in seconds). 3600

 Chapter 7. Setting Runtime Environment Variables 137

 Runtime Environment Variables

138 IBM C/C++ Tools: Programming Guide

 Passing Data to a Program

Chapter 8. Running Your Program

After you create an executable file, you can run your program. On the

command line, enter the name of the executable file with or without the

extension.

Note: If the extension is not .EXE, you must include the extension.

The OS/2 operating system uses the PATH environment variable to find

executable files. You can run a program from any directory, as long as

the executable program is either:

1. In your current working directory.

2. In one of the directories specified by the PATH environment

variable.

3. Specified on the command line with a fully-qualified path name.

| The runtime messages files (DDE4.MSG for the C runtime and DDE46.MSG

| for the C++ Task Library runtime) must also be either in your current

working directory or in one of the directories specified by the DPATH

environment variable.

The system function provided in the C/C++ Tools runtime library lets

you run other programs and OS/2 commands from within a program.

| See the C Library Reference for more information on the system

function.

Passing Data to a Program

To pass data to your program by way of the command line, give one or

more arguments after the program name. Each argument must be

separated from other arguments by one or more spaces or tab

characters. You must enclose any arguments that include spaces, tab

| characters, double quotation marks, or redirection characters, in double

quotation marks. For example:

hello 42 "de f" 16

 Copyright IBM Corp. 1992, 1993 139

 Passing Data to a Program

This command runs the program named hello.exe and passes three

arguments: 42, de f, and 16. The combined length of all arguments in

the command (including the program name) cannot exceed the OS/2

maximum length for a command.

You can also use escape sequences within arguments. For example,

to represent double quotation marks, precede the double quotation

character with a backslash. To represent a backslash, use two

backslashes in a row. For example, when you invoke the hello.exe

program from the preceding example with this command:

hello "ABC\"" \"HELLO\\

the arguments passed to the program are ABC" and "HELLO\.

| Declaring Arguments to main
To set up your program to receive the command-prompt data, declare

arguments to main as:

int main(int argc, char \\argv, char \\envp)

By declaring these variables as arguments to main, you make them

available as local variables. You need not declare all three arguments,

but if you do, they must be in the order shown. To use the envp

argument, you must declare argc and argv, even if you do not use

them.

Each OS/2 command-line argument, regardless of its data type, is

stored as a null-terminated string in an array of strings. The command

is passed to the program as the argv array of strings. The number of

arguments appearing at the command prompt is passed as the integer

variable argc.

The first argument of any command is the name of the program to run.

The program name is the first string stored at argv[0]. Because you

must always give a program name, the value of argc is at least 1.

The runtime initialization code stores the first argument after the

program name at argv[1], the second at argv[2], and so on through

the end of the arguments. The total number of arguments, including

the program name, is stored in argc. argv[argc] is set to a NULL

pointer.

140 IBM C/C++ Tools: Programming Guide

 Global File-Name Arguments

You can also access the values of the individual arguments from within

the program using argv. For example, to access the value of the last

argument, use the expression argv[argc-1].

The third argument passed to main, envp, is a pointer to the

environment table. You can use this pointer to access the value of the

environment settings. (Note that the getenv function accomplishes the

same task and is easier to use.) The envp argument is not available

when you use the subsystem libraries.

The _putenv routine may change the location of the environment table

in storage, depending on storage requirements; because of this, the

value given to envp when you start to run your program might not be

correct throughout the running of the program. The _putenv and

getenv functions access the environment table correctly, even when its

location changes. For more information about _putenv and getenv see

the C Library Reference.

Expanding Global File-Name Arguments

You can use the OS/2 global file-name characters (or wildcard

characters), the question mark (?) and asterisk (*), to specify the

file-name and path-name arguments at the command prompt. To use

them, you must link your program with the special routine contained in

| SETARGV.OBJ. This object file is included with the libraries in the LIB

| directory under the main C/C++ Tools directory. If you do not link your

program with SETARGV.OBJ, the compiler treats the characters literally.

 Chapter 8. Running Your Program 141

 Global File-Name Arguments

SETARGV.OBJ expands the global file-name characters in the same

manner that the OS/2 operating system does. (See the OS/2 Master

Help Index for more information.) For example, when you link

hello.obj with SETARGV.OBJ:

LINK386 /NOE hello SETARGV;

and run the resulting executable module hello.exe with this command:

hello \.INC ABC? "XYZ?"

the SETARGV function expands the global file-name characters and

causes all file names with the extension .INC in the current working

directory to be passed as arguments to the hello program. Similarly,

all file names beginning with ABC followed by any one character are

passed as arguments. The file names are sorted in lexical order.

If the SETARGV function finds no matches for the global file-name

arguments, for example, if no files have the extension .INC, the

argument is passed literally.

Because the "XYZ?" argument is enclosed in quotation marks, the

expansion of the global file-name character is suppressed, and the

argument is passed literally as XYZ?.

WorkFrame/2 Considerations: If you have installed the IBM

WorkFrame/2 product and you frequently use global file-name

expansion, you can place the SETARGV.OBJ routine in the

standard libraries you use. Then the routine is automatically

linked with your program.

Use the WorkFrame/2 LIB utility to delete the module named

SETUPARG from the library (the module name is the same in all

C/C++ Tools libraries), and add the SETARGV module. When you

replace SETUPARG with SETARGV, global file-name expansions are

performed automatically on command-line arguments.

For more information on the LIB utility, see the online

information for the WorkFrame/2 product.

142 IBM C/C++ Tools: Programming Guide

 Redirecting Standard Streams

Redirecting Standard Streams

A C or C++ program has standard streams associated with it. You do

not have to open them because they are automatically set up by the

runtime environment when you include <stdio.h>. The three standard

streams are:

stdin The input device from which your program normally retrieves

its data. For example, the library function getchar uses stdin.

stdout The output device to which your program normally directs its

output. For example, the library function printf uses stdout.

stderr The output device to which your program directs its diagnostic

messages.

The streams stdprn and stdaux are reserved for use by the OS/2

operating system and are not supported by the C/C++ Tools compiler.

On input and output operations requiring a file pointer, you can use

stdin, stdout, or stderr in the same manner as you would a regular

file pointer.

| When a C++ program uses the I/O Stream library, the following

| predefined streams are also provided in addition to the standard

| streams:

| cin The standard input stream.

| cout The standard output stream.

| cerr The standard error stream. Output to this stream is

| unit-buffered. Characters sent to this stream are flushed after

| each insertion operation.

| clog Also the standard error stream. Output to this stream is fully

| buffered.

 Chapter 8. Running Your Program 143

 Redirecting Standard Streams

| The cin stream is an istream_withassign object, and the other 3

| streams are ostream_withassign objects. These streams and the

| classes they belong to are described in detail in the Standard Class

| Library Reference.

There may be times when you want to redirect a standard stream to a

file. The following sections describe methods you can use for C and

C++ programs.

Redirection from within a Program
To redirect C standard streams to a file from within your program, use

the freopen library function. For example, to redirect your output to a

file called pia.out instead of stdout, code the following statement in

your program:

freopen("pia.out", "w", stdout);

For more information on freopen, refer to the C Library Reference.

| You can reassign a C++ standard stream to another istream (cin only)

| or ostream object, or to a streambuf object, using the operator=. For

| example, to redirect your output to a file called michael.out, create

| michael.out as an ostream object, and assign cout to it:

| #include <fstream.h>

| int main(void)
| {
| cout << "This is going to the standard output stream" << endl;

| ofstream outfile("michael.out");
| cout = outfile;
| cout << "This is going to michael.out file" << endl;

| return 0;
| }

| You could also assign cout to outfile.rdbuf() to perform the same

| redirection.

| For more information on using C++ standard streams, see the Standard

| Class Library Reference.

144 IBM C/C++ Tools: Programming Guide

 Redirecting Standard Streams

Redirection from the Command Line
To redirect a C or C++ standard stream to a file from the command line,

use the standard OS/2 redirection symbols.

For example, to run the program bill.exe, which has two required

parameters XYZ and 123, and redirect the output from stdout to a file

called bill.out, you would use the following command:

bill XYZ 123 > bill.out

You cannot use redirection from the command line for memory files.

| You can also use the OS/2 file handles to redirect one standard stream

| to another. For example, to redirect stderr to stdout, you would use

| the command:

| 2 > &1

Refer to the OS/2 online Master Help Index for more information on

redirection symbols.

 Chapter 8. Running Your Program 145

 Returning Values from main

Returning Values from main

The function main, like any other C function, returns a value. Its return

value is an int value that is passed to the operating system as the

return code of the program that has been run. You can check this

return code with the IF ERRORLEVEL command in OS/2 batch files.

See the OS/2 online Command Reference for more information on the

IF ERRORLEVEL command.

To cause main to return a specific value to the operating system, use

the return statement or the exit function to specify the value to be

returned. For example, the statement

 return 6;

returns the value 6. If you do not use either method, the return code is

undefined.

For more information about main, see the Online Language Reference.

146 IBM C/C++ Tools: Programming Guide

 Coding Your Program

| Part 4. Coding Your Program

| This part describes different features of the C/C++ Tools compiler that

| you may want to use when you code your program, including the input

| and output methods, the support for multithread programs and dynamic

| link libraries, and ways to improve program performance and to reduce

| size.

Chapter 9. Input/Output Operations 149

Standard Streams . 149

Stream Processing . 150

Memory File Input/Output . 154

Buffering . 156

Opening Streams Using Data Definition Names 157

Precedence of File Characteristics 161

Closing Files . 162

Input/Output Restrictions . 162

I/O Considerations when You Use Presentation Manager 163

| Chapter 10. Optimizing Your Program 165

| Improving Program Performance 165

| Reducing Program Size . 175

| Optimizing for Both Speed and Size 178

Chapter 11. Creating Multithread Programs 179

What Is a Multithread Program? 179

Using the Multithread Libraries . 181

Compiling and Linking Multithread Programs 193

Sample Multithread Program . 194

Chapter 12. Building Dynamic Link Libraries 195

Creating DLL Source Files . 196

Initializing and Terminating the DLL Environment 197

Creating a Module Definition File 198

Compiling and Linking Your DLL 203

Using Your DLL . 205

Sample Program to Build a DLL 207

| Creating Resource DLLs . 215

 Copyright IBM Corp. 1992, 1993 147

 Coding Your Program

Creating Your Own Runtime Library DLLs 216

148 IBM C/C++ Tools: Programming Guide

 Standard Streams

 Chapter 9. Input/Output Operations

This chapter describes input and output methods for the C/C++ Tools

compiler. Note that no record level I/O is supported, including that

described by the SAA definition.

 Standard Streams

Three standard streams are associated with the C language, stdin,

| stdout, and stderr. In C++, when you use the I/O Stream Library,

| there are 4 additional C++ standard streams, cin, cout, cerr, and clog.

All of the standard streams are described in “Redirecting Standard

Streams” on page 143.

An OS/2 file handle is associated with each of the streams as follows:

Note: The file handle and stream are not equivalent. For example,

there may be a situation where file handle 2 is associated with a stream

other than stderr, cerr or clog. Do not code your program in such a

way that it is dependent on the association between the stream and the

file handle.

The standard streams are not available when you are using the

subsystem libraries.

The streams stdprn and stdaux are reserved for use by the OS/2

operating system and are not supported by the C/C++ Tools product.

| Note: The C++ streams do not support the use of ddnames. See the

| Standard Class Library Reference for more information about the C++

| streams.

File Handle C Stream C++ Stream

0 stdin cin

1 stdout cout

2 stderr cerr, clog

Note: Both cerr and clog are standard error streams;

cerr is unit-buffered and clog is fully buffered.

 Copyright IBM Corp. 1992, 1993 149

 Stream Processing

 Stream Processing

Input and output are mapped into logical data streams, either text or

binary. The properties of the streams are more uniform than the

properties of their input and output.

 Text Streams
Text streams contain printable characters and control characters

organized into lines. Each line consists of zero or more characters and

ends with a new-line character (\n). A new-line character is not

automatically appended to the end of the file.

The C/C++ Tools compiler may add, alter, or ignore some new-line

characters during input or output so that they conform to the

conventions for representing text in an OS/2 environment. Thus, there

may not be a one-to-one correspondence between the characters in a

stream and those in the external representation. See the example on

page 152 for an example of the difference in representations.

Data read from a text stream is equal to the data that was written if it

consists only of printable characters and the horizontal tab, new-line,

vertical tab, and form-feed control characters.

On output, each new-line character is translated to a carriage-return

character, followed by a line-feed character. On input, a carriage-return

character followed by a line-feed character, or a line-feed character

alone is converted to a new-line character.

If the last operation on the stream is a read, fflush discards the unread

portion of the buffer. If the last operation on the stream is a write,

fflush writes out the contents of the buffer. In either case, fflush

clears the buffer.

The ftell, fseek, fgetpos, fsetpos, and rewind functions cannot be

used to get or change the file position within character devices or OS/2

pipes.

150 IBM C/C++ Tools: Programming Guide

 Stream Processing

| The C standard streams are always in text mode at the start of your

| program. You can change the mode of a standard stream from text to

| binary without redirecting the stream by using the freopen function with

| no file name specified, for example:

| fp = freopen("", "rb", stdin);

| You can use the same method to change the mode from binary back to

| text. You cannot change the mode of a stream to anything other than

| text or binary, nor can you change the file type to something other than

| disk. No other parameters are allowed. Note that this method is

| included in the SAA C definition, but not in the ANSI C standard.

 Control-Z Character
When a text stream is connected to a character device, such as the

keyboard or an OS/2 pipe, the Ctrl-Z (\x1a) character is treated as an

end-of-file indicator, regardless of where it appears in the stream.

If Ctrl-Z is the last character in a file, it is discarded when read.

Similarly, when a file ending with a Ctrl-Z character is opened in

| append or update mode, the Ctrl-Z is discarded. The C/C++ Tools

| product does not automatically append a Ctrl-Z character to the end of

| text files which it writes. If you require a Ctrl-Z character at the end of

| your text files, you must write it out yourself.

This treatment of the Ctrl-Z character applies to text streams only. In

binary streams, it is treated like any other character.

 Binary Streams
A binary stream is a sequence of characters or data. The data is not

altered on input or output, so the data read from a binary stream is

equal to the data that was written.

If the last operation on the stream is a read, fflush discards the unread

portion of the buffer. If the last operation on the stream is a write,

fflush writes out the contents of the buffer. In either case, fflush

clears the buffer.

 Chapter 9. Input/Output Operations 151

 Stream Processing

The gets function reads the bytes from stdin up to and including the

new-line character. It then replaces the new-line character with a null

character (\0).

The fgets function reads from a specified stream until it encounters the

end of file, a new-line character, or until it has read n - 1 bytes (n is

given as a parameter to fgets). If read, the new-line character is

included in the string.

Differences between Storing Data as a Text or Binary Stream
If two streams are opened, one as a binary stream and the other as a

text stream, and the same information is written to both, the contents of

the streams may differ. In the following example of two streams of

different types, the hexadecimal values of the resulting files, which

show how the data is actually stored, are not the same.

#include <stdio.h>

int main(void)
{

FILE \fp1, \fp2;
char lineBin[15], lineTxt[15];

 int x;

fp1 = fopen("script.bin","wb");
 fprintf(fp1,"hello world\n");

fp2 = fopen("script.txt","w");
 fprintf(fp2,"hello world\n");

 fclose(fp1);
 fclose(fp2);

Figure 12 (Part 1 of 2). Differences between Binary and Text Streams

152 IBM C/C++ Tools: Programming Guide

 Stream Processing

fp1 = fopen("script.bin","rb");

/\ opening the text file as binary to suppress
the conversion of internal data \/
fp2 = fopen("script.txt","rb");

fgets(lineBin, 15, fp1);
fgets(lineTxt, 15, fp2);

printf("Hex value of binary file = ");
for (x=0; lineBin[x]; x++)

printf("%.2x", (int)(lineBin[x]));

printf("\nHex value of text file = ");
for (x=0; lineTxt[x]; x++)

printf("%.2x", (int)(lineTxt[x]));

 printf("\n");

 fclose(fp1);
 fclose(fp2);

/\ The expected output is:

Hex value of binary file = 68656c6c6f20776f726c640a
Hex value of text file = 68656c6c6f20776f726c640d0a \/

}

Figure 12 (Part 2 of 2). Differences between Binary and Text Streams

As the hexadecimal values of the file contents show in the binary

stream (script.bin), the new-line character is converted to a line-feed

(\0a), while in the text stream (script.txt), the new-line is converted to

a carriage-return line-feed (\0d0a).

 Chapter 9. Input/Output Operations 153

 Memory File I/O

Memory File Input/Output

| When you compile with the /Sv+ option, the C/C++ Tools compiler

supports files known as memory files. Memory files differ from the

other file types only in that they are temporary files that reside in

memory; you can write to and read from a memory file just like a disk

file.

Using memory files can speed up the execution of your program

because, under normal circumstances, there is no disk I/O when your

program accesses these files. However, if your program is running in

an environment where the operating system is swapping shared

memory into and out of virtual memory on disk, you might not get faster

execution when using memory files. This case is most likely to be true

if your memory files are large.

Use fopen to create a memory file by:

 � Specifying type=memory. For example

stream = fopen("memfile.txt", "w, type=memory");

� Using the SET DD: statement with the memory(y) option. For

example

SET DD:MEMFILE=memfile.txt, memory(y)
 fopen("DD:MEMFILE", "w");

The SET DD: statement specifies MEMFILE as a data definition name

(ddname).

Notes:

1. You must specify the /Sh+ compiler option to use ddnames.

| 2. Ddnames are not supported for use with C++ standard streams.

154 IBM C/C++ Tools: Programming Guide

 Memory File I/O

Once a memory file has been created, it can be accessed by the

module that created it as well as by any other function within the same

process. The memory file remains accessible until the file is removed

by the remove function or until the program has terminated.

A call to fopen that tries to open a file with the same name as an

existing memory file accesses the memory file, even if you do not

specify type=memory in the fopen call.

When using fopen to open a memory file in write or append mode, you

must ensure that the file is not already open.

Memory File Restrictions and Considerations
| You must specify the /Sv+ option to use memory files.

Memory files are private to the process that created them. Redirection

to memory files from the command line is not supported, and they

cannot be shared with any other process, including child processes.

Also, memory files cannot be shared through the system function.

Memory files do not undergo any conversion of the new-line character,

meaning that data is not altered on input or output.

Memory files are unbuffered, and the blksize attribute is ignored. No

validation is performed for the path or file name used.

Memory file names are case sensitive. For example, the file a.a is not

the same memory file as A.A. In the following example,

 fopen("A.A","w,type=memory");
 remove("a.a");

the call to remove will not remove memory file A.A because the file

name is in uppercase. Because memory files are always checked first,

the function will look for memory file a.a, and if that file does not exist,

| it will remove the disk file a.a (or A.A, because disk files are not case

| sensitive).

 Chapter 9. Input/Output Operations 155

 Buffering

You can request that the temporary files created by the tmpfile

function be either disk files or memory files. By default, tmpfile

creates temporary files as disk files. To have temporary files created

as memory files, set the TEMPMEM environment variable to ON:

 SET TEMPMEM=on

| The word on can be in any case. You must still specify the /Sv+

| compiler option. For more information about TEMPMEM, see

Chapter 7, “Setting Runtime Environment Variables” on page 133.

 Buffering

The C/C++ Tools compiler uses buffers when it performs I/O operations

to increase the efficiency of system-level I/O. The following buffering

modes are used:

| Unbuffered Characters are transmitted as soon as possible. This

| mode is also called unit buffered.

Line buffered Characters are transmitted as a block when a new-line

character is encountered or when the buffer is filled.

Fully buffered Characters are transmitted as a block when the buffer

is filled.

The buffering mode specifies the manner in which the buffer is flushed,

if a buffer exists.

You can use the blksize= parameter with the fopen function or the

blksize(n) parameter with a ddname to indicate the initial size of the

buffer you want to allocate for the stream. Note that you must specify

the /Sh+ compiler option to use ddnames.

If you do not specify a buffer size using fopen or a ddname, the default

buffer size is 4096. The setvbuf and setbuf functions can be used to

control buffering before any read or write operation to the stream.

These functions must be specified for each stream. You cannot

change the buffering mode after any operation on the file has occurred.

156 IBM C/C++ Tools: Programming Guide

 Opening Streams Using ddnames

Fully-buffered mode is the default unless the stream is connected to a

character device, in which case it is line-buffered.

To ensure data is transmitted to external storage as soon as possible,

use the setbuf or setvbuf function to set the buffering mode to

unbuffered.

Note: The C/C++ Tools product does not support pipes created using

the DosCreateNmPipe API.

Opening Streams Using Data Definition Names

When you specify the /Sh+ compiler option, you can use the OS/2 SET

command with a data definition name (ddname) as a parameter to

specify the files to be opened by your program. You can also use the

SET command to specify other file characteristics.

When you use the SET command with ddnames, you can change the

files that are accessed by each run of your program without having to

alter and recompile your source code.

Notes:

| 1. You cannot use ddnames with the C++ standard streams.

2. The maximum number of files that can be open at any time

changes with the amount of memory available.

Specifying a ddname with the SET Command
To specify a ddname, the SET command has the following syntax:

SET DD:DDNAME=filename[,option, option...]

where:

DDNAME Is the ddname as specified in the source code. The

ddname must be in uppercase.

filename Is the name of the file that will be opened by fopen.

No white-space characters are allowed between the DD and the equal

sign.

 Chapter 9. Input/Output Operations 157

 Setting File Characteristics with ddnames

For example, you could open the file sample.txt in two ways:

� By putting the name of the file directly into your source code.

 FILE \stream;
 stream=fopen("sample.txt", "r");

� By using a ddname in the fopen call and the SET command to

specify the file you want your program to open.

 FILE \stream;
 stream=fopen("DD:DATAFILE", "r");

Before you run your program, use the SET command:

 SET DD:DATAFILE=c:\sample.txt

When the program runs, it will open the file c:\sample.txt. If you

want the same program to use the file c:\test.txt the next time it

runs, use the following SET command:

 SET DD:DATAFILE=c:\test.txt

The SET command can be issued before your program is executed by

entering it on the command line, including it in a batch file, or putting it

into the CONFIG.SYS file. You can also use the _putenv function from

within the program to set the ddname. For example:

 _putenv("DD:DATAFILE=sample.txt, writethru(y)");

See the C Library Reference for a description of _putenv.

Describing File Characteristics Using Data Definition Names
The options that you can use when defining ddnames allow you to

specify the characteristics of the file your program opens. You can

specify the options in any order, in upper- or lowercase. If you specify

an option more than once, only the last one takes effect. If an option is

not valid, fopen fails and errno is set accordingly.

158 IBM C/C++ Tools: Programming Guide

 Setting File Characteristics with ddnames

You can use the following options when specifying a ddname:

blksize(n)

The size in bytes of the block of data moved between the disk

and the program. The maximum size is 32760 for fixed block files

and 32756 for variable block files. Larger values can improve the

efficiency of disk access by lowering the number of times the disk

must be accessed. Typically, values below 512 increase I/O time,

and values above 8K do not show improvement.

lrecl(n)

The size in bytes of one record (logical record length). If the

value specified is larger than the value of blksize, the lrecl

value is ignored.

recfm(f | v | fb | vb)2

Specifies whether the files are fixed or variable block size.

f The block size is fixed.

v The block size is variable.

fb The block size is fixed and is an even multiple of the

logical record length.

vb The block size is variable and is an even multiple of the

logical record length.

share (read | none | all)

Specifies the file sharing.

read The file can be shared for read access. Other processes

can read from the file, but not write to it.

none The file cannot be shared. No other process can get

access to the file (exclusive access).

all Allows the file to be shared for both read and write

access. Other processes can both read from and write to

the file.

2 The default values for these options are underlined.

 Chapter 9. Input/Output Operations 159

 Setting File Characteristics with ddnames

writethru(n | y)

Determines whether to force the writing of OS/2 buffers.

n Turns off forced writes to the file. The system is not

forced to write the internal buffer to permanent storage

before control is returned to the application.

y Forces the system to write to permanent storage

before control is returned to the application. The

directory is updated after every write operation.

Use writethru(y) if data must be written to the disk

before your program continues. This can help make

data recovery easier should a program interruption

occur.

Note: When writethru(y) is specified, file output will be

noticeably slower.

memory(n | y)

Specifies whether a file will exist in permanent storage or in

memory.

n Specifies that the file will exist in permanent storage.

y Specifies that the file will exist only in memory. The

system uses only the OS/2 file name. All other

| parameters, such as a path, are ignored. You must

| specify the /Sv+ option to enable memory files.

160 IBM C/C++ Tools: Programming Guide

 fopen Defaults
A call to fopen has the following defaults:

blksize The default buffer size of 4K (4096 bytes) is used.

share(read) The file can be shared for read access. Other

processes can read from the file, but not write to it.

writethru(n) The file is opened with no forced writes to permanent

storage.

Full buffering is used unless the stream is connected to a character

device, in which case it is line-buffered.

For more information on fopen, refer to the C Library Reference.

Precedence of File Characteristics

You can describe your data both within the program, by fopen, and

outside it, by ddname, but you do not always need to do so. There are

advantages to describing the characteristics of your data in only one

place.

Opening a file by ddname may require the merging of the information

internal and external to the program. In the case of a conflict, the

characteristics described by using fopen override those described using

a ddname. For example, given the following ddname statement and

fopen command:

SET DD:ROGER=danny.c, memory(n)
stream = fopen("DD:ROGER", "w, type=memory")

the file danny.c will be opened as a memory file.

Options you specify in the application program using _putenv take

precedence over any that are set in the ddname environment string.

 Chapter 9. Input/Output Operations 161

 I/O Restrictions

 Closing Files

The fclose function is used to close a file. On normal program

termination, the compiler automatically closes all files and flushes all

buffers. When a program ends abnormally, all files are closed but the

buffers are not flushed.

 Input/Output Restrictions

The following restrictions apply to input/output operations:

� Seeking within character devices and OS/2 piped files is not

allowed.

� Seek operations past the end of the file are not allowed for text

files. For binary files that are opened using any of w, w+, wb+,

w+b, or wb, a seek past the end of the file will result in a new

end-of-file position and nulls will be written between the old

end-of-file position and the new one.

Note: When you open a file in append mode, the file pointer is

positioned at the end of file.

162 IBM C/C++ Tools: Programming Guide

I/O Considerations when You Use Presentation Manager

Standard I/O functions such as printf write to OS/2 file handle 1,

| which is the default destination of stdout and cout. Unless you redirect

the output and messages, they are not visible through the Presentation

Manager (PM) interface.

There are two ways to display the output sent to stdout or cout

depending on whether you want to see the output while the program is

running or after it has finished:

1. To see the output while the program is running, you must pipe the

output stream to some other program that reads input and displays

it using PM calls. For example, to pipe the output from junko.exe

to the program display (which uses PM calls to write to the

screen), use the following command:

junko | display

2. To view the output after the program has finished, redirect the

output stream to a file. You can do this from a command line, for

example:

junko > file.out

or from within the file using the freopen function:

freopen("file.out", "w", stdout);

To send output from a C/C++ Tools application directly to a PM

window, you must use PM calls.

All error messages during run time go to OS/2 file handle 2, which is

| the default destination of stderr, cerr, and clog. Like output to file

handle 1, these messages are not visible through the PM interface. To

see the error messages, you must redirect the error stream to a file.

For more details on redirecting output, see “Redirecting Standard

Streams” on page 143.

 Chapter 9. Input/Output Operations 163

164 IBM C/C++ Tools: Programming Guide

 Improving Program Performance

| Chapter 10. Optimizing Your Program

| This chapter describes different ways to improve your program's

| performance (optimize for speed), as well as how to decrease the size

| of your executable module (optimize for size). Note that in some cases,

| optimizing for one quality means the other will suffer.

| The recommendations in this chapter provide guidelines only. To

| obtain the best results for either performance or module size, you may

| have to experiment with the techniques suggested. The benefits to

| your program may vary depending on your code and on the

| opportunities for optimization available to the compiler.

| Improving Program Performance

| This section lists the methods you can use to improve the speed of

| your program.

| Choosing Compiler Options
| The following list names the compiler options that can improve

| performance. It also describes what each option does to cause the

| improvement. Note that none of these options is the default.

| Option Effect

| /Gf+ Generates code for fast floating-point operations.

| /Gi+ Generates code for fast integer operations.

| /Gx+ For C++ programs only, suppresses generation of exception

| handling code.

| /G[3|4|5] Optimize for the 386 (/G3), 486 (/G4), or Pentium (/G5)

| microprocessor. Use the appropriate option for the processor

| you are using or plan to use. If you do not know what

| processor your application will be run on, use the /G3 option.

| /O+ Turns on optimization. The C/C++ Tools compiler always

| optimizes for speed. Specifying /O+ also causes /Op+ (enable

| optimizations involving the stack pointer) and /Os+ (invoke the

| instruction scheduler) to be specified.

 Copyright IBM Corp. 1992, 1993 165

 Improving Program Performance

| /Oi+ Inlines user functions.

| /Ol+ Passes code through the intermediate code linker. Using the

| intermediate linker can result in better optimized code. For

| best results, use the /Gu+ option also to specify that

| unreferenced data is not used by external functions. See

| “Using the Intermediate Code Linker” on page 52 for more

| information about the intermediate linker.

| /Om- Does not limit the working set size of the compiler. The

| compiler is then able to inline more user code.

| The following options improve the performance of your code by

| preventing the generation of objects or information that can degrade

| performance. Note that these are set by default:

| Option Effect

| /Gh- Does not generate profiler hooks.

| /Gr- Generates code to run in the usual operating system

| environment. If you use /Gr+, the code generated runs at ring

| 0, and the performance suffers. Some code, such as device

| drivers, must run at ring 0.

| /Gv- Does not save and restore the DS and ES registers for

| external function calls.

| /Gw- Does not generate an FWAIT instruction after each

| floating-point load instruction.

| /Ti- Does not generate debug information.

| /Ts- Does not generate code to allow the debugger to maintain the

| call stack.

| If your program has only one thread, use the /Gs+ option to disable

| stack probes. (/Gs- is the default.) Because the stack of the first

| thread is always fully committed, stack probes are not necessary in

| single-thread programs. If your program has multiple threads, stack

| probes serve a useful purpose and you should probably use them. See

| “Controlling Stack Allocation and Stack Probes” on page 67 for more

| information about stack probes.

166 IBM C/C++ Tools: Programming Guide

 Improving Program Performance

| If you link your executable files in a separate link step, specify the

| /BASE:65536 linker option to tell the linker your executable file will be

| loaded at 64K. The linker can then resolve a number of references that

| would otherwise have to be resolved by the loader at load time and by

| the pager as the program runs. When you use icc to link your

| program, it specifies this option for you by default.

| Note: Do not use the /BASE:65536 for DLLs.

| Specifying Linker Options
| Using the following linker options can lead to improved performance.

| Note that when icc invokes the linker, it passes these options by

| default:

| /BASE:65536 Specify the starting address of the program. Because the

| OS/2 operating system always loads executable programs

| at 64K, you can give the linker the address 65536 (or

| 0x10000). If the linker knows where the program will be

| loaded, it can resolve relocation information at link time,

| resulting in a smaller and faster executable module.

| Note: Only .EXE files are loaded at address 65536.

| When you compile DLLs, specify a load address that is

| comparatively large (for example, 0x800000) and unique

| for each DLL (to prevent the code from overlapping

| between DLLs). If the value does not meet these criteria,

| your program will still run, but will not gain any

| improvement in performance from the /BASE option.

| /ALIGN:16 Align segments on 16-byte boundaries inside the .EXE or

| .DLL file. This option reduces the size of the module,

| which in turn reduces load time.

| /EXEPACK Pack the .EXE or .DLL file. This option reduces the size of

| the module, which in turn reduces load time.

 Chapter 10. Optimizing Your Program 167

 Improving Program Performance

| Choosing Libraries
| Your choice of runtime libraries can affect the performance of your

| code:

| � Use the subsystem library whenever possible. Because there is no

| runtime environment for this library, its load and initialization times

| are faster than the other libraries.

| � Use the single-thread library for single-thread programs. The

| multithread library involves extra overhead.

| � If your application has multiple executable modules and DLLs,

| create and use a common version of a runtime library DLL. See

| “Creating Your Own Runtime Library DLLs” on page 216 for

| information on how to create your own runtime library DLL.

| Allocating and Managing Memory
| The following list describes ways to improve performance through better

| memory allocation and management:

| � If you allocate a lot of dynamic storage for a specific function, use

| the _alloca function. Because _alloca allocates from the stack

| instead of the heap, the storage is automatically freed when the

| function ends. In some cases however, using _alloca can detract

| from performance. It causes the function that calls it to chain the

| EBP register, which creates more code in the function prolog and

| also eliminates EBP for use as a general-purpose register. For this

| reason, if _alloca is not called often in your function, use one of

| the other memory allocation functions.

| � You can use either malloc or DosAllocMem to allocate storage. In

| general, DosAllocMem is faster, but you must do your own heap

| management and you cannot use realloc to reallocate the

| memory. malloc manages the heap for you and the storage it

| returns can be reallocated with realloc. malloc is also more

| portable than DosAllocMem.

| � When you use malloc, keep in mind that the amount of storage

| allocated is actually the amount you specify plus an additional 16

| bytes that is used internally by the memory allocation functions.

168 IBM C/C++ Tools: Programming Guide

 Improving Program Performance

| � When you copy data into storage allocated by calloc, malloc, or

| realloc, copy it to the same boundaries on which the compiler

| would align them. In particular, aligning double precision

| floating-point variables and arrays on 8-byte boundaries can greatly

| improve performance on the 486 and Pentium microprocessors.

| For more information about the mapping of data, see “Data

| Mapping” on page 389.

| � When you declare or define structures or C++ classes, take into

| account the alignment of data types. Declare the largest members

| first to reduce wasted space between members and reduce the

| number of boundaries the compiler must cross. The alignment is

| especially important if you pack your structure or class.

| � Periodically after freeing or reallocating storage several time, call

| _heapmin to release the unused storage to the operating system

| and reduce the working set of your program. A reduced working

| set causes less swapping of memory to disk, which in turn results

| in better performance. Experiment to determine how often you

| should call _heapmin.

| Using Strings and String Manipulation Functions
| The handling of string operations can also affect the performance of

| your program:

| � Use #pragma strings (readonly) to make your strings read-only.

| If you use the intrinsic string functions, the compiler can better

| optimize them if it knows that any string literals they are operating

| on will not be changed.

| � When you store strings into storage allocated by malloc, align the

| start of the string on a doubleword boundary. This alignment allows

| the best performance of the string intrinsic functions. The compiler

| performs this alignment for all strings it allocates.

| � Keep track of the length of your strings. If you know the length of

| your string, you can use memcpy instead of strcpy The memcpy

| function is faster because it does not have to search for the end of

| the string.

 Chapter 10. Optimizing Your Program 169

 Improving Program Performance

| � Avoid using strtok. Because this function is very general, you can

| probably write a function more specific to your application and get

| better performance.

| Performing Input and Output
| There are a number of ways to improve your program's performance of

| input and output:

| � Use binary streams instead of text streams. In binary streams, data

| is not changed on input or output.

| � Use the low-level I/O functions, such as _open and _close. These

| functions are faster and more specific to the application than the

| stream I/O functions like fopen and fclose. Note that you must

| provide your own buffering for the low-level functions.

| � If you do your own I/O buffering, make the buffer a multiple of 4K,

| which is the size of a page. Because malloc adds an extra 16

| bytes of storage, allocating storage in a multiple of the page size

| actually results in more pages being allocated than required.

| Instead, use DosAllocMem to allocate this storage for the buffer.

| � If you are using a file as a temporary file and performing frequent

| read or write operations on it, use memory files. Because memory

| files operate on the memory of the system, I/O operations can be

| performed more quickly on memory files than on disk files. Note

| that to use memory files you must specify the /Sv+ option.

| � Instead of scanf and fscanf, use fgets to read in a string, and then

| use one of atoi, atol, atof, or _atold to convert it to the

| appropriate format.

| � Use sprintf only for complex formatting. For simpler formatting,

| such as string concatenation, use a more specific string function.

| � When reading input, read in a whole line at once rather than one

| character at a time.

170 IBM C/C++ Tools: Programming Guide

 Improving Program Performance

| Designing and Calling Functions
| Whether you are writing a function or calling a library function, there are

| a few things you should keep in mind:

| � Fully prototype all functions. A full prototype gives the compiler and

| optimizer complete information about the types of the parameters.

| As a result, promotions from unwidened types to widened types are

| not required and the compiler does not need to emit eyecatcher

| instructions for the function. (See “Eyecatchers” on page 241 for a

| description of eyecatchers.)

| � When designing a function, place the most used parameters in the

| left-most position in the function prototype. The left-most

| parameters have a better chance of being stored in a register.

| � Avoid passing structures or unions as function parameters or

| returning a structure or union. Passing aggregates requires the

| compiler to copy and store many values. Pass or return a pointer

| to the structure or union instead.

| � If near the end of your function, you call another function and pass

| it the same parameters that were passed to your function, put them

| in the same order in the function prototypes. The compiler can

| then reuse the storage that the parameters are in and does not

| have to generate code to reorder them.

| � Use the intrinsic and built-in functions, which include string

| manipulation, floating-point, and trigonometric functions. Intrinsic

| functions require less overhead and are faster than a function call,

| and often allow the compiler to perform better optimization.

 Chapter 10. Optimizing Your Program 171

 Improving Program Performance

| � Be careful when using intrinsic functions in loops. Many intrinsic

| functions use multiple registers. Some of the registers are specific

| and cannot be changed. In the loop, the number of values to be

| placed in registers increases while the number of registers is

| limited. As a result, temporary values such as loop induction

| variables and results of intermediate calculations often cannot be

| stored in registers, which slows your program performance.

| In general, you will encounter this problem with the intrinsic string

| functions rather than the floating-point functions. Often if the

| arguments to the string function are in global registers, this problem

| does not occur.

| � Use recursion only where necessary. Because recursion involves

| building a stack frame, an iterative solution is always faster than a

| recursive one.

| Other Coding Techniques
| The following list describes other techniques you can use to improve

| performance:

| � Minimize the use of external (extern) variables to reduce aliasing

| and improve optimization.

| � Avoid taking the address of local variables. If you use a local

| variable as a temporary variable and must take its address, avoid

| reusing the temporary variable. Taking the address of a local

| variable inhibits optimizations that would otherwise be done on

| calculations involving that variable.

| � Avoid using short int values, except in aggregates. Because all

| integer arithmetic is done on long values, using short values

| causes extra conversions to be performed.

| � If you do division or modulo arithmetic by a divisor that is a power

| of 2, if possible, make the dividend unsigned to produce better

| code.

| � Use #pragma alloc_text and #pragma data_seg to group code and

| data respectively, to improve the locality of reference. Variables

| and functions that are used at the same time are stored together,

| and might fit on a single page that can be used and then discarded.

| You can use EXTRA to determine which functions should be

| grouped together.

172 IBM C/C++ Tools: Programming Guide

 Improving Program Performance

| � Use _Optlink linkage wherever possible. Keep _Optlink as your

| default linkage and use linkage keywords to change the linkage for

| specific functions.

| � If a loop body has a constant number of iterations, use constants in

| the loop condition to improve optimization. For example, the

| statement for (i=0; i<4; i++) can be better optimized than for

| (i=0; i<x; i++).

| � Use the intermediate code linker to improve optimization. See

| “Using the Intermediate Code Linker” on page 52 for information

| about the intermediate linker.

| � Inline your functions selectively. Inlined functions require less

| overhead and are generally faster than a function call. The best

| candidates for inlining are small functions that are called frequently.

| Large functions and functions that are called rarely may not be

| good candidates for inlining.

| For best results, use EXTRA to decide which functions you should

| inline and qualify them with the _Inline keyword (or inline for C++

| files). Using automatic inlining (specifying /Oi with a value) is not

| as effective. Using the intermediate code linker with user inlining

| can improve your program performance even more.

| Certain coding practices will slow down your performance. Only use

| them if you need to. They are often necessary, but you should be

| aware that they will affect your program's performance:

| � Calling 16-bit code. The compiler performs a number of

| conversions to allow interaction between 32-bit and 16-bit code.

| � Using the setjmp and longjmp functions. These functions involve

| storing and restoring the state of the thread.

| � Using #pragma handler. This #pragma causes code to be generated

| to register and deregister an exception handler for a function.

| � Using unprototyped variable argument functions. Due to the nature

| of the _Optlink calling convention, unprototyped variable-length

| argument lists make performance slower. Prototype all of your

| functions. Also, if you use variable argument functions, use the

| _System calling convention.

 Chapter 10. Optimizing Your Program 173

 Improving Program Performance

| C++-Specific Considerations
| The following performance hints apply only to C++ programs:

| � Because C++ objects are often allocated from the heap and have a

| limited scope, memory usage in C++ programs affects performance

| more than in C programs. To improve memory usage and

| performance:

| – Tailor your own new and delete operators.

| – Allocate memory for a class before it is required.

| – Ensure that objects that are no longer needed are freed or

| otherwise made available for reuse. One way to do this is to

| use an object manager. Each time you create an instance of

| an object, you pass the pointer to that object to the object

| manager. The object manager maintains a list of these

| pointers. To access an object, you can call an object manager

| member function to return the information to you. The object

| manager can then manage memory usage and object reuse.

| – Avoid copying large complex objects.

| � When you use the Collection class library to create classes, use a

| high level of abstraction. After you establish the type of access to

| your class, you can create more specific implementations. This can

| result in improved performance with minimal code change.

| � Use virtual functions only when they are necessary. Virtual

| functions are usually compiled to be indirect calls, which are slower

| than direct calls.

| � Use try blocks for exception handling only when necessary

| because they can inhibit optimization.

| � Use the /Gx+ option to suppress the generation of exception

| handling code in programs where it is not needed. Unless you

| specify this option, some exception handling code is generated

| even for programs that do not use catch or try blocks.

| � Avoid using overloaded operators to perform arithmetic operations

| on user-defined types. The compiler cannot perform the same

| optimizations for objects as it can for simple types.

| � Avoid performing a deep copy if a shallow copy is all you require.

| For an object that contains pointers to other objects, a shallow copy

| copies only the pointers and not the objects to which they point.

174 IBM C/C++ Tools: Programming Guide

 Reducing Program Size

| The result is two objects that point to the same contained object. A

| deep copy, however, copies the pointers and the objects they point

| to, as well as any pointers or objects contained within that object,

| and so on. A simple assignment using an overloaded operator can

| generate many lines of code.

| � Reduce the indirect interaction between classes. For example, use

| friend classes to reduce the overhead of access methods.

| � When you define structures or data members within a class, define

| the largest data types first to align them on the doubleword

| boundary.

| Reducing Program Size

| This section lists the methods you can use to decrease the size of your

| executable module.

| Choosing Compiler Options
| The following list names the compiler options to use to make your

| executable module smaller. Unless noted, these options are not set by

| default.

| /Gd+ Links dynamically to the runtime library. If you link statically,

| code for all the runtime functions you call is included in your

| executable module.

| /Gf+ Generates code for fast floating-point execution and eliminates

| certain conversions.

| Note: Code produced using /Gf+ does not conform to ANSI

| or IEEE standards.

| /Gh- Does not generate profiler hooks which would increase module

| size. This is the default.

| /Gi+ Generates code for fast integer execution and eliminates

| certain conversions.

| /Gv- Does not save and restore the DS and ES registers for

| external function calls. This is the default.

| /Gw- Does not generate an FWAIT instruction after each

| floating-point load instruction. This is the default.

 Chapter 10. Optimizing Your Program 175

 Reducing Program Size

| /Gx+ For C++ programs only, suppresses generation of exception

| handling code.

| /G3 Optimizes for the 386 processor. This is the default.

| Optimizing for the 486 or Pentium microprocessor generates

| extra code. Code compiled with /G3 runs on a 486 or Pentium

| microprocessor.

| /O+ Turns on optimization.

| /Oi- Does not inline user functions. Inlining reduces overhead but

| increases module size. When /O- is specified, this is the

| default. When /O+ is specified, /Oi+ becomes the default.

| /Ol+ Passes code through the intermediate code linker. The

| intermediate linker removes unused variables and sorts

| external data to provide maximal packing. For best results,

| use the /Gu+ option to specify that defined data is not used by

| external functions. See “Using the Intermediate Code Linker”

| on page 52 for more information about the intermediate linker.

| /Sh- Does not include ddname support. This is the default.

| /Sv- Does not include memory file support in the library. This is the

| default.

| /Ti- Does not generate debug or EXTRA information, which would

| increase module size. This is the default.

| /Ts- Does not generate code to allow the debugger to maintain the

| call stack, which would increase module size. This is the

| default.

| /Tx- Provides only the exception message and address when an

| exception occurs instead of a complete machine-state dump.

| This is the default.

| If you link your program in a separate link step, specify the /ALIGN:1

| linker option to align segments on 1-byte boundaries. The default

| alignment is 4-byte boundaries. You should also specify the /EXEPACK

| linker option, which compresses repeated byte patterns within pages of

| data.

176 IBM C/C++ Tools: Programming Guide

 Reducing Program Size

| Using Libraries and Library Functions
| Your choice of libraries and of library functions affect the size of your

| code:

| � Use the subsystem library whenever possible. This library has no

| runtime environment, meaning the initialization, termination, and

| exception handling code is not included. It also includes fewer

| library functions than the standard library.

| � Use the low-level I/O functions. Note that you must provide your

| own buffering for these functions.

| � Disable the intrinsic functions. Certain string manipulation,

| floating-point, and trigonometric functions are inlined by default.

| (See “Intrinsic Functions” on page 383 for a list of these functions.)

| To disable the inlining, parenthesize the function call, for example:

| (strlen)("ian");

| Note that for most of the floating-point intrinsics, this

| recommendation does not apply because the inlined code is

| probably smaller than a generated call instruction.

| Other Coding Techniques
| The following list describes other ways you can make your modules

| smaller:

| � If you do not use the argc and argv arguments to main, create a

| dummy _setuparg function that contains no code.

| � Avoid assigning structures. Instead, use memcpy to copy the

| structure.

| � If you do not use the intermediate code linker, arrange your own

| external data to minimize gaps in alignment.

| � When you declare or define structures or C++ classes, take into

| account the alignment of data types. Declare the largest members

| first to reduce wasted space between members.

| � If you must use the intrinsic string manipulation functions, use

| #pragma strings(readonly) to make your strings read-only.

 Chapter 10. Optimizing Your Program 177

 Optimizing for Speed and Size

| Optimizing for Both Speed and Size

| This section describes how to make your executable module both faster

| and smaller. Note that when you optimize for both speed and size, the

| gains you make on either quality are less than if you were optimizing for

| one quality alone.

| In general, follow the guidelines in “Improving Program Performance” on

| page 165, except where they are contraindicated in “Reducing Program

| Size” on page 175. For example, intrinsic functions may improve

| performance, but they also increase the size of your module, so you

| may want to avoid using them.

| Choosing Compiler Options
| The following compiler options have a positive effect on both

| performance and code size:

| /O+ Turns optimization on.

| /Ol+ Passes codes through the intermediate code linker. For best

| results, use the /Gu+ option also.

| /Gf+ Generates code for fast floating-point execution and reduces

| floating-point conversions.

| /Gh- Does not generate profiler hooks.

| /Gi+ Generates code for fast integer execution and reduces integer

| conversions.

| /Gw- Does not generate a FWAIT instruction after each floating-point

| load instruction.

| /Ti- Does not generate debug information.

| /Ts- Does not generate code to allow the debugger to maintain the

| call stack.

| /Tx- Provides only the exception message and address when an

| exception occurs instead of a complete machine-state dump.

| If you link your program separately, use the /BASE:65536 and /EXEPACK

| linker options.

178 IBM C/C++ Tools: Programming Guide

 Multithread Programs

Chapter 11. Creating Multithread Programs

This chapter describes how to use the C/C++ Tools compiler to create

multithread programs and discusses restrictions of the multithread

environment. It also describes the sample multithread program

included with the C/C++ Tools product that you may have installed. For

the sample code and instructions on how to compile and run the

sample program, see “Sample Multithread Program” on page 194.

Multithread programming is a feature of the OS/2 operating system.

The C/C++ Tools compiler supports multithread programming with:

� Code generation and linking options. (See “Compiling and Linking

Multithread Programs” on page 193 for more information.)

� Multithread libraries. (See “Libraries for Multithread Programs” on

page 180 for more information.)

No multithread support is available in the subsystem libraries.

What Is a Multithread Program?

A multithread program is a program whose functions are divided among

several threads. While a process is an executing application and the

resources it uses, a thread is the smallest unit of execution within a

process. Other than its stack and registers, a thread owns no

resources; it uses those of its parent process. This chapter discusses

only threads and refers to processes only for contrast.

Multithread programs allow more complex processing than single-thread

programs. In a single-thread program, all operations are performed

synchronously. That is, one operation begins when the preceding one

has finished. In a multithread program, many threads execute at the

same time, and the operations are performed concurrently.

Although threads within a process share the same address space and

files, each thread runs as an independent entity and is not affected by

the control flow of any other thread in the process. Because a function

from any thread can perform any task, such as input or output, threads

are well suited to concurrent programs that share data.

 Copyright IBM Corp. 1992, 1993 179

 Multithread Programs

Libraries for Multithread Programs
The C/C++ Tools compiler has two standard libraries that provide library

functions for use in multithread programs. The DDE4MBS.LIB library is

a statically linked multithread library, and DDE4MBSI.LIB is an import

multithread library, with the addresses of the functions contained in

C/C++ Tools DLLs.

| The C++ Standard class libraries are not all available for multithread

| programs. The Task library is single-thread only because of the nature

| of the applications it generates. The Complex Mathematics library is

| available for both single- and multithread programs. The single-thread

| Complex library is COMPLEX.LIB, while the multithread version is

| COMPLEXM.LIB. The C++ I/O Stream library is built into the

| C/C++ Tools single-thread and multithread runtime libraries. The User

| Interface class library also offers a Thread class that is an encapsulation

| of the OS/2 APIs for multithread programming. You can use this class

| in your multithread programs to :

| � Set thread priority

| � Set thread attributes

| � Do a reference count for objects dispatched on a thread so they are

| automatically deleted when the thread ends

| � Dispatch a member function of a C++ object on a separate thread

| � Control other aspects of your threads.

| For a description of the Thread class and how to use it, see the User

| Interface Class Library Reference.

 Thread Control
The multithread libraries provide two functions, _beginthread and

_endthread, to create new threads and end them. These functions are

described in detail in the C Library Reference. The C/C++ Tools

compiler does not limit the number of threads you can create, but the

OS/2 operating system does. For more information on the number of

threads allowed, see the online OS/2 Programming Reference. The

C/C++ Tools product also provides the global variable _threadid that

| identifies your current thread, and the function _threadstore that gives

| you a private thread pointer to which you can assign any thread-specific

| data structure.

180 IBM C/C++ Tools: Programming Guide

 Using the Multithread Libraries

| You can also create threads with the DosCreateThread API. If you use

| DosCreateThread, you must use a #pragma handler directive for the

| thread function to ensure correct exception handling. You should also

| call _fpreset from the new thread to ensure the floating-point control

| word is set correctly for the thread. Although you can use DosExit to

| end threads created with DosCreateThread, you should use _endthread

| to ensure that the necessary cleanup of the environment is done.

| Note: The function that is to run on the thread created by

| DosCreateThread must have _System linkage. If you need to start a new

| thread for a function with any other type of linkage, you must use

| _beginthread.

You should use _beginthread to create any threads that call

C/C++ Tools library functions. When the thread is started, the library

environment performs certain initializations that ensure resources and

data are handled correctly between threads. Threads created by the

DosCreateThread API do not have access to the resource management

facilities or to C/C++ Tools exception handling. When you use

_beginthread, the _endthread function is called automatically when the

thread ends.

Using the Multithread Libraries

| When you use the multithread libraries, you must consider a number of

| things that do not apply to the single-thread libraries. Because many

library functions share data and other resources, the access to these

resources must be serialized (limited to one thread at a time) to prevent

functions from interfering with each other. Other functions do not

require serialization of access but have other restrictions, or affect all

threads running within a process. Global variables and error handling

are also affected by the multithread environment.

 Chapter 11. Creating Multithread Programs 181

 Reentrant Functions

 Reentrant Functions
Reentrant functions can be suspended at any point and reentered, after

which they can return to that same point to resume processing, with no

adverse effects. Because these functions use only local variables, they

cannot interfere with each other. Access to these functions is not

serialized.

The following functions are reentrant:

abs

acos

asctime

asin

assert

atan

atan2

atof

atoi

atol

atold

bsearch

_cabs

ceil

_chdir

_chdrive

clock

cos

cosh

ctime

_cwait

difftime

div

_ecvt

erf

erfc

exp

fabs

_fcvt

floor

fmod

_freemod

frexp

_fstat

_ftime

_fullpath

gamma

_gcvt

_getcwd

_getdcwd

_getdrive

_getpid

gmtime

hypot

isalnum

isalpha

_isascii

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

_itoa

_j0

_j1

_jn

labs

ldexp

ldiv

_lfind

_loadmod

localtime

log

log10

_lrotl

_lrotr

_lsearch

_ltoa

_makepath

mblen

mbstowcs

mbtowc

memccpy

memchr

memcmp

memcpy

memicmp

memmove

memset

_mkdir

mktime

modf

pow

qsort

_rmdir

_rotl

_rotr

sin

sinh

_splitpath

sprintf

sqrt

sscanf

_stat

strcat

strchr

strcmp

strcmpi

strcoll

strcpy

strcspn

_strdate

strerror

_strerror

strftime

stricmp

strlen

strlwr

strncat

strncmp

strncpy

strnicmp

strnset

strpbrk

strrchr

strrev

strset

strspn

strstr

_strtime

strtok

strtod

strtol

strtold

strtoul

strupr

strxfrm

_swab

tan

tanh

time

_toascii

tolower

_tolower

toupper

_toupper

_tzset

_ultoa

_utime

vsprintf

_wait

wcscat

wcschr

wcscmp

wcscpy

wcscspn

wcslen

wcsncat

wcsncmp

wcsncpy

wcspbrk

wcsrchr

wcsspn

wcstombs

wctomb

_y0

_y1

_yn

182 IBM C/C++ Tools: Programming Guide

 Reentrant Functions

| All functions in the C++ Complex Mathematics Library are fully

| reentrant. The I/O Stream Library functions are nonreentrant.

Although the reentrant functions do not require serialization of data

access, there is an important exception: if you pass a pointer as a

parameter, the function may no longer be reentrant and may therefore

require that access is serialized.

The program in Figure 13 provides an example of unserialized data

access in a multithread program. The example uses the strcpy

function on the same array in two different threads. The strcpy

function does not serialize access to data that it is passed as a

parameter. It is therefore possible that string A could end up containing

half of the string from function f1 and half of the string from f2.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char A[20] ;
int f1_done = 0 ;
int f2_done = 0 ;

void _Optlink f1 (void \argument)
{
 strcpy(A,"1234567890");

f1_done = 1 ;
}

void _Optlink f2 (void \ argument)
{
 strcpy(A,"abcdefghij");

f2_done = 1 ;
}

Figure 13 (Part 1 of 2). Example of Unserialized I/O

 Chapter 11. Creating Multithread Programs 183

 Nonreentrant Functions

int main(void)
{
 char holder[80];

 _beginthread(f1,NULL,4096,NULL);
 _beginthread(f2,NULL,4096,NULL);

while (1) /\ Break only when both threads are done. \/
 {

printf("Press <enter> to continue.\n");
 gets(holder);

if (f1_done && f2_done)
 break ;

printf("The threads are still executing! \n");
 }

printf("A is %s.\n",A);
 return 0;
}

Figure 13 (Part 2 of 2). Example of Unserialized I/O

 Nonreentrant Functions
The remaining C/C++ Tools library functions access data or resources

that are common to every thread in the process, such as files,

environment variables, or I/O resources. To prevent any interference

between these functions, each function uses semaphores to serialize

access to data and resources. A semaphore is a mechanism provided

by the OS/2 operating system specifically for this purpose.

Semaphores are described in detail in the Toolkit online PM Reference.

Operations involving file handles and standard I/O streams are

serialized so multiple threads can send output to the same stream

without intermingling the output.

184 IBM C/C++ Tools: Programming Guide

 Nonreentrant Functions

Example of Serialized I/O
If thread1 and thread2 execute the calls in the example below, the

output could appear in several different ways, but it will never be

garbled as shown at the end of the example.

#include <stdio.h>

int done_1 = 0;
int done_2 = 0;

void _Optlink thread1(void)
{

fprintf(stderr,"This is thread 1\n");
fprintf(stderr,"More from 1\n");
done_1 = 1;

}

void _Optlink thread2(void)
{

fprintf(stderr,"This is thread 2\n");
fprintf(stderr,"More from 2\n");
done_2 = 1;

}

Figure 14 (Part 1 of 2). Example of Serialized I/O

 Chapter 11. Creating Multithread Programs 185

 Nonreentrant Functions

int main(void)
{

_beginthread(thread1, NULL, 4096, NULL);
_beginthread(thread2, NULL, 4096, NULL);

 while (1)
 {

if (done_1 && done_2)
 break;
 }
 return 0;
}

/\ Possible output could be:

This is thread 1
This is thread 2
More from 1
More from 2

or
This is thread 1
More from 1
This is thread 2
More from 2

or
This is thread 1
This is thread 2
More from 2
More from 1

The output will never look like this:

This is This is thrthread 1
 ead 2

More froMore m 2
 from 1 \/

Figure 14 (Part 2 of 2). Example of Serialized I/O

186 IBM C/C++ Tools: Programming Guide

 Process Control Functions

Several nonreentrant functions have specific restrictions:

� The getc, getchar, putc, and putchar file I/O operations are

implemented as macros in the single-thread C libraries. In the

multithread libraries, they are redefined as functions to implement

any necessary serialization of resources.

� Use the _fcloseall function only after all file I/O has been

completed.

� When you use printf or vprintf and the subsystem libraries, you

must provide the necessary serialization for stdout yourself.

| The functions in the C++ I/O Stream Library are also nonreentrant. To

| use these I/O Stream objects in a multithread environment, you must

| provide your own serialization either using the OS/2 semaphore APIs or

| the IResourceLock, IPrivateResource, and ISharedResource classes

| from the User Interface class library.

Process Control Functions
The process termination functions abort, exit, and _exit end all

threads within the process, not just the thread that calls the termination

function. In general, you should allow only thread 1 to terminate a

process, and only after all other threads have ended. Note that it is not

always possible in a signal or exception handler for only thread 1 to

terminate processes.

Note: A routine that resides in a DLL must not terminate the process,

except in the case of a critical error.

 Chapter 11. Creating Multithread Programs 187

 Global Variables in Multithread Programs

Signal Handling in Multithread Programs
Signal handling, as described in Chapter 18, “Signal and OS/2

Exception Handling” on page 317, also applies to the multithread

environment. The default handling of signals is usually either to

terminate the program or to ignore the signal. Special-purpose signal

handling, however, can be complicated in the multithread environment.

Signal handlers are registered independently on each thread. For

example, if thread 1 calls signal as follows:

 signal(SIGFPE, handlerfunc);

the handler handlerfunc is registered for thread 1 only. Any other

threads are handled using the defaults.

A signal is always handled on the thread that generated it, except for

SIGBREAK, SIGINT, and SIGTERM. These three signals are handled

on the thread that generated them only if they were raised using the

raise function. If they were raised by an exception, they will be

handled on thread 1.

For more information and examples on handling signals, refer to

Chapter 18, “Signal and OS/2 Exception Handling” on page 317.

Global Data and Variables
Data and variables that are global or shared between threads, such as

errno and _environ, are implemented differently in the multithread

libraries to prevent interference among functions that access or change

their values. The global variables are handled in one of two ways:

either the variable is made a per-thread variable, or access to the

variable is serialized.

188 IBM C/C++ Tools: Programming Guide

 Global Variables in Multithread Programs

Per-Thread Global Variables
A per-thread global variable has a name that is common to all threads,

but its value is specific to each thread. The value of the global variable

may be different for each thread in the process.

The variables errno and _doserrno, which are used to return errors

from library functions, are implemented as per-thread global variables.

If these variables were not set on a per-thread basis, functions in

multiple threads would overwrite each other's error codes. Use errno

and _doserrno in the same manner as you would for a single thread

program.

For example, the following program shows how the value of errno is

unique to each thread. Although an error occurs in the thread

openProc, the value of errno is 0 because it is checked from the main

thread.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>

int done = 0;

void _Optlink openProc(void \ argument)
{

FILE \filePointer ;
filePointer = fopen("C:\\OS2","w");
printf("openProc, errno = %d\n",errno);
done = 1;

}

Figure 15 (Part 1 of 2). Example of a Per-Thread Variable

 Chapter 11. Creating Multithread Programs 189

 Global Variables in Multithread Programs

int main(void)
{
 char holder[80];

errno = 0 ;
 _beginthread(openProc,NULL,4096,NULL) ;

while (1) /\ Break only when the thread is done. \/
 {

printf("Press <enter> to continue.\n");
 gets(holder);
 if (done)
 break ;

printf("The thread is still executing! \n");
 }

printf("Main program, errno = %d.\n",errno);
 return 0;

/\ The expected output is:

Press <enter> to continue.
openProc, errno = 60

Main program, errno = 0. \/

}

Figure 15 (Part 2 of 2). Example of a Per-Thread Variable

| Signal handlers are also unique for each thread, and are registered on

a per-thread basis.

The buffer to be passed to the longjmp function is allocated on a

per-thread basis. When you call longjmp, the buffer you pass to it must

have been created by a call to setjmp on the same thread. If the

buffer was not created on the same thread, the process will terminate.

190 IBM C/C++ Tools: Programming Guide

 Global Variables in Multithread Programs

The internal buffers used by asctime, ctime, gmtime, and localtime

are also allocated on a per-thread basis. That is, these functions return

addresses of buffers that are specific to the thread from where the

function was called.

There is one seed per thread for generating random numbers with the

rand and srand functions to keep the pseudorandom numbers

generated in each thread independent of other threads. Each thread

starts with the same seed (1); that is, each thread gets the same

sequence of pseudorandom numbers unless the seed is changed by a

call to srand.

Global Variables Requiring Serialization
These global variables containing environment strings should be treated

as read-only data:

 int _daylight;
 long _timezone;
 char _tzname;

 char _osmajor;
 char _osminor;
 char _osmode;

 char _environ;

The environment strings are copied from the OS/2 environment when a

program starts. This procedure is the same in multithread and single

thread programs. Because all threads share the environment strings,

any changes made to the strings by one thread affects the environment

accessed by the other threads.

To ensure that access to the environment variables is serialized, use

_putenv to set the environment variables. Each thread can then call

getenv to obtain a copy of the environment strings and copy the string

to a private data buffer so that any later changes to the environment by

_putenv will not affect it. If the thread must always access the latest

version of the environment strings, it must call getenv each time. The

_putenv and getenv functions are described in the C Library Reference.

 Chapter 11. Creating Multithread Programs 191

 Global Variables in Multithread Programs

Using Common Variables
User variables that are referenced by multiple threads should have the

attribute volatile to ensure that all changes to the value of the variable

are performed promptly by the compiler. For example, because of the

way the compiler optimizes code, the following example may not work

as intended when compiled with the /O+ option:

static int common_var;

/\ code executing in thread 1 \/

common_var = 0;
 ...

common_var = 1;
 ...

common_var = 2;

/\ code executing in thread 2 \/
 ...
 switch (common_var)
 {
 case 0:
 ...
 break;
 case 1:
 ...
 break;
 default:
 ...
 break;
 }

When using optimization, the compiler may not immediately store the

value 1 for the variable common_var in thread 1. If it determines that

common_var is not accessed by this code until after the value 2 is stored,

it may never store the value 1. Thread 2 therefore does not necessarily

access the true value of common_var.

192 IBM C/C++ Tools: Programming Guide

 Compiling and Linking Multithread Programs

Declaring a variable as volatile indicates to the compiler that

references to the variable have side effects, or that the variable may

change in ways the compiler cannot determine. Optimization will not

eliminate any action involving the volatile variable, and changes to

the value of the variable are then stored immediately.

Compiling and Linking Multithread Programs

When you compile your multithread program, you must specify that you

want to use the multithread libraries described in “Libraries for

Multithread Programs” on page 180. Because threads share data, the

operating system and library functions must ensure that only one thread

is reading or writing data at one time. The multithread libraries provide

this support. (You can use these libraries for single-thread programs,

but the multithread support causes unnecessary overhead.)

To indicate that you want the multithread libraries, specify the /Gm+

compiler option. For example:

icc /Gm+ mymulti.c

Conversely, the /Gm- option, which is the default, specifies explicitly to

use the single-thread version of the library.

If you intend to compile your source code into separate modules and

then link them into one executable program file, you must compile each

module using the /Gm+ option and ensure that the multithread libraries

are used when you link them. You cannot mix modules that have been

compiled with /Gm+ with modules compiled using /Gm-.

You can use either static (/Gd-) or dynamic (/Gd+) linking with

multithread programs.

 Chapter 11. Creating Multithread Programs 193

 Sample Multithread Program

Sample Multithread Program

| The SAMPLE02 sample program provides an example of a multithread

| program. It creates one thread for each numerical argument passed to

| it. Each thread then prints a message the number of times specified by

| the argument.

If you installed the sample programs, the files for SAMPLE02 are found

| in the SAMPLES\SAMPLE02 directory under the main C/C++ Tools

| directory. Two make files that build the sample are also provided,

| MAKE02S for static linking and MAKE02D for dynamic linking.

| Note: You must have the Toolkit installed in order to use the make

| files.

| To compile and link SAMPLE02.C, at the prompt in the

| SAMPLES\SAMPLE02 directory, use NMAKE with the appropriate

| make file. For example:

| NMAKE all /f MAKE02D

To compile and link the program yourself, use the following command:

| To run the program, type SAMPLE02 followed by any number of

| numerical arguments. For example:

| SAMPLE02 2 4 1

Command Description

icc /Gm SAMPLE02.C Compiles and links SAMPLE02.C using

default options and the multithread

library.

194 IBM C/C++ Tools: Programming Guide

 Building DLLs

Chapter 12. Building Dynamic Link Libraries

Dynamic linking is the process of resolving external references using

dynamic link libraries (DLLs) at runtime. You can dynamically link with

the supplied C runtime DLLs, as well as with your own DLLs.

There are four different types of DLLs that can be created with the

C/C++ Tools compiler:

| � User DLLs that use the regular C/C++ Tools runtime libraries.

| These DLLs can be linked to the C/C++ Tools libraries either

| statically or dynamically.

| � User DLLs that use the C/C++ Tools subsystem libraries and have

| no runtime environment. These DLLs contain only those functions

| provided in the subsystem libraries and possibly some built-in

| functions. They can be linked to the C/C++ Tools libraries either

| statically or dynamically. Refer to Chapter 17, “Developing

| Subsystems” on page 303 for information on building subsystem

| DLLs.

| � Runtime library DLLs, such as those shipped with the C/C++ Tools

| product. “Creating Your Own Runtime Library DLLs” on page 216

| describes how to build your own library DLLs to ship with your

| application.

| � Resource DLLs that contain no code but contain one or more

| resources, such as menus or icons, that are used by PM programs.

| You can create these DLLs using the Resource Compiler from the

| Toolkit. See “Creating Resource DLLs” on page 215 for

| information on how to create resource DLLs.

This chapter describes the following steps for creating and using a

dynamic link library:

1. Creating the source files for a DLL

2. Creating a module definition file (.DEF) for the DLL

3. Compiling the source files and linking the resulting object files to

build a .DLL file

4. Letting external modules know what is in the DLL, either by creating

an import library file (.LIB) for the DLL, or by writing a module

definition file to be used when linking the external module.

 Copyright IBM Corp. 1992, 1993 195

 Creating DLL Source Files

This chapter also gives additional information on how to create your

own DLL initialization and termination function, your own library DLLs,

and your own resource DLLs.

An example is provided at the end of each section to illustrate that

section. The examples shown are from the sample program SAMPLE03,

which is supplied with the C/C++ Tools product. For information on

how to compile, link, and run the sample program, see “Sample

Program to Build a DLL” on page 207.

Creating DLL Source Files

To build a DLL, you must first create source files containing the data

and/or functions that you want to include in your DLL. No special file

| extension is required for DLL source files. The source code can be

| written in C or C++.

Each function that you want to export from the DLL (that is, a function

that you plan to call from other executable modules or DLLs) must be

an external function, either by default or by being qualified with the

extern keyword. linker will not find your function references and will

generate errors.

If your DLL and the modules that access it do not dynamically link to

the same runtime DLL, you must use the #pragma handler directive to

ensure exceptions are handled properly within your DLL. Use #pragma

handler at the entry point of each DLL function to register the library

exception handler _Exception. On exit from the function, code will also

be generated to deregister _Exception.

Note: You need to explicitly register the exception handler only for the

functions that will be exported from the DLL. For more information on

#pragma handler, see the Online Language Reference. For information

on exception handling, see Chapter 18, “Signal and OS/2 Exception

Handling” on page 317.

196 IBM C/C++ Tools: Programming Guide

 Initializing/Terminating the DLL Environment

Example of a DLL Source File
| The file SAMPLE03.C is the source file for the DLL used in the

| SAMPLE03 sample program. If you installed the sample programs, this

| file is found in the SAMPLES\SAMPLE03 directory under the main

| C/C++ Tools directory.

The source file contains the code for:

� Three sorting functions: bubble, insertion, and selection

� Two static functions, swap and compare, that are called by the

sorting functions

� A function, list, that lists the contents of an array.

For instructions on how to compile, link, and run the sample program,

see “Sample Program to Build a DLL” on page 207.

Initializing and Terminating the DLL Environment

The initialization and termination entry point for a DLL is the

_DLL_InitTerm function. When each new process gains access to the

DLL, this function initializes the necessary environment for the DLL,

including storage, semaphores, and variables. When each process

frees its access to the DLL, the _DLL_InitTerm function terminates the

DLL environment created for that process.

The default _DLL_InitTerm function supplied by the C/C++ Tools

compiler performs the actions required to initialize and terminate the

runtime environment. It is called automatically when you link to the

DLL.

If you require additional initialization or termination actions for your

runtime environment, you will need to write your own _DLL_InitTerm

function. For more information, see “Writing Your Own _DLL_InitTerm

Function” on page 209. A sample _DLL_InitTerm function is included

for the SAMPLE03 program. (See “Example of a User-Created

_DLL_InitTerm Function” on page 211.)

| Note: The _DLL_InitTerm function provided in the subsystem library

| differs from the runtime version. See “Building a Subsystem DLL” on

| page 306 for more information about building subsystem DLLs.

 Chapter 12. Building Dynamic Link Libraries 197

 Module Definition Files

Creating a Module Definition File

A module definition (.DEF) file is a plain text file that describes the

names, attributes, exports, imports, and other characteristics of an

application or dynamic link library. You must use a module definition

file when you create any OS/2 DLL.

Example of a Module Definition File
The .DEF file for the SAMPLE03 program is shown here to illustrate the

most common statements used in a module definition file to build DLLs.

For a complete description of module definition files, refer to the Toolkit

online Tools Reference for the LINK386 program.

LIBRARY SAMPLE03 INITINSTANCE TERMINSTANCE
PROTMODE
DATA MULTIPLE NONSHARED READWRITE LOADONCALL
CODE LOADONCALL
EXPORTS

nSize ; array size
pArray ; pointer to base of array of ints
nSwaps ; number of swaps required to sort the array
nCompares ; number of comparisons required to sort the array
list ; array listing function
bubble ; bubble sort function
insertion ; insertion sort function

Figure 16. SAMPLE03.DEF - DLL Module Definition File

198 IBM C/C++ Tools: Programming Guide

 Module Definition Files

The module statements specified in the .DEF file are as follows:

LIBRARY SAMPLE03 INITINSTANCE TERMINSTANCE

This statement identifies the executable file as a dynamic

link library and specifies that SAMPLE03 is the name of the

DLL. It also uses the following attributes to specify when the

_DLL_InitTerm function will be called:

INITINSTANCE

The function is called the first time the DLL is loaded for

each process that accesses the DLL. The alternative is

INITGLOBAL; the function is called only the first time the

DLL is loaded. INITGLOBAL is the default.

TERMINSTANCE

The function is called the last time the DLL is freed for

each process that accesses the DLL. The alternative is

TERMGLOBAL; the function is called only the final time the

DLL is freed. TERMGLOBAL is the default.

PROTMODE

This statement specifies that the DLL can be run in

protected (OS/2) mode only.

 Chapter 12. Building Dynamic Link Libraries 199

 Module Definition Files

DATA MULTIPLE READWRITE LOADONCALL

This statement defines the default attributes for data

segments within the DLL. The attributes are:

MULTIPLE

MULTIPLE specifies that there is a unique copy of the

data segment for each process. The alternative is

SINGLE; there is only one data segment for all processes

| to share. SINGLE is the default.

READWRITE

READWRITE means that you can read from or write to the

data segment. The alternative is READONLY; you can

only read from the data segment. READWRITE is the

default.

LOADONCALL

LOADONCALL means that the data segment is loaded into

memory when it is first accessed. The alternative is

PRELOAD; the data segment will be loaded as soon as a

process accesses the DLL. LOADONCALL is the default

| and is recommended over PRELOAD because it is much

| faster.

| See “Defining Code and Data Segments” on page 201 for

| information on defining your own data segments.

CODE LOADONCALL

This statement defines the default attributes for code

segments within the DLL. LOADONCALL means that the code

segment is loaded when it is first accessed. The alternative

to LOADONCALL is PRELOAD; the code segment is loaded as

soon as a process accesses the DLL. LOADONCALL is the

| default. See “Defining Code and Data Segments” on

| page 201 for information on defining your own code

| segments.

200 IBM C/C++ Tools: Programming Guide

 Module Definition Files

EXPORTS

This statement defines the names of the functions and

variables to be exported to other runtime modules.

Following the EXPORTS keyword are the export definitions,

which are simply the names of the functions and variables

that you want to export. Each name must be entered on a

| separate line. See “Defining Functions to be Exported” for

| more information on exporting functions.

| Defining Code and Data Segments
In the .DEF file shown, all data and code segments are given the same

attributes. If you want to specify different attributes for different sets of

data or code, you can use the #pragma data_seg and #pragma

| alloc_text directives, or the /Nd and /Nt compiler options, to define

your own data and code segments. You can then list the segments in

the .DEF file under the heading SEGMENTS, and specify attributes for

each. For example:

 SEGMENTS
mydata SHARED READONLY

 mycode PRELOAD

Any segments that you do not specify under SEGMENTS are given the

attributes specified by the DATA or CODE statement, depending on the

type of segment.

For more information about #pragma data_seg and #pragma alloc_text,

| see the Online Language Reference. The /Nd and /Nt options are

| described under “Code Generation Options” on page 111.

| Defining Functions to be Exported
| When you export a function from a DLL, you make it available to

| programs that call the DLL. If you do not export a function, it can only

| be used within the DLL itself.

| To export a function, list its name under the EXPORTS keyword in the

| .DEF file as described on page 201. Note that if your DLL is written in

| C++, you must specify the mangled or encoded name of the function.

| For a description of how to encode your function names, see

| “Demangling (Decoding) C++ Function Names” on page 386.

 Chapter 12. Building Dynamic Link Libraries 201

 Module Definition Files

| You can also use #pragma export or the _Export keyword to specify

| that a function is to be exported. For example, in SAMPLE03.C, the

| function selection is declared to be exported by a #pragma export

| directive. The #pragma directive also allows you to specify the name

| the exported function will have outside of the DLL and its ordinal

| number. When you use the keyword or #pragma directive for C++

| functions, use the normal function name, not the encoded name.

| If you use #pragma export or _Export to export your function, you may

| still need to provide an EXPORTS entry for that function. If your function

| has any of the following default characteristics

| � Has shared data

| � Has no I/O privileges

| � Is not resident

| it does not require an EXPORTS entry. If your function has characteristics

| other than the defaults, the only way you can specify them is with an

| EXPORTS entry in your .DEF file.

| For more information about _Export and #pragma export, see the

| Online Language Reference.

| C++ Considerations: For C++ DLLs, ensure that you export all

| member functions that are required. Some functions that are inlined or

| exported may use private or protected members that must then also be

| exported. In addition, you should export all static data members. If you

| do not export the static data members of a particular class, users of

| that class cannot debug their code because the reference to the static

| data members cannot be resolved.

202 IBM C/C++ Tools: Programming Guide

 Compiling and Linking Your DLL

Compiling and Linking Your DLL

To compile your source files to create a DLL, use the /Ge- compiler

option. You may also want to use the /C+ option to compile your files

without linking them, and then link them separately.

You must also specify the runtime libraries you want to use:

� Single-thread (/Gm-) or multithread (/Gm+). See Chapter 11,

“Creating Multithread Programs” on page 179 for information on

multithread libraries.

� Statically linked (/Gd-) or dynamically linked (/Gd+). See “Static and

Dynamic Linking” on page 64 for more information on static and

dynamic linking.

Note: The method of linking used for the runtime libraries is

independent of the module type you create; you can statically link

the runtime functions in a dynamic link library.

For more information on compiler options, see “Specifying Compiler

Options” on page 71.

When you use icc to compile and link your DLL, you must specify on

the command line all the DLL source files followed by the module

definition file. The name of the first source file (without the .C

extension) is used as the name of the DLL.

For example, to compile and link the files mydlla.c and mydllb.c, using

the mydll.def module definition file, use the command:

icc /Ge- mydlla.c mydllb.c mydll.def

Note: The /Ge- option tells the compiler you are building a DLL, rather

than an executable file. The options to indicate the single-thread library

(/Gm-) and to link the runtime libraries statically (/Gd-) are the defaults.

The resulting DLL will be called mydlla.dll.

 Chapter 12. Building Dynamic Link Libraries 203

 Compiling and Linking Your DLL

If you are compiling and linking separately, you must give the following

information to the LINK386 linker:

� The compiled object (.OBJ) files for the DLL

� The name to give the DLL

� The C libraries to use

� The name of the module definition file.

Note: The compiler includes information in the object files on the C

libraries you indicated by the compiler options that control code

generation (see 111). These libraries are automatically used at link

time. You do not need to specify libraries on the linker command line

unless you want to override the ones you chose at compile time.

For example, the following commands:

� Compile the source files mydlla.c and mydllb.c

� Link the resulting object files with the single-thread, statically linked

C libraries, using the definition file mydll.def

to create the DLL finaldll.dll:

icc /C+ /Ge- mydlla.c mydllb.c
LINK386 /ALIGN:16 /EXEPACK /NOI mydlla.obj mydllb.obj,finaldll.dll,,,mydll.def;

| You could use icc to both compile and invoke the linker for you with

| the following command:

| icc /Ge- /Fefinal.dll mydlla.c mydllb.c mydll.def

| If your DLL contains C++ code that uses templates, you must use icc to

| invoke the linker to ensure the templates are corrctly resolved. You

| must also specify the /Tdp compiler option.

| Note: The icc command passes the linker options /NOI, /ALIGN:16,

| and /EXEPACK to the linker by default. The /NOI option preserves the

| case of external names, /ALIGN:16 option causes segments to be

| aligned on 16-byte boundaries, and /EXEPACK compresses repeated

| byte patterns within pages of data.

204 IBM C/C++ Tools: Programming Guide

 Using Your DLL

Using Your DLL

Write the source files that are to access your DLL as if the functions

and/or variables are to be statically linked at compile time. Then when

you link the program, you must inform the linker that some function

and/or variable references are to a DLL and will be resolved at run

time. There are two ways to communicate this information to the linker:

1. Use the IMPLIB utility (from the Toolkit) to create a library file with

all the information that the linker needs about the DLL. The IMPLIB

utility uses a module definition file to create an import library (.LIB)

file for the DLL. When you link an executable module, the linker

uses this import library to resolve external references to the DLL.

| If your DLL contains any C++ code that uses templates, you must

| always use it by means of an import library to ensure that the

| names you use when you instantiate the template are resolved

| correctly.

If you invoke the linker directly, give the name of the import library

where you normally specify library names. For example:

LINK386 /NOI mymain.obj,,,finaldll.lib;

If you invoke the linker through the icc command, you must put the

name of the import library in the compiler invocation string. For

example:

icc mymain.c finaldll.lib

See the Toolkit online Tools Reference for more information on

IMPLIB.

Note: The import libraries for the C/C++ Tools runtime DLLs have

been supplied with the compiler.

2. Construct a module definition file for the accessing module that is

being linked. The definition file specifies which variables and

names will be obtained from a DLL at run time, and in which DLLs

these items will be found. In general, import libraries are easier to

use and maintain than module definition files.

 Chapter 12. Building Dynamic Link Libraries 205

 Using Your DLL

Note: To make functions in a DLL available to other programs, the

name of those functions must have been exported (using #pragma

export or the _Export keyword in the source file, or with an EXPORT

entry in the .DEF file) when the DLL was linked. Also, all DLLs must be

in a directory listed in the LIBPATH environment variable (as described in

Chapter 7, “Setting Runtime Environment Variables” on page 133).

Sample Definition File for an Executable Module
The following figure shows the module definition file used for the main

program in the sample program SAMPLE03.

NAME MAIN03 WINDOWCOMPAT

IMPORTS
 SAMPLE03.nSize
 SAMPLE03.pArray
 SAMPLE03.nSwaps
 SAMPLE03.nCompares
 SAMPLE03.list
 SAMPLE03.bubble
 SAMPLE03.insertion

Figure 17. MAIN03.DEF - Definition File for an Executable Module

The statements given are as follows:

NAME MAIN03 WINDOWCOMPAT

The NAME statement assigns the name MAIN03 to the program

being defined. If no name is given, the name of the

executable module (without the .EXE extension) is used.

WINDOWCOMPAT specifies that the program is compatible with

the PM environment. The alternatives are NOTWINDOWCOMPAT,

which means the program is not compatible with the PM

environment, or WINDOWAPI, which means the program uses

PM APIs.

206 IBM C/C++ Tools: Programming Guide

 Sample Program to Build a DLL

IMPORTS

This statement defines the names of functions and variables

to be imported for the program. Following the IMPORTS

keyword are the import definitions. Each definition consists

of the name of the DLL where the function or variable is to

be found, followed by a period, followed by the name of the

function or variable. Each definition must be entered on a

separate line.

| You can also use #pragma import to specify that a function

| is imported from a DLL. For example, in MAIN03.C, the

| function selection is declared to be imported using #pragma

| import. You can use the #pragma directive to import the

| function by name or by ordinal number. For a detailed

| description of #pragma import, see the Online Language

| Reference.

Sample Program to Build a DLL

The sample program SAMPLE03 shows how to build and use a DLL

that contains three different sorting functions. These functions keep

track of the number of swap and compare operations required to do the

sorting.

The files for the sample program are:

| SAMPLE03.C The source file for the DLL, described in “Example of a

| DLL Source File” on page 197.

INITTERM.C The _DLL_InitTerm function, shown in “Example of a

User-Created _DLL_InitTerm Function” on page 211.

SAMPLE03.DEF The module definition file for the DLL, shown in

“Creating a Module Definition File” on page 198.

MAIN03.DEF The module definition file for the executable, shown in

“Sample Definition File for an Executable Module” on

page 206.

SAMPLE03.H The user include file.

MAIN03.C The main program.

 Chapter 12. Building Dynamic Link Libraries 207

 Sample Program to Build a DLL

| If you installed the sample programs, these files are found in the

| SAMPLES\SAMPLE03 directory under the main C/C++ Tools directory.

| Two make files that build the sample are also provided, MAKE03S for

| static linking and MAKE03D for dynamic linking.

| Note: You must have the Toolkit installed to use the make files.

| To compile and link this sample program, at the prompt in the

| SAMPLES\SAMPLE03 directory, use NMAKE with the appropriate

| make file. For example:

| nmake all /f MAKE03S

| To compile and link the program yourself, use the following commands:

To run the program, enter MAIN03.

Command Description

icc /Ge- /B"/NOE" /DSTATIC_LINK

SAMPLE03.C INITTERM.C SAMPLE03.DEF

Compiles and links

SAMPLE03.C using default

options and

� Creating a DLL (/Ge-)

� Passing the /NOE option

to the linker

 � Defining STATIC_LINK.

| Note: The /NOE linker option tells the linker to ignore the extended library

| information found in the object files. The linker then uses the version of

_DLL_InitTerm that you provide instead of the one from the C/C++ Tools

runtime library.

icc MAIN03.C MAIN03.DEF Compiles MAIN03.C using

default options.

208 IBM C/C++ Tools: Programming Guide

 Sample Program to Build a DLL

Writing Your Own _DLL_InitTerm Function
If your DLL requires initialization or termination actions in addition to the

actions performed for the runtime environment, you will need to create

your own _DLL_InitTerm function. The prototype for the _DLL_InitTerm

function is:

unsigned long _System _DLL_InitTerm(unsigned long modhandle,
unsigned long flag);

If the value of the flag parameter is 0, the DLL environment is

initialized. If the value of the flag parameter is 1, the DLL environment

is ended.

The modhandle parameter is the module handle assigned by the

operating system for this DLL. The module handle can be used as a

parameter to various OS/2 API calls. For example,

DosQueryModuleName can be used to return the fully qualified path name

of the DLL, which tells you where the DLL was loaded from.

The return code from _DLL_InitTerm tells the loader if the initialization

or termination was performed successfully. If the call was successful,

_DLL_InitTerm returns a nonzero value. A return code of 0 indicates

that the function failed. If a failure is indicated, the loader will not load

the program that is accessing the DLL.

Because it is called by the operating system loader, the _DLL_InitTerm

function must be compiled using _System linkage.

| Note: A _DLL_InitTerm function for a subsystem DLL has the same

| prototype, but the content of the function is different because there is

| no runtime environment to initialize or terminate. For an example of a

| _DLL_InitTerm function for a subsystem DLL, see “Example of a

| Subsystem _DLL_InitTerm Function” on page 308.

 Chapter 12. Building Dynamic Link Libraries 209

 Sample Program to Build a DLL

Initializing the Environment
Before you can call any C/C++ Tools library functions, you must first

initialize the runtime environment. Use the function _CRT_init, which is

provided in the runtime libraries. The prototype for this function is:

 int _CRT_init(void);

If the runtime environment is successfully initialized, _CRT_init returns

0. A return code of -1 indicates an error. If an error occurs, an error

message is written to file handle 2, which is the usual destination of

stderr.

| If your DLL contains C++ code, you must also call __ctordtorInit after

| _CRT_init to ensure that static constructors and destructors are

| initialized properly. The prototype for __ctordtorInit is:

| void __ctordtorInit(void);

Note: If you are providing your own version of the _matherr function to

be used in your DLL, you must call the _exception_dllinit function

after the runtime environment is initialized. Calling this function ensures

that the proper _matherr function will be called during exception

handling. The prototype for this function is:

void _Optlink _exception_dllinit(int (\)(struct exception \));

The parameter required is the address of your _matherr function.

Terminating the Environment
If your DLL is statically linked, you must use the _CRT_term function to

correctly terminate the C runtime environment. The _CRT_term function

is provided in the C/C++ Tools runtime libraries. It has the following

prototype:

 void _CRT_term(void);

| If your DLL contains C++ code, you must also call __ctordtorTerm

| before you call _CRT_term to ensure that static constructors and

| destructors are terminated correctly. The prototype for __ctordtorTerm

| is:

| void __ctordtorTerm(void);

210 IBM C/C++ Tools: Programming Guide

 Sample Program to Build a DLL

Once you have called _CRT_term, you cannot call any other library

functions.

If your DLL is dynamically linked, you cannot call library functions in the

termination section of your _DLL_InitTerm function. If your termination

routine requires calling library functions, you must register the

termination routine with DosExitList. Note that all DosExitList routines

are called before DLL termination routines.

Example of a User-Created _DLL_InitTerm Function
The following figure shows the _DLL_InitTerm function for the sample

program SAMPLE03.

#define INCL_DOSMODULEMGR
#define INCL_DOSPROCESS
#include <os2.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/\ _CRT_init is the C run-time environment initialization function. \/
/\ It will return 0 to indicate success and -1 to indicate failure. \/

int _CRT_init(void);
#ifdef STATIC_LINK

/\ _CRT_term is the C run-time environment termination function. \/
/\ It only needs to be called when the C run-time functions are statically \/
/\ linked. \/

void _CRT_term(void);
#else

Figure 18 (Part 1 of 4). INITTERM.C - _DLL_InitTerm Function for SAMPLE03

 Chapter 12. Building Dynamic Link Libraries 211

 Sample Program to Build a DLL

/\ A clean up routine registered with DosExitList must be used if runtime \/
/\ calls are required and the runtime is dynamically linked. This will \/
/\ guarantee that this clean up routine is run before the library DLL is \/
/\ terminated. \/

static void _System cleanup(ULONG ulReason);
#endif
size_t nSize;
int \pArray;

/\ _DLL_InitTerm is the function that gets called by the operating system \/
/\ loader when it loads and frees this DLL for each process that accesses \/
/\ this DLL. However, it only gets called the first time the DLL is loaded \/
/\ and the last time it is freed for a particular process. The system \/
/\ linkage convention MUST be used because the operating system loader is \/
/\ calling this function. \/

unsigned long _System _DLL_InitTerm(unsigned long hModule, unsigned long
 ulFlag)
{
 size_t i;
 APIRET rc;
 char namebuf[CCHMAXPATH];

/\ If ulFlag is zero then the DLL is being loaded so initialization should\/
/\ be performed. If ulFlag is 1 then the DLL is being freed so \/
/\ termination should be performed. \/

switch (ulFlag) {
case 0 :

Figure 18 (Part 2 of 4). INITTERM.C - _DLL_InitTerm Function for SAMPLE03

212 IBM C/C++ Tools: Programming Guide

 Sample Program to Build a DLL

 /\\\/
/\ The C run-time environment initialization function must be \/
/\ called before any calls to C run-time functions that are not \/

 /\ inlined. \/
 /\\\/

if (_CRT_init() == -1)
 return 0UL;
#ifndef STATIC_LINK

 /\\\/
/\ A DosExitList routine must be used to clean up if runtime calls \/
/\ are required and the runtime is dynamically linked. \/

 /\\\/

if (rc = DosExitList(0x0000FF00|EXLST_ADD, cleanup))
printf("DosExitList returned %lu\n", rc);

#endif
if (rc = DosQueryModuleName(hModule, CCHMAXPATH, namebuf))

printf("DosQueryModuleName returned %lu\n", rc);
 else

printf("The name of this DLL is %s\n", namebuf);
 srand(17);

nSize = (rand()%128)+32;
printf("The array size for this process is %u\n", nSize);
if ((pArray = malloc(nSize \sizeof(int))) == NULL) {

printf("Could not allocate space for unsorted array.\n");
 return 0UL;
 }

for (i = 0; i < nSize; ++i)
pArray[i] = rand();

 break;

Figure 18 (Part 3 of 4). INITTERM.C - _DLL_InitTerm Function for SAMPLE03

 Chapter 12. Building Dynamic Link Libraries 213

 Sample Program to Build a DLL

case 1 :
#ifdef STATIC_LINK

printf("The array will now be freed.\n");
 free(pArray);
 _CRT_term();
#endif
 break;
 default :

printf("ulFlag = %lu\n", ulFlag);
 return 0UL;
 }

/\ A non-zero value must be returned to indicate success. \/

 return 1UL;
}
#ifndef STATIC_LINK
static void cleanup(ULONG ulReason)
{

if (!ulReason) {
printf("The array will now be freed.\n");

 free(pArray);
 }
 DosExitList(EXLST_EXIT, cleanup);
 return ;
}
#endif

Figure 18 (Part 4 of 4). INITTERM.C - _DLL_InitTerm Function for SAMPLE03

The SAMPLE03 sample program is described in more detail in “Sample

Program to Build a DLL” on page 207.

214 IBM C/C++ Tools: Programming Guide

 Creating Resource DLLs

| Creating Resource DLLs

| Resource DLLs contain application resources that your program uses,

| such as menus, bitmaps, and dialog templates. You can define these

| resources in a .RC file using OS/2 APIs, or with the Toolkit Icon Editor

| and Dialog Editor. Use the Toolkit Resource Compiler to build the

| resources into a DLL, which is then called by your executable program

| at run time.

| The benefits of using a resource DLL instead of binding the resources

| directly into your executable file include easier maintenance and less

| duplication of resources. You may even be able to use a common

| resource DLL for multiple applications.

| To create a resource DLL:

| 1. Create an empty source file. A resource DLL can contain only

| resources.

| 2. Create a .DEF file. The only statement required in this file is

| LIBRARY to specify that a DLL is to be built.

| 3. Create a .RC file that defines your resources. See the Toolkit

| documentation for more information on creating and defining

| resources.

| 4. Compile the source file using /C+ to specify compile only. For

| example:

| icc /C+ empty.c

| Do not specify the /Ge- option. Specifying /Ge- causes the DLL

| initialization and termination code to be included in the object

| module, and the resource DLL cannot contain code.

| 5. Link the resulting object module, using your .DEF file, to create an

| empty DLL:

| LINK386 empty.obj,resdll.dll,,,mydef.def

| 6. Compile your .RC file with the Resource Compiler to create a .RES

| file. For example:

| RC /r myres.rc

 Chapter 12. Building Dynamic Link Libraries 215

 Creating Runtime Library DLLs

| 7. Use the Resource Compiler again to add the resources to the DLL.

| For example:

| RC myres.res resdll.dll

| Your application can use OS/2 APIs to load the resource DLL and

| access the resources it contains. Like other DLLs, resource DLLs must

| be in a directory specified in your LIBPATH environment variable.

| For more information on resources and the Resource Compiler, see the

| Toolkit Programming Reference and Tools Reference.

Creating Your Own Runtime Library DLLs

| If you are shipping your application to other users, you can use one of

| two methods to make the C/C++ Tools runtime library functions

| available to the users of your application:

| 1. Statically bind every module to the library (.LIB) files.

| This method increases the size of your modules and also slows the

| performance because the library environment has to be initialized

| for each module. Having multiple library environments also makes

| signal handling, file I/O, and other operations more complicated.

| 2. Create your own runtime DLLs.

| This method provides one common runtime environment for your

| entire application. It also lets you apply changes to the runtime

| library without relinking your application, meaning that if the

| C/C++ Tools DLLs change, you need only rebuild your DLL.

216 IBM C/C++ Tools: Programming Guide

 Creating Runtime Library DLLs

| To create your own runtime library, follow these steps:

| 1. Copy and rename the appropriate C/C++ Tools .DEF file for the

| program you are creating. For example, for a multithread program,

| copy DDE4MBS.DEF to myrtdll.def. You must also change the

| DLL name on the LIBRARY line of the .DEF file. The .DEF files are

| installed in the LIB subdirectory under the main C/C++ Tools

| installation directory.

| 2. Remove any functions you do not use directly or indirectly from the

| .DEF file, including the STUB line. Do not delete anything with the

| comment \\\\ next to it; variables and functions indicated by this

| comments are always required because they are called by startup

| functions.

| 3. Create a source file for your DLL, for example, myrtdll.c. If you

| are creating a runtime library that contains only C/C++ Tools

| functions, create an empty source file. If you are adding your own

| functions to the library, put the code for them in this file.

| 4. Compile and link your DLL files. Use the /Ge- option to create a

| DLL, and the appropriate option for the type of DLL you are building

| (single-thread or multithread). For example, to create a multithread

| DLL, use the command:

| icc /Ge- /Gm+ myrtdll.c myrtdll.def

| 5. Use the IMPLIB utility from the Toolkit to create an import library for

| your DLL, as described in “Using Your DLL” on page 205. For

| example:

| IMPLIB /NOI myrtdlli.lib myrtdll.def

| 6. Use the WorkFrame/2 LIB utility to add the object modules that

| contain the initialization and termination functions to your import

| library. These objects are needed by all executable modules and

| DLLs, are contained in DDE4MBSO.LIB for multithread programs

| and DDE4SBSO.LIB for single-thread programs. See the

| WorkFrame/2 online documentation for information on how to use

| LIB.

| Note: If you do not use the WorkFrame/2 LIB utility, you must

| ensure that all objects that access your runtime DLL are statically

| linked to the appropriate object library. The compile and link

| commands are described in the next step.

 Chapter 12. Building Dynamic Link Libraries 217

 Creating Runtime Library DLLs

| 7. Compile your executable modules and other DLLs with the /Gn+

| option to exclude the default library information. For example:

| icc /C /Gn+ /Ge+ myprog.c
| icc /C /Gn+ /Ge- mydll.c

| When you link your objects, specify your own import library. If you

| are using or plan to use OS/2 APIs, specify OS2386.LIB also. For

| example:

| LINK386 myprog.obj,,, myrtdlli.lib OS2386.LIB
| LINK386 mydll.obj,,, myrtdlli.lib OS2386.LIB

| To compile and link in one step, use the commands:

| icc /Gn+ /Ge+ myprog.c myrtdlli.lib OS2386.LIB
| icc /Gn+ /Ge- mydll.c myrtdlli.lib OS2386.LIB

| Note: If you did not use the WorkFrame/2 LIB utility to add the

| initialization and termination objects to your import library,

| when you link your modules, specify:

| a. DDE4SBSO.LIB or DDE4MBSO.LIB

| b. Your import library

| c. OS2386.LIB (to allow you to use OS/2 APIs)

| d. The linker option /NOD.

| For example:

| LINK386 /NOD myprog.obj,,,DDE4SBSO.LIB myrtdlli.lib OS2386.LIB;
| LINK386 /NOD mydll.obj,,,DDE4SBSO.LIB myrtdlli.lib OS2386.LIB;

| The /NOD option tells the linker to disregard the default

| libraries specified in the object files and use only the

| libraries given on the command line. If you are using icc to

| invoke the linker for you, the commands would be:

| icc /B"/NOD" myprog.c DDE4SBSO.LIB myrtdlli.lib OS2386.LIB
| icc /Ge- /B"/NOD" mydll.c DDE4SBSO.LIB myrtdlli.lib OS2386.LIB

| The linker then links the objects from the object library

| directly into your executable module or DLL.

218 IBM C/C++ Tools: Programming Guide

 Creating Runtime Library DLLs

Example of Creating a Runtime Library
In the sample program SAMPLE03, the program MAIN03.C calls printf

and srand from the C/C++ Tools runtime DLLs, and uses other

variables and functions from SAMPLE03.DLL. Because SAMPLE03.DLL also

| uses printf and is statically linked to the runtime libraries, the code for

| the C/C++ Tools runtime functions it uses is linked into SAMPLE03.DLL.

If these functions are included in SAMPLE03.DLL, all external references

from MAIN03.C can be resolved by dynamically linking to this DLL. As a

result, MAIN03.EXE will be smaller.

| Note: The process described here is only possible when the user DLL

| links statically to the C/C++ Tools runtime library.

Rebuild SAMPLE03.DLL to include printf and srand as exports by

following these steps:

1. Add _printfieee and srand to SAMPLE03.DEF under the EXPORTS

keyword.

Note: When the language level is /Se, printf is mapped to

_printfieee to support the IEEE extensions (infinity and NaN).

2. Use DDE4SBS.DEF to find what functions and variables must be

exported, and add them to SAMPLE03.DEF as EXPORTS.

3. Relink SAMPLE03.DLL as described in “Compiling and Linking Your

DLL” on page 203.

 Chapter 12. Building Dynamic Link Libraries 219

 Creating Runtime Library DLLs

After your changes, SAMPLE03.DEF should look like Figure 19. The

example shown in this figure is actually the file SAMPLE3R.DEF, which is

provided with the SAMPLE03 program.

LIBRARY SAMPLE03 INITINSTANCE TERMINSTANCE
PROTMODE
DATA MULTIPLE NONSHARED READWRITE LOADONCALL
CODE LOADONCALL
EXPORTS

nSize ; array size
pArray ; pointer to base of array of ints
nSwaps ; number of swaps required to sort the array
nCompares ; number of comparisons required to sort the array
list ; array listing function
bubble ; bubble sort function

; selection selection sort function
insertion ; insertion sort function

; CRT symbols required by EXE
 _printfieee
 srand
 _critlib_except ; \\\\
 _DosSelToFlat ; \\\\
 _DosFlatToSel ; \\\\
 _environ ; \\\\
 _CRT_init ; \\\\
 __ctordtorInit ; \\\\
 _EXE_Exception ; \\\\
 _Exception ; \\\\
 _PrintErrMsg ; \\\\
 _exception_procinit ; \\\\
 _exception_dllinit ; \\\\
 _matherr ; \\\\

Figure 19 (Part 1 of 2). SAMPLE3R.DEF - Definition File to Export C Runtime
Functions

220 IBM C/C++ Tools: Programming Guide

 Creating Runtime Library DLLs

 _terminate ; \\\\
 __ctordtorTerm ; \\\\
 exit ; \\\\
 free ; \\\\
 malloc ; \\\\
 strdup ; \\\\
 strpbrk ; \\\\

Figure 19 (Part 2 of 2). SAMPLE3R.DEF - Definition File to Export C Runtime

Functions

Once you have relinked SAMPLE03.DLL, re-create MAIN03.EXE so the calls

to the C/C++ Tools runtime functions are resolved by dynamically

| linking to SAMPLE03.DLL. A make file, MAKE03R, is provided to do this for

| you.

| Note: You must have the Toolkit installed to use the make file.

| To re-create MAIN03.EXE, at the prompt in the SAMPLES\SAMPLE03

| directory, type:

| nmake all /f MAKE03R

| To recompile and relink MAIN03.EXE yourself:

1. Use the IMPLIB utility to create an import library from

SAMPLE03.DEF, using the command:

IMPLIB SAMPLE03.LIB SAMPLE03.DEF

2. Compile and link MAIN03.EXE with the command:

icc /B"/NOE /NOD" MAIN03.C DDE4SBSO.LIB SAMPLE03.LIB OS2386.LIB

Note: If you compiled with the option /Gn+, the linker option /NOD

is not required, but you must recompile all the modules with this

option.

If MAIN03.OBJ already exists, you can use the following command to

create MAIN.EXE by simply relinking:

LINK386 /NOI /NOE /NOD MAIN03,,,DDE4SBSO SAMPLE03 OS2386;

 Chapter 12. Building Dynamic Link Libraries 221

 Creating Runtime Library DLLs

After you have performed these steps, copy SAMPLE03.DLL to a directory

listed in the LIBPATH variable in your CONFIG.SYS file. You can then

use the command:

 MAIN03

to run the SAMPLE03 program.

222 IBM C/C++ Tools: Programming Guide

 Advanced Topics

 Part 5. Advanced Topics

This part describes some of the advanced features of the C/C++ Tools

compiler.

| Chapter 13. Using Templates in C++ Programs 225

| Generating Template Function Definitions 225

| Using the Compiler's Automatic Template Generation Facility . . 228

| Structuring Your Program for Templates Manually 233

| Using Static Data Members in Templates 235

Chapter 14. Calling Conventions 237

_Optlink Calling Convention . 238

_System Calling Convention . 264

| _Pascal and _Far32 _Pascal Calling Conventions 272

| Chapter 15. Developing Virtual Device Drivers 281

| Creating Code to Run at Ring Zero 282

| Using Virtual Device Driver Calling Conventions 283

| Using _Far32 _Pascal Function Pointers 283

| Creating a Module Definition File 285

Chapter 16. Calling Between 32-Bit and 16-Bit Code 287

Declaring 16-Bit Functions . 288

Declaring Segmented Pointers . 289

Declaring Shared Objects . 290

Calling Back to 32-Bit Code from 16-Bit Code 292

Understanding 16-Bit Calling Conventions 297

Chapter 17. Developing Subsystems 303

Creating a Subsystem . 304

Building a Subsystem DLL . 306

Compiling Your Subsystem . 310

Restrictions When You Are Using Subsystems 310

Example of a Subsystem DLL . 310

Creating Your Own Subsystem Runtime Library DLLs 313

Chapter 18. Signal and OS/2 Exception Handling 317

 Copyright IBM Corp. 1992, 1993 223

 Advanced Topics

Handling Signals . 318

Default Handling of Signals . 319

Establishing a Signal Handler . 321

| Writing a Signal Handler Function 322

Signal Handling Considerations 326

| Handling OS/2 Exceptions . 328

| Creating Your Own OS/2 Exception Handler 334

Registering an OS/2 Exception Handler 344

Handling Signals and OS/2 Exceptions in DLLs 348

| Using OS/2 Exception Handlers for Special Situations 351

| OS/2 Exception Handling Considerations 352

Interpreting Machine-State Dumps 356

224 IBM C/C++ Tools: Programming Guide

 Generating Template Function Definitions

| Chapter 13. Using Templates in C++ Programs

| This chapter describes how the compiler generates template function

| bodies and how you should structure your program to use templates.

| Note: It is important to note the distinction between the terms function

| template and template function:

| � A function template is a template used to generate template

| functions. A function template can be only a declaration or

| it can define the function.

| � A template function is a function declared or defined by a

| function template.

| For a general description of templates, see the Online Language

| Reference or the C++ Language Reference.

| Important: When you link C++ object files, you must use the icc

| command with the /Tdp option to invoke the linker. If you invoke the

| linker in a separate step (with the LINK386 command), the template

| functions may not resolve correctly.

| Generating Template Function Definitions

| When you use class and function templates in your program, the

| C/C++ Tools compiler generates function bodies automatically for all

| template functions that are:

| 1. Referenced in the source code

| 2. Defined by a function template that is visible to that source

| 3. Not explicitly defined by the user.

| In each compilation unit where a template function that meets these

| criteria appears, the compiler generates a function body. At link time,

| all references to the function are resolved to a single generated body.

| Note that if you explicitly define a template function, all references are

| resolved to the explicit definition.

| When you specify /Ft+ (which is the default), you can use a different

| method of template generation using template-implementation files, as

| described in “Using Template-Implementation Files” on page 229.

 Copyright IBM Corp. 1992, 1993 225

 Generating Template Function Definitions

| When you use this method, the compiler generates only one function

| body to be used for all compilation units.

| Template functions with internal linkage are treated differently from

| those that are visible to other compilation units. A template function

| has internal linkage if it is either:

| � Defined inline (meaning within a template class).

| � Declared with the keyword inline.

| � A non-member function declared with the keyword static.

| If your template function has internal linkage, it is not visible outside of

| the compilation unit it resides in and must therefore be defined within

| that compilation unit. You can define it either by including the function

| template or by providing an explicit definition.

| If the same template function is used in more than one compilation unit,

| the compiler generates a function body for each one. If the template

| function has internal linkage, each function body is used only in its own

| compilation unit and all definitions are kept at link time. If the template

| function does not have internal linkage, the compiler resolves the

| multiple definitions just before link time as follows:

| 1. If a compilation unit explicitly defines the function, all references are

| resolved to that definition. All other definitions are ignored. If more

| than one compilation unit explicitly defines the function, an error is

| generated.

| 2. If there is no explicit definition, the compiler uses one of the

| generated function definitions. All other definitions are ignored.

| Note: The linker does not discard unused template function definitions

| when it creates your executable module. Repeating template

| declarations that define functions in multiple compilation units can make

| your executable modules very large. To avoid this problem, use the

| automatic template generation facility described in the following section,

| or structure your program so that the defining function templates are

| included in fewer compilation units.

226 IBM C/C++ Tools: Programming Guide

 Generating Template Function Definitions

| Example of Generating Template Function Definitions
| The class template, Stack, provides an example of template function

| generation. Stack implements a stack of items. The overloaded

| operators << and >> are used to push items on to the stack and pop

| items from the stack. Assume the declaration of the Stack class

| template is contained in the file stack.h:

| template <class Item, int size> class Stack {
| public:
| int operator << (Item item); // push operator
| int operator >> (Item& item); // pop operator
| Stack() { top = 0; } // constructor defined inline
| private:
| Item stack[size]; // stack of items
| int top; // index to top of stack
| };

| Figure 20. Declaration of Stack in stack.h

| In the template, the constructor function is defined inline. Assume the

| other functions are defined using separate function templates in the file

| stack.c:

| template <class Item, int size>
| int Stack<Item,size>::operator << (Item item) {
| if (top >= size) return 0;
| stack[top++] = item;
| return 1;
| }
| template <class Item, int size>
| int Stack<Item,size>::operator >> (Item& item)
| {
| if (top <= 0) return 0;
| item = stack[--top];
| return 1;
| }

| Figure 21. Definition of operator Functions in stack.c

 Chapter 13. Using Templates in C++ Programs 227

 Using the Automatic Template Generation Facility

| In this example, the constructor has internal linkage because it is

| defined inline in the class template declaration. In each compilation

| unit that uses an instance of the Stack class, the compiler generates

| the constructor function body. Each unit has its own copy of the

| constructor that it alone uses.

| In each compilation unit that includes the file stack.c, for any instance

| of the Stack class in that unit the compiler generates definitions for the

| functions:

| Stack<item,size>::operator<<(item)
| Stack<item,size>::operator>>(item&)

| For example, given the following source file:

| #include "stack.h"
| #include "stack.c"

| void Swap(int i&, Stack<int,20>& s)
| {
| int j;
| s >> j;
| s << i;
| i = j;
| }

| the compiler generates the functions Stack<int,20>::operator<<(int)

| and Stack<int,20>::operator>>(int&).

| Using the Compiler's Automatic Template Generation Facility

| To avoid producing multiple definitions for your template functions, you

| can use the compiler's automatic template generation facility to

| generate the definition in one source file only. This is the

| recommended way to use templates with the C/C++ Tools compiler.

228 IBM C/C++ Tools: Programming Guide

 Using Template-Implementation Files

| To use this facility, you declare or reference the template functions in

| your source, but do not define them. Instead, provide the definitions in

| a special file called a template-implementation file. The compiler uses

| this file to determine what instances of the template function must be

| created. It then creates an additional source file, called a

| template-include file, that contains the function definitions. No more

| than one definition is generated for each template function.

| Using Template-Implementation Files
| To create and use a template-implementation file:

| � Declare your template functions using class or function template

| declarations. If the function is a member of a template class, its

| declaration is part of the class template declaration. If the function

| is a nonmember function, you must declare the function using a

| function template. Do not define the function.

| � Place your class or function template declarations in a header file

| and include the file in your source code using the #include

| directive.

| � Create a template-implementation file for each header file that

| contains these template declarations. Give the file the same name

| as the header file but with the extension .c instead of .h. Place the

| template-implementation file in the same directory as the

| corresponding .h file.

| � Define all the functions declared in the header file in the

| template-implementation file. The definitions can be explicit

| function definitions, template definitions, or both. If you use explicit

| definitions, they are used instead of the definitions generated by the

| template.

| � Define any classes that are used in template arguments and that

| are required to generate the template function in the header file. If

| the class definitions require other header files, include them with

| the #include directive. The class definitions are then available in

| the template-implementation file when the function definition is

| compiled. Do not put the definitions of any classes used in

| template arguments in your source code.

 Chapter 13. Using Templates in C++ Programs 229

 Using Template-Implementation Files

| In the Stack example, the file stack.c is a template-implementation file.

| To create a program using the Stack class template, you would include

| stack.h in any source files that use an instance of the class. The

| stack.c file does not need to be included in any source files, but must

| reside in the same directory as stack.h. Then given the source file:

| #include "stack.h"

| void Swap(int i&, Stack<int,20>& s)
| {
| int j;
| s >> j;
| s << i;
| i = j;
| }

| the compiler automatically generates the functions

| Stack<int,20>::operator<<(int) and

| Stack<int,20>::operator>>(int&).

| You can change the name of the template-implementation file or place

| it in a different directory using the #pragma implementation directive.

| This #pragma directive has the format:

| #pragma implementation(string-literal)

| where string-literal is the path name for the template-implementation

| file. If it is only a partial path name, it must be relative to the directory

| containing the header file.

| For example, in the Stack class, to use the file stack.def as the

| template-implementation file instead of stack.c, add the line:

| #pragma implementation("stack.def")

| anywhere in the stack.h file. The compiler then looks for the

| template-implementation file stack.def in the same directory as

| stack.h.

230 IBM C/C++ Tools: Programming Guide

 Generating Template-Include Files

| Generating Template-Include Files
| When it compiles your program, the compiler builds a template-include

| file for each header file that contains template functions that need to be

| defined. The compiler stores the template-include files in the TEMPINC

| subdirectory under the current directory. The compiler creates the

| TEMPINC directory if it does not already exist.

| Before it invokes the linker, the compiler checks the contents of the

| TEMPINC subdirectory, compiles the template-include files, and

| generates the necessary template function definitions.

| By default, the compiler places all template-include files in the

| TEMPINC subdirectory of the current directory. To redirect these files

| to another directory, use the /Ftdir compiler option, where dir is the

| directory to contain the template-include files. You can specify a

| fully-qualified path name or a path name relative to the current

| directory.

| If you specify a different directory for your template-include files, ensure

| you specify it consistently for all compilations of your program, including

| the link step.

| Note that after the compiler creates a template-include file, it may add

| information to the file as each compilation unit is compiled. However,

| the compiler never removes information from the file. If you remove

| function instantiations or reorganize your program so that the

| template-include files become obsolete, you may want to delete one or

| more of these files and recompile your program. In addition, if error

| messages are generated for a file in the TEMPINC directory, you must

| either correct the errors manually or delete the file and recompile. To

| regenerate all of the template-include files, delete the TEMPINC

| directory and recompile your program.

 Chapter 13. Using Templates in C++ Programs 231

 Generating Template-Include Files

| Contents of a Template-Include File
| The following example shows the information you would find in a typical

| template-include file generated by the compiler:

| /\0698421265\/ #include "\swearsee\src\list.h" ▌1▐

| /\0000000000\/ #include "\swearsee\src\list.c" ▌2▐

| /\0698414046\/ #include "\swearsee\src\mytype.h" ▌3▐

| /\0698414046\/ #include "\IBMCPP\INCLUDE\iostream.h" ▌4▐

| #pragma define(List<MyType>) ▌5▐

| ostream& operator<<(ostream&,List<MyType>); ▌6▐

| #pragma undeclared ▌7▐

| int count(List<MyType>); ▌8▐

| ▌1▐ The header file that corresponds to the template-include file. The

| number in comments at the start of each #include line (for this

| line /\0698421265\/) is a time stamp for the included file. The

| compiler uses this number to determine if the template-include file

| is current or should be recompiled. A time stamp containing only

| zeroes (0) as in line ▌2▐ means the compiler is to ignore the time

| stamp.

| ▌2▐ The template-implementation file that corresponds to the header

| file in line ▌1▐

| ▌3▐ Another header file that the compiler requires to compile the

| template-include file. All other header files that the compiler

| needs to compile the template-include file are inserted at this

| point.

| ▌4▐ Another header file required by the compiler. It is referenced in

| the function declaration in line ▌6▐.

| ▌5▐ The compiler inserts #pragma define directives to force the

| definition of template classes. In this case, the class

| List<MyType> is to be defined and its member functions are to be

| generated.

| ▌6▐ The operator<< function is a nonmember function that matched a

| template declaration in the list.h file. The compiler inserts this

| declaration to force the generation of the function definition.

232 IBM C/C++ Tools: Programming Guide

 Structuring Your Program for Templates Manually

| ▌7▐ The #pragma undeclared directive is used only by the compiler

| and only in template-include files. It is used to separate functions

| that were instantiated using a declaration from functions that were

| instantiated using a call. All template functions that were explicitly

| declared in at least one compilation unit appear before this line.

| All template functions that were called, but never declared, appear

| after this line.

| ▌8▐ count is an example of a template function that was called but not

| declared. The template declaration of the function must have

| been contained in list.h, but the instance count(List<MyType>)

| was never declared.

| Note: Although you can edit the template-include files, it is not

| normally necessary or advisable to do so.

| Structuring Your Program for Templates Manually

| If you do not want to use the template-implementation file method of

| generating template function definitions, you can structure your program

| in such a way that you define template functions directly in your

| compilation units. If you structure your program manually, you do not

| have to reference any compiler-generated files, but if you change the

| body of the function template you may need to recompile many source

| files. In addition, compile and link time may be longer and the object

| file produced can become quite large because of multiple definitions.

| Note: It is recommended that you use the compiler's automatic

| template generation facility.

 Chapter 13. Using Templates in C++ Programs 233

 Structuring Your Program for Templates Manually

| There are two ways you can structure your program to directly define

| template functions:

| 1. Include the function template definition in all compilation units that

| reference the corresponding template functions.

| 2. Include the declaration of the function template in all files that

| reference the corresponding template functions, but group the

| function definitions into a single compilation unit. (Note that this is

| essentially what the compiler does for you automatically when you

| use template-implementation files.) Use #pragma define directives

| to force the compiler to generate the necessary definitions for all

| template functions and classes used in other compilation units.

| For example, to use the first method with the Stack template, include

| both stack.h and stack.c in all compilation units that use an instance

| of the Stack class. The compiler then generates definitions for each

| template function. Each template function may be defined multiple

| times, increasing the size of the object file.

| To use the second method, include stack.h in all compilation units that

| use an instance of the Stack class, but include stack.c in only one of

| the files. Alternatively, if you know what instances of the Stack class

| are being used in your program, you can define all of the instances in a

| single compilation unit. For example:

| #include "stack.h"
| #include "stack.c"
| #include "myclass.h" // Definition of "myClass" class
| #pragma define(Stack<int,20>)
| #pragma define(Stack<myClass,100>)

234 IBM C/C++ Tools: Programming Guide

 Using Static Data Members in Templates

| The #pragma define directive forces the definition of two instances of

| the Stack class without creating any object of the class. Because these

| instances reference the member functions of that class, template

| function definitions are generated for those functions. See the Online

| Language Reference for more information about the #pragma directive.

| When you use these methods, you may also need to specify the /Ft-

| option to ensure that the compiler does not look for

| template-implementation files to resolve the template functions. Note

| that specifying /Ft- does not affect the compiler's generation of

| template functions as described in “Generating Template Function

| Definitions” on page 225.

| Using Static Data Members in Templates

| Partial support for using static data members within templates has been

| provided in this version of C/C++ Tools. You can use templates to

| define static data members, but you must observe the following

| restrictions:

| � You cannot combine template definitions of static data members

| with explicit definitions. If you try to use a static member template

| in one compilation unit and an explicit definition in another, the

| linker generates an error about multiple definitions.

| � Static data members defined by templates are not visible as

| dictionary entries in libraries. If your program references a static

| member defined in a library object, but does not reference any

| other external symbols in that object, the linker will not extract the

| object from the library.

| � If you export a class with data members from a DLL, export the

| data members as well, regardless of their access specifiers

| (private, protected, or public).

| When the compiler finds a template that defines static data members, it

| always generates a warning message (EDC3402). Note that if this

| message is generated from a class library header file that you have

| included in your code, you can ignore it because the data member has

| been used according to the restrictions.

 Chapter 13. Using Templates in C++ Programs 235

 Using Static Data Members in Templates

236 IBM C/C++ Tools: Programming Guide

 Calling Conventions

 Chapter 14. Calling Conventions

This chapter describes the calling conventions used by the C/C++ Tools

compiler for both C and C++:

 � _Optlink

 � _System

| � _Pascal and _Far32 _Pascal

| � 32/16-bit conventions:

 _Far16 _Cdecl

 _Far16 _Pascal

 _Far16 _Fastcall

The _Optlink convention is specific to the C/C++ Tools compiler and is

| the fastest method of calling C or C++ functions or assembler routines,

but it is not standard for all OS/2 applications. The _Optlink calling

convention is described in more detail in “_Optlink Calling Convention”

on page 238.

The _System calling convention, while slower, is standard for all OS/2

applications and is used for calling OS/2 APIs. See “_System Calling

Convention” on page 264 for a description of the _System calling

convention.

| The _Pascal and _Far32 _Pascal conventions are used to develop

| virtual device drivers. The _Far32 _Pascal convention can only be used

| for applications written in C that run at ring zero (compiled with the /Gr+

| option). More information about the _Pascal and _Far32 _Pascal

| conventions can be found in “_Pascal and _Far32 _Pascal Calling

| Conventions” on page 272.

Note: You cannot call a function using a different calling convention

than the one with which it is compiled. For example, if a

function is compiled with _System linkage, you cannot later call it

specifying _Optlink linkage.

The different methods of calling 16-bit code from the C/C++ Tools

compiler and the 16-bit calling conventions are discussed in

Chapter 16, “Calling Between 32-Bit and 16-Bit Code” on page 287.

 Copyright IBM Corp. 1992, 1993 237

 _Optlink Calling Convention

You can specify the calling convention for all functions within a program

using the /Mp or /Ms compiler option. You can also use linkage

keywords to specify the calling convention for individual functions. In C

programs, you can also use #pragma linkage. Linkage keywords and

the #pragma directive take precedence over the compiler option, if both

are specified.

| Note: C++ member functions always use the _Optlink calling

| convention. You cannot change the convention for member functions.

See “Setting the Calling Convention” on page 62 for more details on

setting the calling convention. For more information on compiler

options, see “Code Generation Options” on page 111. For information

about linkage keywords and #pragma linkage, see the Online

Language Reference.

_Optlink Calling Convention

This is the default calling convention. It is an alternative to the _System

convention that is normally used for calls to the operating system. It

provides a faster call than the _System convention, while ensuring

conformance to the ANSI and SAA language standards.

| You can explicitly give a function the _Optlink convention with the

| _Optlink keyword, or for C files only, the #pragma linkage directive.

Features of _Optlink
� Parameters are pushed from right to left onto the stack to allow for

varying length parameter lists without having to use hidden

parameters.

� The caller cleans up the parameters.

� The general-purpose registers EBP, EBX, EDI, and ESI are

preserved across the call.

� The general-purpose registers EAX, ECX, and EDX are not

preserved across the call.

� Floating-point registers are not preserved across the call.

238 IBM C/C++ Tools: Programming Guide

 _Optlink Calling Convention

� The three conforming parameters that are lexically leftmost

(conforming parameters are 1, 2, and 4-byte signed and unsigned

integers, enumerations, and all pointer types) are passed in the

three unpreserved general-purpose registers.

� Up to four floating-point parameters (the lexically first four) are

passed in extended-precision format (80-bit) in the floating-point

register stack.

� All other parameters are passed on the 80386 stack.

� Space for the parameters in registers is allocated on the stack, but

the parameters are not copied into that space.

� Conforming return values are returned in EAX.

� Floating-point return values are returned in extended-precision

format in the topmost register of the floating-point stack.

� Complex floating-point return values are returned in

extended-precision format in the topmost two registers of the

floating-point stack.

� When you call external functions, the floating-point register stack

contains only valid parameter registers on entry and valid return

| values on exit. (When you call functions in the current compilation

| unit that do not call any other functions, this state may not be true.)

� Calls with aggregates returned by value pass a hidden first

parameter that is the address of a storage area determined by the

caller. This area becomes the returned aggregate. The address of

this aggregate is returned in EAX.

� The direction flag must be clear upon entry to functions and clear

on exit from functions. The state of the other flags is ignored on

entry to a function and undefined on exit.

� The compiler will not change the contents of the floating-point

control register. If you want to change the control register contents

for a particular operation, save the contents before making the

changes and restore them after the operation.

 Chapter 14. Calling Conventions 239

 _Optlink Calling Convention

Tips for Using _Optlink
To obtain the best performance when using the _Optlink convention,

follow these tips:

| � Prototype all function declarations for better performance. The C++

| language requires all functions to have prototypes.

Note: All calls and functions must be prototyped consistently; that

is, functions declared more than once must have identical

prototypes. If prototyping is not consistent, the results will

be undefined.

� Place the conforming and floating-point parameters that are most

heavily used lexically leftmost in the parameter list so they will be

considered for registers first. If they are adjacent to each other, the

preparation of the parameter list will be faster.

� If you have a parameter that is only used near the end of a

function, put it at or near the end of the parameter list. If all of your

parameters are only used near the end of functions, consider using

_System linkage.

� If you are passing structures by value, put them at the end of the

parameter list.

| � Avoid using variable arguments in nonprototype functions. This

| practice results in undefined behavior under the ANSI C standard.

� If you have a variable-length argument list, consider using _System

linkage. It is faster in this situation.

� Compile with optimization on by specifying /O+.

For additional tips on how to improve the performance of your program,

see Chapter 10, “Optimizing Your Program” on page 165.

240 IBM C/C++ Tools: Programming Guide

 Eyecatchers

General-Purpose Register Implications

 Parameters
EAX, EDX, and ECX are used for the lexically first three conforming

parameters with EAX containing the first parameter, EDX the second,

and ECX the third. Four bytes of stack storage are allocated for each

register parameter that is present, but the parameters exist only in the

registers at the time of the call.

If there is no prototype or an incomplete prototype for the function

called, an eyecatcher is placed after the call instruction to tell the callee

how the register parameters correspond to the stack storage mapped

for them. Fully prototyped code never needs eyecatchers.

 Eyecatchers
An eyecatcher is a recognizable sequence of bytes that tells

unprototyped code which parameters are passed in which registers.

Eyecatchers apply only to code without prototype statements.

The eyecatcher instruction is placed after the call instruction for a

nonprototype function. The choice of instruction for the eyecatcher

relies on the fact that the TEST instruction does not modify the

referenced register, meaning that the return register of the call

instruction is not modified by the eyecatcher instruction. The absence

of an eyecatcher in unprototyped code implies that there are no

parameters in registers.3

The eyecatcher has the format:

TEST EAX, immed32

Note that the short-form binary encoding (A9) of TEST EAX must be used

for the eyecatcher instruction.

3 Note that this eyecatcher scheme does not allow the use of execute-only code segments.

 Chapter 14. Calling Conventions 241

 Eyecatchers

The 32-bit immediate operand is interpreted as a succession of 2-bit

fields, each of which describes a register parameter or a 4-byte slot of

stack memory. Because only one 32-bit read of the eyecatcher is

made, only 24 bits of the immediate operand are loaded. The actual

number of parameters that can be considered for registers is restricted

to 12.

Because of byte reversal, the bits that are loaded are the low-order 24

bits of the 32-bit immediate operand. The highest-order 2-bit field of

the 24 bits analyzed corresponds to the lexically first parameter, while

subsequent parameters correspond to the subsequent lower-order 2-bit

fields. The meaning of the values of the fields is as follows:

Value Meaning

00 A 4-byte slot of the parameter list in its 4-byte slot on the

stack and not in any register. It indicates that there are no

parameters remaining to be put into registers, or that there

are parameters that could be put into registers but there are

no registers remaining. It also indicates the end of the

eyecatcher.

01 The corresponding parameter is in a general-purpose

register. The leftmost field of this value has its parameter in

EAX, the second leftmost (if it exists) in EDX, and the third

(if it exists) in ECX.

10 The corresponding parameter is in a floating-point register

and has 8 bytes of stack reserved for it (that is, it is a

double). ST(0), ST(1), ST(2), and ST(3) contain the

lexically-first four floating-point parameters (fewer registers

are used if there are fewer floating-point parameters). ST(0)

contains the lexically first (leftmost 2-bit field of type 10 or

11) parameter, ST(1) the lexically second parameter, and so

on.

11 The corresponding parameter is in a floating-point register

and has 16 bytes of stack reserved for it (that is, it is a long

double).

242 IBM C/C++ Tools: Programming Guide

 Examples Using _Optlink

Examples of Passing Parameters
The examples on the following pages are included for purposes of

illustration and clarity only and have not been optimized. These

examples assume that you are familiar with programming in assembler.

Note that, in each example, the stack grows toward the bottom of the

page, and ESP always points to the top of the stack.

Passing Conforming Parameters to a Prototyped
Routine
The following example shows the code sequences and a picture of the

stack for a call to the function foo:

long foo(char p1, short p2, long p3, long p4);

 short x;
 long y;

y = foo('A', x, y+x, y);

Caller's code surrounding call:

PUSH y ; Push p4 onto the 80386 stack
SUB ESP, 12 ; Allocate stack space for

 ; register parameters
MOV AL, 'A' ; Put p1 into AL
MOV DX, x ; Put p2 into DX
MOVSX ECX, DX ; Sign-extend x to long
ADD ECX, y ; Calculate p3 and put it into ECX
CALL FOO ; Make call

 Chapter 14. Calling Conventions 243

 Examples Using _Optlink

Stack Just After Call Register Set Just After Call

 │ │ ┌─────────┬────┬────┐
│ caller's Local │ EAX │ undefined │ p1 │

 ├────────────────────┤ ├─────────┼────┼────┤
 │ p4 │ EBX │ caller's EBX │
 ├────────────────────┤ ├─────────┼────┼────┤

│ Blank Slot For p3 │ ECX │ p3 │ │
 ├────────────────────┤ ├─────────┼────┼────┤

│ Blank Slot For p2 │ EDX │undefined│ p2 │
 ├────────────────────┤ ├─────────┼────┴────┤

│ Blank Slot For p1 │ EDI │ caller's EDI │
 ├────────────────────┤ ├─────────┼─────────┤

│ caller's EIP │ ESI │ caller's ESI │
 ESP────► └────────────────────┘ └─────────┴─────────┘

Callee's prolog code:

PUSH EBP ; Save caller's EBP
MOV EBP, ESP ; Set up callee's EBP
SUB ESP, callee's local size ; Allocate callee's Local
PUSH EBX ; Save preserved registers -
PUSH EDI ; will optimize to save
PUSH ESI ; only registers callee uses

244 IBM C/C++ Tools: Programming Guide

 Examples Using _Optlink

Stack After Prolog Register Set After Prolog

 │ │ ┌──────────┬────┬────┐
│ caller's Local │ EAX │ undefined │ p1 │

 ├───────────────────┤ ├──────────┼────┼────┤
 │ p4 │ EBX │ undefined │
 ├───────────────────┤ ├──────────┼────┴────┤

│ Blank Slot For p3 │ ECX │ p3 │
 ├───────────────────┤ ├──────────┼────┬────┤

│ Blank Slot For p2 │ EDX │undefined │ p2 │
 ├───────────────────┤ ├──────────┼────┴────┤

│ Blank Slot For p1 │ EDI │ undefined │
 ├───────────────────┤ ├──────────┼─────────┤
 │ caller's EIP │ ESI │ undefined │
 ├───────────────────┤ └──────────┴─────────┘
 │ caller's EBP │
 ├───────────────────┤
 │ │
 . .
 . callee's Local .
 . .
 │ │
 ├───────────────────┤
 │ Saved EBX │
 ├───────────────────┤
 │ Saved EDI │
 ├───────────────────┤
 │ Saved ESI │
 ESP───► └───────────────────┘

Note: The term undefined in registers EBX, EDI and ESI refers to the

fact that they can be safely overwritten by the code in foo.

Callee's epilog code:

MOV EAX, RetVal ; Put return value in EAX
POP ESI ; Restore preserved registers

 POP EDI
 POP EBX

MOV ESP, EBP ; Deallocate callee's local
POP EBP ; Restore caller's EBP
RET ; Return to caller

 Chapter 14. Calling Conventions 245

 Examples Using _Optlink

Stack After Epilog Register Set After Epilog

 │ │ ┌─────────┬────┬───┐
│ caller's Local │ EAX │ Return│Value │

 ├───────────────────┤ ├─────────┼────┼───┤
 │ p4 │ EBX │ caller's EBX │
 ├───────────────────┤ ├─────────┼────┼───┤

│ Blank Slot For p3 │ ECX │ undefined │
 ├───────────────────┤ ├─────────┼────┼───┤

│ Blank Slot For p2 │ EDX │ undefined │
 ├───────────────────┤ ├─────────┼────┴───┤

│ Blank Slot For p1 │ EDI │ caller's EDI │
 │ │ ├─────────┼────────┤
 ESP────► └───────────────────┘ ESI │ caller's ESI │
 └─────────┴────────┘

Caller's code just after call:

ADD ESP, 16 ; Remove parameters from stack
MOV y, EAX ; Use return value.

Stack After Cleanup Register Set After Cleanup

 │ │ ┌─────────┬────┬───┐
│ caller's Local │ EAX │ Return│Value │

 ESP────► └────────────────┘ ├─────────┼────┼───┤
 EBX │ caller's EBX │
 ├─────────┼────┼───┤
 ECX │ undefined │
 ├─────────┼────┼───┤
 EDX │ undefined │
 ├─────────┼────┴───┤
 EDI │ caller's EDI │
 ├─────────┼────────┤
 ESI │ caller's ESI │
 └─────────┴────────┘

246 IBM C/C++ Tools: Programming Guide

 Examples Using _Optlink

Passing Conforming Parameters to an Unprototyped
Routine
This example differs from the previous one by providing:

� An eyecatcher after the call to foo in the caller's code

� The code necessary to perform the default widening rules required

by ANSI

� The instruction to clean up the parameters from the stack.

If foo were an ellipsis routine with fewer than three conforming

parameters in the invariant portion of its parameter list, it would also

include the code to interpret the eyecatchers in its prolog.

y = foo('A', x, y+x, y);

Caller's code surrounding call:

PUSH y ; Push p4 onto the 80386 stack
SUB ESP, 12 ; Allocate stack space for register parameters
MOV EAX, 00000041h ; Put p1 into EAX (41 hex = A ASCII)
MOVSX EDX, x ; Put p2 into EDX
MOV ECX, y ; Load y to calculate p3
ADD ECX, x ; Calculate p3 and put it into ECX
CALL FOO ; Make call
TEST EAX, 00540000h ; Eyecatcher indicating 3 general-purpose

; register parameters (see page 241)
ADD ESP, 16 ; Clean up parameters after return

 Chapter 14. Calling Conventions 247

 Examples Using _Optlink

Passing Floating-Point Parameters to a Prototyped
Routine
The following example shows code sequences, 80386 stack layouts,

and floating-point register stack states for a call to the routine fred. For

simplicity, the general-purpose registers are not shown.

double fred(float p1, double p2, long double p3, float p4, double p5);

double a, b, c;
 float d, e;

a = b + fred(a, d, (long double)(a + c), e, c);

Caller's code up until call:

PUSH 2ND DWORD OF c ; Push upper 4 bytes of c onto stack
PUSH 1ST DWORD OF c ; Push lower 4 bytes of c onto stack
FLD DWORD_PTR e ; Load e into 80387, promotion

; requires no conversion code
FLD QWORD_PTR a ; Load a to calculate p3
FADD ST(0), QWORD_PTR c ; Calculate p3, result is long double

; from nature of 80387 hardware
FLD QWORD_PTR d ; Load d, no conversion necessary
FLD QWORD_PTR a ; Load a, demotion requires conversion
FSTP DWORD_PTR [EBP - T1] ; Store to a temp (T1) to convert to float
FLD DWORD_PTR [EBP - T1] ; Load converted value from temp (T1)
SUB ESP, 32 ; Allocate the stack space for

 ; parameter list
CALL FRED ; Make call

248 IBM C/C++ Tools: Programming Guide

 Examples Using _Optlink

Stack Just After Call 80387 Register Set Just After Call

 ┌ ┐ ┌───────────────────┐
 │ caller's Local │ ST(7) │ Empty │
 ├─────────────────────┤ ├───────────────────┤

│ Upper Dword of p5 │ ST(6) │ Empty │
├─ ── ── ── ── ── ── ─┤ ├───────────────────┤
│ Lower Dword of p5 │ ST(5) │ Empty │

 ├─────────────────────┤ ├───────────────────┤
│ Blank Dword for p4 │ ST(4) │ Empty │

 ├─────────────────────┤ ├───────────────────┤
 │ Four │ ST(3) │ p4 (e) │

├─ ── ── ── ── ── ── ─┤ ├───────────────────┤
│ Blank │ ST(2) │ p3 (a + c) │
├─ ── ── ── ── ── ── ─┤ ├───────────────────┤

 │ Dwords │ ST(1) │ p2 (d) │
├─ ── ── ── ── ── ── ─┤ ├───────────────────┤

 │ for p3 │ ST(0) │ p1 (a) │
 ├─────────────────────┤ └───────────────────┘
 │ Two Blank │

├─ ── ── ── ── ── ── ─┤
│ Dwords for p2 │

 ├─────────────────────┤
│ Blank Dword for p1 │

 ├─────────────────────┤
 │ caller's EIP │
 ESP─────► └─────────────────────┘

Callee's prolog code:

PUSH EBP ; Save caller's EBP
MOV EBP, ESP ; Set up callee's EBP
SUB ESP, callee's local size ; Allocate callee's Local
PUSH EBX ; Save preserved registers -
PUSH EDI ; will optimize to save
PUSH ESI ; only registers callee uses

 Chapter 14. Calling Conventions 249

 Examples Using _Optlink

Stack After Prolog 80387 Register Set After Prolog

 │ │ ┌─────────────────┤
│ caller's Local │ ST(7) │ Empty │

 ├────────────────────┤ ├─────────────────┤
│ Upper Dword of p5 │ ST(6) │ Empty │
├─ ── ── ── ── ── ── ┤ ├─────────────────┤
│ Lower Dword of p5 │ ST(5) │ Empty │

 ├────────────────────┤ ├─────────────────┤
│ Blank Dword for p4 │ ST(4) │ Empty │

 ├────────────────────┤ ├─────────────────┤
 │ Four │ ST(3) │ p4 │

├─ ── ── ── ── ── ── ┤ ├─────────────────┤
 │ Blank │ ST(2) │ p3 │

├─ ── ── ── ── ── ── ┤ ├─────────────────┤
│ Dwords │ ST(1) │ p2 │
├─ ── ── ── ── ── ── ┤ ├─────────────────┤

 │ for p3 │ ST(0) │ p1 │
 ├────────────────────┤ └─────────────────┘
 │ Two Blank │

├─ ── ── ── ── ── ── ┤
│ Dwords for p2 │

 ├────────────────────┤
│ Blank Dword for p1 │

 ├────────────────────┤
 │ caller's EIP │
 ├────────────────────┤
 │ caller's EBP │
 ├────────────────────┤
 │ │
 . .
 . callee's Local .
 . .
 │ │
 ├────────────────────┤
 │ Saved EBX │
 ├────────────────────┤
 │ Saved EDI │
 ├────────────────────┤
 │ Saved ESI │
 ESP─────► └────────────────────┘

250 IBM C/C++ Tools: Programming Guide

 Examples Using _Optlink

Callee's epilog code:

FLD RETVAL ; Load return value onto floating-point stack
POP ESI ; Restore preserved registers

 POP EDI
 POP EBX

MOV ESP, EBP ; Deallocate callee's local
POP EBP ; Restore caller's EBP
RET ; Return to caller

Stack After Epilog 80387 Register Set After Epilog

 │ │ ┌──────────────────┐
 │ caller's Local │ ST(7) │ Empty │
 ├─────────────────────┤ ├──────────────────┤

│ Upper Dword of p5 │ ST(6) │ Empty │
├─ ── ── ── ── ── ── ─┤ ├──────────────────┤
│ Lower Dword of p5 │ ST(5) │ Empty │

 ├─────────────────────┤ ├──────────────────┤
│ Blank Dword for p4 │ ST(4) │ Empty │

 ├─────────────────────┤ ├──────────────────┤
 │ Four │ ST(3) │ Empty │

├─ ── ── ── ── ── ── ─┤ ├──────────────────┤
 │ Blank │ ST(2) │ Empty │

├─ ── ── ── ── ── ── ─┤ ├──────────────────┤
 │ Dwords │ ST(1) │ Empty │

├─ ── ── ── ── ── ── ─┤ ├──────────────────┤
│ for p3 │ ST(0) │ Return Value │

 ├─────────────────────┤ └──────────────────┘
 │ Two Blank │

├─ ── ── ── ── ── ── ─┤
│ Dwords for p2 │

 ├─────────────────────┤
│ Blank Dword for p1 │

 ESP─────► └─────────────────────┘

Caller's code just after call:

ADD ESP, 40 ; Remove parameters from stack
FADD QWORD_PTR b ; Use return value
FSTP QWORD_PTR a ; Store expression to variable a

 Chapter 14. Calling Conventions 251

 Examples Using _Optlink

Stack After Cleanup 80387 Register Set After Cleanup

 │ │ ┌────────────────────┐
│ caller's Local │ ST(7) │ Empty │

 │ │ ├────────────────────┤
 ESP─────► └─────────────────┘ ST(6) │ Empty
 ├────────────────────┤
 ST(5) │ Empty │
 ├────────────────────┤
 ST(4) │ Empty │
 ├────────────────────┤
 ST(3) │ Empty │
 ├────────────────────┤
 ST(2) │ Empty │
 ├────────────────────┤
 ST(1) │ Empty │
 ├────────────────────┤
 ST(0) │ Return Value │
 └────────────────────┘

Passing Floating-Point Parameters to an Unprototyped
Routine
This example differs from the previous floating-point example by the

presence of an eyecatcher after the call to fred in the caller's code and

the code necessary to perform the default widening rules required by

ANSI.

double a, b, c;
 float d, e;

a = b + fred(a, d, (long double)(a + c), e, c);

252 IBM C/C++ Tools: Programming Guide

 Examples Using _Optlink

Caller's code up until call:

PUSH 2ND DWORD OF c ; Push upper 4 bytes of c onto stack
PUSH 1ST DWORD OF c ; Push lower 4 bytes of c onto stack
FLD DWORD_PTR e ; Load e into 80387, promotion

; requires no conversion code
FLD QWORD_PTR a ; Load a to calculate p3
FADD ST(0), QWORD_PTR c ; Calculate p3, result is long double

; from nature of 80387 hardware
FLD QWORD_PTR d ; Load d, no conversion necessary
FLD QWORD_PTR a ; Load a, no conversion necessary
SUB ESP, 40 ; Allocate the stack space for

 ; parameter list
CALL FRED ; Make call
TEST EAX, 00ae0000h ; Eyecatcher maps the register parameters
ADD ESP, 48 ; Clean up parameters from stack

Passing and Returning Aggregates by Value to a
Prototyped Routine
If an aggregate is passed by value, the following code sequences are

produced for the caller and callee:

'C' Source:

struct s_tag {
 long a;
 float b;
 long c;

} x, y;
 long z;
 double q;

 Chapter 14. Calling Conventions 253

 Examples Using _Optlink

/\ Prototype \/
struct s_tag bar(long lvar, struct s_tag aggr, float fvar);

...

/\ Actual Call \/
y = bar(z, x, q);

...

/\ callee \/
struct s_tag bar(long lvar, struct s_tag aggr, float fvar)

 {
struct s_tag temp;

temp.a = lvar + aggr.a + 23;
temp.b = fvar - aggr.b;
temp.c = aggr.c

 return temp;
 }

Caller's code up until call:

FLD QWORD_PTR q ; Load lexically first floating-point
; parameter to be converted

FSTP DWORD_PTR [EBP - T1] ; Convert to formal parameter type by
FLD DWORD_PTR [EBP - T1] ; Storing and loading from a temp (T1)
SUB ESP, 4 ; Allocate space for the floating-point

 ; register parameter
PUSH x.c ; Push nonconforming parameters on

 PUSH x.b ; stack
 PUSH x.a ;

254 IBM C/C++ Tools: Programming Guide

 Examples Using _Optlink

MOV EAX, Z ; Load lexically first conforming
; parameter into EAX

SUB ESP, 4 ; Allocate stack space for the first
; general-purpose register parameter.

PUSH addr y ; Push hidden first parameter (address of
 ; return space)
 CALL BAR

Stack Just After Call General-Purpose Registers Just After Call

 │ │ ┌────────┬────┬───┐
│ caller's Local │ EAX │ z │

 ├─────────────────────┤ ├────────┼────┼───┤
│ Blank Slot for q │ EBX │ caller's EBX │

 ├─────────────────────┤ ├────────┼────┼───┤
│ x.c │ ECX │ undefined │

 ├─────────────────────┤ ├────────┼────┼───┤
│ x.b │ EDX │ undefined │

 ├─────────────────────┤ ├────────┼────┴───┤
 │ x.a │ EDI │ caller's EDI │
 ├─────────────────────┤ ├────────┼────────┤

│ Blank Slot for z │ ESI │ caller's ESI │
 ├─────────────────────┤ └────────┴────────┘

│ Hidden Ret Val Addr │
 ├─────────────────────┤
 │ caller's EIP │
ESP─────► │ │
 └─────────────────────┘

80387 Register Set Just After Call

 ┌──────────────────┐
 ST(7) │ Empty │
 ├──────────────────┤
 ST(6) │ Empty │
 ├──────────────────┤
 ST(5) │ Empty │
 ├──────────────────┤
 ST(4) │ Empty │
 ├──────────────────┤
 ST(3) │ Empty │
 ├──────────────────┤
 ST(2) │ Empty │
 ├──────────────────┤
 ST(1) │ Empty │
 ├──────────────────┤

ST(0) │ fvar [(float)q] │
 └──────────────────┘

 Chapter 14. Calling Conventions 255

 Examples Using _Optlink

Callee's prolog code:

PUSH EBP ; Save caller's EBP
MOV EBP, ESP ; Set up callee's EBP
SUB ESP, 12 ; Allocate callee's Local

; = sizeof(struct s_tag)
PUSH EBX ; Save preserved registers -
PUSH EDI ; will optimize to save
PUSH ESI ; only registers callee uses

256 IBM C/C++ Tools: Programming Guide

 Examples Using _Optlink

Stack After Prolog Register Set After Prolog

 │ │ ┌─────────┬────┬────┐
 │ caller's Local │ EAX │ lvar│(z) │
 ├─────────────────────┤ ├─────────┼────┼────┤

│ Blank Slot for q │ EBX │ caller's EBX │
 ├─────────────────────┤ ├─────────┼────┼────┤

│ x.c │ ECX │ undefined │
 ├─────────────────────┤ ├─────────┼────┼────┤

│ x.b │ EDX │ undefined │
 ├─────────────────────┤ ├─────────┼────┴────┤

│ x.a │ EDI │ caller's EDI │
 ├─────────────────────┤ ├─────────┼─────────┤

│ Blank Slot for z │ ESI │ caller's ESI │
 ├─────────────────────┤ └─────────┴─────────┘

│ Hidden Ret Val Addr │
├─────────────────────┤ The term undefined
│ caller's EIP │ in registers ECX and EDX
├─────────────────────┤ refers to the fact that they
│ caller's EBP │ can be safely overwritten by
├─────────────────────┤ the code in bar.

 │ │
 . .
 . callee's Local .

. . 80387 Register Set Just After Call
 │ │
 ├─────────────────────┤ ┌────────────────────┐
 │ Saved EBX │ ST(7) │ Empty │
 ├─────────────────────┤ ├────────────────────┤
 │ Saved EDI │ ST(6) │ Empty │
 ├─────────────────────┤ ├────────────────────┤
 │ Saved ESI │ ST(5) │ Empty │
ESP─────► ├─────────────────────┤ ├────────────────────┤
 ST(4) │ Empty │
 ├────────────────────┤
 ST(3) │ Empty │
 ├────────────────────┤
 ST(2) │ Empty │
 ├────────────────────┤
 ST(1) │ Empty │
 ├────────────────────┤

ST(0) │ fvar [(float)q] │
 └────────────────────┘

 Chapter 14. Calling Conventions 257

 Examples Using _Optlink

Callee's code:

temp.a = lvar + aggr.a + 23;
temp.b = fvar - aggr.b;
temp.c = aggr.c

 return temp;

 ADD EAX, 23 ;
ADD EAX, [EBP + 16] ; Calculate temp.a
MOV [EBP - 12], EAX ;

FSUB DWORD_PTR [EBP + 20] ; Calculate temp.b
FSTP DWORD_PTR [EBP - 8] ;

MOV EAX, [EBP + 24] ; Calculate temp.c
MOV [EBP - 4], EAX ;

MOV EAX, [EBP + 8] ; Load hidden parameter (address
; of return value storage). Useful
; both for setting return value
; and for returning address in EAX.

MOV EBX, [EBP - 12] ; Return temp by copying its contents
MOV [EAX], EBX ; to the return value storage
MOV EBX, [EBP - 8] ; addressed by the hidden parameter.
MOV [EAX + 4], EBX ; String move instructions would be
MOV EBX, [EBP - 4] ; faster above a certain threshold
MOV [EAX + 8], EBX ; size of returned aggregate.

258 IBM C/C++ Tools: Programming Guide

 Examples Using _Optlink

POP ESI ; Begin Epilog by restoring
 POP EDI ; preserved registers.
 POP EBX

MOV ESP, EBP ; Deallocate callee's local
POP EBP ; Restore caller's EBP
RET ; Return to caller

Stack After Epilog General-Purpose Registers After Epilog

 │ │ ┌──────────┬────┬──────┐
│ caller's Local │ EAX │ Addr of Return Value │

 ├───────────────────┤ ├──────────┼────┼──────┤
│ Blank Slot for q │ EBX │ caller's EBX │

 ├───────────────────┤ ├──────────┼────┼──────┤
│ x.c │ ECX │ undefined │

 ├───────────────────┤ ├──────────┼────┼──────┤
│ x.b │ EDX │ undefined │

 ├───────────────────┤ ├──────────┼────┴──────┤
│ x.a │ EDI │ caller's EDI │

 ├───────────────────┤ ├──────────┼───────────┤
│ Blank Slot for z │ ESI │ caller's ESI │

 ├───────────────────┤ └──────────┴───────────┘
│ Hidden Return │

 │ Value Address │
ESP─────► └───────────────────┘

80387 Register Set After Epilog

 ┌──────────────────┐
 ST(7) │ Empty │
 ├──────────────────┤
 ST(6) │ Empty │
 ├──────────────────┤
 ST(5) │ Empty │
 ├──────────────────┤
 ST(4) │ Empty │
 ├──────────────────┤
 ST(3) │ Empty │
 ├──────────────────┤
 ST(2) │ Empty │
 ├──────────────────┤
 ST(1) │ Empty │
 ├──────────────────┤
 ST(0) │ Empty │
 └──────────────────┘

 Chapter 14. Calling Conventions 259

 Examples Using _Optlink

Caller's code just after call:

ADD ESP, 24 ; Remove parameters from stack
... ; Because address of y was given as the

; hidden parameter, the assignment of the
; return value has already been performed.

Stack After Cleanup General-Purpose Registers After Cleanup

 │ │ ┌──────────┬────┬──────┐
│ caller's Local │ EAX │ Addr of Return Value │

 ESP─────► └─────────────────┘ ├──────────┼────┼──────┤
 EBX │ caller's EBX │
 ├──────────┼────┼──────┤

80387 Register Set After Cleanup ECX │ undefined │
 ├──────────┼────┼──────┤
 ┌─────────────────┐ EDX │ undefined │

ST(7) │ Empty │ ├──────────┼────┴──────┤
 ├─────────────────┤ EDI │ caller's EDI │

ST(6) │ Empty │ ├──────────┼───────────┤
 ├─────────────────┤ ESI │ caller's ESI │

ST(5) │ Empty │ └──────────┴───────────┘
 ├─────────────────┤

ST(4) │ Empty │
 ├─────────────────┤

ST(3) │ Empty │
 ├─────────────────┤

ST(2) │ Empty │
 ├─────────────────┤

ST(1) │ Empty │
 ├─────────────────┤

ST(0) │ Empty │
 └─────────────────┘

If a y.a = bar(x).b construct is used instead of the more common y =

bar(x) construct, the address of the return value is available in EAX. In

this case, the address of the return value (hidden parameter) would

| point to a temporary variable allocated by the compiler in the automatic

| storage of the caller.

260 IBM C/C++ Tools: Programming Guide

 Examples Using _Optlink

Passing and Returning Aggregates by Value to an
Unprototyped Routine
This example differs from the previous one by the presence of an

eyecatcher after the call to bar in the caller's code and the code

necessary to perform the default widening rules required by ANSI.

struct s_tag {
 long a;
 float b;
 long c;

} x, y;
 long z;
 double q;

/\ Actual Call \/
y = bar(z, x, q);

 ...

/\ callee \/
struct s_tag bar(long lvar, struct s_tag aggr, float fvar)

 {
struct s_tag temp;

temp.a = lvar + aggr.a + 23;
temp.b = fvar - aggr.b;
temp.c = aggr.c

 return temp;
 }

 Chapter 14. Calling Conventions 261

 Examples Using _Optlink

Caller's code up until call:

FLD QWORD_PTR q ; Load lexically first floating-point
; parameter to be converted

SUB ESP, 8 ; Allocate space for the floating-point
 ; register parameter

PUSH x.c ; Push nonconforming parameters on
 PUSH x.b ; stack
 PUSH x.a ;

MOV EAX, z ; Load lexically first
 ; conforming parameter
 ; into EAX

SUB ESP, 4 ; Allocate stack space for the first
; general-purpose register parameter.

PUSH addr y ; Push hidden first parameter (address of
 ; return space)
 CALL BAR
 TEST EAX, 00408000h ; Eyecatcher

ADD ESP, 28 ; Clean up parameters

262 IBM C/C++ Tools: Programming Guide

 Examples Using _Optlink

Stack Just After Call General-Purpose Registers Just After Call

 │ │ ┌─────────┬────┬────┐
│ caller's Local │ EAX │ z │

 ├─────────────────────┤ ├─────────┼────┼────┤
 │ Two Blank │ EBX │ caller's EBX │

├─ ── ── ── ── ── ── ─┤ ├─────────┼────┼────┤
│ Dwords for q │ ECX │ Garbage │

 ├─────────────────────┤ ├─────────┼────┼────┤
│ x.c │ EDX │ Garbage │

 ├─────────────────────┤ ├─────────┼────┴────┤
│ x.b │ EDI │ caller's EDI │

 ├─────────────────────┤ ├─────────┼─────────┤
│ x.a │ ESI │ caller's ESI │

 ├─────────────────────┤ └─────────┴─────────┘
│ Blank Slot for z │

 ├─────────────────────┤
│ Hidden Ret Val Addr │ 80387 Register Set Just After Call

 ├─────────────────────┤
 │ caller's EIP │ ┌───────────────────┐
ESP─────► └─────────────────────┘ ST(7) │ Empty │
 ├───────────────────┤

ST(6) │ Empty │
 ├───────────────────┤

ST(5) │ Empty │
 ├───────────────────┤

ST(4) │ Empty │
 ├───────────────────┤

ST(3) │ Empty │
 ├───────────────────┤

ST(2) │ Empty │
 ├───────────────────┤

ST(1) │ Empty │
 ├───────────────────┤

ST(0) │ fvar [(float)q] │
 └───────────────────┘

 Chapter 14. Calling Conventions 263

 _System Calling Convention

_System Calling Convention

To use this linkage convention, you must use the _System keyword in

the declaration of the function, specify the /Ms option when you invoke

| the compiler, or for C files only, explicitly give a #pragma linkage

directive.

| Notes:

| 1. Because the C/C++ Tools library functions use the _Optlink

| convention, if you use the /Ms option, you must include all

| appropriate library header files to ensure the functions are called

| with the correct convention.

| 2. C++ member functions use the _Optlink convention. You cannot

| change the calling convention for member functions.

The following rules apply to the _System calling convention:

� All parameters are passed on the 80386 stack.

� The C parameter-passing convention is followed, where parameters

are pushed onto the stack in right-to-left order.

� The calling function is responsible for removing parameters from

the stack.

� All parameters are doubleword (4-byte) aligned.

� The size of the parameter list is passed in AL. If the parameter list

is greater than 255 doublewords, the value contained in AL is the 8

least significant bits of the size. You can use the __parmdwords

function (described in the C Library Reference) to access the value

| of AL that was passed to the function.

� All functions returning non-floating-point values pass a return value

back to the caller in EAX. Functions returning floating-point values

use the floating-point stack ST(0). Aggregate return values, such

as structures, are passed as a hidden parameter on the stack, and

EAX points to them on return.

� All functions preserve the general purpose registers of the caller,

except for ECX, EDX, and EAX.

� Structures passed by value are actually copied onto the stack, not

passed by reference.

264 IBM C/C++ Tools: Programming Guide

 Examples Using the _System Convention

� The floating-point stack is defined to be empty upon entry to a

called function, and has either a single item in ST(0) if there is a

floating-point return, or is empty if there is not a floating-point

return.

� The direction flag must be clear upon entry to functions and clear

on exit from functions. The state of the other flags is ignored on

entry to a function, and undefined on exit.

� The compiler will not change the contents of the floating-point

control register. If you want to change the control register contents

for a particular operation, save the contents before making the

changes and restore them after the operation.

Examples Using the _System Convention
The following examples are included for purposes of illustration and

clarity only and have not been optimized. The examples assume that

you are familiar with programming in assembler. Note that, in the

examples, the stack grows toward the bottom of the page, and ESP

always points to the top of the stack.

For the call

m = func(a,b,c);

a, b, and c are 32-bit integers and func has two local variables, x and y

(both 32-bit integers).

 Chapter 14. Calling Conventions 265

 Examples Using the _System Convention

The stack for the call to func would look like this:

 Stack
 │ │
 ├────────────────────────┤ Higher Memory
 │ c │
 ├────────────────────────┤
 │ b │
 ├────────────────────────┤
 │ a │
 ├────────────────────────┤
 │ caller's EIP │
 ├────────────────────────┤
 │ caller's EBP │
 EBP ───────► ├────────────────────────┤
 │ x │
 ├────────────────────────┤
 │ y │
 ├────────────────────────┤ ◄─┐
 │ Saved EDI │ │

├────────────────────────┤ │ These would only be
│ Saved ESI │ │ pushed if they were
├────────────────────────┤ │ used in this function.

 │ Saved EBX │ │
 ESP ───────► ├────────────────────────┤ ◄─┘
 │ │ Lower Memory

The instructions used to create this activation record on the stack look

like this on the calling side:

 PUSH c
 PUSH b
 PUSH c
 MOV AL, 3H
 CALL func
 .
 .

ADD ESP, 12 ; Cleaning up the parameters
 .
 .
 MOV m, EAX
 .
 .

266 IBM C/C++ Tools: Programming Guide

 Examples Using the _System Convention

For the callee, the code looks like this:

func PROC
 PUSH EBP

MOV EBP, ESP ; Allocating 8 bytes of storage
SUB ESP, 8 ; for two local variables.
PUSH EDI ; These would only be
PUSH ESI ; pushed if they were used
PUSH EBX ; in this function.

 .
 .

MOV EAX, [EBP - 8] ; Load y into EAX
MOV EBX, [EBP + 12] ; Load b into EBX

 .
 .

XOR EAX, EAX ; Zero the return value
POP EBX ; Restore the saved registers

 POP ESI
 POP EDI

LEAVE ; Equivalent to MOV ESP, EBP
 ; POP EBP
 RET
func ENDP

The saved register set is EBX, ESI, and EDI. The other registers (EAX,

ECX, and EDX) can have their contents changed by a called routine.

Floating-point results are returned in ST(0) (the top of the floating-point

register stack). If there is no numeric coprocessor installed in the

system, the OS/2 operating system emulates the coprocessor.

Floating-point parameters are pushed on the 80386 stack.

Under some circumstances, the compiler will not use EBP to access

automatic and parameter values, thus increasing the efficiency of the

application. Whether it is used or not, EBP will not change across the

call.

 Chapter 14. Calling Conventions 267

 Examples Using the _System Convention

When passing structures as value parameters, the compiler generates

code to copy the structure on to the 80386 stack. If the size of the

structure is larger than an 80386 page size (4K), the compiler

generates code to copy the structure backward. (That is, the last byte

in the structure is the first to be copied.) This operation ensures that

the OS/2 guard page method of stack growth will function properly in

the presence of large structures being passed by value. Refer to

“Controlling Stack Allocation and Stack Probes” on page 67 for more

information on stack growth.

Structures are not returned on the stack. The caller pushes the

address where the returned structure is to be placed as a lexically first

hidden parameter. A function that returns a structure must be aware

that all parameters are 4 bytes farther away from EBP than they would

be if no structure return were involved. The address of the returned

structure is returned in EAX.

In the most common case, where the return from a function is simply

assigned to a variable, the compiler merely pushes the address of the

| variable as the hidden parameter.4 For example:

struct test_tag
 {
 int a;
 int some_array[100];
 } test_struct;

struct test_tag test_function(struct test_tag test_parm)
{

test_parm.a = 42;
 return test_parm;
}

int main(void)
{

test_struct = test_function(test_struct);
 return test_struct.a;
}

| 4 Note that, if this function calls the __parmdwords function, the value of AL is stored in a temporary variable in its

| prolog. This is done to ensure that the value cannot change before the call to __parmdwords.

268 IBM C/C++ Tools: Programming Guide

 Examples Using the _System Convention

| The code generated for this program would be:

test_function PROC
 PUSH ESI
 PUSH EDI

MOV DWORD PTR [ESP+0cH], 02aH ; test_parm.a
MOV EAX, [ESP+08H] ; Get the target of the return value

 MOV EDI, EAX ; Value
 LEA ESI, [ESP+0cH] ; test_parm
 MOV ECX, 065H
 REP MOVSD
 POP EDI
 POP ESI
 RET
test_function ENDP

 PUBLIC main
main PROC
 PUSH EBP
 MOV EBP, ESP
 PUSH ESI
 PUSH EDI

SUB ESP, 0194H ; Adjust the stack pointer
 MOV EDI, ESP

MOV ESI, OFFSET FLAT: test_struct
 MOV ECX, 065H

REP MOVSD ; Copy the parameter
 MOV AL, 065H

PUSH OFFSET FLAT: test_struct ; Push the address of the target
 CALL test_function
 ADD ESP, 0198H

MOV EAX, DWORD PTR test_struct ; Take care of the return
 POP EDI ; from main
 POP ESI
 LEAVE
 RET
main ENDP

 Chapter 14. Calling Conventions 269

 Examples Using the _System Convention

In a slightly different case, where only one field of the structure is used

by the caller (as shown in the following example), the compiler allocates

sufficient temporary storage in the caller's local storage area on the

stack to contain a copy of the structure. The address of this temporary

storage will be pushed as the target for the return value. Once the call

is completed, the desired member of the structure can be accessed as

an offset from EAX, as can be seen in the code generated for the

example:

struct test_tag
 {
 int a;
 int some_array[100];
 } test_struct;

struct test_tag test_function(struct test_tag test_parm)
{

test_parm.a = 42;
 return test_parm;
}

int main(void)
{
 return test_function(test_struct).a;
}

| The code generated for this example would be:

 PUBLIC main
main PROC
 PUSH EBP
 MOV EBP, ESP

SUB ESP, 0194H ; Allocate space for compiler-generated
 PUSH ESI ; temporary variable

270 IBM C/C++ Tools: Programming Guide

 Examples Using the _System Convention

 PUSH EDI
 SUB ESP, 0194H
 MOV EDI, ESP

MOV ESI, OFFSET FLAT: test_struct
 MOV ECX, 065H
 REP MOVSD
 LEA EAX, [ESP+019cH]
 PUSH EAX
 MOV AL, 065H
 CALL test_function
 ADD ESP, 0198H

MOV EAX, [EAX] ; Note the convenience of having the
POP EDI ; address of the returned structure

 POP ESI ; in EAX
 LEAVE
 RET
main ENDP

 Chapter 14. Calling Conventions 271

 Examples Using the _Pascal Convention

| _Pascal and _Far32 _Pascal Calling Conventions

| The C/C++ Tools compiler provides both a _Pascal and a _Far32

| _Pascal convention. The _Far32 _Pascal convention allows you to

| make calls between different code segments in code that runs at ring 0,

| and is only valid when the /Gr+ option is specified. The _Pascal

| conventions are most commonly used to create virtual device drivers,

| as described in Chapter 15, “Developing Virtual Device Drivers” on

| page 281.

| Note: These _Pascal linkage conventions should not be confused with

| the 16-bit _Far16 _Pascal convention which is provided for 16-bit

| compatibility.

| The _Pascal and _Far32 _Pascal conventions follow the same rules as

| the _System convention with these exceptions:

| � Function names are converted to uppercase.

| � Parameters are pushed in a left-to-right lexical order.

| � The callee is responsible for cleaning up the parameters.

| � Variable argument functions are not supported.

| � The size of the parameter list is not passed in AL.

| Important: The compiler does not convert 16-bit or 32-bit _Pascal

| function names to uppercase. The case of the function name in the call

| must match the case in the function prototype. Function names are

| however converted to uppercase in the object module to allow calls

| from assembler.

| Examples Using the _Pascal Convention
| The following examples are included for purposes of illustration and

| clarity only and have not been optimized. The examples assume that

| you are familiar with programming in assembler. Note that, in the

| examples, the stack grows toward the bottom of the page, and ESP

| always points to the top of the stack.

272 IBM C/C++ Tools: Programming Guide

 Examples Using the _Pascal Convention

| For the call

| m = func(a,b,c);

| a, b, and c are 32-bit integers, and func has two local variables, x and y

| (both 32-bit integers).

| The stack for the call to func would look like this:

| Stack
| │ │
| ├────────────────────────┤ Higher Memory
| │ a │
| ├────────────────────────┤
| │ b │
| ├────────────────────────┤
| │ c │
| ├────────────────────────┤
| │ caller's EIP │
| ├────────────────────────┤
| │ caller's EBP │
| EBP ───────► ├────────────────────────┤
| │ x │
| ├────────────────────────┤
| │ y │
| ├────────────────────────┤ ◄─┐
| │ Saved EDI │ │
| ├────────────────────────┤ │ These would only be
| │ Saved ESI │ │ pushed if they were
| ├────────────────────────┤ │ used in this function.
| │ Saved EBX │ │
| ESP ───────► ├────────────────────────┤ ◄─┘
| │ │ Lower Memory

 Chapter 14. Calling Conventions 273

 Examples Using the _Pascal Convention

| The instructions used to build this activation record on the stack look

| like this on the calling side:

| PUSH a
| PUSH b
| PUSH c
| CALL FUNC
| .
| .
| .
| MOV m, EAX
| .
| .

| For the callee, the code looks like this:

| FUNC PROC
| PUSH EBP
| MOV EBP, ESP ; Allocating 8 bytes of storage
| SUB ESP, 8 ; for two local variables.
| PUSH EDI ; These would only be
| PUSH ESI ; pushed if they were used
| PUSH EBX ; in this function.
| .
| .
| MOV EAX, [EBP - 8] ; Load y into EAX
| MOV EBX, [EBP + 12] ; Load b into EBX
| .
| .

274 IBM C/C++ Tools: Programming Guide

 Examples Using the _Pascal Convention

| XOR EAX, EAX ; Zero the return value
| POP EBX ; Restore the saved registers
| POP ESI
| POP EDI
| LEAVE ; Equivalent to MOV ESP, EBP
| ; POP EBP
| RET 0CH
| FUNC ENDP

| Like the _System calling convention, the saved register set is EBX, ESI,

| and EDI. The other registers (EAX, ECX, and EDX) can have their

| contents changed by a called routine.

| Floating-point results are returned in ST(0). If there is no numeric

| coprocessor installed in the system, the OS/2 operating system

| emulates the coprocessor. Floating-point parameters are pushed on

| the 80386 stack.

| _Far32 _Pascal function pointers are returned with the offset in EAX

| and the segment in DX.

| In some circumstances, the compiler will not use EBP to access

| automatic and parameter values, thus increasing the efficiency of the

| application. Whether it is used or not, EBP will not change across the

| call.

| Structures are handled in the same way as they are under the _System

| calling convention. When passing structures as value parameters, the

| compiler generates code to copy the structure on to the 80386 stack. If

| the size of the structure is larger than an 80386 page size (4K), the

| compiler generates code to copy the structure backward. (That is, the

| last byte in the structure is the first to be copied.)

| Structures are not returned on the stack. The caller pushes the

| address where the returned structure is to be placed as a lexically first

| hidden parameter. A function that returns a structure must be aware

| that all parameters are 4 bytes farther away from EBP than they would

| be if no structure return were involved. The address of the returned

| structure is returned in EAX.

 Chapter 14. Calling Conventions 275

 Examples Using the _Pascal Convention

| In the most common case, where the return from a function is simply

| assigned to a variable, the compiler merely pushes the address of the

| variable as the hidden parameter. For example:

| struct test_tag {
| int a;
| int some_array[100];
| } test_struct;

| struct test_tag test_function(struct test_tag test_parm)
| {
| test_parm.a = 42;
| return test_parm;
| }

| int main(void)
| {
| test_struct = test_function(test_struct);
| return test_struct.a;
| }

| The code generated for the above example would be:

| TEST_FUNCTION PROC
| PUSH EBP
| MOV EBP, ESP
| PUSH ESI
| PUSH EDI
| MOV DWORD PTR [ESP+0cH], 02aH ; test_parm.a
| MOV EAX, [EBP+08H] ; Get the target of the return value
| MOV EDI, EAX ; Value
| LEA ESI, [EBP+0cH] ; test_parm

276 IBM C/C++ Tools: Programming Guide

 Examples Using the _Pascal Convention

| MOV ECX, 065H
| REP MOVSD
| POP EDI
| POP ESI
| LEAVE
| RET 198H
| TEST_FUNCTION ENDP

| PUBLIC main
| main PROC
| PUSH EBP
| MOV EBP, ESP
| PUSH ESI
| PUSH EDI

| SUB ESP, 0194H ; Adjust the stack pointer
| MOV EDI, ESP
| MOV ESI, OFFSET FLAT: test_struct
| MOV ECX, 065H
| REP MOVSD ; Copy the parameter
| PUSH OFFSET FLAT: test_struct ; Push the address of the target
| CALL TEST_FUNCTION

| MOV EAX, DWORD PTR test_struct ; Take care of the return
| POP EDI ; from main
| POP ESI
| LEAVE
| RET
| main ENDP

 Chapter 14. Calling Conventions 277

 Examples Using the _Pascal Convention

| In a slightly different case, where only one field of the structure is used

| by the caller (as shown in the following example), the compiler allocates

| sufficient temporary storage in the caller's local storage area on the

| stack to contain a copy of the structure. The address of this temporary

| storage will be pushed as the target for the return value. Once the call

| is completed, the desired member of the structure can be accessed as

| an offset from EAX, as can be seen in the code generated for the

| example:

| struct test_tag {
| int a;
| int some_array[100];
| } test_struct;

| struct test_tag test_function(struct test_tag test_parm)
| {
| test_parm.a = 42;
| return test_parm;
| }

| int main(void)
| {
| return test_function(test_struct).a;
| }

| The code generated for the example would be:

| PUBLIC main
| main PROC
| PUSH EBP
| MOV EBP, ESP
| SUB ESP, 0194H ; Allocate space for compiler-generated
| PUSH ESI ; temporary variable

278 IBM C/C++ Tools: Programming Guide

 Examples Using the _Pascal Convention

| PUSH EDI
| SUB ESP, 0194H
| MOV EDI, ESP
| MOV ESI, OFFSET FLAT: test_struct
| MOV ECX, 065H
| REP MOVSD
| LEA EAX, [ESP+0194H]
| PUSH EAX
| CALL TEST_FUNCTION
| MOV EAX, [EAX] ; Note the convenience of having the
| POP EDI ; address of the returned structure
| POP ESI ; in EAX
| LEAVE
| RET
| main ENDP

 Chapter 14. Calling Conventions 279

 Examples Using the _Pascal Convention

280 IBM C/C++ Tools: Programming Guide

 Developing Device Drivers

| Chapter 15. Developing Virtual Device Drivers

| The C/C++ Tools compiler provides a number of features specifically for

| virtual device driver development. This chapter describes those

| features and discusses the issues you should be aware of when

| developing virtual device drivers. Note that support for developing

| virtual device drivers is available for C programs only.

| Virtual device drivers (VDDs) provide virtual hardware support for DOS

| and DOS applications. They emulate input/output port and device

| memory operations. To achieve a certain level of hardware

| independence, a virtual device driver usually communicates with a

| physical device driver to interact with hardware. For example, the OS/2

| operating system provides both virtual and physical device drivers for

| the mouse and keyboard.

| User-supplied virtual device drivers simulate the hardware interfaces of

| an option adapter or device, and are usually used to migrate existing

| DOS applications into the OS/2 DOS environment.

| A virtual device driver is essentially a DLL. It is responsible for

| presenting a virtual copy of the hardware resource to the DOS session

| and for coordinating physical access to that resource.

| You may need to create a virtual device driver if multiple sessions must

| share access to a device where the input and output is not based on

| file handles, or if the particular device requires that interrupts be

| serviced within a short period of time.

| For more information about virtual device drivers and how to create

| them, see the Virtual Device Driver Reference from the OS/2 2.0

| Technical Library (10G3356). There is also a sample virtual device

| driver program included in the Toolkit.

 Copyright IBM Corp. 1992, 1993 281

 Creating Ring Zero Code

| Creating Code to Run at Ring Zero

| Most object code runs at ring 3. However, some object code, such as

| that for virtual device drivers and operating systems, must run at ring 0.

| To generate code to run at ring 0, use the /Gr+ option. Note that to

| use /Gr+, you must also specify the /Rn option and use the subsystem

| libraries.

| When you use the /Gr+ option, the compiler keeps track of which

| storage references are to the stack segment and which references are

| to the data segment, and ensures that the generated code is correct for

| these operations. This tracking is necessary because at ring 0, the

| stack segment and data segment may not be the same. (At ring 3,

| they are the same.)

| In some cases, the compiler cannot tell whether the reference is to the

| stack or data segment. Usually the reason is that the control flow of

| the program allows for either possibility, depending on which path

| through the program is taken at run time. For this reason, when you

| take the address of a stack-based variable (such as a local variable or

| parameter), you cannot safely pass the address to another function. In

| addition, you cannot safely store a stack address and a static or

| external address in the same variable, and subsequently de-reference

| the pointer created by the operation.

| Whenever you take the address of a stack-based variable, the compiler

| generates a warning message that the address might be used in an

| unsafe way. This message is not generated if you specify /Gr-.

| If your VDD contains any functions that are called from 16-bit physical

| device drivers, you must compile them with the /Gv+ option to ensure

| the DS and ES registers are handled correctly. These two registers

| contain the selector for a 16-bit data segment. Using /Gv+ ensures that

| DS and ES are saved on entry to an external function, set to the

| selector for DGROUP, and then restored on exit from the function.

282 IBM C/C++ Tools: Programming Guide

 _Far32 _Pascal Function Pointers

| Note: When you use /Gv+, if you also use the intermediate code linker

| (with the /Fw+ or /Ol+ option), only use the /Gu+ option if the functions

| affected by /Gv+ are explicitly exported. If they are not exported, do

| not use the /Gu+ option. Because of this restriction, using the

| intermediate code linker for this type of program may not greatly

| improve the optimization of your code.

| Using Virtual Device Driver Calling Conventions

| If you are building a VDD in C, you must use 32-bit _Pascal or _Far32

| _Pascal calling conventions to call the Virtual Driver Help interfaces or

| communicate with physical device drivers. These calling conventions

| are not supported for C++ programs. Within a VDD, you can use the

| _Optlink convention in most cases. Private interfaces between

| physical and virtual device drivers can use any calling convention

| provided both device drivers support it.

| The _Far32 _Pascal calling convention is only available for code

| running at ring 0. It allows you to make calls between code segments

| with different selectors. It also allows your VDDs to communicate with

| physical device drivers.

| You can specify the calling convention using either the _Pascal and

| _Far32 _Pascal keywords or the #pragma linkage directive. The

| description of the implementation of the _Pascal calling conventions is

| in “_Pascal and _Far32 _Pascal Calling Conventions” on page 272.

| Using _Far32 _Pascal Function Pointers

| The C/C++ Tools compiler provides special 48-bit function pointers so

| you can make indirect calls to 32-bit functions that use th _Far32

| _Pascal convention. The _Far32 _Pascal pointers are required to build

| VDDs and similar applications that run at ring 0. For example, you

| would use 48-bit pointers to allow your VDD to communicate with

| physical device drivers.

| The _Far32 _Pascal pointers, like the _Far32 _Pascal calling

| convention, are only supported when the /Gr+ option is specified.

 Chapter 15. Developing Virtual Device Drivers 283

 _Far32 _Pascal Function Pointers

| The 48-bit pointer consists of 2 fields:

| 1. A 16-bit selector value which identifies the code segment

| 2. A 32-bit offset value which identifies the function's location in the

| segment.

| To declare a 48-bit pointer, use the _Far32 and _Pascal keywords in

| the pointer declaration. For example:

| void (\ _Far32 _Pascal foo)(int);

| declares foo to be a 48-bit pointer to a function with the _Far32 _Pascal

| convention that takes an integer argument and does not return a value.

| The only operations that can be performed on or with a _Far32 _Pascal

| pointer are:

| � Calling the function.

| � Assigning the pointer, which includes casting it to a 32-bit function

| pointer or to an integer or unsigned type.

| � Initializing the pointer, either statically or at runtime, with the

| address of a _Far32 _Pascal or 32-bit function, or with an integer or

| unsigned value.

| � Comparing two pointers for equality or inequality. Like all function

| pointers, 48-bit pointers cannot be compared using relational

| operators.

| � Passing the pointer as a parameter or returning it from a function.

| 48-bit pointers are passed in the same way as aggregates. The

| offset portion is returned in EAX and the segment portion in DX.

| If you assign an integer or unsigned value to a 48-bit pointer, the

| selector field of the pointer is set to the default CODE32 segment, and

| the offset field is initialized to the integer value being assigned. This

| type of assignment is not generally useful, because you cannot know

| where a function will reside in a code segment, and because if your

| code segment is CODE32, a 32-bit function pointer is sufficient.

| Note: _Far32 _Pascal pointers cannot be directly converted to _Far16

| pointers.

284 IBM C/C++ Tools: Programming Guide

 VDD Module Definition Files

| Creating a Module Definition File

| When you link your VDD, you must use a module definition (.DEF) file.

| The first statement in the file must be

| VIRTUAL DEVICE device_name

| where device_name specifies the name of the VDD. The file cannot

| contain a NAME statement.

| Once you have created your device driver, you must place a DEVICE

| statement in your CONFIG.SYS file to ensure it is treated as a device

| by the operating system.

| For more details on .DEF file statements, see the Toolkit online Tools

| Reference. For additional information on writing and building device

| drivers, see the online Control Program Reference and the Technical

| Library Virtual Device Driver Reference.

 Chapter 15. Developing Virtual Device Drivers 285

 VDD Module Definition Files

286 IBM C/C++ Tools: Programming Guide

 Calling Between 32-Bit and 16-Bit Code

Chapter 16. Calling Between 32-Bit and 16-Bit Code

This chapter discusses how to call 16-bit code from your 32-bit

C/C++ Tools programs and how to call back to your program from the

16-bit code. If you have applications that depend on APIs or

subroutines that are only available as 16-bit code, or have developed or

purchased libraries of routines that are currently 16-bit code, you will

need to call this 16-bit code from C/C++ Tools code.

| Note: The C/C++ Tools compiler produces 32-bit code only. It does

| not produce 16-bit code.

This chapter describes the 16-bit calling conventions supported by the

C/C++ Tools product, as well as how to share and pass pointers and

| data between 32-bit and 16-bit code. The conventions and methods

| described apply for both C and C++ programs.

Note: Before calling 16-bit object modules, you must know the calling

convention that object code uses and use the same convention.

| You can statically link between 32-bit and 16-bit code with the following

| restrictions:

| � The main function must be 32-bit code.

| � You cannot make any calls to 16-bit library functions in the 16-bit

| code.

| � You must compile the 16-bit code with the /ND option (with a 16-bit

| compiler).

| These restrictions do not apply when you dynamically link 32-bit code to

| 16-bit DLLs.

 Copyright IBM Corp. 1992, 1993 287

 Calling Between 32-Bit and 16-Bit Code

Declaring 16-Bit Functions

There are three calling conventions for calling 16-bit code:

 � _Far16 _Cdecl

 � _Far16 _Fastcall

 � _Far16 _Pascal

The _Far16 _Cdecl and _Far16 _Pascal conventions are equivalent to

the cdecl and pascal conventions used in the IBM C/2* and Microsoft**

C Version 6.0 compilers. The _Far16 _Fastcall convention is

equivalent to the Microsoft C Version 6.0 fastcall convention.

For details on how these calling conventions work and how they differ

from each other, see “Understanding 16-Bit Calling Conventions” on

page 297.

You can specify the calling convention for a function using linkage

keywords or, in C programs only, the #pragma linkage directive. For

example, the following fragment uses keywords to declare the function

dave as a 16-bit function using the _Far16 _Pascal calling convention:

int _Far16 _Pascal dave(short, char\);

Note: It is good programming practice to include a prototype for 16-bit

functions, but it is not necessary.

You can also specify the stack size for 16-bit code using the #pragma

stack16 directive. For example, the following directive sets the stack

size to 8192 bytes (8K):

 #pragma stack16(8192)

The default stack size is 4096 bytes (4K). This size is used for all

16-bit functions called after the #pragma directive until the end of the

| compilation unit, or until another #pragma stack16 is encountered. Note

| that the 16-bit stack is allocated from the 32-bit stack, so you must

| ensure that the 32-bit stack is large enough for both your 32-bit and

| 16-bit code.

For more information on #pragma linkage, #pragma stack16, and the

linkage keywords, see the Online Language Reference.

288 IBM C/C++ Tools: Programming Guide

 Declaring Pointers with _Seg16

Declaring Segmented Pointers

Because pointers have a different format in 16-bit code than they do in

32-bit code, sharing or passing them between 32-bit and 16-bit code

requires certain actions. Use the _Seg16 type qualifier to declare

external pointers that will be shared between 32-bit and 16-bit code,

that is, that are declared in both. For example:

char \ _Seg16 p16;

directs the compiler to store the pointer as a segmented pointer (with a

16-bit selector and 16-bit offset) that can be used directly by a 16-bit

application. You can also use this pointer in a 32-bit program; the

C/C++ Tools compiler automatically converts it to a flat 32-bit pointer

when necessary.

Note: The _Seg16 keyword comes after the asterisk in the declaration,

as required by ANSI syntax rules. Programmers familiar with

the IBM C/2 and Microsoft C Version 6.0 compilers may be

used to placing the far keyword in their declarations, but to the

left of the asterisk:

char far \ x;

Because this syntax is contrary to ANSI binding rules, the

C/C++ Tools product does not support it.

Not all pointers passed to 16-bit functions need to be qualified with

_Seg16. If the pointer is passed to the function as a member of an

aggregate or an array, you must qualify it with _Seg16. The _Seg16

keyword is also required if you are using two or more levels of

indirection (for example, a pointer to a pointer). If the pointer is passed

directly as a parameter, the compiler automatically converts it to a

16-bit pointer and the _Seg16 keyword is not required. However, if your

pointers are used primarily as parameters to 16-bit functions and are

not used extensively in your 32-bit code, it may be advantageous to

declare them with _Seg16.

Use the _Seg16 qualifier only when necessary. Because of the

conversions that are performed whenever a _Seg16 pointer is used in

32-bit code, unnecessary use of segmented pointers can cause a

noticeable degradation in the performance of your application.

 Chapter 16. Calling Between 32-Bit and 16-Bit Code 289

 Declaring Objects with #pragma seg16

Declaring Shared Objects

Because a 16-bit program cannot access a data item that is larger than

64K in size or that spans a 64K boundary in memory, any data items

that are to be shared between 16-bit and 32-bit programs must conform

to these limits. Use the #pragma seg16 directive to ensure that shared

data items do not cross 64K boundaries. In most cases, you need only

use this #pragma directive with items that are likely to cross 64K

boundaries, such as aggregates, doubles, and long doubles.

You can use #pragma seg16 either with the data item directly or through

a typedef. The following code fragment shows both ways of using

#pragma seg16:

struct family {
 long john;
 double carolynn;

char \ _Seg16 geoff;
 long colleen;
 };

#pragma seg16(cat)
struct family cat; /\ cat is qualified directly \/

typedef struct family tom; ▌1▐

#pragma seg16(tom) ▌2▐

tom edna; /\ edna is qualified using a typedef \/ ▌3▐

Note: Using #pragma seg16 on variables of type struct family does

not mean that pointers inside the structure will automatically be qualified

with _Seg16. If you want the pointers to be qualified as such, you must

declare them yourself.

The #pragma seg16 directive can be used either before or after the

variable or typedef name is declared. In the case of the typedef,

however, the #pragma must be attached to the typedef name before

that name is used in another declaration. For example, in the

preceding example, the lines marked ▌1▐ and ▌2▐ can appear in any

order, but both must appear before the line marked ▌3▐.

290 IBM C/C++ Tools: Programming Guide

 Converting Structures

Because data objects used in 16-bit programs must be smaller than

64K in size, the #pragma seg16 directive cannot be used on objects

greater than 64K.

 Converting Structures
If a structure will be referenced in both 32-bit and 16-bit code and

contains bit-fields or members of type int or enum, you may have to

rewrite the structure to ensure that all members align properly.

16-bit compilers define type int with a different size than the

C/C++ Tools compiler. To ensure all integers map the same way,

change your integer declarations to use short for 2-byte integers and

long for 4-byte integers.

The size of type enum also differs between compilers. For example, the

C/2 compiler makes all enum types 2 bytes, while the C/C++ Tools

compiler defines the size as 1, 2, or 4 bytes, depending on the range of

| values the enumeration contains. You can use the /Su option to force

| the C/C++ Tools compiler to make the size of an enum type 1, 2, or 4

| bytes, or to use the SAA rules that make all enum variables the size of

| the smallest integral type that can contain all variables.

| Bit fields are also mapped differently by different compilers. The

| C/C++ Tools compiler stores bit fields in the smallest number of bytes

| large enough to hold them. For a description of the C/C++ Tools

| bit-field mapping and alignment, see 399.

You may also need to pack your structures. See Appendix C,

“Mapping” on page 385 for details of how the C/C++ Tools compiler

aligns structure members. If the mapping performed by your 16-bit

compiler differs, declare your structures as packed in both your 32-bit

and 16-bit code.

 Chapter 16. Calling Between 32-Bit and 16-Bit Code 291

 Callbacks from 16-Bit Code

Compiler Option for 16-Bit Declarations
The C/C++ Tools compiler also provides the /Gt compiler option to

enable data to be shared between 32-bit and 16-bit code. When you

compile a program with /Gt+, an implicit #pragma seg16 directive is

performed for all variable declarations. Pointers are not implicitly

qualified with _Seg16; you must qualify them if desired.

| The /Gt+ option also defines special versions of the malloc family of

| functions that return memory that can be safely used by 16-bit code.

When /Gt+ is specified, all calls to calloc, malloc, realloc, and free

| are mapped to _tcalloc, _tmalloc, _trealloc, and _tfree respectively.

These functions work exactly like the original functions, but the memory

allocated or freed is guaranteed not to cross 64K boundaries, allowing

the objects declared to be used in 16-bit programs. This memory is

also called tiled memory. Tiled memory is limited to 512M per process.

Note: When you use the /Gt+ option, data items larger than 64K in

size will be aligned on 64K boundaries, but will also cross 64K

boundaries.

Calling Back to 32-Bit Code from 16-Bit Code

Some 16-bit applications require that calling applications register

callback functions. For example, IBM Communications Manager

requires callback functions to handle certain events. When you call

these 16-bit applications from 32-bit code, you can pass a pointer to a

32-bit function that will act as the callback function.

The 32-bit callback function must use the _Far16 _Cdecl or _Far16

_Pascal calling convention. The _Far16 _Fastcall convention is not

| supported for callback functions. All pointer parameters must be

| qualified with the _Seg16 type qualifier.

The C/C++ Tools compiler performs all necessary changes from the

16-bit to the 32-bit environment on entry to the callback function, and

| from 32-bit to 16-bit on exit. Note that callback functions can only be

| called indirectly.

292 IBM C/C++ Tools: Programming Guide

 Restrictions on 16-Bit Calls

Restrictions on 16-Bit Calls and Callbacks
� A function calling a 16-bit routine performs maintenance on its own

stack to ensure that the stack will not cross a 64K boundary within

the 16-bit routine. When the function has a variable-length

argument list or no prototype statements, this stack maintenance

does not occur, and the stack may cross 64K boundaries within the

16-bit routine. It is therefore unsafe to pass the address of a

parameter or automatic variable to 16-bit code from one of these

functions.

� The compiler ensures that no parameters or automatic variables of

a function calling 16-bit code cross a 64K boundary. Any

parameters or automatic variables of functions that do not call

16-bit code may cross 64K boundaries. Passing the address of the

parameters or automatic variables to functions that pass them on to

16-bit code will result in an unreliable program.

To work around this problem, copy the value passed into an

automatic variable in the function that calls the 16-bit code. This

automatic variable will not cross a 64K boundary.

� Memory returned by _alloca will not be tiled. If a function contains

a call to _alloca, it should not also call 16-bit code, because

parameters and automatic variables may then cross 64K

boundaries.

� A 16-bit program cannot pass structures by value to a 32-bit

callback function. The callback function cannot return structures by

value to the 16-bit program that called it.

� The parameter area of the callback function cannot be larger than

120 bytes.

 Chapter 16. Calling Between 32-Bit and 16-Bit Code 293

 Example of Calling a 16-Bit Program

Example of Calling a 16-Bit Program
The sample program SAMPLE04 shows how to call 16-bit code from a

32-bit program, and also how to call back to a 32-bit function from a

16-bit routine. The 16-bit code is placed in two DLLs, one of which is

bound to the 32-bit program at load time by using IMPLIB to build an

import library. The other is bound at run time using OS/2 APIs. When

the program is run, it prints a stanza from a poem.

Although the source for the 16-bit routines is included in SAMPLE04 for

demonstration purposes, the mechanisms used to call the routines can

also be applied when the 16-bit source is not available.

Important: To compile, link, and run this example, you must have the

IBM C/2 or Microsoft C Version 6.0 16-bit compiler installed, and its

main directory must be included in the PATH statement of your

CONFIG.SYS file.

The files for the sample program are:

SAMPLE04.C The source file for the 32-bit program

SAMPLE04.H The user include file

SAMPLE04.DEF The module definition file for the 32-bit program

SAMP04A.C The source file for the first 16-bit DLL (bound at load

time)

SAMP04A.DEF The module definition file for the first 16-bit DLL

SAMP04B.C The source file for the second 16-bit DLL (bound at run

time)

SAMP04B.DEF The module definition file for the second 16-bit DLL.

294 IBM C/C++ Tools: Programming Guide

 Example of Calling a 16-Bit Program

| The 32-bit main program (SAMPLE04.C):

| � Makes direct calls to the 16-bit functions plugh1 and plugh2, which

| are both defined in the 16-bit DLL bound at load time (the source

| for which is SAMP04A.C).

| � Demonstrates a callback function. The 32-bit user function xyzzy is

| passed to the 16-bit plugh3 routine (defined in SAMP04A.C) with the

| intent that the 16-bit routine will then call the user function. The

| xyzzy function is declared using a 16-bit calling convention and is

| called from the 16-bit DLL, but it is run as a 32-bit function.

| � Uses OS/2 APIs to load the runtime DLL (the source for which is

| SAMP04B.C) and query the address of the function plugh4. The

| program then calls plugh4 using the function pointer returned by the

| API.

| If you installed the sample programs, these files are found in the

| SAMPLES\SAMPLE04 directory under the main C/C++ Tools directory.

| Two make files that build the sample are also provided, MAKE04S for

| static linking and MAKE04D for dynamic linking.

| Note: You must have the Toolkit installed to use the make files.

| To compile and link this sample program, at the prompt in the

| SAMPLES\SAMPLE04 directory, use NMAKE with the appropriate

| make file. For example:

| nmake all /f MAKE04D

 Chapter 16. Calling Between 32-Bit and 16-Bit Code 295

 Example of Calling a 16-Bit Program

| To compile and link the program yourself, use the following commands:

| To run the program, enter SAMPLE04.

Command Description

cl -c -Alfu -G2s SAMP04A.C Compiles the first 16-bit

program. The options used

are:

-c Compile only.

-Alfu Use large memory

model.

-G2s Use 80286

instructions; turn

stack probes off.

link /MAP /NOI /NOD

SAMP04A,SAMP04A.DLL,SAMP04A,llibcdll

os2286,SAMP04A

Links the first 16-bit program

to create a DLL. The link

options are:

/MAP Create a map file.

/NOI Do not ignore case.

/NOD Do not use default

library names.

cl -c -Alfu -G2s SAMP04B.C Compiles the second 16-bit

program.

link /MAP /NOI /NOD

SAMP04B,SAMP04B.DLL,SAMP04B,LLIBCDLL

OS2286,SAMP04B

Links the second 16-bit

program to create a DLL.

icc /C SAMPLE04.C Compiles the 32-bit program.

The /C option specifies

compile only.

LINK386 /MAP /NOI /PM:vio

SAMPLE04,,SAMPLE04,SAMP04A,SAMPLE04

Links the 32-bit program to

create an executable module

that is also linked to the

SAMP04A.DLL.

296 IBM C/C++ Tools: Programming Guide

 16-Bit Calling Conventions

Understanding 16-Bit Calling Conventions

There are three 16-bit calling conventions supported by the

C/C++ Tools compiler: _Far16 _Cdecl, _Far16 _Fastcall, and _Far16

_Pascal. This section explains how these conventions work and how

they differ from each other.

Similarities between the 16-Bit Conventions
The general rules for all three 16-bit calling conventions are:

� Types char, unsigned char, short, and unsigned short occupy a

word on the stack.

� Types long and unsigned long occupy a doubleword with the

value's high-order word pushed first.

� Types float, double, and long double are passed directly on the

80386 stack as 32-, 64-, and 80-bit values respectively.

� char types are sign-extended when expanded to word or

doubleword size; unsigned char types are zero-extended on the

stack.

� Far pointers are 32 bits and are pushed such that the segment

value is pushed first and the offset second.

� If the argument is a structure, the last word is pushed first and each

successive word is pushed until the first word.

� All arrays are passed by reference.

� BP, SI, and DI registers must be preserved across the call.

� Segment registers must be preserved across the call.

� Structures passed on the stack are rounded up in size to the next

word boundary.

� The direction flag must be clear on entry and exit.

 Chapter 16. Calling Between 32-Bit and 16-Bit Code 297

 16-Bit Calling Conventions

� Return values are passed back to the caller as follows:

– Types char, unsigned char, short, and unsigned short are

returned in AX.

– Types long and unsigned long are returned such that the high

word is in DX and the low word is in AX.

– Far pointers are returned such that the offset is in AX and the

selector is in DX.

Differences between the 16-Bit Conventions
When you use the _Far16 _Cdecl calling convention, the parameters

are pushed on the stack in a right-to-left order. The caller cleans up

the parameters on the stack. This is the opposite of the _Far16

_Pascal and _Far16 _Fastcall conventions. When you use the _Far16

_Pascal convention, the parameters are pushed on the stack from left

to right, and the callee (the function being called) cleans up the stack

(usually by using a RET nn where nn is the number of bytes in the

parameter list).

The _Far16 _Fastcall convention differs from _Far16 _Cdecl and

_Far16 _Pascal in that it uses three registers that can take parameters,

similar to _Optlink. When you use _Far16 _Fastcall, registers are

assigned to variable types as follows:

� Types char and unsigned char are stored in AL, DL, and BL.

� Types short and unsigned short are stored in AX, DX, and BX.

� Types long and unsigned long are stored such that the high word

is in DX and the low word is in AX.

� All other types are passed on the stack.

Arguments are stored in the first available register allocated for their

type. If all registers for that type are filled, the argument is pushed on

the 80386 stack from left to right.

298 IBM C/C++ Tools: Programming Guide

 Return Values from 16-Bit Calls

Another difference is the method of returning structures, unions, and

floating-point types. For _Far16 _Cdecl and _Far16 _Pascal, all three

types are returned with the address returned like a far pointer; that is,

the value is in storage. The _Far16 _Pascal convention passes a

hidden parameter, while _Far16 _Cdecl has a static area. This means

that the _Far16 _Cdecl convention is nonreentrant, and should not be

used in multithread programs. See “Return Values from 16-Bit Calls”

for more details on how values are returned from 16-bit calls.

When you use the _Far16 _Fastcall convention, structures and unions

are returned with the address returned like a near pointer. Like _Far16

| _Pascal, _Far16 _Fastcall passes the address as a hidden parameter.

Floating-point types are returned in ST(0).

Return Values from 16-Bit Calls
The following examples demonstrate how the C/C++ Tools compiler

expects values to be returned from calls to 16-bit programs.

Note: This is the same way that the IBM C/2 and Microsoft C Version

6.0 compilers return values.

� char cdecl myfunc(double,float,struct x);

char pascal myfunc(double,float,struct x);

char fastcall myfunc(double,float,struct x);

unsigned char cdecl myfunc(double,float,struct x);

unsigned char pascal myfunc(double,float,struct x);

unsigned char fastcall myfunc(double,float,struct x);

The returned value is placed in AL.

� short cdecl myfunc(double,float,struct x);

short pascal myfunc(double,float,struct x);

short fastcall myfunc(double,float,struct x);

The returned value is placed in AX.

� long cdecl myfunc(double,float,struct x);

long pascal myfunc(double,float,struct x);

long fastcall myfunc(double,float,struct x);

The high word is in DX, and the low word is in AX.

 Chapter 16. Calling Between 32-Bit and 16-Bit Code 299

 Return Values from 16-Bit Calls

� float cdecl myfunc(double, float, struct x);

double cdecl myfunc(double, float, struct x);

long double cdecl myfunc(double, float, struct x);

The compiler does not provide a hidden parameter, but rather

places the return value in an external static variable __fac, which is

defined as a QWORD. On return, DX contains the selector and AX

contains the offset of __fac.

For functions with type long double cdecl, the returned value is

placed in ST(0).

� float pascal myfunc(double,float,struct x);

double pascal myfunc(double,float,struct x);

long double pascal myfunc(double,float,struct x);

The compiler reserves space in automatic storage for the return

value and pushes (last) a pointer to this area (offset only, SS is

always assumed). The callee stores the return value in this area

and returns the offset of this area in AX and returns SS in DX.

� float fastcall myfunc(double,float,struct x);

double fastcall myfunc(double,float,struct x);

long double fastcall myfunc(double,float,struct x);

The returned value is placed in ST(0).

� char far \ cdecl myfunc(double,float,struct x);

char far \ pascal myfunc(double,float,struct x)

char far \ fastcall myfunc(double,float,struct x)

Far pointers are returned such that the offset is in AX and the

selector is in DX.

� struct_20_bytes cdecl myfunc(double,float,struct x)

The compiler reserves sizeof(struct_20_bytes) in uninitialized

static (BSS) for the callee. No hidden parameter is passed; the

callee moves the return structure into this static reserved area and

returns the offset of the structure in AX and the selector in DX.

300 IBM C/C++ Tools: Programming Guide

 Return Values from 16-Bit Calls

� struct_20_bytes pascal myfunc(double,float,struct x)

struct_20_bytes fastcall myfunc(double,float,struct x)

The compiler reserves space for the return value in the caller's

automatic storage and pushes the address of this area as a near

pointer (SS will be assumed as the selector). This parameter is

pushed last as a hidden parameter. The offset of the reserved

space is returned in AX, and the selector (SS) is returned in DX.

� struct_4_bytes cdecl myfunc(double,float,struct x)

struct_4_bytes fastcall myfunc(double,float,struct x)

The compiler returns the contents of the structure in AX and DX.

AX contains the lower 2 bytes, and DX the higher 2 bytes.

– If the structure is packed and its size is 1 byte, AL is used.

– If the structure's size is 2 bytes, AX is used.

– If the structure is packed and its size is 3 bytes, space is

reserved in the data segment, the offset is returned in AX, and

the selector is returned in DX.

� struct_4_bytes pascal myfunc(double,float,struct x)

The compiler reserves space for the return value in the caller's

automatic storage and pushes the address of this area as a near

pointer (SS will be assumed as the selector). This parameter is

pushed last as a hidden parameter. The offset of the reserved

space is returned in AX, and the selector (SS) is returned in DX.

� char cdecl myfunc(double,float,struct x)

char pascal myfunc(double,float,struct x)

char fastcall myfunc(double,float,struct x)

unsigned char cdecl myfunc(double,float,struct x)

unsigned char pascal myfunc(double,float,struct x)

unsigned char fastcall myfunc(double,float,struct x)

The returned value is placed in AL.

 Chapter 16. Calling Between 32-Bit and 16-Bit Code 301

 Return Values from 16-Bit Calls

302 IBM C/C++ Tools: Programming Guide

 Developing Subsystems

 Chapter 17. Developing Subsystems

A subsystem is a collection of code and/or data that can be shared

across processes and that does not use the C/C++ Tools runtime

environment. This chapter describes how to create a subsystem.

A subsystem may have code and data segments that are shared by all

processes, or it may have separate segments for each process. If the

subsystem is a DLL, there is also an initialization routine associated

with it.

By default, the C/C++ Tools compiler creates a runtime environment for

you using C or C++ initializations, exception management, and

termination. This environment allows runtime functions to perform

input/output and other services. However, many applications require no

runtime environment and must be written as subsystems. For example,

you will want to turn off the runtime environment support to:

� Develop Presentation Manager display or printer drivers

| � Develop virtual device drivers

� Develop installable file system drivers

� Create DLLs with global initialization/termination and a single

automatic data segment that is shared by all processes. The

initialization/termination function is called only once when the DLL is

first loaded and when it is last freed.

 Copyright IBM Corp. 1992, 1993 303

 Subsystem Library Functions

Creating a Subsystem

To create a subsystem, you must first create one or more source files

| as you would for any other program. Subsystems can be written in C

| or C++. No special file extension is required.

When you do not use the runtime environment, you must provide your

own initialization functions, multithread support, exception handling, and

termination functions. You can use OS/2 APIs. For more information

on the OS/2 APIs, see the Toolkit documentation.

If you need to pass parameters to a subsystem executable module, the

argv and argc command-line parameters to main are supported.

However, you cannot use the envp parameter to main.

Subsystem Library Functions
The libraries DDE4NBS.LIB and DDE4NBS.DLL are provided

specifically for subsystem development. Use DDE4NBS.LIB for static

linking, and DDE4NBS.DLL for dynamic linking. The import library

DDE4NBSI.LIB is also provided for dynamic linking. You can also use

the DDE4NBSO.LIB library to create your own subsystem runtime DLL.

See “Creating Your Own Subsystem Runtime Library DLLs” on

page 313 for more information on creating subsystem runtime DLLs.

Those C/C++ Tools library functions that require a runtime environment

cannot be used in a subsystem. The subsystem libraries contain the

library functions that do not require a runtime environment, including the

extensions that allow low-level I/O. No other I/O functions are provided.

| Note: The C++ I/O Stream Library is also available for subsystem

| development, as are the C++ runtime functions (new and delete) and

| exception handling functions (throw, try and catch). The Collection

| and User Interface class libraries are not available for subsystem

| development.

304 IBM C/C++ Tools: Programming Guide

 Subsystem Library Functions

The functions available in the subsystem libraries are:

Notes:

1. The subsystem library versions of these functions do not use the

locale information that the standard library versions use.

2. Note that atexit and _onexit are not provided.

3. You must write your own exception handler when using these

functions in a subsystem.

4. When you use these functions in a subsystem, \n will be translated

to \r\n and DosWrite will be used to write the contents of the buffer

to stdout. There is no serialization protection and no multibyte

support. These functions use only the default "C" locale

information.

5. These functions are implemented as macros.

abs

_access

_alloca

atof

atoi1

atol1

bsearch

calloc

_chmod

_chsize

_clear87

_close

_control87

_creat

div

_dup

_dup2

__eof

exit2

_filelength

_fpreset

free

_heapmin

_isatty

_itoa

labs

ldiv

longjmp3

_lseek

_ltoa

malloc

memchr

memcmp

memcpy

memmove

memset

_open

printf4

qsort

_read

realloc

remove

rename

setjmp3

_setmode

_sopen

sprintf4

sscanf4

_status87

strcat

strchr

strcmp

strcpy

strcspn

strdup

strlen

strncat

strncmp

strncpy

strpbrk

strrchr

strspn

strstr

strtol

strtoul

_tell

_ultoa

_umask

_unlink

va_arg5

va_end5

va_start5

vprintf4

vsprintf4

_write

 Chapter 17. Developing Subsystems 305

 Subsystem DLLs

Calling Conventions for Subsystem Functions
When creating a subsystem, you can use either the _System or

_Optlink convention for your functions. Any external functions that will

be called from programs not compiled by the C/C++ Tools compiler

must use the _System convention.

You can use the /Mp or /Ms options to specify the calling convention for

all functions in a program, or you can use linkage keywords or the

#pragma linkage directive to specify the convention for individual

functions.

| Note: The #pragma linkage directive is supported for C programs only.

Building a Subsystem DLL

To create a subsystem DLL, you can follow the same steps for building

a DLL that uses the runtime environment, as described in Chapter 12,

“Building Dynamic Link Libraries” on page 195. The _DLL_InitTerm

function provided in the subsystem libraries differs from the runtime

version.

The initialization and termination entry point for all DLLs is the

_DLL_InitTerm function. In the C runtime environment, _DLL_InitTerm

initializes and terminates the necessary environment for the DLL,

including storage, semaphores, and variables. The version provided in

the subsystem libraries defines the entry point for the DLL, but provides

no initialization or termination functions.

If your subsystem DLL requires any initialization or termination, you will

need to create your own _DLL_InitTerm function. Otherwise, you can

use the default version.

306 IBM C/C++ Tools: Programming Guide

 Subsystem DLLs

Writing Your Own Subsystem _DLL_InitTerm Function
The prototype for the _DLL_InitTerm function is:

unsigned long _System _DLL_InitTerm(unsigned long modhandle,
unsigned long flag);

If the value of the flag parameter is 0, the DLL environment is

initialized. If the value of the flag parameter is 1, the DLL environment

is ended.

The modhandle parameter is the module handle assigned by the

operating system for this DLL. The module handle can be used as a

parameter to various OS/2 API calls. For example,

DosQueryModuleName can be used to return the fully qualified path name

of the DLL, which tells you where the DLL was loaded from.

The return code from _DLL_InitTerm tells the loader if the initialization

or termination was performed successfully. If the call was successful,

_DLL_InitTerm returns a nonzero value. A return code of 0 indicates

that the function failed. If a failure is indicated, the loader will not load

the program that is accessing the DLL.

Because it is called by the operating system loader, the _DLL_InitTerm

function must be declared as having the _System calling convention.

| You do not need to call _CRT_init and _CRT_term in your

| _DLL_InitTerm function, because there is no runtime environment to

| initialize or terminate. However, if you are coding in C++, you do need

| to call __ctordtorInit at the beginning of _DLL_InitTerm to correctly

| initialize static constructors and destructors, and __ctordtorTerm at the

| end to correctly terminate them.

| If you change your DLL at a later time to use the regular runtime

| libraries, you must add calls to _CRT_init and _CRT_term, as described

| in “Writing Your Own _DLL_InitTerm Function” on page 209, to ensure

| that the runtime environment is correctly initialized.

 Chapter 17. Developing Subsystems 307

 Subsystem DLLs

Example of a Subsystem _DLL_InitTerm Function
The following figure shows the _DLL_InitTerm function for the sample

program SAMPLE05. In the sample program, this function is included

in the SAMPLE05.C source file. You could also make your _DLL_InitTerm

| function a separate file. Note that this figure shows only a fragment of

| SAMPLE05.C and not the entire source file.

/\ _DLL_InitTerm() - called by the loader for DLL
initialization/termination \/
/\ This function must return a non-zero value if successful and a zero value \/
/\ if unsuccessful. \/

unsigned long _DLL_InitTerm(unsigned long hModule, unsigned long ulFlag)
 {
 APIRET rc;

/\ If ulFlag is zero then initialization is required: \/
/\ If the shared memory pointer is NULL then the DLL is being loaded \/
/\ for the first time so acquire the named shared storage for the \/
/\ process control structures. A linked list of process control \/
/\ structures will be maintained. Each time a new process loads this \/
/\ DLL, a new process control structure is created and it is inserted \/
/\ at the end of the list by calling DLLREGISTER. \/

 /\ \/
/\ If ulFlag is 1 then termination is required: \/
/\ Call DLLDEREGISTER which will remove the process control structure \/
/\ and free the shared memory block from its virtual address space. \/

switch(ulFlag)
 {
 case 0:

if (!ulProcessCount)
 {

Figure 22 (Part 1 of 2). _DLL_InitTerm Function for SAMPLE05

308 IBM C/C++ Tools: Programming Guide

 Subsystem DLLs

/\ Create the shared mutex semaphore. \/

if ((rc = DosCreateMutexSem(SHARED_SEMAPHORE_NAME,
 &hmtxSharedSem,
 0,

FALSE)) != NO_ERROR)
 {

printf("DosCreateMutexSem rc = %lu\n", rc);
 return 0;
 }
 }

/\ Register the current process. \/

if (DLLREGISTER())
 return 0;

 break;

 case 1:
/\ De-register the current process. \/

if (DLLDEREGISTER())
 return 0;

 break;

 default:
 return 0;
 }

/\ Indicate success. Non-zero means success!!!
\/

 return 1;
 }

Figure 22 (Part 2 of 2). _DLL_InitTerm Function for SAMPLE05

 Chapter 17. Developing Subsystems 309

 Example of a Subsystem DLL

Compiling Your Subsystem

To compile your source files into a subsystem, use the /Rn compiler

option. When you use this option, the compiler does not generate the

external references that would build an environment. The subsystem

libraries are also specified in each object file to be linked in at link time.

The default compiler option is /Re, which creates an object with a

runtime environment.

If you are creating a subsystem DLL, you must use the /Ge- option in

addition to /Rn.

You can use either static linking (/Gd-), which is the default, or dynamic

linking (/Gd+).

Restrictions When You Are Using Subsystems

If you are creating an executable module, the envp parameter to main is

not supported. However, the argv and argc parameters are available.

See “Passing Data to a Program” on page 139 for a description of envp

under the runtime environment.

The low-level I/O functions allow you to perform some input and output

operations. You are responsible for the buffering and formatting of I/O.

Example of a Subsystem DLL

The sample program SAMPLE05 shows how to create a simple

subsystem DLL and a program to access it.

The DLL keeps a global count of the number of processes that access

it, running totals for each process that accesses the subsystem, and a

grand total for all processes. There are two external entry points for

programs accessing the subsystem. The first is DLLINCREMENT, which

increments both the grand total and the total for the calling process by

the amount passed in. The second entry point is DLLSTATS, which prints

out statistics kept by the subsystem, including the grand total and the

total for the current process.

310 IBM C/C++ Tools: Programming Guide

 Example of a Subsystem DLL

The grand total and the total for the process are stored in a single

shared data segment of the subsystem. Each process total is stored in

its own data segment.

The files for the sample program are:

SAMPLE05.C The source file to create the DLL.

SAMPLE05.DEF The module definition file for the DLL.

SAMPLE05.H The user include file.

MAIN05.C The main program that accesses the subsystem.

MAIN05.DEF The module definition file for MAIN05.C.

| If you installed the sample programs, these files are found in the

| SAMPLE\SAMPLE05 directory under the main C/C++ Tools directory.

| Two make files that build the sample are also provided, MAKE05S for

| static linking and MAKE05D for dynamic linking.

| Note: You must have the Toolkit installed to use the make files.

| To compile and link this sample program, at the prompt in the

| SAMPLES\SAMPLE05 directory, use NMAKE with the appropriate

| make file. For example:

| nmake all /f MAKE05S

 Chapter 17. Developing Subsystems 311

 Example of a Subsystem DLL

To compile and link the program yourself, use the following commands:

To run the program:

1. Copy the subsystem DLL to a directory that is specified in the

LIBPATH statement of your CONFIG.SYS file.

2. Start the main program in one or more different OS/2 sessions by

entering the command

 MAIN05

3. Enter 1 to increment the counts or 2 to print the statistics in any

process that you have started. Repeat this step as often as you

want.

4. Enter x in each OS/2 session to terminate each process.

Command Description

icc /O+ /Rn /Ge- SAMPLE05.C SAMPLE05.DEF Compiles and links

SAMPLE05.C using the default

options and:

� Turning optimization on

(/O+)

� Using subsystem libraries

(/Rn)

� Creating a DLL (/Ge-).

icc /O+ MAIN05.C MAIN05.DEF Compiles and links MAIN05.C

using the default options and

turning optimization on.

Note: Because MAIN05.C

calls getchar, it must be

compiled using the regular

runtime libraries.

312 IBM C/C++ Tools: Programming Guide

 Creating Subsystem Runtime Library DLLs

Creating Your Own Subsystem Runtime Library DLLs

| If you are shipping your application to other users, you can use one of

| two methods to make the C/C++ Tools subsystem library functions

| available to the users of your application:

| 1. Statically bind every module to the library (.LIB) files.

| This method increases the size of your modules and also slows the

| performance because the DLL environment has to be initialized for

| each module.

| 2. Create your own runtime DLLs.

| This method provides one common DLL environment for your entire

| application. It also lets you apply changes to the runtime library

| without relinking your application, meaning that if the C/C++ Tools

| DLLs change, you need only rebuild your DLL.

| To create your own subsystem runtime library, follow these steps:

| 1. Copy and rename the C/C++ Tools DDE4NBS.DEF file, for

| example to mysdll.def. You must also change the DLL name on

| the LIBRARY line of the .DEF file. DDE4NBS.DEF is installed in the

| LIB subdirectory under the main C/C++ Tools installation directory.

| 2. Remove any functions you do not use directly or indirectly from

| your .DEF file, including the STUB line. Do not delete anything with

| the comment \\\\ next to it; variables and functions indicated by

| this comments are always required because they are called by

| startup functions.

 Chapter 17. Developing Subsystems 313

 Creating Subsystem Runtime Library DLLs

| 3. Create a source file for your DLL, for example, mysdll.c. If you are

| creating a runtime library that contains only C/C++ Tools functions,

| create an empty source file. If you are adding your own functions

| to the library, put the code for them in this file.

| 4. Compile and link your DLL files. Use the /Ge- option to create a

| DLL and the /Rn option to create a subsystem. For example:

| icc /Ge- /Rn mysdll.c mysdll.def

| 5. Use the IMPLIB utility from the Toolkit to create an import library for

| your DLL, as described in “Using Your DLL” on page 205. For

| example:

| IMPLIB /NOI mysdlli.lib mysdll.def

| 6. Use the WorkFrame/2 LIB utility to add the object modules that

| contain the initialization and termination functions to your import

| library. These objects are needed by all executable modules and

| DLLs, are contained in DDE4NBSO.LIB for subsystem programs.

| See the WorkFrame/2 online documentation for information on how

| to use LIB.

| Note: If you do not use the WorkFrame/2 LIB utility, you must

| ensure that all objects that access your runtime DLL are statically

| linked to the appropriate object library. The compile and link

| commands are described in the next step.

| 7. Compile your executable modules and other DLLs with the /Gn+

| option to exclude the default library information. For example:

| icc /C /Gn+ /Ge+ /Rn myprog.c
| icc /C /Gn+ /Ge- /Rn mydll.c

| When you link your objects, specify your own import library. If you

| are using or plan to use OS/2 APIs, specify OS2386.LIB also. For

| example:

| LINK386 myprog.obj,,, mysdlli.lib OS2386.LIB
| LINK386 mydll.obj,,, mysdlli.lib OS2386.LIB

| To compile and link in one step, use the commands:

| icc /Gn+ /Ge+ /Rn myprog.c mysdlli.lib OS2386.LIB
| icc /Gn+ /Ge- /Rn mydll.c mysdlli.lib OS2386.LIB

314 IBM C/C++ Tools: Programming Guide

 Creating Subsystem Runtime Library DLLs

| Note: If you did not use the WorkFrame/2 LIB utility to add the

| initialization and termination objects to your import library,

| when you link your modules, specify:

| a. DDE4NBSO.LIB

| b. Your import library

| c. OS2386.LIB (to allow you to use OS/2 APIs)

| d. The linker option /NOD.

| For example:

| LINK386 /NOD myprog.obj,,,DDE4NBSO.LIB mysdlli.lib OS2386.LIB;
| LINK386 /NOD mydll.obj,,,DDE4NBSO.LIB mysdlli.lib OS2386.LIB;

| The /NOD option tells the linker to disregard the default

| libraries specified in the object files and use only the

| libraries given on the command line. If you are using icc to

| invoke the linker for you, the commands would be:

| icc /B"/NOD" /Rn myprog.c DDE4NBSO.LIB mysdlli.lib OS2386.LIB
| icc /Ge- /B"/NOD" /Rn mydll.c DDE4NBSO.LIB mysdlli.lib OS2386.LIB

| The linker then links the objects from the object library

| directly into your executable module or DLL.

 Chapter 17. Developing Subsystems 315

 Creating Subsystem Runtime Library DLLs

316 IBM C/C++ Tools: Programming Guide

Chapter 18. Signal and OS/2 Exception Handling

| The C/C++ Tools product and the OS/2 operating system both have the

| capability to detect and report runtime errors and abnormal conditions.

| Abnormal conditions can be reported to you and handled in one of the

| following ways:

| 1. Using C/C++ Tools signal handlers. Error handling by signals is

| defined by the SAA and ANSI C standards and can be used in both

| C and C++ programs.

| 2. Using OS/2 exception handlers. The C/C++ Tools library provides

| a C-language OS/2 exception handler, _Exception, to map OS/2

| exceptions to C signals and signal handlers. You can also create

| and use your own exception handlers.

| 3. Using C++ exception handling constructs. These constructs belong

| to the C++ language definition and can only be used in C++ code.

| C++ exception handling is described in detail in the Online

| Language Reference.

| This chapter describes how to use signal handlers and OS/2 exception

| handlers alone and in combination. Where appropriate, the interaction

| between C++ exception handling and the handling of signals and OS/2

| exceptions is also described. Both signal and OS/2 exception handling

| are implemented in C++ as they are in C. OS/2 exceptions and

| exception handlers are also described in the Toolkit documentation.

| Note: The terms signal, OS/2 exception, and C++ exception are not

| interchangeable. A signal exists only within the C and C++ languages.

| An OS/2 exception is generated by the operating system, and may be

| used by the C/C++ Tools library to generate a signal. A C++ exception

| exists only within the C++ language. In this chapter, the term exception

| refers to an OS/2 exception unless otherwise specified.

 Copyright IBM Corp. 1992, 1993 317

 Handling Signals

 Handling Signals

Signals are C and C++ language constructs provided for error handling.

A signal is a condition reported as a result of an error in program

execution. It may also be caused by deliberate programmer action.

| With the C/C++ Tools product, operating system exceptions are

| mapped to signals for you. The C/C++ Tools product provides a

number of different symbols to differentiate between error conditions.

The signal constants are defined in the <signal.h> header file.

C provides two functions that deal with signal handling in the runtime

environment: raise and signal. Signals can be reported by an explicit

call to raise, but are generally reported as a result of a machine

interrupt (for example, division by zero), of a user action (for example,

pressing Ctrl-C or Ctrl-Break), or of an operating system exception.

Use the signal function to specify how to handle a particular signal.

For each signal, you can specify one of 3 types of handlers:

 1. SIG_DFL

Use the C/C++ Tools default handling. For most signals, the

default action is to terminate the process with an error message.

| SeeFigure 23 on page 320 for a list of signals and the default

action for each. If the /Tx+ option is specified, the default action

can be accompanied by a dump of the machine state to file handle

2, which is usually associated with stderr. Note that you can

change the destination of the machine-state dump and other

messages using the _set_crt_msg_handle function, which is

described in the C Library Reference.

 2. SIG_IGN

Ignore the condition and continue running the program. Some

signals cannot be ignored, such as division by zero. If you specify

SIG_IGN for one of these signals, the C/C++ Tools library will treat

the signal as if SIG_DFL was specified.

318 IBM C/C++ Tools: Programming Guide

 Default Signal Handling

3. Your own signal handler function

Call the function you specify. It can be any function, and can call

any library function. Note that when the signal is reported and your

function is called, signal handling is reset to SIG_DFL to prevent

recursion should the same signal be reported from your function.

The initial setting for all signals is SIG_DFL, the default action.

The signal and raise functions are described in more detail in the C

Library Reference.

Default Handling of Signals

The runtime environment will perform default handling of a given signal

unless a specific signal handler is established or the signal is disabled

(set to SIG_IGN). You can also set or reset default handling by coding:

 signal(sig, SIG_DFL);

The default handling depends upon the signal that is being handled.

| For most signals, the default is to pass the signal to the next exception

| handler in the chain (the chaining of exception handlers is described in

| “Registering an OS/2 Exception Handler” on page 344). Unless you

| have set up your own exception handler, as described in “Creating Your

| Own OS/2 Exception Handler” on page 334, the default OS/2 exception

| handler receives the signal and performs the default action, which is to

| terminate the program and return an exit code. The exit code indicates:

| 1. The reason for the program termination. See DosExecPgm in the

| Toolkit online Control Program Reference for the possible values

| and meanings of the termination code.

| 2. The return code from DosExit. See the Toolkit online Control

| Program Reference for the DosExit return codes.

 Chapter 18. Signal and OS/2 Exception Handling 319

 Default Signal Handling

The following table lists the C signals that the C/C++ Tools runtime

library supports, the source of the signal, and the default handling

performed by the library.

Figure 23 (Page 1 of 2). Default Handling of Signals

Signal Source Default Action

SIGABRT Abnormal termination signal

sent by the abort function

Terminate the program with

exit code 3.

SIGBREAK Ctrl-Break signal| Pass the signal to the next

| exception handler in the

| chain. If the exception

| handler is the OS/2 handler,

| the program terminates.

SIGFPE Floating-point exceptions

that are not masked5, such

as overflow, division by

| zero, integer math

| exceptions, and operations

that are not valid

| Pass the signal to the next

| exception handler in the

| chain. If the exception

| handler is the OS/2 handler,

| the program terminates.

SIGILL Disallowed instruction| Pass the signal to the next

| exception handler in the

| chain. If the exception

| handler is the OS/2 handler,

| the program terminates.

SIGINT Ctrl-C signal| Pass the signal to the next

| exception handler in the

| chain. If the exception

| handler is the OS/2 handler,

| the program terminates.

SIGSEGV Attempt to access a

memory address that is not

valid

| Pass the signal to the next

| exception handler in the

| chain. If the exception

| handler is the OS/2 handler,

| the program terminates.

SIGTERM Program termination signal

sent by the user or

operating system

| Pass the signal to the next

| exception handler in the

| chain. If the exception

| handler is the OS/2 handler,

| the program terminates.

SIGUSR1 User-defined signal Ignored.

320 IBM C/C++ Tools: Programming Guide

 Signal Handlers

Figure 23 (Page 2 of 2). Default Handling of Signals

Signal Source Default Action

SIGUSR2 User-defined signal Ignored.

SIGUSR3 User-defined signal Ignored.

Establishing a Signal Handler

You can establish or register your own signal handler with a call to the

signal function:

 signal(sig, sig_handler);

where sig_handler is the address of your signal handling function. The

| signal handler is a C function that takes a single integer argument (or

| two arguments for SIGFPE), and may have either _System or _Optlink

linkage.

A signal handler for a particular signal remains established until one of

the following occurs:

� A different handler is established for the same signal.

� The signal is explicitly reset to the system default with the function

call signal(sig, SIG_DFL);.

� The signal is reported. When your signal handler is called, the

handling for that signal is reset to the default as if the function call

signal(sig_num, SIG_DFL) were explicitly made immediately before

the signal handler call.

Note: A signal handler can also become deregistered if the load

module where the signal handler resides is deleted using the _freemod

function. If this situation arises, when the signal is raised, an OS/2

exception occurs and the behavior is undefined.

| 5 For more information on masking floating-point exceptions, see“Handling Floating-Point Exceptions” on page 354 .

 Chapter 18. Signal and OS/2 Exception Handling 321

| Writing a Signal Handler Function

| A signal handler function has no limitations and may call any C library

| function. Your signal handler may handle the signal in any of the

| following ways:

| 1. Calling exit or abort to terminate the process. The behavior of

| these two functions does not change when they are called from a

| signal handler.

| 2. Calling _endthread to terminate the current thread of a multithread

| program. The process continues to run without the thread. You

| must ensure that the loss of the thread does not affect the process.

| Note that calling _endthread for thread 1 of your process is the

| same as calling exit.

| 3. Calling longjmp to continue running the current thread from a

| known point. To call longjmp, you must have previously called

| setjmp in the current thread. The setjmp function saves the state

| of the thread in a buffer. When you call longjmp, the state of the

| thread is reset to the state in the buffer and the thread restarts at

| the call to setjmp.

| 4. Returning from the function to restart the thread as though the

| signal has not occurred. If this is not possible, the C/C++ Tools

| library terminates your process.

322 IBM C/C++ Tools: Programming Guide

 Signal Handling Example

| Example of a C Signal Handler
| The following code gives a simple example of a signal handler function

| for a single-thread program. In the example, the function chkptr

| checks a given number of bytes in an area of storage and returns the

| number of bytes that you can access. The flow of the function's

| execution is described after the code.

| #include <signal.h>
| #include <setjmp.h>
| #include <stdio.h>

| static void mysig(int sig); /\ signal handler prototype \/
| static jmp_buf jbuf; /\ buffer for machine state \/

| int chkptr(void \ ptr, int size)
| {
| void (\ oldsig)(int); /\ where to save the old signal handler \/
| volatile char c; /\ volatile to ensure access occurs \/
| int valid = 0; /\ count of valid bytes \/
| char \ p = ptr;

| oldsig = signal(SIGSEGV,mysig); /\ set the signal handler \/ ▌1▐

| if (!setjmp(jbuf)) /\ provide a point for the \/ ▌2▐

| { /\ signal handler to return to \/

| while (size--) ◄──┐
| { �
| c = \p++; /\ check the storage and \/ � ▌3▐

| valid++; /\ increase the counter \/ �
| } ◄──┘
| }

| Figure 24 (Part 1 of 2). Example Illustrating a Signal Handler

 Chapter 18. Signal and OS/2 Exception Handling 323

 Signal Handling Example

| signal(SIGSEGV,oldsig); /\ reset the signal handler \/ ▌5▐

| return valid; /\ return number of valid bytes \/ ▌6▐

| }

| static void mysig(int sig) ◄─┐
| { �
| printf("Detected storage address that is not valid.\n"); � ▌4▐

| longjmp(jbuf,1); /\ return to the point of the setjmp call \/ �
| ◄─┘
| }

| Figure 24 (Part 2 of 2). Example Illustrating a Signal Handler

| ▌1▐ The program registers the signal handler mysig and saves the

| original handler in oldsig so that it can be reset at a later time.

| ▌2▐ The call to setjmp saves the state of the thread in jbuf. When

| you call setjmp directly, it returns 0, so the code within the if

| statement is run.

| ▌3▐ The loop reads in and checks each byte of the buffer,

| incrementing the valid count for each byte successfully copied to c.

| Assuming that not all of the buffer space is available, at some point

| in the loop p points to a storage location the process cannot

| access. An OS/2 exception is generated and translated by the

| C/C++ Tools library to the SIGSEGV signal. The library then resets

| the signal handler for SIGSEGV to SIG_DFL and calls the signal

| handler registered for SIGSEGV (mysig).

| ▌4▐ The mysig function prints an error message and uses longjmp

| to return to the place of the setjmp call in chkptr.

| Note: mysig does not reset the signal handler for SIGSEGV,

| because that signal is not intended to occur again. In some cases,

| you may want to reset signal handling before the signal handler

| function ends.

| ▌5▐ Because setjmp returns a nonzero value when it is called

| through longjmp, the if condition is now false and execution falls

| through to this line. The signal handling for SIGSEGV is reset to

| whatever it was when chkptr was entered.

| ▌6▐ The function returns the number of valid bytes in the buffer.

324 IBM C/C++ Tools: Programming Guide

| As the preceding example shows, your program can recover from a

| signal and continue to run with no related problems.

Signal Handling in Multithread Programs
| Each thread has its own independent set of signals. If you establish a

| signal handler on one thread, it handles only signals generated on that

| thread. Conversely, all signals generated on a particular thread are

| handled by the signal handler specified for that thread. If you establish

a signal handler or raise a signal on one thread, you do not affect any

other thread.

When a thread starts, all of its signal handlers are set to SIG_DFL. If

you want any other signal handling for that thread, you must use signal

to register it.

Three signals can only occur in thread 1: SIGINT, SIGBREAK, and

SIGTERM. If you want to establish a signal handler for these signals,

you must call signal in thread 1, which usually contains the main

function.

When you call the raise function, the signal handler for that signal must

be established on the thread where the call was made.

| Note: You can use raise to signal your own conditions using the

| signals SIGUSR1, SIGUSR2, and SIGUSR3, which are provided for

| user signals. You can also use this function to generate signals to test

| your signal handlers.

 Chapter 18. Signal and OS/2 Exception Handling 325

Signal Handling Considerations

| When you use signal handlers, keep a number of points in mind:

| � You can register anything as a signal handler. It is up to you to

| make sure that you are registering a valid function.

| � If your signal handler resides in a DLL, ensure that you change the

| signal handler when you unload the DLL. If you unload your DLL

| without changing the signal handler, no warnings or error messages

| are generated. When your signal handler gets called, your program

| will probably terminate. If another DLL has been loaded in the

| same address range, your program may continue but with

| undefined results.

| � The SIGSEGV signal may occur for a condition other than a data

| pointer that is not valid. For example, it can also occur if an

| address pointer goes outside of your code segment. Your signal

| handler should not assume that SIGSEGV always implies an invalid

| data pointer.

| � The SIGILL signal does not always occur when you use a pointer to

| call a function that is not valid. If the pointer points to a valid

| instruction stream, SIGILL is not raised.

| � When you use longjmp to leave a signal handler, ensure that the

| buffer you are jumping to was created by the thread that you are in.

| Do not call setjmp from one thread and longjmp from another. The

| C/C++ Tools library checks the contents of the buffer for this

| condition and terminates the process if they are not valid.

| � If you use console I/O functions, including gets and scanf, and a

| SIGINT, SIGBREAK, or SIGTERM signal occurs, the signal is

| reported after the library function returns. Because your signal

| handler can call any library function, one of these functions could

| be reentered. To protect the internal data structures, some library

| code is placed in "must complete" sections. When a signal occurs,

| the library waits until the "must complete" section ends before it

| reports the signal.

| Note: You can use the OS/2 APIs DosEnterMustComplete and

| DosExitMustComplete to create your own "must complete" sections

| of code. See the Toolkit documentation for more information on

| these APIs.

326 IBM C/C++ Tools: Programming Guide

� Variables referenced by both the signal handler and by other code

| should be given the attribute volatile to ensure they are always

| updated when they are referenced. Because of the way the

compiler optimizes code, the following example may not work as

intended when compiled with the /O+ option:

void sig_handler(int);
static int stepnum;

int main(void)
{

stepnum = 0;
 signal(SIGSEGV, sig_handler);

...
stepnum = 1; ▌1▐

...
stepnum = 2; ▌2▐

}

void sig_handler(int x)
{

printf("Error at step %d\n", stepnum);
}

When using optimization, the compiler may not immediately store

the value 1 for the variable stepnum. It may never store the value

1, and store only the value 2. If a signal occurs between statement

▌1▐ and statement ▌2▐, the value of stepnum passed to sig_handler

may not be correct.

Declaring stepnum as volatile indicates to the compiler that

references to this variable have side effects. Changes to the value

of stepnum are then stored immediately.

| � C++ Consideration: When you use longjmp to recover from a

| signal in a C++ program, automatic destructors are not called for

| objects placed on the stack between the longjmp call and the

| corresponding setjmp call. Because the ANSI draft of the C++

| language does not specify the behavior of a throw statement in a

| signal handler, the most portable way to ensure the appropriate

| destructors are called is to add statements to the setjmp location

| that will do a throw if necessary.

 Chapter 18. Signal and OS/2 Exception Handling 327

 C/C++ Tools Default OS/2 Exception Handling

| Handling OS/2 Exceptions

| An OS/2 exception is generated by the operating system to report an

| abnormal condition. OS/2 exceptions are grouped into two categories:

| 1. Asynchronous exceptions, which are caused by actions outside of

| your current thread. There are only two:

| � XCPT_SIGNAL, caused by a keyboard signal (Ctrl-C,

| Ctrl-Break) or the process termination exception. This

| exception can only occur on thread 1 of your process.

| � XCPT_ASYNC_PROCESS_TERMINATE, caused by one of

| your threads terminating the entire process. This exception can

| occur on any thread.

| 2. Synchronous exceptions, which are caused by code in the thread

| that receives the exception. All other OS/2 exceptions fall into this

| category.

| Just as you use signal handlers to handle signals, use exception

| handlers to handle OS/2 exceptions. Because signal handling is

| simpler than exception handling while exception handling offers

| additional function, you may want to use both in your program.

C/C++ Tools Default OS/2 Exception Handling
| The C/C++ Tools library provides its own default exception handling

| functions: _Lib_excpt for OS/2 exceptions occurring in library functions

| and _Exception for all other OS/2 exceptions. You can use these

| exception handlers or create your own as described in “Creating Your

| Own OS/2 Exception Handler” on page 334.

The function _Exception is the C language exception handler. It is

declared as:

 #include <os2.h>

unsigned long _System _Exception(EXCEPTIONREPORTRECORD \ report_rec,
EXCEPTIONREGISTRATIONRECORD \ reg_rec,
CONTEXTRECORD \ exc,
void \ dummy);

328 IBM C/C++ Tools: Programming Guide

 C/C++ Tools Default OS/2 Exception Handling

This exception handler is registered by the C/C++ Tools compiler for

every thread or process. It maps recognized OS/2 exceptions to C

| signals, which can then be passed by the runtime library to the

| appropriate signal handlers.

Figure 25 shows which types of OS/2 exception are recognized by

_Exception, the names of the exceptions, and the C signals to which

each exception type is mapped. These are the only OS/2 exceptions

handled by _Exception. The Continuable column indicates whether

the program will continue if the corresponding signal handler is SIG_IGN

or if a user-defined signal handler returns. If "No" is indicated, the

program can only be continued if you provide a signal handler that uses

longjmp to jump to another part of the program.

If the signal handler value is set to SIG_DFL, the default action taken for

each of these exceptions is to terminate the program with an exit code

of 99.

Figure 25 (Page 1 of 2). Mapping Between Exceptions and C Signals

OS/2 Exception C Signal Continuable?

Divide by zero

 XCPT_INTEGER_DIVIDE_BY_ZERO

SIGFPE No

NPX387 error

 XCPT_FLOAT_DENORMAL_OPERAND

 XCPT_FLOAT_DIVIDE_BY_ZERO

 XCPT_FLOAT_INEXACT_RESULT

 XCPT_FLOAT_INVALID_OPERATION

 XCPT_FLOAT_OVERFLOW

 XCPT_FLOAT_STACK_CHECK

 XCPT_FLOAT_UNDERFLOW

SIGFPE No; except for

XCPT_FLOAT_INEXACT_RESULT

Overflow occurred

 XCPT_INTEGER_OVERFLOW

SIGFPE Yes; resets the overflow

flag

Bound opcode failed

 XCPT_ARRAY_BOUNDS_EXCEEDED

SIGFPE No

Opcode not valid

 XCPT_ILLEGAL_INSTRUCTION

 XCPT_INVALID_LOCK_SEQUENCE

 XCPT_PRIVILEGED_INSTRUCTION

SIGILL No

 Chapter 18. Signal and OS/2 Exception Handling 329

 C/C++ Tools Default OS/2 Exception Handling

Note: The Overflow and Bound opcode exceptions are provided for

completeness only. They will never be caused by code generated by

the C/C++ Tools compiler.

Figure 25 (Page 2 of 2). Mapping Between Exceptions and C Signals

OS/2 Exception C Signal Continuable?

General Protection fault

 XCPT_ACCESS_VIOLATION

 XCPT_DATATYPE_MISALIGNMENT

SIGSEGV No

Ctrl-Break

 XCPT_SIGNAL

 (XCPT_SIGNAL_BREAK)

SIGBREAK Yes

Ctrl-C

 XCPT_SIGNAL

 (XCPT_SIGNAL_INTR)

SIGINT Yes

End process

 XCPT_SIGNAL

 (XCPT_SIGNAL_KILLPROC)

SIGTERM Yes

330 IBM C/C++ Tools: Programming Guide

 Library Exception Handling

The following OS/2 exceptions are also recognized, but have no

| corresponding C signal. If one of these OS/2 exceptions occurs, it is

| passed to the next available exception handler, or if none is registered,

| it is passed by default to the operating system:

An out-of-stack exception occurs when the guard page of the stack is

accessed. When the operating system encounters this exception, it

automatically allocates a new guard page and the exception is

continued. If there is not enough stack for the system to process the

exception, the program is terminated.

For more information on guard page allocation and automatic stack

growth, see “Controlling Stack Allocation and Stack Probes” on

page 67.

OS/2 Exception Continuable?

Out of stack exception

 XCPT_GUARD_PAGE_VIOLATION

Yes

Synchronous process termination

 XCPT_PROCESS_TERMINATE

No

Asynchronous process termination

 XCPT_ASYNC_PROCESS_TERMINATE

No

Unwind target not valid

 XCPT_INVALID_UNWIND_TARGET

No

OS/2 Exception Handling in Library Functions
There are two classes of library functions that require special exception

handling: math functions and critical functions.

OS/2 exceptions occurring in all other library functions are treated as

though they occurred in regular user code.

 Chapter 18. Signal and OS/2 Exception Handling 331

 Library Exception Handling

 Math Functions
Before _Exception converts an OS/2 exception to a C signal, it first

calls the C/C++ Tools library exception handler, _Lib_excpt. The

_Lib_excpt function determines if the exception occurred in a math

library function. The _Lib_excpt function is declared as follows:

 #include <os2.h>

unsigned long _System _Lib_excpt(EXCEPTIONREPORTRECORD \ report_rec,
EXCEPTIONREGISTRATIONRECORD \ reg_rec,
CONTEXTRECORD \ ecx,
void \ dummy);

If the exception does occur in a math function and it is a floating-point

error, _Lib_excpt handles the exception and returns

XCPT_CONTINUE_EXECUTION to the operating system to indicate the

exception has been handled. Any signal handler function you may

have established will not be called.

| Important: If you are creating your own exception handler, it should

| first call _Lib_excpt to ensure that the exception did not occur in a

| library function.

If the cause of the OS/2 exception was not a floating-point error, the

exception is returned to _Exception. The _Exception function then

converts the OS/2 exception to the corresponding C signal and

| performs one of the following actions:

1. Terminates the process. If /Tx+ was specified, _Exception

performs a machine-state dump to file handle 2, unless the

exception was SIGBREAK, SIGINT, or SIGTERM, in which case the

machine state is not meaningful.

2. Handles the exception and returns XCPT_CONTINUE_EXECUTION to the

operating system.

3. Calls the signal handler function provided by you for that signal. A

return from the signal handler results in either the return of

XCPT_CONTINUE_EXECUTION to the operating system or the

termination of the process as in the first action above.

Note: For more information about exception-handling return codes,

refer to the Toolkit documentation.

332 IBM C/C++ Tools: Programming Guide

 Library Exception Handling

 Critical Functions
All nonreentrant functions are classified as critical functions. Most I/O

and allocation functions, and those that begin or end threads or

processes, fall in this class. The critical functions are:

OS/2 exceptions in critical functions generally occur only if your

program passes a pointer that is not valid to a library function, or if your

program overwrites the library's data areas. Because calling a signal

handler to handle an OS/2 exception from one of these functions can

have unexpected results, a special exception handler is provided for

critical functions. You cannot override this exception handler.

If the OS/2 exception is synchronous (SIGFPE, SIGILL, or SIGSEGV), the

default action is taken, which is to terminate the program and provide a

machine-state dump (if the /Tx+ option was specified at compile time).

| Any exception handler you may have registered will not be called, and

| will receive only the termination exception.

atexit

calloc

_cgets

clearerr

_cprintf

_cputs

_cscanf

_debug_calloc

_debug_free

_debug_heapmin

_debug_malloc

_debug_realloc

_dump_allocated

_endthread

_Exception

_execl

_execle

_execlp

_execlpe

_execv

_execve

_execvp

_execvpe

exit

fclose

_fcloseall

_fdopen

feof

ferror

fflush

fgetc

fgetpos

fgets

_fileno

_flushall

fopen

fprintf

fputc

fputs

fread

free

freopen

fscanf

fseek

fsetpos

ftell

fwrite

_getch

_getche

getenv

gets

_heap_check

_heapmin

_kbhit

_Lib_excpt

malloc

_onexit

printf

_putch

_putenv

puts

raise

realloc

remove

rename

rewind

_rmtmp

scanf

setlocale

setvbuf

signal

_spawnl

_spawnle

_spawnlp

_spawnlpe

_spawnv

_spawnve

_spawnvp

_spawnvpe

system

_tcalloc

_tempnam

_tfree

_tmalloc

tmpfile

tmpnam

_trealloc

ungetc

_ungetch

vfprintf

vprintf

 Chapter 18. Signal and OS/2 Exception Handling 333

 User-Created OS/2 Exception Handlers

If the OS/2 exception is asynchronous, it is deferred until the library

function has finished. The exception is then passed to _Exception,

which converts the exception to the corresponding C signal and

performs the appropriate action.

Note: If you use console I/O functions (for example, gets) and a

SIGINT, SIGBREAK, or SIGTERM signal occurs, the signal is deferred

until the function returns, for example, after all data for the keyboard

function has been entered. To avoid this side effect, use a noncritical

function like read or the OS/2 API DosRead to read data from the

keyboard.

| Creating Your Own OS/2 Exception Handler

| You can use OS/2 APIs and the information provided in the Toolkit

| header file <bsexcpt.h> to create your own exception handlers to use

| alone or with the two provided handler functions. Exception handlers

| can be complex to write and difficult to debug, but creating your own

| offers you two advantages:

| 1. You receive more information about the error condition.

| 2. You can intercept any OS/2 exception. The C/C++ Tools library

| passes some exceptions back to the operating system because

| there is no C semantic for handling them.

334 IBM C/C++ Tools: Programming Guide

 User-Created OS/2 Exception Handlers

| Prototype of an OS/2 Exception Handler
| The prototype for all exception handlers is:

| #define INCL_BASE
| #include <os2.h>

| APIRET APIENTRY MyExceptHandler(EXCEPTIONREPORTRECORD \,
| EXCEPTIONREGISTRATIONRECORD \,
| CONTEXTRECORD \,
| PVOID dummy);

| where:

| APIRET Specifies the return type of the function. If you return from

| your exception handler, you must return one of the following

| two values:

| 1. XCPT_CONTINUE_SEARCH indicates that the exception has not

| been handled and tells the operating system to pass the

| exception to the next exception handler.

| 2. XCPT_CONTINUE_EXECUTION indicates that the exception

| condition has been corrected and tells the operating

| system to resume running the application using the

| information in the CONTEXTRECORD.

| APIENTRY

| Defines the function linkage. The Toolkit header files define

| APIENTRY as _System linkage. Use the APIENTRY keyword

| rather than specifying the linkage type yourself. Note that your

| exception handler must be an external function; it cannot be

| static.

| EXCEPTIONREPORTRECORD \

| Points to a structure that contains high-level information about

| the exception.

| EXCEPTIONREGISTRATIONRECORD \

| Points to the record that registered the exception handler. The

| address of the record is always on the stack.

 Chapter 18. Signal and OS/2 Exception Handling 335

 User-Created OS/2 Exception Handlers

| CONTEXTRECORD \

| Points to a structure that contains information about the state

| of the thread at the time of the exception, including the register

| contents and the state of the floating-point unit and flags.

| When an exception handler returns XCPT_CONTINUE_EXECUTION,

| the machine state is reloaded from this structure. You should

| only modify the contents of this structure if you are sure your

| exception handler will return XCPT_CONTINUE_EXECUTION.

| PVOID Is a pointer to void that you must pass back unchanged to the

| operating system.

| The exception handling structures are defined in the Toolkit header file

| <bsexcpt.h>.

| Processing Exception Information
| When an exception occurs, the operating system provides a

| considerable amount of information. Much of it concerns the machine

| state, which is not particularly useful because it is difficult to relate it to

| the high-level C language constructs. However, the information

| contained in the EXCEPTIONREPORTRECORD structure can be quite useful.

| The EXCEPTIONREPORTRECORD is defined as:

| struct _EXCEPTIONREPORTRECORD
| {
| ULONG ExceptionNum;
| ULONG fHandlerFlags;
| struct _EXCEPTIONREPORTRECORD \NestedERR;
| PVOID ExceptionAddress;
| ULONG cParameters;
| ULONG ExceptionInfo[EXCEPTION_MAXIMUM_PARAMETERS];
| };

336 IBM C/C++ Tools: Programming Guide

 User-Created OS/2 Exception Handlers

| The structure fields provide the following information:

| ExceptionNum

| The exception number. There are several exceptions that you

| will only encounter by using an OS/2 exception handler

| because the C/C++ Tools default handler passes them to the

| operating system to handle. They are:

| XCPT_PROCESS_TERMINATE

| Indicates that the current thread has called DosExit, and

| the process is about to end. Until your exception handler

| ends, the thread continues as though DosExit had not

| been called.

| XCPT_ASYNC_PROCESS_TERMINATE

| Indicates that some other thread in the process has

| called DosExit and that your current thread is about to

| end also. You can decide to continue running the

| current thread and return the exception as handled.

| XCPT_ACCESS_VIOLATION

| Indicates an invalid attempt was made to access memory

| (similar to the SIGSEGV signal). When this exception

| occurs, the ExceptionInfo field provides the address that

| generated the exception and the type of access that was

| attempted (read or write).

| XCPT_GUARD_PAGE_VIOLATION

| Indicates that the current thread tried to access a

| memory page marked as a guard page. Usually it

| means that your application has accessed a guard page

| on the stack. In most cases, you will probably pass the

| exception to the operating system, which will allocate

| another 4K of committed memory for your thread and a

| new guard page. The operating system requires about

| 1.5K to place the information about the exception on the

| stack and then call the exception handler. If you know

| you are running out of stack space, you may want to end

| your process.

 Chapter 18. Signal and OS/2 Exception Handling 337

 User-Created OS/2 Exception Handlers

| XCPT_UNABLE_TO_GROW_STACK

| Indicates that the operating system tried to move your

| guard page, but no memory remained on the stack. If

| you suppressed stack probe generation when you

| compiled (with the /Gs+ option), there may not be

| enough stack for you to even receive the exception, in

| which case your process terminates with an operating

| system trap.

| You can also use the DosRaiseException API to create and

| raise your own exceptions that you can then handle with your

| own exception handler.

| fHandlerFlags

| This field indicates how the exception occurred and what you

| can do to handle it. It includes the following bits:

| EH_NONCONTINUABLE

| You cannot continue running the thread once you leave

| the exception handler. If you try to return

| XCPT_CONTINUE_EXECUTION, an error is generated. You

| cannot reset the bit. However, you can intentionally set

| the bit to make an exception noncontinuable.

| EH_UNWINDING

| A longjmp has been done over this exception handler

| and the handler is to be deregistered. If your function

| uses a mutex semaphore (described in the Toolkit

| documentation), you should release it when you receive

| this exception.

| EH_EXIT_UNWIND

| A DosExit call has been made and the exception has

| been passed back to the operating system. This

| exception gives you an opportunity to do something

| before your exception handler is deregistered.

| EH_NESTED_CALL

| An exception occurred while another exception was being

| handled. This situation should be handled carefully:

| because each exception requires about 1.5K of stack,

| nesting exceptions too deep can cause you to run out of

| stack.

338 IBM C/C++ Tools: Programming Guide

 User-Created OS/2 Exception Handlers

| _EXCEPTIONREPORTRECORD \NestedERR

| If a nested exception occurs, the information about the

| exception is found in this structure.

| ExceptionAddress

| This field contains the instruction address where the exception

| occurred. Typically, you cannot determine at run time which

| function caused the problem.

| ExceptionInfo

| For some exceptions, this field may contain additional

| information. For example, if XCPT_ACCESS_VIOLATION occurs, it

| contains the address at which the memory access failed.

| cParameters

| This field contains the number of bytes of information.

| The CONTEXTRECORD structure contains information about the machine

| state of the thread. It is generally of limited use to a high-level

| programmer because to continue a process after a synchronous

| exception, you would need to modify the CONTEXTRECORD, and it is

| extremely difficult to ensure the exception handler code is correct for all

| possible conditions. You should modify the CONTEXTRECORD only if you

| have no other alternative to correct your program.

 Chapter 18. Signal and OS/2 Exception Handling 339

 User-Created OS/2 Exception Handlers

| You can use the CONTEXTRECORD to trace the stack and produce useful

| debugging information. Because the C/C++ Tools and operating

| system calling conventions preserve some registers across calls, you

| cannot reconstruct the registers by traversing the stack to recover from

| the exception. The 32-bit stack always looks like the following:

| ▲ │ . │
| │ ├────────────────────┤
| │ │ Return Address │ │
| │ ├────────────────────┤ │
| └────┤ EBP │◄───┐ │
| ├────────────────────┤ │ │ stack grows
| │ . │ │ │ down
| . │ │
| │ . │ │ │
| ├────────────────────┤ │ │
| │ Return Address │ │ ▼
| ├────────────────────┤ │
| ┌───►│ EBP ├────┘
| │ ├────────────────────┤
| │ │ . │
| │ .
| │ │ . │
| │ ├────────────────────┤
| │ │ Return Address │
| │ ├────────────────────┤
| └────┤ EBP │◄───────── EBP from exception context
| ├────────────────────┤ record points here
| │ . │
| │ . │

| Note: If the stack is damaged, you may not be able to trace the EBP

| chain correctly. You cannot trace over 16-bit calls.

340 IBM C/C++ Tools: Programming Guide

 Exception Handling Example

| Example of Exception Handling
| The following example shows a program similar to the one used for the

| signal handling example on page 323. In this example, an exception

| handler is used instead of a signal handler to detect access to memory

| that is not valid.

| #define INCL_DOS
| #define INCL_NOPMAPI
| #include <os2.h>
| #include <stdlib.h>
| #include <setjmp.h>
| #include <stdio.h>
| #include <stddef.h> /\ for _threadid \/

| void \ tss_array[100]; /\ array for 100 thread-specific pointers \/

| APIRET APIENTRY MyExceptionHandler(EXCEPTIONREPORTRECORD \,
| EXCEPTIONREGISTRATIONRECORD \,
| CONTEXTRECORD \,
| PVOID);
| #pragma map(_Exception,"MyExceptionHandler")
| #pragma handler(chkptr)

| int chkptr(void \ ptr, int size)
| {
| volatile char c; /\ volatile to insure access occurs \/
| int valid = 0; /\ count of valid bytes \/
| char \ p = ptr; /\ to satisfy the type checking for p++ \/
| jmp_buf jbuf; /\ put the jump buffer in automatic storage \/
| /\ so it is unique to this thread \/
| PTIB ptib; /\ to get the TIB pointer \/
| PPIB ppib;
| PVOID \ temp;
| unsigned int tid = _threadid; /\ get the thread id \/

| /\ create a thread specific jmp_buf \/
| tss_array[tid] = (void \) jbuf;

| if (!setjmp(jbuf)) { /\ provide a point to return to \/

| Figure 26 (Part 1 of 3). Example Illustrating an Exception Handler

 Chapter 18. Signal and OS/2 Exception Handling 341

 Exception Handling Example

| while (size--) /\ scan the storage \/
| {
| c = \p++;
| valid++;
| }
| }

| ptib->tib_arbpointer = temp; /\ restore the user pointer \/
| return valid; /\ return number of valid bytes \/
| }

| /\ the exception handler itself \/

| APIRET APIENTRY MyExceptionHandler(EXCEPTIONREPORTRECORD \ report_rec,
| EXCEPTIONREGISTRATIONRECORD \ register_rec,
| CONTEXTRECORD \ context_rec,
| PVOID dummy)
| {
| unsigned int tid = _threadid; /\ get the thread id \/

| /\ check the exception flags \/ ▌1▐

| if (EH_EXIT_UNWIND & report_rec->fHandlerFlags) /\ exiting \/
| return XCPT_CONTINUE_SEARCH;

| if (EH_UNWINDING & report_rec->fHandlerFlags) /\ unwinding \/
| return XCPT_CONTINUE_SEARCH;

| if (EH_NESTED_CALL & report_rec->fHandlerFlags) /\ nested exceptions \/
| return XCPT_CONTINUE_SEARCH;

| /\ determine what the exception is \/ ▌2▐

| if (report_rec->ExceptionNum == XCPT_ACCESS_VIOLATION) {
| /\ this is the one that is expected \/

| Figure 26 (Part 2 of 3). Example Illustrating an Exception Handler

342 IBM C/C++ Tools: Programming Guide

 Exception Handling Example

| printf("Detected invalid storage address\n");
| longjmp((int \)tss_array[tid],1); /\ return to the point of the \/
| /\ setjmp call without \/
| /\ restarting the while loop \/
| } /\ endif \/
| ▌3▐

| return XCPT_CONTINUE_SEARCH; /\ if it is a different exception \/
| }

| Figure 26 (Part 3 of 3). Example Illustrating an Exception Handler

| ▌1▐ The first thing an exception handler should do is check the

| exception flags. If EH_EXIT_UNWIND is set, meaning the thread is

| ending, the handler tells the operating system to pass the exception

| to the next exception handler. It does the same if the EH_UNWINDING

| flag is set, the flag that indicates this exception handler is being

| removed.

| The EH_NESTED_CALL flag indicates if the exception occurred within

| an exception handler. If the handler does not check this flag,

| recursive exceptions could occur until there is no stack remaining.

| ▌2▐ The handler checks the exception number. In general, you

| should check for only the exceptions that you expect to encounter

| to protect yourself against possible new exception numbers.

| Assuming the exception is XCPT_ACCESS_VIOLATION, the exception

| handler prints a message and calls longjmp to return to the chkptr

| function.

| ▌3▐ If the exception is not the expected one, the handler tells the

| operating system to pass it to the next exception handler.

 Chapter 18. Signal and OS/2 Exception Handling 343

 Registering an OS/2 Exception Handler

| Important: Return XCPT_CONTINUE_EXECUTION from an exception

| handler only if you know that the thread can continue to run

| because either:

| 1. The exception is asynchronous and can be restarted.

| 2. You have changed the thread state so that the thread can

| continue.

| If you return XCPT_CONTINUE_EXECUTION when neither of these

| conditions is true, you could generate a new exception each

| time your exception handler ends, eventually causing your

| process to lock.

Registering an OS/2 Exception Handler

| The C/C++ Tools compiler automatically registers and deregisters the

| _Exception handler for each thread or process so the _Exception is the

| first exception handler to be called when an exception occurs. To

explicitly register _Exception for a function, use the #pragma handler

directive before the function definition. This directive generates the

code to register the exception handler before the function runs. Code

to remove the exception handler when the function ends is also

generated.

The format of the directive is:

 #pragma handler(function)

where function is the name of the function or process for which the

exception handler is to be registered.

| Note: If you use DosCreateThread to create a new thread, you must

| use #pragma handler to register the C/C++ Tools exception handler for

| the function that the new thread will run.

344 IBM C/C++ Tools: Programming Guide

 Registering an OS/2 Exception Handler

| You can register your own exception handler in place of _Exception

| using these directives:

| #pragma map(_Exception, "MyExceptHandler")
| #pragma handler(myfunc)

| The #pragma map directive tells the compiler that all references to the

| name _Exception are to be converted to MyExceptHandler. The

| #pragma handler directive would normally register the exception handler

| _Exception for the function myfunc, but because of the name mapping,

| MyExceptHandler is actually registered. The compiler also generates

| code to deregister MyExceptHandler when myfunc returns.

| If you use the method described above, you can have only one

| exception handler per module. You may need to place functions in

| separate modules to get the exception handling you want. The handler

| is registered on function entry and deregistered on exit; you cannot

| register the handler over only part of a function. For more flexibility,

| you can use OS/2 APIs to register your exception handler.

| The operating system finds exception handlers by following a chain

| rooted in the thread information block (TIB). When you register an

| exception handler, you place the address of the handler and the chain

| pointer from the TIB in an EXCEPTIONREGISTRATIONRECORD structure, and

| then update the TIB to point to the new EXCEPTIONREGISTRATIONRECORD.

 Chapter 18. Signal and OS/2 Exception Handling 345

 Registering an OS/2 Exception Handler

| When you use #pragma handler, the EXCEPTIONREGISTRATIONRECORD is

| generated and attached to the chain for you. You can register your

| own records using the DosSetExceptionHandler and

| DosUnsetExceptionHandler APIs, as shown in the following example:

| #define INCL_BASE
| #include <os2.h>

| /\ the prototype for the exception handler \/
| APIRET APIENTRY MyExceptionHandler(EXCEPTIONREPORTRECORD \,
| EXCEPTIONREGISTRATIONRECORD \,
| CONTEXTRECORD \,
| PVOID);
| int myfunction(...)
| {
| EXCEPTIONREGISTRATIONRECORD err = { NULL,MyExceptionHandler };

| DosSetExceptionHandler(&err); /\ register \/
| .
| .
| .
| DosUnsetExceptionHandler(&err); /\ deregister \/
| }

| Using the OS/2 APIs provides more flexibility than using #pragma

| handler. You can register the exception handler over only a part of the

| function if you want. You can also register more than one exception

| handler for a function. When you use DosSetExceptionHandler to

| register your handler, you can also make the

| EXCEPTIONREGISTRATIONRECORD part of a larger structure and then

| access the information in that structure from inside the exception

| handler.

| You must deregister the exception handler before the function ends. If

| you do not, the next exception that occurs on the thread can have

| unexpected and undefined results. When you use #pragma handler, the

| exception handler is automatically deregistered for you.

346 IBM C/C++ Tools: Programming Guide

 Registering an OS/2 Exception Handler

| The following diagram shows the TIB chain:

| TIB
| ┌──────────────────────────────┐
| │ . │
| │ . │
| │ . │
| ├──────────────────────────────┤
| │ chain pointer (tib_pexchain) ├───┐
| └──────────────────────────────┘ │
| │
| ┌────────────────────┘
| │
| │ Stack
| │ ┌───────────────────────────────────────┐
| │ │ . │
| │ │ . │
| │ │ . │
| Decreasing │ │ │
| Memory │ │ EXCEPTIONREGISTRATIONRECORD 1 │
| Addresses │ ├───────────────────────────────────────┤
| │ │ │ pointer to handler (ExceptionHandler) ├──────► Handler Function
| │ │ ├───────────────────────────────────────┤
| │ │ NULL ◄──┤ chain pointer (prev_structure) │◄──┐
| │ │ ├───────────────────────────────────────┤ │
| │ │ │ . │ │
| │ │ │ . │ │
| │ │ │ . │ │
| │ │ │ EXCEPTIONREGISTRATIONRECORD 2 │ │
| │ │ ├───────────────────────────────────────┤ │
| │ │ │ pointer to handler (ExceptionHandler) ├───┼──► Handler Function
| │ │ ├───────────────────────────────────────┤ │
| │ └────────►│ chain pointer (prev_structure) ├───┘
| │ ├───────────────────────────────────────┤
| │ │ . │
| │ │ . │
| ▼ │ . │

| Figure 27. TIB Chain. Names in parentheses are the names of the fields of

| the EXCEPTIONREGISTRATIONRECORD structure.

| Each EXCEPTIONREGISTRATIONRECORD is chained to the next. When an

| exception occurs, the operating system begins at the TIB and goes to

| each EXCEPTIONREGISTRATIONRECORD in turn. It calls the exception

| handler and passes it the exception information. The exception handler

| either handles the exception or tells the operating system to pass the

| exception to the next handler in the chain. If the last exception handler

| in the chain, identified by the NULL chain pointer, does not handle the

| exception, the operating system takes the default action.

| An EXCEPTIONREGISTRATIONRECORD must be on the stack, and each

| record must be at a higher address than the previous one.

 Chapter 18. Signal and OS/2 Exception Handling 347

 Signal/Exception Handling in DLLs

Handling Signals and OS/2 Exceptions in DLLs

Handling signals and OS/2 exceptions in DLLs is no different than

| handling signals in executable files, providing all your DLLs and the

| executable files that use them are created using the C/C++ Tools

| compiler, and only one C/C++ Tools library environment exists for your

| entire application (your executable module and all DLLs).

| The library environment is a section of information associated with and

| statically linked to the C/C++ Tools library itself. You can be sure your

| program has only one library environment if:

| 1. It consists of a single executable module. By definition, a single

| module has only one copy of the C/C++ Tools library environment

| regardless of whether it links to the library statically or dynamically.

| 2. Your executable module dynamically links to a single DLL that is

| statically bound to the C/C++ Tools runtime library and that uses

| the C/C++ Tools library functions. The executable module then

| accesses the library functions through the DLL.

| 3. Your executable modules and DLLs all dynamically link to the

| C/C++ Tools runtime library.

| Note: The licensing agreement does not allow you to ship the

| C/C++ Tools library DLLs with your application. You can, however,

| create your own version of the runtime library and dynamically link to it

| from all of your modules, ensuring that only one copy of the library

| environment is used by your application. If you call any C/C++ Tools

| library functions from a user DLL, you must call them all from that DLL.

| The method of creating your own runtime library is described in

| “Creating Your Own Runtime Library DLLs” on page 216.

348 IBM C/C++ Tools: Programming Guide

 Signal/Exception Handling in DLLs

| If more than one of your modules is statically linked to the C/C++ Tools

| library, your program has more than one library environment. Because

| there is no communication between these environments, certain

| operations and functions become restricted:

| � Stream I/O. You can pass the file pointer between modules and

| read to or write from the stream in any module, but you cannot

| open a stream in one library environment or module and close it in

| another.

| � Memory allocation. You can pass the storage pointer between

| modules, but you cannot allocate storage in one library environment

| and free or reallocate it in another.

| � strtok, rand, and srand functions. A call to any of these functions

| in one library environment has no effect on calls made in another

| environment.

| � errno and _doserrno values. The setting of these variables in one

| library environment has no effect on their values in another.

| � Signal and OS/2 exception handlers. The signal and exception

| handlers for a library environment have no effect on the handlers

| for another environment.

| In general, it is easier to use only one library environment, but not

| always possible. For example, if you are building a DLL that will be

| called by a number of applications, you should assume that there may

| be multiple library environments and code your DLL accordingly.

| The following section describes how to use signal and exception

| handling when your program has more than one library environment.

 Chapter 18. Signal and OS/2 Exception Handling 349

 Signal/Exception Handling in DLLs

| Signal and Exception Handling with Multiple Library
| Environments
| When you have multiple library environments, you must treat signal and

| exception handlers in a slightly different manner than you would with a

| single library environment. Otherwise, the wrong handler could be

| called to handle a signal or OS/2 exception.

| For example, if you have an executable module and a DLL, each with

| its own library environment, the _Exception exception handler is

| automatically registered for the executable module when it starts.

| When the executable module calls a function in the DLL, the thread of

| execution passes to the DLL. If an OS/2 exception then occurs in the

| code in the DLL, it is actually handled by the exception handler in the

| executable module's library environment. Any signal handling set up in

| the DLL is ignored.

| When you have more than one library environment, you must ensure

| that an OS/2 exception is always handled by the exception handler for

| the library environment where the exception occurred.

| Include #pragma handler statements in your DLL for every function in

| the DLL that can be called from another module. This directive ensures

| the exception handler for the DLL's library environment is correctly

| registered when the function is called and deregistered when the

| function returns to the calling module. If functions in your executable

| module can themselves be called back to from a DLL, include a

| #pragma handler statement for each of them also.

350 IBM C/C++ Tools: Programming Guide

| Using OS/2 Exception Handlers for Special Situations

| Using exception handlers can be especially helpful in the following

| situations:

| � In multithread programs that use OS/2 semaphores. If you acquire

| a semaphore and then use longjmp either explicitly or through a

| signal handler to move to another place in your program, the

| semaphore is still owned by your code. Other threads in your

| program may not be able to obtain ownership of the semaphore.

| If you register an exception handler for the function where the

| semaphore is requested, the handler can check for the unwind

| operation that occurs as a result of a longjmp call. If it encounters

| an unwind operation, it can then release the semaphore.

| � In system DLLs. Using an exception handler allows you to run

| process termination routines even if your DLL has global

| initialization and termination.

| When a process terminates, functions are called in the following

| order:

| 1. Functions registered with the atexit or _onexit functions.

| 2. Exception handlers for termination exceptions.

| 3. Functions registered with the DosExitList API.

| 4. DLL termination routines.

| You can include process termination routines in your exception

| handler and they will be performed before the DLL termination

| routines are called.

 Chapter 18. Signal and OS/2 Exception Handling 351

 OS/2 Exception Handling Considerations

| OS/2 Exception Handling Considerations

| All the restrictions for signal handling described on page 326 apply to

| exception handling as well. There are also a number of additional

| considerations you should keep in mind when you use exception

| handling:

| � You must register an exception handler whenever you change

| library environments to ensure that exception handling is provided

| for all C code.

| � If you register your own exception handler, the OS/2 exceptions you

| handle are not seen by a signal handler. The exceptions you do

| not handle are passed to the next exception handler. If the next

| handler is the C/C++ Tools default handler _Exception, it converts

| the exception to a signal and calls the appropriate signal handler.

| � Ensure that you always deregister your exception handler. If you

| do not, your process typically ends abnormally. It is very difficult to

| discover this problem through debugging. If you use #pragma

| handler, the handler is automatically deregistered; if you use the

| OS/2 APIs, you must call DosUnsetExceptionHandler.

| � If you are using OS/2 semaphores and an exception occurs while

| your code owns a semaphore, you must ensure that the semaphore

| is released. You can release the semaphore either by continuing

| the exception or by explicitly releasing the semaphore in the signal

| handler.

| � Always check the exception flags to determine how the exception

| occurred. Any exception handler can be unwound by a subsequent

| handler.

| � Keep your exception handler simple and specific. Exception

| handlers are easier to write and maintain if you limit what they can

| do. A handler that does everything can be very large and very

| complicated.

| � Check for and handle only the exceptions that you expect to

| encounter, and provide a default exception handler to handle the

| unexpected. If the operating system adds new exceptions, or if you

| create your own, the default handler will handle them.

352 IBM C/C++ Tools: Programming Guide

 OS/2 Exception Handling Considerations

| � If you are using your own exception handler, it receives the

| exception registration record when an exception occurs, as

| described in “Registering an OS/2 Exception Handler” on page 344.

| Do not use the return address of the calling function to tell you

| where to resume execution, because the values of the registers

| other than EBP (for example, EBX, EBI, and EDI) at the return are

| generally not available to your exception handler.

| � You need approximately 1.5K of stack remaining for the operating

| system to be able to call your exception handler. If you do not

| have enough stack left, the operating system terminates your

| process.

| � Neither of the C/C++ Tools default exception handlers are available

| in the subsystem libraries. Because the subsystem libraries contain

| no critical or math functions, the _Lib_excpt function is not

| required.

| Restricted OS/2 APIs
| When you use the C/C++ Tools default exception handlers, certain

| OS/2 APIs can interfere with exception handling:

| DosCreateThread

| This API does not automatically register an exception handler

| for the new thread. Use _beginthread instead, or use #pragma

| handler before the DosCreateThread call to register the handler

| for the thread.

| DosExit This API does not perform all necessary library termination

| routines. Instead, use exit or _exit, abort, or _endthread, or

| simply fall out of main.

| DosUnwindException

| This API can unwind the C/C++ Tools exception handlers from

| the stack. Use longjmp instead.

| DosSetSignalExceptionFocus

| Using this API to remove the signal focus from a C/C++ Tools

| application may prevent you from receiving SIGINT and

| SIGBREAK exceptions from the keyboard.

 Chapter 18. Signal and OS/2 Exception Handling 353

 Handling Floating-Point Exceptions

| DosAcknowledgeSignalException

| This API interferes with the C/C++ Tools handling of signal

| exceptions. The library exception handler acknowledges

| signals for you.

| DosEnterMustComplete

| This API can be used to delay the handling of asynchronous

| exceptions, including termination exceptions, until a section of

| code has ended. You must call DosExitMustComplete at the

| end of the section to reenable the exception handling.

| DosEnterCritSec

| This API prevents execution from switching between threads

| until a section of code has ended. You must call

| DosExitCritSec at the end of the critical section of code. Use

| these APIs only if you cannot use a mutex semaphore. If you

| must use them, keep critical sections short and avoid including

| calls that may get blocked.

| Handling Floating-Point Exceptions
| Floating-point exceptions require special exception handling. In

| general, you cannot retry a floating-point exception without a significant

| knowledge of both the 80387 chip and the application that generated

| the exception. Because knowledge of your application is beyond the

| capabilities of the C/C++ Tools library, it treats a floating-point exception

| as a terminating condition.

| You can use the _control87 function and the bit mask values defined

| in <float.h> to mask floating-point exceptions, that is, to prevent them

| from being reported. Each bit mask corresponds to a unique

| floating-point exception that can be masked individually. Masking

| exceptions also changes the state of the floating-point control word for

| the 80387 chip. When a floating-point exception is masked, the 80387

| chip performs a predetermined corrective action.

354 IBM C/C++ Tools: Programming Guide

 Handling Floating-Point Exceptions

| The bit masks are:

| EM_INVALID Mask exceptions resulting from floating-point

| operations that are not valid. Such an exception can

| be caused by a floating-point value that is not valid,

| such as a signalling NaN, or by a problem with the

| 80387 stack. The corrective action taken by the 80387

| chip is to return a quiet NaN.

| Note: Because this type of exception indicates a

| serious problem, you should not mask it off.

| EM_DENORMAL Mask exceptions resulting from the use of denormal

| floating-point values. The corrective action is to use

| these values and allow for gradual underflow. This

| type of exception is not meaningful under the

| C/C++ Tools compiler and is masked off by default.

| EM_ZERODIVIDE Mask the divide-by-zero exception. The 80387 chip

| returns a value of infinity.

| EM_OVERFLOW Mask the overflow exception. The 80387 chip returns

| a value of infinity.

| EM_UNDERFLOW Mask the underflow exception. The 80387 chip returns

| either a denormal number or zero.

| EM_INEXACT Mask the exception that indicates precision has been

| lost. Because this type of exception is only useful

| when performing integer arithmetic, while the 80387

| chip is used for floating-point arithmetic only, the

| exception is not meaningful and the 80387 chip

| ignores it. This exception is masked off by default.

 Chapter 18. Signal and OS/2 Exception Handling 355

 Machine-State Dumps

| For example, to mask the floating-point underflow exception from being

| reported, you would code in your source file:

| oldstate = _control87(EM_UNDERFLOW, EM_UNDERFLOW);

| To mask it on again, you would code:

| oldstate = _control87(0, EM_UNDERFLOW);

| You can also reset the entire floating-point control word to the default

| state with the _fpreset function. Both _fpreset and _control87 are

| described in the C Library Reference.

| Important: Because the C/C++ Tools math functions defined in

| <math.h> use the 80387 chip, make sure that when you call

| any of them, the floating-point control word is set to the default

| state to ensure exceptions are handled correctly by the

| C/C++ Tools library.

| Note also that the state of the floating-point control word is

| unique for each thread, and changing it in one thread does not

| affect any other thread.

Interpreting Machine-State Dumps

Note: This section provides information to be used for Diagnosis,

Modification, or Tuning purposes. This information is not intended for

use as a programming interface.

| If you specify the /Tx+ option, when a process is ended because of an

unhandled or incorrectly handled exception, the exception handler

performs a machine-state dump. A machine-state dump consists of a

number of runtime messages that show information about the state of

the system, such as the contents of the registers and the reason for the

exception. This information is sent to file handle 2, which is usually

| associated with stderr. You can also use the _set_crt_msg_handle

| function to redirect the messages to a file. See the C Library

| Reference for more information about this function.

| If you do not specify /Tx+, a message is generated giving the exception

| and the address at which it occurred.

356 IBM C/C++ Tools: Programming Guide

 Machine-State Dumps

For example, the following program generates a floating-point

exception. Because the exception cannot be handled, a machine-state

dump is performed. Figure 29 on page 358 shows what is sent to

stderr and explains the messages in the dump.

#include <math.h>

int main(void)
{

_Packed union SIGNAN { /\ a union which allows us to set \/
double dbl; /\ the parts of a double value \/
_Packed struct {

unsigned int siglow : 26;
unsigned int sighigh : 26;
unsigned int exp : 11;
unsigned int sign : 1;

 } dblrep;
 } signan;
 double x;

/\ set the double value to a signalling \/
/\ NaN, which the library cannot handle \/
signan.dblrep.sign = 0;
signan.dblrep.exp = 0x7ff;
signan.dblrep.sighigh = 0;
signan.dblrep.siglow = 1;

/\ now call a math function with a \/
/\ signalling NaN to cause a trap \/
x = atan2(signan.dbl,2.0);

/\ the program never gets here \/
 return 0;
}

Figure 28. Program to Cause a Machine-State Dump

 Chapter 18. Signal and OS/2 Exception Handling 357

 Machine-State Dumps

Floating Point Invalid Operation exception occurred at EIP = 00050000 on
 thread 0001. ▌1▐

Exception occurred in C Library routine called from EIP = 000112D8. ▌2▐

Register Dump at point of exception: ▌3▐

EAX = 00000001 EBX = 00000000 ECX = 000B0010 EDX = 00140010
EBP = 00000000 EDI = 00000000 ESI = 00061FCC ESP = 00061FA8 ▌4▐

 CS = 005B CSLIM = 1BFFFFFF DS = 0053 DSLIM = 1BFFFFFF
 ES = 0053 ESLIM = 1BFFFFFF FS = 150B FSLIM = 00000030
 GS = 0000 GSLIM = 00000000 SS = 0053 SSLIM = 1BFFFFFF
NPX Environment: ▌5▐

CW = 0362 TW = 3FFF IP = 005B:0001002B ▌6▐

SW = B881 OPCODE = 0545 OP = 0053:00023414
NPX Stack: ▌7▐

ST(7): exponent = 0000 significand = + 00000000 00000000 ▌8▐

Process terminating. ▌9▐

Figure 29. Example of a Machine-State Dump

▌1▐ The first line always states the nature of the exception and the

| place and thread where the exception occurred. If you specify

| /Tx-, this is the only message that is generated.

▌2▐ Indicates that the exception occurred within one of the C library

functions. It also indicates the place and thread where the call to

that library function was made.

You can use the address given in ▌1▐ and ▌2▐ to determine where

in your code the problem occurred. To do this, you must create a

map file by specifying either the compiler option /B"/map", or if you

are linking your program separately, the linker option /map.

▌3▐ Introduces the register dump.

▌4▐ Gives the values contained by each register at the time the

| exception occurred. For information on the purpose of each

| register, see the documentation for your processor chip.

▌5▐ Introduces the state of the numeric processor extension (NPX) at

the time of the exception.

▌6▐ Gives the values of the elements in the NPX environment.

▌7▐ Introduces the state of the NPX stack at the time of the exception.

358 IBM C/C++ Tools: Programming Guide

 Machine-State Dumps

▌8▐ One copy of this message appears for each valid stack entry in the

NPX and gives the values for each. In this example, because

there is only one stack entry, the message appears only once. If

there are no valid stack entries, a different message is issued in

place of this message to state that fact.

▌9▐ Confirms that the process is terminating. It is one of several

informational messages that may accompany the initial exception

message and register dump.

In general, a dump will always include items ▌1▐, ▌3▐, and ▌4▐. Item

▌2▐ appears only if the exception occurred in a C/C++ Tools library

function. Items ▌5▐ to ▌8▐ appear only if the NPX was in use at the

time of the exception. Item ▌9▐ may or may not appear, depending on

the circumstances of each exception.

For a list of all the runtime messages and their explanations, see the

Online Language Reference.

Note: If you copy and run the program in Figure 28 on page 357, you

will get the same messages as shown in Figure 29 on page 358, but

the values given may be different.

 Chapter 18. Signal and OS/2 Exception Handling 359

 Machine-State Dumps

360 IBM C/C++ Tools: Programming Guide

 Appendixes

 Part 6. Appendixes

Appendix A. ANSI Notes on Implementation-Defined Behavior 363

| Implementation-Defined Behavior Common to Both C and C++ . 363

| C++-Specific Implementation-Defined Behavior 375

| Migrating Headers from 16-bit C to 32-bit C/C++ 377

| Migrating Headers from (32-bit) C Set/2 Version 1 to (32-bit) C++ 378

| Creating New Headers to Work with Both C and C++ (32-bit) . . 379

Appendix B. C/C++ Tools Macros and Functions 381

Predefined Macros . 381

Intrinsic Functions . 383

Appendix C. Mapping . 385

Name Mapping . 385

| Demangling (Decoding) C++ Function Names 386

Data Mapping . 389

| Appendix D. Solving Common C Problems 401

Writing a Program . 401

Compiling a Program . 403

Linking a Program . 405

Running a Program . 407

If You Don't Know Where to Start 424

If You Need More Help . 429

Appendix E. Component Files 431

C/C++ Tools Files . 432

 Copyright IBM Corp. 1992, 1993 361

 Appendixes

362 IBM C/C++ Tools: Programming Guide

 ANSI Notes

Appendix A. ANSI Notes on Implementation-Defined
Behavior

The C/C++ Tools product supports the requirements of the American

| National Standard for Information Systems / International Standards

| Organization – Programming Language C standard, ANSI/ISO

| 9899-1990[1992], and the current draft of the Working Paper for Draft

| Proposed American National Standard for Information Systems -

| Programming Language C++ ANSI X3J16/92-00091, (September 17,

| 1992), as understood and interpreted by IBM as of March 1993. It also

| supports the IBM SAA C standards as documented in the SAA CPI C

| Reference - Level 2. This appendix describes how the C/C++ Tools

| product behaves where the ANSI C Standard describes behavior as

| implementation-defined. These behaviors can affect your writing of

portable code.

| Implementation-Defined Behavior Common to Both C and C++

| The following sections describe how the C/C++ Tools product defines

| the behavior classified as implementation-defined in the ANSI C

| Standard.

 Identifiers
� The number of significant characters in an identifier with no external

linkage is 255.

� The number of significant characters in an identifier with external

linkage is 255.

� The C/C++ Tools compiler truncates all external names to 255

characters.

� Case sensitivity: When you perform the compile and link steps

separately, the case of identifiers is ignored unless you specify the

/NOIGNORECASE (/NOI) linker option. If you use the icc command to

invoke the linker, the /NOI option is automatically supplied for you,

and the case of identifiers is significant.

 Copyright IBM Corp. 1992, 1993 363

 ANSI Notes

 Characters
| � A character is represented by 8 bits, as defined by the CHAR_BIT

| macro in <limits.h>.

� The same code page is used for the source and execution set.

(Source characters and strings do not need to be mapped to the

execution character set.)

� When an integer character constant contains a character or escape

sequence that is not represented in the basic execution character

set, the char is assigned the character after the backslash, and a

warning is issued. For example, '\q' is interpreted as the

character 'q'.

� When a wide character constant contains a character or escape

sequence that is not represented in the extended execution

character set, the wchar_t is assigned the character after the

backslash, and a warning is issued.

� When an integer character constant contains more than one

character, the last 4 bytes represent the character constant.

� When a wide character constant contains more than one multibyte

character, the last wchar_t value represents the character constant.

� The default behavior for char is unsigned.

� Any sequential spaces in your source program are interpreted as

one space.

� All spaces are retained for the listing file.

 Strings
� The C/C++ Tools compiler provides the following additional

sequence forms for strtod, strtol, and strtoul functions in

locales other than the C locale:

inf infinity nan

All of these sequences are not case sensitive.

364 IBM C/C++ Tools: Programming Guide

 ANSI Notes

� When you use DBCS (with the /Sn compiler option), a hexadecimal

character that is a valid first byte of a double-byte character is

treated as a double-byte character inside a string. That is, a 0 is

appended to the character that ends the string. Double-byte

characters in strings must appear in pairs.

 Integers

� When you convert an integer to a signed char, the least-significant

byte of the integer represents the char.

� When you convert an integer to a short signed integer, the

least-significant 2 bytes of the integer represents the short int.

� When you convert an unsigned integer to a signed integer of equal

length, if the value cannot be represented, the magnitude is

preserved and the sign is not.

� When bitwise operations (OR, AND, XOR) are performed on a

signed int, the representation is treated as a bit pattern.

� The remainder of integer division is negative if exactly one operand

is negative.

� When either operand of the divide operator is negative, the result is

truncated to the integer value and the sign will be negative.

Figure 30. Integer Storage and Range

Type Amount of Storage Range (in <limits.h>)

signed short 2 bytes -32768 to 32767

unsigned short 2 bytes 0 to 65535

signed int 4 bytes -2147483648 to

2147483647

unsigned int 4 bytes 0 to 4294967295

signed long 4 bytes -2147483648 to

2147483647

unsigned long 4 bytes 0 to 4294967295

Note: Do not use the values in this table as numbers in a source program.

Use the macros defined in <limits.h> to represent these values.

 Appendix A. ANSI Notes on Implementation-Defined Behavior 365

 ANSI Notes

| � The result of a bitwise right shift of a negative signed integral type

| is sign extended.

| � The result of a bitwise right shift of a non-negative signed integral

| type or an unsigned integral type is the same as the type of the left

| operand.

 Floating-Point Values

� When an integral number is converted to a floating-point number

that cannot exactly represent the original value, it is truncated to the

nearest representable value.

� When a floating-point number is converted to a narrower

floating-point number, it is rounded to the nearest representable

value.

Figure 31. Floating Point

Type Amount of Storage Range of Exponents

(base 10) (in <float.h>)

float (IEEE 32-bit) 4 bytes -37 to 38

double (IEEE 64-bit) 8 bytes -307 to 308

long double (IEEE

80-bit)

16 bytes -4931 to 4932

Arrays and Pointers
| � The type of the integer required to hold the maximum size of an

| array (the type of the sizeof operator, size_t) is unsigned int.

| � The type of the integer required to hold the difference between two

| pointers to elements of the same array (ptrdiff_t) is int.

� When you cast a pointer to an integer or an integer to a pointer, the

bit patterns are preserved.

366 IBM C/C++ Tools: Programming Guide

 ANSI Notes

 Registers
� The C/C++ Tools compiler optimizes register use and does not

respect the register storage class specifier.

| � In C programs, you cannot take the address of an object with a

| register storage class. This restriction does not apply to C++

| programs.

Structures, Unions, Enumerations, Bit-Fields
� If a member of a union object is accessed using a member of a

different type, the result is undefined.

� If a structure is not packed, padding is added to align the structure

members on their natural boundaries and to end the structure on its

| natural boundary. The alignment of the structure or union is that of

| its strictest member. If the length of the structure is greater than a

| doubleword, the structure is doubleword-aligned. The alignment of

| the individual members is not changed. Packed structures are not

padded. See Appendix C, “Mapping” on page 385 for more

information.

� The default type of an integer bit field is unsigned int.

� Bit fields are allocated from low memory to high memory, and the

bytes are reversed. For more information, see Appendix C,

“Mapping” on page 385.

� Bit fields can cross storage unit boundaries.

| � The maximum bit field length is 32 bits. If a series of bit fields does

| not add up to the size of an int, padding may take place.

| � A bit field cannot have type long double.

| � The expression that defines the value of an enumeration constant

| cannot have type long double.

� An enumeration can have the type char, short, or long and be

either signed or unsigned, depending on its smallest and largest

values.

| In C++, enumerations are a distinct type, and although they may be

| the same size as a data type such as char, they are not considered

| to be of that type.

 Appendix A. ANSI Notes on Implementation-Defined Behavior 367

 ANSI Notes

 Qualifiers
| � All access to an object that has a type that is qualified as volatile

| is retained.

 Declarators
� There is no C/C++ Tools limit for the maximum number of

declarators (pointer, array, function) that can modify an arithmetic,

structure, or union type. The only constraint is your system

resources.

 Statements
� Because the case values must be integers and cannot be

duplicated, the maximum number of case values in a switch

statement is 4 294 967 296.

 Preprocessor Directives
� The value of a single-character constant in a constant expression

that controls conditional inclusion matches the value of the

character constant in the execution character set.

� Such a constant can have a negative value.

� For the method of searching system include source files (< >), see

“Controlling #include Search Paths” on page 38.

| � User include files can be specified in double quotation marks (" ...

| "), see “Controlling #include Search Paths” on page 38.

� For the mapping between the name specified in the include

directive and the external source file name, see “Controlling

#include Search Paths” on page 38.

� For the behavior of each #pragma directive, see the Online

Language Reference or the C Language Reference and C++

Language Reference.

| � The __DATE__ and __TIME__ macros are always defined as the

| system date and time.

368 IBM C/C++ Tools: Programming Guide

 ANSI Notes

 Library Functions
| � In extended mode (the default) and for all C++ programs, the NULL

| macro is defined to be 0. For all other language levels, NULL is

| defined to be

| ((void \)0).

� When assert is executed, if the expression is false, the diagnostic

message written by the assert macro has the format:

Assertion failed: expression, file file_name, line line_number

� To create a table of the characters set up by the CTYPE functions,

use the program in Figure 32 on page 370. The columns are

organized by function as follows:

(Column 1) The hexadecimal value of the character

AN isalnum

A isalpha

C iscntrl

D isdigit

G isgraph

L islower

(Column 8) isprint

PU ispunct

S isspace

PR isprint

U isupper

X isxdigit

� The value returned by all math functions after a domain error

(EDOM) is a NaN.

� The value errno is set to on underflow range errors is ERANGE.

� If you call the fmod function with 0 as the second argument, fmod

returns 0 and a domain error.

 Appendix A. ANSI Notes on Implementation-Defined Behavior 369

 ANSI Notes

#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int ch;

for (ch = 0; ch <= 0xff; ch++)
 {

printf("%#04X ", ch);
printf("%3s ", isalnum(ch) ? "AN" : " ");
printf("%2s ", isalpha(ch) ? "A" : " ");
printf("%2s", iscntrl(ch) ? "C" : " ");
printf("%2s", isdigit(ch) ? "D" : " ");
printf("%2s", isgraph(ch) ? "G" : " ");
printf("%2s", islower(ch) ? "L" : " ");
printf("%c", isprint(ch) ? ch : ' ');
printf("%3s", ispunct(ch) ? "PU" : " ");
printf("%2s", isspace(ch) ? "S" : " ");
printf("%3s", isprint(ch) ? "PR" : " ");
printf("%2s", isupper(ch) ? "U" : " ");
printf("%2s", isxdigit(ch) ? "X" : " ");

 putchar('\n');
 }
 return 0;
}

Figure 32. C Program to Print out CTYPE Characters

370 IBM C/C++ Tools: Programming Guide

 ANSI Notes

 Error Handling
� See the Online Language Reference for a list of the runtime

messages generated for perror and strerror. Note that the value

of errno is not generated with the message.

� See the Online Language Reference for the lists of the messages

provided with the C/C++ Tools compiler.

� Messages are classified as shown by the following table:

| � Use the /Wn compile-time option to control the level of messages

| generated. There is also a /Wgrp compiler option that provides

programming-style diagnostics to aid you in determining possible

programming errors. See “Debugging and Diagnostic Information

Options” on page 92.

Type of Message Return Code

Information 0

Warning 0

Error 12

Severe error 16 or 20 or 99

 Signals
� The set of signals for the signal function is described in

Chapter 18, “Signal and OS/2 Exception Handling” on page 317.

� The parameters and the usage of each signal recognized by the

signal function are described in Chapter 18, “Signal and OS/2

| Exception Handling” on page 317 and in the C Library Reference

| under signal.

� SIG_DFL is the default signal, and the default action taken is

termination. See Chapter 18, “Signal and OS/2 Exception

Handling” on page 317 for more information on signal handling.

� If the equivalent of signal(sig, SIG_DFL); is not executed at the

beginning of signal handler, no signal blocking is performed. See

Chapter 18, “Signal and OS/2 Exception Handling” on page 317.

� Whenever you leave a signal handler, it is reset to SIG_DFL.

 Appendix A. ANSI Notes on Implementation-Defined Behavior 371

 ANSI Notes

 Translation Limits
| The following table lists the C/C++ Tools translation limits:

Figure 33. Translation Limits

Nesting levels of:

 � Compound statements

 � Iteration control

 � Selection control

 � Conditional inclusion

 � Parenthesized declarators

 � Parenthesized expression

 � No limit

 � No limit

 � No limit

 � No limit

 � No limit

 � No limit

Number of pointer, array and function declarators modifying an

arithmetic, a structure, a union, and incomplete type declaration

 � No limit

Significant initial characters in:

 � Internal identifiers

 � Macro names

 � External identifiers

 � 255

 � No limit

 � 255

Number of:

� External identifiers in a translation unit

� Identifiers with block scope in one block

� Macro identifiers simultaneously declared in a translation unit

� Parameters in one function definition

� Arguments in a function call

� Parameters in a macro definition

� Parameters in a macro invocation

� Characters in a logical source line

� Characters in a string literal

| � Size of an object (in bytes)

� Nested #include files

� Enumeration constants in an enumeration

� Levels in nested structure or union

| � 1024

 � No limit

 � No limit

 � 255

 � 255

 � No limit

 � No limit

| � No limit

| � No limit

 � LONG_MAX

� 127 (C), 256 (C++)

� 4 294 967 296 distinct values

 � No limit

372 IBM C/C++ Tools: Programming Guide

 ANSI Notes

Streams and Files
� The last line of a text stream does not require a terminating

new-line character.

� Space characters that are written out to a text stream immediately

before a new-line character appear when read.

� When a text stream is connected to a character device, the Ctrl-Z

(\x1a) character is treated as an end-of-file indicator.

� If Ctrl-Z is the last character in a file, it is treated as the end-of-file.

Similarly, when a file ending with a Ctrl-Z character is opened in

append mode, the Ctrl-Z is discarded. This Ctrl-Z behavior applies

to text mode only.

� There is no limit to the number of null characters that can be

appended to the end of a binary stream.

� The file position indicator of an append mode stream is positioned

at the end of the file.

� When a file is opened in write mode, the file is truncated. If the file

does not exist, it is created.

� A file of zero length does exist.

� For the rules for composing a valid file name, refer to the

documentation for the OS/2 operating system.

� For reading, the same file can be simultaneously opened multiple

times; for writing or appending, the file can be opened only once.

� When the remove function is used on an open file, remove fails.

� When you use the rename function to rename a file to a name that

exists prior to the function call, rename fails.

� Temporary files may not be removed if the program terminates

abnormally.

� When the tmpnam function is called more than TMP_MAX times,

tmpnam fails and returns NULL, and sets errno to ENOGEN.

� The output of %p conversion in the fprintf function is equivalent to

%x.

� The input of %p conversion in the fscanf function is the same as is

expected for %x.

 Appendix A. ANSI Notes on Implementation-Defined Behavior 373

 ANSI Notes

� A '-' character that is neither the first nor the last in the scan list

for %[] conversion in the fscanf function is considered to be part of

the scan list.

� The possible values of errno on failure of fgetpos are EERRSET,

ENOSEEK, and EBADPOS.

� The possible values of errno on failure of ftell are EERRSET,

ENOSEEK, EBADPOS, and ENULLFCB.

 Memory Management
� If the size requested is 0, the calloc, malloc, and realloc

functions all return a NULL pointer. In the case of realloc, the

pointer passed to the function is also freed.

 Environment
� You can pass arguments to main through argv, argc, and envp.

� If a standard stream is redirected to a file, the stream is fully

buffered, with the exception of stderr, which is line buffered. If the

standard stream is attached to a character device, it is line

buffered.

� When the abort function is called, all open files are closed by the

operating system. The buffers are not flushed. Any memory files

belonging to the process are discarded.

� When the abort function is called, the return code of 3 is returned

to the host environment.

� When a program ends successfully and calls the exit function with

the argument 0 or EXIT_SUCCESS, all buffers are flushed, all files are

closed, all storage is released, and the argument is returned.

� When a program ends unsuccessfully and calls the exit function

with the argument EXIT_FAILURE, all buffers are flushed, all files are

closed, all storage is released, and the argument is returned.

� If the argument passed to the exit function is other than 0,

EXIT_FAILURE or EXIT_SUCCESS, all buffers are flushed, all files are

closed, all storage is released, and the argument is returned.

374 IBM C/C++ Tools: Programming Guide

 ANSI Notes

� For the set of environmental names, see Chapter 7, “Setting

Runtime Environment Variables” on page 133 and “OS/2

Environment Variables for Compiling” on page 34.

� For the method of altering the environment list obtained by a call to

| the getenv function, see the _putenv function in the C Library

| Reference.

� For the format and mode of execution of a string on a call to the

| system function, see the C Library Reference under system.

 Localization
� The environment specified by "" locale on a call to setlocale is the

C default locale.

� The supported locales are listed in Appendix E, “Component Files”

on page 431.

 Time
� The local time zone and daylight saving time zone are EST and EDT.

See Chapter 7, “Setting Runtime Environment Variables” on

page 133 and the _tzset function in the C Library Reference for

more information on specifying the time zone.

� The era for the clock function starts when the program is started

by either a call from the operating system or a call to system.

| C++-Specific Implementation-Defined Behavior

| The following sections describe how the C/C++ Tools product defines

| the behavior classified as implementation-defined in the ANSI C++

| Working Paper.

| Classes, Structures, Unions, Enumerations, Bit Fields
| � Class members are allocated in the order declared; access

| specifiers have no effect on the order of allocation.

| � Padding is added to align class members on their natural

| boundaries and to end the class on its natural boundary.

| � An int bit field behaves as an unsigned int for function

| overloading.

 Appendix A. ANSI Notes on Implementation-Defined Behavior 375

 ANSI Notes

| Linkage Specifications
| � The valid values for the string literal in a linkage specification are:

| "C++" Default

| "C" C language linkage

| Member Access Control
| � Class members are allocated in the order declared; access

| specifiers have no effect on the order of allocation.

| Special Member Functions
| � Temporary objects are generated under the following

| circumstances:

| – During reference initialization

| – During evaluation of expressions

| – In type conversions

| – Argument passing

| – Function returns

| – In throw expressions.

| � Temporary objects exist until there is a break in the flow of control

| of the program. They are destroyed on exiting the scope in which

| the temporary object was created.

376 IBM C/C++ Tools: Programming Guide

 ANSI Notes

| Migrating Headers from 16-bit C to 32-bit C/C++

| The following section describes the changes to existing 16-bit C

| headers that are needed in order to k with both 32-bit C and C++ code.

| Structures
| � #pragma pack statements should be added around structure

| declarations of structures that will be passed to or from 16-bit code.

| Do not use the _Packed keyword because it is not supported by

| C++.

| � Integers declared in the structures should be specifically declared

| as short or long, not int so that the structures have the same size

| and layout in both 16-bit and 32-bit code.

| � Create typedefs for your structures, and use #pragma seg16 on

| those typedefs to specify that those structures should not cross a

| 64K boundary when laid out in memory.

| � Any structure members that are pointers must have the pointer

| qualified with the _Seg16 type qualifier. For example, far \ would

| be translated to \ _Seg16. This may even need to be done

| recursively if the 16-bit code will be manipulating the object pointed

| at.

| Function Prototypes
| � Prototype your functions using the linkage convention keywords.

| Do not use #pragma linkage because it is not supported in C++.

| � Any functions that take pointers to other functions should have the

| linkage of the function pointed at specified in the prototype. This

| will avoid errors when the /Mp or /Ms compiler options are used to

| set the default linkage.

| � For functions that take pointers, if the pointer is passed between

| 32-bit and 16-bit code as part of an aggregate or class, or uses

| more than one level of indirection (for example, a pointer to a

| pointer, you must qualify the pointer with _Seg16. For example, far

| \ would be translated to \ _Seg16. If the pointer is passed directly,

| the _Seg16 keyword is not required.

 Appendix A. ANSI Notes on Implementation-Defined Behavior 377

 ANSI Notes

| Required Conditional Compilation Directives
| The following directives must be added to the beginning of each header

| file:

| #if __cplusplus
| extern "C" {
| #endif

| The following directives must be added to the end of each header file:

| #if __cplusplus
| }
| #endif

| Migrating Headers from (32-bit) C Set/2 Version 1 to (32-bit)
| C++

| The following changes to your existing header files are needed in order

| work with both C and C++ code:

| � Any use of the _Packed keyword must be removed and replaced

| with the appropriate use of #pragma pack. C++ does not support

| _Packed.

| � Any use of #pragma linkage must be removed and the appropriate

| linkage convention keyword must be added to the prototype. C++

| does not support #pragma linkage directives.

| � The following must be added to the beginning of each header file:

| #if __cplusplus
| extern "C" {
| #endif

| � The following must be added to the end of each header file:

| #if __cplusplus
| }
| #endif

378 IBM C/C++ Tools: Programming Guide

 ANSI Notes

| Creating New Headers to Work with Both C and C++ (32-bit)

| The following are needed in your new header files in order work with

| both C and C++ code:

| � The following must be added to the beginning of each header file:

| #if __cplusplus
| extern "C" {
| #endif

| � The following must be added to the end of each header file:

| #if __cplusplus
| }
| #endif

| � Do not use _Packed in your code; use #pragma pack instead.

| � Do not use #pragma linkage in your code; use the linkage

| convention keywords instead.

| � Use typedefs for any structures being passed to 16-bit code and

| specify the typedef in a #pragma seg16 statement.

| � Specify the linkage on any variables that are pointers to functions.

| � Use the _Seg16 type qualifier to declare external pointers that will

| be shared between 32-bit and 16-bit code, that is, that are declared

| in both. The _Seg16 qualifier directs the compiler to store the

| pointer as a segmented pointer (with a 16-bit selector and 16-bit

| offset) that can be used directly by a 16-bit application. You can

| also use the pointer in a 32-bit program; the C/C++ Tools compiler

| automatically converts it to a flat 32-bit pointer when necessary.

 Appendix A. ANSI Notes on Implementation-Defined Behavior 379

 ANSI Notes

380 IBM C/C++ Tools: Programming Guide

 Predefined Macros

Appendix B. C/C++ Tools Macros and Functions

This appendix lists the predefined macros reserved for use by the

C/C++ Tools product. It also includes a list of the intrinsic and built-in

functions. For a complete list of all functions in the C/C++ Tools

runtime libraries, see the C Library Reference or Reference Summary.

 Predefined Macros

| The macros identified in this section are provided to allow customers to

| write programs that use C/C++ Tools services. Only those macros

| identified in this section should be used to request or receive

| C/C++ Tools services.

The C/C++ Tools compiler provides both the SAA predefined macros

and a number of macros specific to the C/C++ Tools product.

Macro Description

_CHAR_UNSIGNED Indicates default character type is unsigned.

Defined using the #pragma chars directive or /J

compiler option.

_CHAR_SIGNED Indicates default character type is signed. Defined

using the #pragma chars directive or /J compiler

option.

| __COMPAT__ Indicates language constructs compatible with

| earlier versions of the C++ language are allowed.

| Defined using the #pragma langlvl(compat)

| directive or /Sc compiler option. This macro is valid

| for C++ programs only.

__cplusplus Set to the integer 1. Indicates the product is a C++

compiler. This macro is valid for C++ programs

only.

__DBCS__ Indicates DBCS support is enabled. Defined using

the /Sn compiler option.

__DDNAMES__ Indicates ddnames are supported. Defined using

the /Sh compiler option.

__DLL__ Indicates code for a DLL is being compiled.

Defined using the /Ge- compiler option.

 Copyright IBM Corp. 1992, 1993 381

 Predefined Macros

__FUNCTION__ Indicates the name of the function currently being

| compiled. For C++ programs, expands to the actual

| function prototype.

__IBMC__ Indicates the version number of the C/C++ Tools C

compiler.

| __IBMCPP__ Indicates the version number of the C/C++ Tools

| C++ compiler.

_M_I386 Indicates code is being compiled for a 386 chip or

higher.

__MULTI__ Indicates multithread code is being generated.

Defined using the /Gm compiler option.

__OS2__ Set to the integer 1. Indicates the product is an

OS/2 compiler.

__SPC__ Indicates the subsystem libraries are being used.

Defined using the /Rn compiler option.

| __TEMPINC__ Indicates the template-implementation file method

| of resolving template functions is being used.

| Defined using the /Ft compiler option.

__TILED__ Indicates tiled memory is being used. Defined

using the /Gt compiler option.

__32BIT__ Set to the integer 1. Indicates the product is a

32-bit compiler.

| The value of the __IBMC__ and __IBMCPP__ macros is 200, and is

always defined. The macros __OS2__, _M_I386, and __32BIT__ are

always defined also. The remaining macros, with the exception of

__FUNCTION__, are defined when the corresponding #pragma directive or

compiler option is used.

382 IBM C/C++ Tools: Programming Guide

 Intrinsic Functions

 Intrinsic Functions

| When optimization is on, the C/C++ Tools compiler by default generates

| code instead of a function call for the following C library functions:

When you #include the appropriate header file in which the function

prototype and the #define and #pragma statements for the function are

found, the C/C++ Tools compiler generates code instead of a function

call for these functions.

You can override the header either by undefining the macro or by

placing the name of the function in parentheses, thus disabling the

processor substitution. The function then remains a function call, and is

not replaced by the code. The size of your object module is reduced,

but your application program runs more slowly.

| Note: The following functions are built-in functions, meaning they do

| not have any backing library functions, and are always inlined:

| The built-in functions are all defined in <builtin.h>, in addition to

| the standard header definitions.

abs

| _clear87

| _control87

fabs

labs

memchr

memcmp

memcpy

memmove

memset

| _status87

strcat

strchr

strcmp

strcpy

strlen

strncat

strncmp

strncpy

strrchr

| _alloca

| _disable

| _enable

| _facos

| _fasin

| _fcos

| _fcossin

| _fpatan

| _fptan

| _fsin

| _fsincos

| _fsqrt

| _fyl2x

| _fyl2xp1

| _f2xm1

| _getTIBvalue

| _inp

| _inpd

| _inpw

| _interrupt

| _outp

| _outpd

| _outpw

| __parmdwords

 Appendix B. C/C++ Tools Macros and Functions 383

 Intrinsic Functions

384 IBM C/C++ Tools: Programming Guide

 Name Mapping

 Appendix C. Mapping

This appendix describes how the C/C++ Tools compiler maps data

types into storage and the alignment of each data type and the

mapping of its bits. The mapping of identifier names is also discussed,

| as is the encoding scheme used by the compiler for encoding or

| mangling C++ function names.

 Name Mapping

To prevent conflicts between user-defined identifiers (variable names or

functions) and C/C++ Tools library functions, do not use the name of

any library function or external variable defined in the library as a

user-defined function.

If you statically link to the C/C++ Tools runtime libraries (using the /Gd-

option), all external names beginning with Dos, Vio, or Kbd (in the case

given) become reserved external identifiers. These names are not

reserved if you dynamically link to the libraries.

To prevent conflicts with internal names, do not use an underscore at

the start of any of your external names; these identifiers are reserved

for use by the compiler and libraries. The internal C/C++ Tools

identifier names that are not listed in either the C Language Reference

or this manual all begin with an underscore (_).

If you have an application that uses a restricted name as an identifier,

change your code or use a macro to globally redefine the name and

avoid conflicts. You can also use the #pragma map directive to convert

the name, but this directive is not portable outside of SAA.

A number of functions and variables that existed in the IBM C/2 and

Microsoft C Version 6.0 compilers are implemented in the C/C++ Tools

product, but with a preceding underscore to conform to ANSI naming

requirements. When you run the C/C++ Tools compiler in extended

| mode (which is the default) and include the appropriate library header

file, the original names are mapped to the new names for you. For

example, the function name putenv is mapped to _putenv. When you

compile in any other mode, this mapping does not take place.

 Copyright IBM Corp. 1992, 1993 385

 Demangling C++ Function Names

Note: Because the name timezone is used as a structure field by the

OS/2 operating system, the variable _timezone is not mapped to

timezone.

| Demangling (Decoding) C++ Function Names

| When the C/C++ Tools compiler compiles a program, it encodes all

| function names and certain other identifiers to include type and scoping

| information. This encoding process is called mangling. The linker uses

| the mangled names to ensure type-safe linkage. These mangled

| names are used in the object files and in the final executable file.

| Tools that use these files must use the mangled names and not the

| original names used in the source code.

| C/C++ Tools provides two methods of converting mangled names to the

| original source code names, demangling functions and the CPPFILT

| utility.

| Using the Demangling Functions
| The runtime library contains a small class hierarchy of functions that

| you can use to demangle names and examine the resulting parts of the

| name. It also provides a C-language interface you can use in C

| programs. The functions use no external C++ features.

| The demangling functions are available in both the static (.LIB) and

| dynamic (.DLL) versions of the library. The interface is documented in

| the <demangle.h> header file.

| Using the demangling functions, you can write programs to convert a

| mangled name to a demangled name and to determine characteristics

| of that name, such as its type qualifiers or scope. For example, given

| the mangled name of a function, the program returns the demangled

| name of the function and the names of its qualifiers. If the mangled

| name refers to a class member, you can determine if it is static,

| const, or volatile. You can also get the whole text of the mangled

| name.

386 IBM C/C++ Tools: Programming Guide

 Demangling C++ Function Names

| To demangle a name, which is represented as a character array, create

| a dynamic instance of the Name class and provide the character string to

| the class's constructor. For example, to demangle the name f__1XFi,

| create:

| char \rest;
| Name \name = Demangle("f__1XFi", rest);

| The demangling functions classify names into five categories: function

| names, member function names, special names, class names, and

| member variable names. After you construct an instance of class Name,

| you can use the Kind member function of Name to determine what kind

| of Name the instance is. Based on the kind of name returned, you can

| ask for the text of the different parts of the name or of the entire name.

| For the mangled name f__1XFi, you can determine:

| name->Kind() == MemberFunction
| ((MemberFunctionName \) name)->Scope()->Text() is "X"
| ((MemberFunctionName \) name)->RootName() is "f"
| ((MemberFunctionName \) name)->Text() is "X::f(int)"

| If the character string passed to the Name constructor is not a mangled

| name, the Demangle function returns NULL.

| For further details about the demangling functions and their C++ and C

| interfaces, refer to the information contained in the <demangle.h>

| header file. If you installed using the defaults, this header file should

| be in the INCLUDE directory under the main C/C++ Tools installation

| directory.

 Appendix C. Mapping 387

 Demangling C++ Function Names

| Using the CPPFILT Utility
| The C/C++ Tools product also provides the CPPFILT utility to convert

| mangled names to demangled names. You can run this utility on your

| object file to produce a list of symbols that are contained in the file.

| The list includes both the mangled and demangled names.

| One of the applications of this utility is creating module definition files

| for your C++ DLLs. Because functions in the DLL have mangled

| names, when you list the EXPORTS in your .DEF, you must use the

| mangled names. You can use the CPPFILT utility to extract all the

| names from the object module for you, copy the ones you want to

| export into your .DEF file, and link your object module into a DLL.

| For more information on how to use the CPPFILT utility, see the

| READ.ME file in the main C/C++ Tools directory.

388 IBM C/C++ Tools: Programming Guide

 Data Mapping

 Data Mapping

The following section lists each data format and its equivalent C type in

the C/C++ Tools product, including the alignment and mapping for

each.

Automatic Variables: When optimization is turned off (/O-), automatic

variables have the same mapping as other variables, but they

are mapped on the stack instead of in a data segment.

Because memory on the stack is constantly reallocated on the

stack, automatic variables are not guaranteed to be retained

after the return of the function that used them.

When optimization is on, automatic variables are mapped as

follows:

Size of Object Alignment

1-byte Byte-aligned

2-byte Word-aligned

3- to 4-byte Doubleword-aligned

5- to 8-byte 8-byte-aligned

Greater than 8-byte 16-byte aligned.

Note that the variables are ordered to minimize padding.

In the C/C++ Tools product, a word consists of 2 bytes (or 16 bits) and

a doubleword consists of 4 bytes (32 bits).

 1. Single-Byte Character

Type signed char and unsigned char

Alignment Byte-aligned.

Storage mapping Stored in 1 byte.

 Appendix C. Mapping 389

 Data Mapping

 2. Two-Byte Integer

Type short and its signed and unsigned counterparts

Alignment Word-aligned.

Storage mapping Byte-reversed, for example, 0x3B2C (where 2C is

the least significant byte and 3B is the most

significant byte) is represented in storage as:

Toward high

memory →

 3. Four-Byte Integer

Type long, int, and their signed and unsigned

counterparts

Alignment Doubleword-aligned.

Storage mapping Byte-reversed, for example, 0x4A5D3B2C (where

2C is the least significant byte and 4A is the most

significant byte) is represented in storage as:

Toward high memory →

byte

0

byte

1

2C 3B

byte

0

byte

1

byte

2

byte

3

2C 3B 5D 4A

390 IBM C/C++ Tools: Programming Guide

 Data Mapping

Note on IEEE Format

In IEEE format, a floating point number is represented in terms

of sign (S), exponent (E), and fraction (F):

(-1)S x 2E x 1.F

In the diagrams that follow, the first two rows number the bits.

Read them vertically from top to bottom. The last row indicates

the storage of the parts of the number.

4. Four-Byte Floating Point (IEEE Format)

Type float

Alignment Doubleword-aligned.

Bit mapping In the internal representation, there is 1 bit for

the sign (S), 8 bits for the exponent (E), and 23

bits for the fraction (F). The bits are mapped

with the fraction in bit 0 to bit 22, the exponent in

bit 23 to bit 30, and the sign in bit 31:

3 32222222 2221111111111
1 09876543 21098765432109876543210

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

Storage mapping The storage mapping is as follows:

Toward high memory →

byte 0 byte 1 byte 2 byte 3

76543210

111111

54321098

22221111

32109876

33222222

10987654

FFFFFFFF FFFFFFFF EFFFFFFF SEEEEEEE

 Appendix C. Mapping 391

 Data Mapping

5. Eight-Byte Floating Point (IEEE Format)

Type double

Alignment Doubleword-aligned on the 80386

Bit mapping In the internal representation, there is 1 bit for

the sign (S), 11 bits for the exponent (E), and 52

bits for the fraction (F). The bits are mapped

with the fraction in bit 0 to bit 51, the exponent in

bit 52 to bit 62, and the sign in bit 63:

6 66655555555 554444444444333333333322222222221111111111
3 21098765432 1098765432109876543210987654321098765432109876543210

S EEEEEEEEEEE FF

Storage mapping The storage mapping is as follows:

Toward high memory →

Toward high memory →

byte 0 byte 1 byte 2 ...

76543210

111111

54321098

22221111

32109876

...

FFFFFFFF FFFFFFFF FFFFFFFF ...

byte 5 byte 6 byte 7

44444444

76543210

55555544

54321098

66665555

32109876

FFFFFFFF EEEEFFFF SEEEEEEE

392 IBM C/C++ Tools: Programming Guide

 Data Mapping

6. Ten-Byte Floating Point in Sixteen-Byte Field (IEEE Format)

Type long double

Alignment Doubleword-aligned on the 80386

Bit mapping In the internal representation, there is 1 bit for

the sign (S), 15 bits for the exponent (E), and 64

bits for the fraction (F). The bits are mapped

with the fraction in bit 0 to bit 63, the exponent in

bit 64 to bit 78, and the sign in bit 79:

7 777777777666666
9 876543210987654

S EEEEEEEEEEEEEEE

666655555555554444444444333333333322222222221111111111
3210987654321098765432109876543210987654321098765432109876543210

FF

Storage mapping The storage mapping is as follows:

Toward high memory →

Toward high memory →

byte 0 byte 1 byte 2 ...

76543210

111111

54321098

22221111

32109876

...

FFFFFFFF FFFFFFFF FFFFFFFF ...

byte 7 byte 8 byte 9

66666555

43210987

77666666

10987654

77777777

98765432

FFFFFFFF EEEEEEEE SEEEEEEE

 Appendix C. Mapping 393

 Data Mapping

7. Null-Terminated Character Strings

Type char string[n]

Size Length of string (not including null).

Alignment Byte-aligned. If the length of the string is greater

than a doubleword, the string is

doubleword-aligned.

Storage mapping The string "STRING" is stored in adjacent bytes

as:

Toward high memory →

byte

0

byte

1

byte

2

byte

3

byte

4

byte

5

byte

6

'S' 'T' 'R' 'I' 'N' 'G' '\0'

394 IBM C/C++ Tools: Programming Guide

 Data Mapping

8. Fixed-Length Arrays Containing Simple Data Types

Type The corresponding C/C++ Tools declaration

depends on the simple data type in the array.

For an array of int, for example, you would use

something like:

 int int_array[n];

For an array of float, you would use something

like:

 float float_array[n];

Size n \ (s + p), where n is the number of elements

in the array, s is the size of each element, and p

is the alignment padding.

Alignment The alignment is the same as that of the simple

data type of the array elements. For instance,

an array of short elements would be

word-aligned, while an array of int elements

would be doubleword-aligned. If the length of

the array is greater than a doubleword, the array

is doubleword-aligned.

Storage mapping The first element of the array is placed in the

first storage position. For multidimensional

arrays, row-major ordering is used.

 Appendix C. Mapping 395

 Data Mapping

 9. Aligned Structures

Type struct

Size Sum of the sizes for each type in the struct

plus padding for alignment.

Alignment The first element of the structure is aligned

according to the alignment rule of the element

| that has the most restrictive alignment rule. If

| the length of the structure is greater than a

| doubleword, the structure is doubleword-aligned.

| The alignment of the individual members is not

| changed. In the following example, types char,

| short, and float are used in the struct.

Because float must be aligned on the

doubleword boundary, and because this is the

most restrictive alignment rule, the first element

must be aligned on the doubleword boundary

even though it is only a char.

Note: The first element will not necessarily

occupy a doubleword, but it will be aligned on it.

struct y {
char char1; /\ aligns on doubleword \/
short short1; /\ aligns on word \/
char char2; /\ aligns on byte \/
float float1; /\ aligns on doubleword \/
char char3 /\aligns on byte \/

 };

396 IBM C/C++ Tools: Programming Guide

 Data Mapping

Storage mapping The struct is stored as follows:

Toward high memory →

Toward high memory →

Toward high memory →

| Note: This mapping is also true for aligned

| structures in C++ as long as the structure does

| not contain virtual base classes or virtual

| functions.

10. Unaligned or Packed Structures

Type The definition of the structure variable is

preceded by the keyword _Packed, or the

#pragma pack directive or /Sp option is used.

For instance, the following definition would

create a packed struct called mystruct with the

type struct y (defined above):

_Packed struct y mystruct

Size The sum of the sizes of each type that makes up

the struct.

byte

0

byte

1

byte

2

byte

3

byte

4

byte

5

char1 pad short1 short1 char2 pad

byte 6 byte 7 byte 8 byte 9 byte

10

pad pad float1 float1 float1

byte

11

byte

12

byte

13

byte

14

byte

15

float1 char3 pad pad pad

 Appendix C. Mapping 397

 Data Mapping

Storage mapping When the _Packed keyword, the #pragma pack(1)

directive, or /Sp(1) option is used, the structure

mystruct is stored as follows:

Toward high memory →

Toward high memory →

When #pragma pack(2) or the /Sp(2) option is

used, mystruct is stored as follows:

Toward high memory →

Toward high memory →

| Note: This mapping is also true for aligned

| structures in C++ as long as the structure does

| not contain virtual base classes or virtual

| functions.

byte 0 byte 1 byte 2 byte 3 byte 4

char1 short1 short1 char2 float1

byte 5 byte 6 byte 7 byte 8

float1 float1 float1 char3

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5

char1 pad short1 short1 char2 pad

byte 6 byte 7 byte 8 byte 9 byte

10

byte

11

float1 float1 float1 float1 char3 pad

398 IBM C/C++ Tools: Programming Guide

 Data Mapping

11. Arrays of Structures

Type The definition for an array of struct would look

like:

struct y mystruct_array[n]

The definition of an array of _Packed struct

would look like:

_Packed struct y mystruct_array[n]

Alignment Each structure is aligned according to the

structure alignment rules. This may cause a

fixed-length gap between consecutive structures.

In the case of packed structures, there is no

padding.

Storage mapping The first element of the array is placed in the

first storage position. Row-major ordering is

used for multidimensional arrays.

| Note: This mapping is also true for aligned

| structures in C++ as long as the structure does

| not contain virtual base classes or virtual

| functions.

12. Structures Containing Bit Fields

Type struct

Size The sum of the sizes for each type in the struct

plus padding for alignment.

Alignment Each structure is aligned according to the

structure alignment rules.

 Appendix C. Mapping 399

 Data Mapping

Storage mapping Given the following structure:

struct s {
 char a;
 int b1:4;
 int b2:6;
 int b3:1;
 int :0;
 int b4:7;
 char c;
 }

struct s would be stored as follows:

┌────────┬────────┬────────┬────────┬────────┐
│ byte │ byte │ byte │ byte │ byte │
│ 0 │ 1 │ 2 │ 3 │ 4 │
├────────┼────────┼────────┼────────┼────────┤
│ │ 1 │ 1 1 2 3 3 4 bits
0 8 2 │ 8 9 4 1 2 0 used
├────────┼────┬───┴─┬─┬────┼──────┬─┼────────│
│ a │ b1 │ b2 │b│pad │ b4 │ │ c │
│ │ │ │3│ │ │ │ │
└────────┴────┴─────┴─┴────┴──────┴─┴────────┘
 ▲
 │
 pad

Notes:

a. The second row of the table counts the

number of bits used and should be read

vertically top-to-bottom.

| b. This mapping is also true for aligned

| structures in C++ as long as the structure

| does not contain virtual base classes or

| virtual functions.

400 IBM C/C++ Tools: Programming Guide

| Appendix D. Solving Common C Problems

| This appendix contains possible solutions to common and

| often-reported C and C/C++ Tools problems. If you have a problem

| with your C program, look here first for a solution. If these questions

| included here do not describe your problem, or if the answers do not

| solve it, please refer to “If You Need More Help” on page 429 for

| information on how to get more help.

| The questions have been grouped into the following sections:

| � “Writing a Program” below

| � “Compiling a Program” on page 403

| � “Linking a Program” on page 405

| � “Running a Program” on page 407

| � “If You Don't Know Where to Start” on page 424

| The questions in each section are printed in bold type, followed

| immediately by a possible solution.

Writing a Program

Q:

When do you use the & and \ operators on pointers and arrays?

A:

The address operator (&) is used to return a pointer to the location of

the operand; the indirection operator (\) is used to access the data

object that is pointed to. For example, if pSample is defined as a pointer

to type int and a is defined as an int:

| int \pSample;
| int a;

| the following statements together assign the value 3 to a:

pSample = &a; /\ pSample now points to variable a \/
\pSample = 3; /\ whatever pSample points to gets the value 3 \/

 Copyright IBM Corp. 1992, 1993 401

When you pass an array variable to a function, remember that the

name of an array evaluates to a pointer to the first element in the array.

When you declare the function, do not specify the \ operator; when you

call the function, do not use the & operator. For example, the following

statements do not process the array correctly:

int intarray[10][2]; /\ Array[10] of Array[2] of int \/
int foo(int (\argarray) [10][2]);

result = foo(&intarray);

To pass the array correctly, code the function definition and the function

call as follows:

int intarray[10][2]; /\ Array[10] of Array[2] of int \/
int foo(int argarray[10][2]); /\ No \ in this statement \/

result = foo(intarray); /\ No & in this statement \/

For more information on pointers, arrays, and the & and \ operators,

see the Online Language Reference.

Q:

How do you use the ## operator?

A:

The ## operator is used in a macro invocation to concatenate two

tokens to form a single token.

When you use ##, concatenation takes place before any individual

arguments are expanded. Also, if the result of a concatenation

contains valid macro names, further macro expansions can take place.

For example, consider the following code fragment:

#define ab a
#define p(x,y) x ## y
#define p1(x,y) p(x,y)

 p1(ab,b);

402 IBM C/C++ Tools: Programming Guide

The macro expansion for this code occurs in the following sequence:

1. Macro p1(x,y) is invoked, with parameter x associated with

argument ab and parameter y associated with argument b.

2. Macro ab is invoked, replacing ab with a.

3. Macro p(x,y) is invoked, with parameter x associated with

argument a and parameter y associated with argument b. This

concatenates the two arguments and produces ab as a result.

4. Macro ab is invoked, replacing ab with a Because this is the last

expansion that can be performed, a is returned as the result of the

entire macro expansion.

For more information and examples on the use of the ## operator, see

the Online Language Reference.

Compiling a Program

Q:

The compiler cannot find the os2.h file.

A:

The os2.h file is part of the Toolkit.

Make sure that you have installed the Toolkit, and that you specify the

TOOLKT20\INCLUDE directory in the INCLUDE environment variable.

Q:

Why does the compiler generate an error message for the

statement

((long \)fred)++?

A:

The operand of the increment operator (++) must be an lvalue.

Because a cast does not produce an lvalue, the statement above does

not compile.

Operators that must have lvalue operands include the increment and

decrement operators ++ and --, as well as the simple and compound

assignment operators.

 Appendix D. Solving Common C Problems 403

Use the following statement instead:

 \(&((long \)fred))++

For more information on casting and lvalues, see the Online Language

Reference.

Q:

Why does the compiler generate an incomplete type error message

or a type mismatch error message for the following declarations?

int f(struct st);
struct st {int s1;} ss;

 f(ss);

A:

A structure declaration must appear before any function prototype

statements that use that structure type. In the above example, because

struct st is declared after the function prototype for f, the compiler

considers the declaration of struct st to be a new declaration. When

function f is called, the compiler generates an error that the variable ss

is not the same type as the parameter in the function prototype.

Change the order of the statements so that the structure declaration

appears before the prototype. For example:

struct st {int s1;} ss;
int f(struct st);

 f(ss);

404 IBM C/C++ Tools: Programming Guide

Linking a Program

Q:

The linker generates unresolved external errors.

A:

The linker probably cannot find the libraries it needs to construct the

executable module.

Make sure that you specify all necessary libraries when you invoke the

linker. The correct C/C++ Tools libraries are linked in by default, unless

you use the /Gn compiler option or the /NOD linker option.

Avoid using the /Gn compiler option and the /NOD linker option. The

/Gn option suppresses information about the default libraries from the

linker; the /NOD option causes the linker to ignore the default libraries.

When you use these options you must specify on the command line all

libraries you use, both directly and indirectly.

Q:

The linker cannot find the OS2386.LIB file.

A:

The OS2386.LIB file is part of the Toolkit.

Make sure that you have installed the Toolkit, and that you specify the

TOOLKT20\LIB directory in the LIB environment variable.

 Appendix D. Solving Common C Problems 405

| Q:

| My program uses a function uppercase, which is defined in a

| second source file as follows:

| #include <ctype.h>
| void UPPERCASE (char \ lower)
| {
| while (\lower)
| {
| \lower = toupper (\lower);
| lower++;
| }
| }

| When I use icc to compile and link the two files, I get a linker error

| that says uppercase is an unresolved external. If I compile them

| and then invoke the linker in a separate step, everything works as

| it should.

| A:

| Your function name is defined in uppercase, and you call it in

| lowercase. Because the C language is case-sensitive, icc passes the

| /NOI option to the linker to make it case-sensitive also. You cannot

| disable this option.

| You can continue to compile and link in separate steps, but because

| the C/C++ Tools libraries and most other C code is case-sensitive, you

| may encounter more problems at a later time. It is recommended you

| change your code so that the case of the function name is the same in

| the definition and in the call.

406 IBM C/C++ Tools: Programming Guide

Running a Program

This section contains possible answers to questions that you might

have when you run a program. Refer to this section if your program

ends abnormally or behaves unexpectedly. This section is divided into

the following topics:

� Problems with DLLs

� Problems with Files

� Problems with Functions

� Problems with Library Functions

� Problems with Macros

� Problems with Threads

� Problems with One Statement

� Problems with Groups of Statements

Problems with DLLs
Q:

My DLL does not work properly.

A:

| You may be mixing objects compiled with the /Ge+ and /Ge- compiler

| options in the same DLL.

| The C/C++ Tools libraries provide different initialization routines for

| executable modules and DLLs. To ensure that the correct initialization

| routine is run, use the /Ge+ option is used when you create an

| executable module and the /Ge- option when you create a DLL.

| When you link your files, you can override the /Ge option you specified

| at compiler time. See “Using the /Ge Option” on page 118 for more

| information on how to do this. See Chapter 12, “Building Dynamic Link

| Libraries” on page 195 for more information on DLLs in general.

 Appendix D. Solving Common C Problems 407

Q:

My DLL ends abnormally when a second process tries to call it.

A:

Make sure that you include the following statements in your module

definition (.DEF) file:

� LIBRARY INITINSTANCE TERMINSTANCE

This statement identifies the executable file as a DLL. The

INITINSTANCE attribute specifies that the _DLL_InitTerm function is

called the first time the DLL is loaded for each process that

accesses the DLL. The TERMINSTANCE attribute specifies that the

_DLL_InitTerm function is called the last time the DLL is loaded for

each process that accesses the DLL.

� DATA MULTIPLE NONSHARED

This statement defines the default attributes for data segments

within the DLL. The MULTIPLE attribute specifies that there is a

separate copy of the data segment for each process that accesses

the DLL. The NONSHARED attribute specifies that the data segment is

not shared by other processes.

For more information on DLLs, see Chapter 12, “Building Dynamic Link

Libraries” on page 195.

408 IBM C/C++ Tools: Programming Guide

Problems with Files
Q:

I can edit a file, but I cannot open it.

A:

Make sure that if you store the file name in a constant string, you use a

double backslash (\\) to represent a backslash (\).

In C, a backslash is an escape character for inserting a character that

you normally cannot type. For example, because \t is the tab

character, the following string:

char filename[] = "c:\directory\test.c"

has an actual value of

 "c:directory est.c"

To enter the file name correctly, convert the string to the following:

char filename[] = "c:\\directory\\test.c"

Problems with Functions
Q:

I assigned a value to a function's parameter, but the value is not

returned to the calling function.

A:

In C, parameters to a function are passed by value, not by reference.

You need to pass either a pointer to the value (using the \ operator) or

the value's address (using the & operator).

For example, the following function x adds 2 integers and assigns the

results to one of them:

void x(int a, int b)
 {

a = a + b;
 }

 Appendix D. Solving Common C Problems 409

Consider the following program:

 #include <stdio.h>

 int main(void)
 {

int c = 10;
x(c, 5);
printf("The value of c is %d. \n", c);

 }

Because c is passed by value, it is not changed to 15 as expected. It

retains the value 10 after x returns.

To make the function work correctly, the parameter a must be defined

with the \ operator:

void x(int \a, int b)
 {

\a = \a + b;
 }

and the call must be made using the & operator:

x(&c, 5);

Q:

My function is not being called.

A:

Make sure that you include the parentheses () after the function name.

The parameter list enclosed in parentheses indicates that a function is

to be called. This parameter list can be empty, but you must include

the parentheses to actually invoke the function. If you use a function

name by itself, without the parentheses, the statement only computes

the address of the function.

410 IBM C/C++ Tools: Programming Guide

Q:

Some of the old C code that I have recently started to use does

not seem to work properly. It seems that the parameters to a

function are not being received correctly.

A:

Make sure that you do not mix functions defined under the old C

standard (K&R) with functions defined under the ANSI standard. You

can still define functions according to the K&R standard, but you cannot

mix prototyped and unprototyped function definitions because of the

difference in conversions.

| Note: The C++ language requires that all functions have ANSI-style

| prototypes.

There are important differences between the standards in the way that

functions are defined and processed by the compiler. Under the old

standard, you define a function as follows:

int my_function(variable1, variable2, variable3)
 int variable1;
 float variable2;
 short variable3;
 {
 ...
 }

To make passing of parameters easier, variables of type char or short

are converted to type int and variables of type float are converted to

double.

 Appendix D. Solving Common C Problems 411

The ANSI standard formally defines the function using a function

prototype. With the prototype definition, you explicitly state the number

and types of parameters each function receives. The corresponding

ANSI definition of the function above is:

/\ function prototype \/
int my_function(int variable1, float variable2, short variable3);

/\ function declaration \/
int my_function(int variable1, float variable2, short variable3)

 {
 ...
 }

The ANSI standard also allows functions with a variable number of

parameters, specified by following the fixed parameter list with an

ellipse ("..."). Under this standard, fixed parameters of type char are

converted to int, optional parameters of type char and short are

converted to int, and optional parameters of type float are converted

to double.

It is best to convert the function definitions to the ANSI standard.

Prototyping your functions as described in the ANSI standard makes

your code more portable. Defining a full prototype also gives the

compiler and optimizer complete information about the types and sizes

of the parameters. As a result, the compiler does not have to perform

conversions to widened types or generate eyecatcher instructions for

the function.

412 IBM C/C++ Tools: Programming Guide

Q:

Information that I generate by calling one function is being altered

after I call a second function.

A:

You may be returning the address of a local variable. If you call a

function from within your program, do not rely on any of its local data

after it returns. For example, given the following function:

void a(void)
 {
 int \x;

x = b(); /\ x points to a variable local to b() \/
 ...
 c();
 ...

printf("%d", &x); /\ try to access x after c() has been called \/
 }

The int variable that x points to may not exist after function c is called,

causing an error on the printf statement.

Local data is stored temporarily on the stack, which may be used by the

operating system. If the operating system or another function needs

some of the stack space, it is likely that the original data will be

overwritten. The cause of this problem can be difficult to isolate,

because the demand for stack space is random and unpredictable.

To avoid this problem, declare the variables in the calling function or as

global variables.

Q:

My window procedures end abnormally.

A:

Make sure that you prototype your window procedures to use the

_System calling convention. You can do this by including the

| appropriate system header file from the Toolkit. You should also

| ensure your window procedures include the EXPENTRY keyword, as

| described in the Toolkit documentation.

 Appendix D. Solving Common C Problems 413

The C/C++ Tools compiler uses the _Optlink calling convention by

default, which is not compatible with the _System calling convention

used by the OS/2 system to call window procedures. OS/2 APIs use

_System linkage; _Optlink is used for C/C++ Tools library functions.

It is easiest to use the _System keyword (or, for C only, the #pragma

linkage directive) to give individual functions _System linkage.

For more information on the calling conventions, see Chapter 14,

“Calling Conventions” on page 237.

Problems with Library Functions
Q:

A call to a printf statement causes the wrong thing to be printed

or my program to end abnormally.

A:

Make sure that the parameters you list in your format string match the

parameters you are actually passing to the function.

Possible problems include:

� Passing a parameter of a different type than you have declared.

For example, the printf function in the following code fragment

expects a string variable, but is passed a variable of type int:

 int a;
printf("%s", a);

The correct printf call should read:

printf("%d", a);

414 IBM C/C++ Tools: Programming Guide

� Passing a parameter of a different size than you have declared.

For example, the format string in the following code fragment

indicates that three variables of type int are expected, but the

variables passed are of type long, int, and short:

 long l;
 int i;
 short s;

printf("%d %d %d", l, i, s);

Because it reads in the bytes from storage, this call could have

unexpected results. The correct printf call should read:

printf("%ld %d %hd", l, i, s);

Note: The C/C++ Tools compiler allows you to mix an %ld

conversion operator with an int variable, and a %d conversion

operator with a long variable. For portability, ensure that your

conversion operators and variable types match.

� Passing a parameter by reference instead of by value.

For example, in the following code fragment, the printf function

expects a variable of type int, but is passed the address of an int

variable:

 int a;
printf("%d", &a);

The correct printf call should read:

printf("%d", a);

 Appendix D. Solving Common C Problems 415

Q:

The scanf function does not behave as expected. Sometimes it

does not wait for input, does not convert all input, or goes into an

infinite loop.

A:

The scanf function works on streams of characters, not lines of input. It

reads the characters from the specified input stream and formats them

according to the conversion rules that you specify.

Here are some guidelines to follow when reading character input:

� Use scanf for machine-generated input only.

� Use a combination of the fgets and sscanf functions for user input.

Note: Do not substitute the gets function for fgets. If you use

gets, it is possible to overwrite the character array used to store the

input, and cause memory problems. With fgets, you control the

number of characters that the user can input.

� Check the return count from the scanf functions to see how many

fields were processed.

� Read the descriptions of the various formats carefully. Some

formats skip leading white space (for example, %d and %f) and

others do not (for example, %c). Remember to include the new-line

character.

� Remember that the scanf conversion characters are different from

the printf conversion characters.

416 IBM C/C++ Tools: Programming Guide

The following examples show how scanf works and illustrate some

possible problems. All of the examples assume that the input is coming

from the user.

� The following statement reads an integer from the user:

scanf("%d", &myint)

The program waits for you to enter a string of characters. If you

enter:

 25\n

the function reads the digits 2 and 5 and stops when it reads the

first non-decimal digit, the new-line character (\n).

� If you instead enter:

 13 74\n

the function reads the digits 1 and 3 and stops when it reads the

blank, which is the first non-decimal digit. The %d conversion skips

any leading whitespace characters such as a blank, the tab

character (\t), and the new-line character.

The 74\n remains in the input stream. Because the input stream is

not empty, the next call to scanf will read directly from the stream

and will not wait for user input.

 Appendix D. Solving Common C Problems 417

� It is possible to enter an infinite loop with a combination of scanf

and unexpected user input. Here is an example:

The following code fragment reads a set of numbers until a

negative number is entered.

answer = 0;
i = 0;
while (answer >= 0) {

scanf("%d" , &answer);
myarray[i] = answer;

 i++;
 }

If you enter:

 123XYZ\n

the first call to scanf reads 123 as a valid integer and stops at the X,

leaving XYZ\n in the input stream. Because the input stream is not

empty, the next call to scanf tries to read an integer from the

stream. Because X is not an integer, scanf never progresses

through the input stream, and you do not have the opportunity to

enter new data. The result is an infinite loop.

For more information on the scanf function, see the C Library

Reference.

Q:

When I call a library function, it does not work or it causes my

program to end abnormally.

A:

Make sure that you use the #include preprocessor directive to include

the library header file that contains the prototype statement for the

library function. If you use the /Ms compiler option, you must include

header files for all library functions you use.

Note: You can use the /Wpro compiler option to warn you about

unprototyped library functions.

418 IBM C/C++ Tools: Programming Guide

| Q:

| My program links correctly and no error messages are generated,

| but the calls to library functions and system APIs do not work like

| they should.

| A:

| Make sure that you are using the correct calling convention. Library

| functions must be called using _Optlink and OS/2 APIs must be called

| using _System. Include the appropriate header files to ensure that the

| functions and APIs you use are prototyped correctly.

| Note: You can use the /Wpro compiler option to warn you about

| unprototyped library functions.

Problems with Macros
Q:

A statement in my C program behaves strangely. It deals with a

combination of a macro and increment operators.

A:

When you use a macro, make sure that you know how it will be

expanded. If you define a macro that repeats the input argument,

problems might occur in combination with increment (++) and decrement

(--) operators.

As an example, given the following macro toupp:

#define toupp(c) islower(c) ? _toupper(c) : (c)

The following statement is intended to copy every character of source

into dest:

while (\dest++ = toupp(\source++));

After the toupp macro is expanded, the actual statement that is

executed is:

while (\dest++ = islower(\source++) ? _toupper(\source++) : (\source++));

This increments source twice each time the loop is done, which is not

what was intended.

 Appendix D. Solving Common C Problems 419

Q:

I have defined a macro, but it does not always produce the correct

answer.

A:

Make sure that you use parentheses when you define the macro. You

may get unexpected results if you use the macro in the same statement

as other operators. The precedence rules of the other operators may

interfere with the macro definition.

For example, given the following code:

#define DOUBLE(x) x+x

y = DOUBLE(2)+1; /\ assigns 5 to y \/
z = DOUBLE(2)\3; /\ assigns 8 to z \/

The last statement evaluates to 8 rather than 12 because it expands to

z = 2 + 2 \ 3. To prevent this problem, use parentheses when you

define a macro. For example, the above macro would give the

expected results if it were defined as:

#define DOUBLE(x) ((x) + (x))

Problems with Threads
Q:

In my program, threads other than thread one do not work

correctly.

A:

Ensure that:

� You use the /Gs- compiler option to generate stack probes (which

is the default).

� You use the /Gm compiler option to link with the multithread

libraries.

� If you started a thread with the DosCreateThread API, you call

_endthread to end the thread and perform the necessary

termination actions. If you used _beginthread to start the thread,

_endthread is called implicitly when the thread ends.

420 IBM C/C++ Tools: Programming Guide

Problems with One Statement
Q:

My program sometimes takes the wrong branch of an if

statement. It should be processing the else clause, but it

processes the then clause instead.

A:

Ensure that your test statement uses the equality operator (==), not the

assignment operator (=).

Because the result of an assignment is the value assigned, the then

clause is executed whenever the right-hand expression is not zero.

The else clause is executed only when the right-hand expression is

zero.

One way to check for this situation is to place the constant or

expression on the left hand side of the == operator and the variable to

be tested on the right-hand side. If the assignment operator is used,

the compiler generates an error message.

Note: You can use the /Wcnd compiler option to warn you about

possible problems in conditional expressions.

Q:

I have an assignment statement, but it does not seem to do

anything. The variable retains its original value.

A:

Make sure that you use the assignment operator (=), not the equality

operator (==).

You can use the == operator in the same place as the = operator, as in

the following C statement:

i == 2;

However, this statement instructs the compiler to test if the value of i is

equal to 2. Because nothing is done with the results, this statement

has no effect on any variables.

Note: You cannot access this type of statement from the C/C++ Tools

debugger because the C/C++ Tools optimizer discards any statements

that have no effect.

 Appendix D. Solving Common C Problems 421

Q:

I have one statement that does not seem to do anything.

A:

Make sure that you are not missing an end to a comment (\/). In the

following example, an ending comment is omitted, causing a statement

to be skipped during the compilation:

/\ This comment has an incorrect terminator \\
 ...

here = (is > some) ? important : code;
 ...

/\ This comment "accidentally" terminates the previous comment \/
code = begins + working / fine->again;

Q:

Why does (i & 0x0F == 5) behave as (i & (0x0F == 5)) instead of

((i & 0x0F) == 5) as I expected?

A:

The equality operator (==) has a higher precedence than the bitwise

AND operator (&).

When you construct statements with multiple operators, make sure you

understand the precedence and associativity rules for each of the

operators. Use parentheses to clarify the purpose of your code and

make it easier to understand.

For more information on the rules for operator precedence and

associativity, see the Online Language Reference.

Problems with Groups of Statements
Q:

I have a group of statements that do not seem to do anything.

A:

Make sure that you are not missing an end to a comment (\/). For an

explanation, see the preceding section.

422 IBM C/C++ Tools: Programming Guide

Q:

A section of my code is not producing the expected results. The

statements use multiple C operators.

A:

When you construct statements with multiple operators, make sure you

understand the precedence and associativity rules for each of the

operators.

The precedence rules for C operators are complex and may not be in

the order that you would expect. For example, given the following

statement:

if (x & y == 0)

because the == operator has a higher precedence than the & operator,

the compiler interprets the statement as:

if (x & (y == 0))

To avoid confusion, use parentheses to clarify the purpose of your code

and to make it easier to understand.

For more information on the rules for operator precedence and

associativity, see the Online Language Reference.

Q:

A section of my code is not producing the expected results. The

statements use the ++ and -- operators.

A:

Make sure that your statements do not depend on side effects of the ++

and -- operators. For example, because the result of the following

statement depends on when the ++ operator is evaluated and when the

assignment is done, it may produce inconsistent results:

s[i++] = t[i];

 Appendix D. Solving Common C Problems 423

The order of these operations depends on the compiler being used and

possibly on the optimization requirements. One compiler may compute

the source address first (the right-hand side of the statement), while

another may compute the target address first (the left-hand side).

To produce consistent results, if you use the ++ or -- operators on a

variable within an expression, make sure that the variable appears only

once within the expression.

If You Don't Know Where to Start

Q:

My code looks correct and there are no compiler errors, but the

program is not producing the expected results.

A:

Make sure that there is not a semicolon at the end of a for, do, or

while statement.

When there is only one statement in the body of a loop, it is common to

code the loop in the following style:

for (... ; ... ; ...)
 statement;

It is also a common error to accidentally add a semicolon to the end of

the first line. For example:

for (i = 0; i < SOMENUMBER; i++);
d[i] = 0;

The semicolon at the end of the for statement ends the body of the

loop. The second line, which is the intended body of the loop, is

executed only once.

To avoid this problem, make the body of the loop into a compound

statement by enclosing it in braces ({}).

424 IBM C/C++ Tools: Programming Guide

Q:

My program does not run and the operating system generates a

SYS2070 error.

A:

The program could not access an external reference. The linker may

not have been able to resolve all of the external references in your

program.

You should always use the /NOI linker option to preserve the case of

external names when you link your program. If you use icc to invoke

the linker, this option is passed for you by default.

| Q:

| My PM application disappears without generating any messages.

| A:

| An exception has been generated and intercepted by an exception

| handler that has terminated the program. A machine-state dump is

| sent to stderr, but because the PM interface direct stderr to a null

| output device, you cannot see the error messages.

| Use the _set_crt_msg_handle function to redirect stderr to a file. You

| will then be able to see the runtime messages, including exception

| messages and machine-state information. Alternatively, you can write

| your own exception handler to intercept the exception and handle it

| however you want.

 Appendix D. Solving Common C Problems 425

Q:

My program does not work properly. Sometimes adding or

removing statements changes how the program terminates or may

even solve the problem temporarily. Using a debugger changes

the symptoms.

A:

There are several possible solutions to your problem:

� Make sure that you are calling functions correctly, that is, that you

are not missing a parameter in a function call or passing a

parameter with an incorrect type.

If a parameter is missing, the program may replace the parameter

with arbitrary data in order to complete the function call. The

C/C++ Tools compiler checks for missing parameters if you define

your functions using function prototypes.

Note: You can use the /Wpro compiler option to warn you about

missing prototypes.

If the incorrect type of parameter is used, the function misreads the

parameter list.

� Ensure that strings are terminated by a null byte.

When you initialize a string, you must include space for the null

byte. For example,

char str1[3] = "ab" /\ allocates 'a', 'b', '\0' \/
char str2[3] = "abc" /\ allocates 'a', 'b', 'c'; no '\0' \/

When you use a string, do not overwrite the null byte.

Because the null byte is used to indicate where the string

terminates, a string without the null byte can cause memory

problems. If you use a function such as strcpy on a string without

the terminating character, portions of the following memory may be

overwritten, causing problems with the current program or programs

that are using that memory space. Problems could appear

immediately or only after the program is run several times.

426 IBM C/C++ Tools: Programming Guide

� Check your function return types.

The compiler assumes that a function declared without a return

type returns an int. This could cause problems if your program is

expecting a different return type. Prototype your functions to avoid

this problem.

� If you declare an array in one file and reference it in another file

using extern, make sure that the extern statement has the same

form as the declaration statement.

For example, the following declarations are not equivalent:

/\ File 1: Global Data definitions \/
 char x[100];

/\ File 2: Using the global data \/
extern char \x;

In the second file, the compiler generates code that assumes that

the address at x contains the address of the actual array. The

correct definition in File 2 is:

/\ File 2: Using the global data \/
extern char x[];

� Ensure that you are not referencing beyond the last element of an

array.

The first entry of an array is found at index 0 (for example,

array[0]). If you declare an array of size n, the array starts at

element 0 and ends at element n-1.

The following code fragment references beyond the last array

element:

 char stuff[10];
 int i;
 ...

for (i = 0; i <= 10; i++) { /\ test should have been i < 10 \/
stuff[i] = ' ';

 }

Referencing beyond the last element in the array may overwrite

memory locations and cause problems with variable data, functions,

or the entire program.

 Appendix D. Solving Common C Problems 427

� Ensure you use the malloc and free library functions correctly.

The malloc function returns a pointer to an area of memory that is

at least as large as you request. The free function releases

memory previously allocated by malloc.

Make sure that only pointers returned by the malloc function are

passed to the free function. To keep track of what memory is

available, malloc stores information in a section of memory

adjacent to the pointer that it returns. The free function uses this

information to return the allocated space to the list of available

memory.

The free function does not check the pointer that it receives. If

free receives a pointer that was not set by malloc, memory

problems can occur. For example, other programs may get

unauthorized access to your data areas, program code, or parts of

the operating system.

Also make sure that you do not use memory outside of the memory

allocated by malloc.

To help you find possible problems with these functions, use the

debug memory management functions, described in the C Library

Reference.

428 IBM C/C++ Tools: Programming Guide

If You Need More Help

If the information in this appendix does not apply to your problem, or

you would like to report a product defect, you can contact IBM by

several means:

| � In North America, call 1-800-547-1283 to obtain the local number

| for the OS/2 support Bulletin Board System (OS2BBS) in your area.

| Note that the bulletin board does not provide defect support.

� If you are a CompuServe user, you can access the OS2DF1 forum

and go to Section 4 for C and Debugger information, or to Section

5 for C++ information.

� If you have an Internet ID, you can contact IBM at

cset2@vnet.ibm.com.

� To report a product defect only, call 1-800-237-5511 and identify

| yourself as a C/C++ Tools product user. A problem management

| report (PMR) will be created to reflect the problem, and you will be

| given a PMR number that you can use to track your problem.

 Appendix D. Solving Common C Problems 429

430 IBM C/C++ Tools: Programming Guide

 Appendix E. Component Files

This appendix lists the component files of the C/C++ Tools product and

indicates where they are installed on your hard drive, assuming you

used the IBM-supplied defaults for the installation.

The directory structure created by the default C/C++ Tools installation

are as follows:

───IBMCPP (main directory)
 ├──READ.ME
 ├──BIN
 ├──DLL
 ├──HELP
 ├──IBMCLASS
 ├──INCLUDE
 │ └──SYS
 ├──LIB
 ├──LOCALE
 ├──SAMPLES
 │ ├──ICLCC
 │ ├──ICLUI
 │ ├──SAMPLE1A
 │ ├──SAMPLE1B
 │ ├──SAMPLE02
 │ ├──SAMPLE03
 │ ├──SAMPLE04
 │ ├──SAMPLE05
 │ └──SAMPLE06
 ├──SYS
 ├──TMP
 ├──TUTORIAL
 │ ├──BROWSER
 │ └──DEBUG
 └──WKFRAME
 ├──DDE4CSET.PRF
 ├──GREP
 ├──HELLO2
 ├──MAHJONGG
 ├──PMLINES
 └──TOUCH

| If you install the C/C++ Tools product on a LAN, your local directory will

| contain only the files CSETENV.CMD and DDE4XTRA.SYS.

 Copyright IBM Corp. 1992, 1993 431

| Note: For the most current information about the directory structure

| and files, refer to the READ.ME file.

 C/C++ Tools Files

This section lists the C/C++ Tools files by directory.

Note: The naming conventions used for the libraries are intended to

help identify their function. The library names are as follows:

Character

Position

Significance

1234 5 6 7 8

DDE4 Product prefix

 S
 M
 N

Single-thread library

Multithread library

Subsystem library (no environment)

 B Builds both executables and DLLs

 S Standard library

 I
 O

Import library

Object library (contains initialization routines)

432 IBM C/C++ Tools: Programming Guide

The files are as follows:

 1. BIN

 � CSETENV.CMD

This file contains the commands to set the environment

variables for the C/C++ Tools product. If you use the

installation defaults, CSETENV.CMD contains the following

statements:

 @REM DEVICE=C:\IBMCPP\SYS\DDE4XTRA.SYS
 @REM LIBPATH=C:\IBMCPP\DLL;
 SET PATH=C:\IBMCPP\BIN;%PATH%
 SET DPATH=C:\IBMCPP\LOCALE;C:\IBMCPP\HELP;C:\IBMCPP\SYS;%DPATH%
 SET LIB=C:\IBMCPP\LIB;%LIB%
 SET INCLUDE=C:\IBMCPP\INCLUDE;C:\IBMCPP\IBMCLASS;%INCLUDE%
 SET HELP=C:\IBMCPP\HELP;%HELP%
 SET BOOKSHELF=C:\IBMCPP\HELP;%BOOKSHELF%
 SET HELPNDX=DDE4C.NDX+DDE4CPP.NDX+DDE4CCL.NDX+DDE4UIL.NDX+%HELPNDX%
 SET TMP=C:\IBMCPP\TMP
 SET TZ=EST5EDT,0,0,0,0,0,0,0,0,0

| Note that the LIBPATH variable and DEVICE statement must

be set in your CONFIG.SYS file. They cannot be set using a

command file such as CSETENV.CMD.

� The compiler itself (ICC.EXE, DDE4FE.EXE, DDE4CPP.EXE

DDE4BE.EXE, DDE4BE0.EXE)

| � The intermediate code linker (DDE4ICL.EXE)

| � The code for resolving template names (DDE4MNCH.EXE)

� The debugger (IPMD.EXE)

| � The browser (IBRS.EXE)

| � The execution trace analyzer (IXTRA.EXE, IDCGRAPH.EXE,

| ICALNEST.EXE, IEXCDENS.EXE, ISTATS.EXE, ITIME.EXE)

 Appendix E. Component Files 433

 2. DLL

� Dynamic link libraries for the compiler:

– DDE4ICC.DLL - Compiler options DLL (for use with the

WorkFrame/2 product).

– DDE4ICL.DLL - Linker options DLL (for use with the

WorkFrame/2 product).

– DDE4MBS.DLL - Multithread standard DLL.

– DDE4NBS.DLL - Subsystem (no environment) DLL.

– DDE4SBS.DLL - Single-thread standard DLL.

| – DDE4MNGL.DLL - DLL for name mangling and

| demangling.

� DLLs for the debugger:

 – DDE4BE32.DLL

 – DDE4CRT.DLL

 – DDE4CRTP.DLL

| – DDE4CXT.DLL

| – DDE4CXTP.DLL

 – DDE4MODL.DLL

 – DDE4PMDB.DLL

 – DDE4RESS.DLL

| � DLLs for EXTRA:

| – DDE4NARC.DLL

| – DDE4XAPI.DLL

| – DDE4XELV.DLL

| – DDE4XTRA.DLL

| – _DOSCALL.DLL

| – FCLDLGP.DLL

| – FCLDRCP.DLL

| – _PMGPI.DLL

| – _PMWIN.DLL

| � DLLs for the browser:

| – XELV.DLL

| – XARC.DLL

434 IBM C/C++ Tools: Programming Guide

| � DLLs for the User Interface class library:

| – ICRES437.DLL

 3. HELP

 � Message files:

– DDE4.MSG - Runtime messages

– DDE4BE32.MSG - Debugger messages

– DDE41.MSG - Compiler back end messages

– DDE42.MSG - Compiler icc messages

– DDE43.MSG - Compiler front end messages

| – DDE44.MSG - Intermediate code linker messages

| – DDE45.MSG - C++ compiler front end messages

| – DDE46.MSG - C++ Standard class library messages

� Online help files:

– DDE4ICC.HLP - Help for compiler options (for use with the

WorkFrame/2 product).

– DDE4ICL.HLP - Help for linker options (for use with the

WorkFrame/2 product).

– DDE4HELP.HLP - Help for the debugger.

| – DDE4XTRA.HLP - Help for EXTRA.

| – DDE4BRS.HLP - Help for the browser.

 � Online references:

| – DDE4SCL.INF - Standard Class Library Reference for the

| Complex Mathematics, I/O Stream, and Task libraries.

| – DDE4CCL.INF - Collection Class Library Reference for the

| Collection class library.

| – DDE4CLIB.INF - C Library Reference for all C/C++ Tools

| library functions.

| – DDE4LRM.INF - Online Language Reference for C and C++

| language constructs, compiler options, and messages.

| – DDE4UIL.INF - User Interface Class Library Reference for

| the User Interface class library.

 Appendix E. Component Files 435

� Files to enable context-sensitive help in the Enhanced editor

(EPM):

– DDE4ERRS.HLP - Help for compiler messages (for use

with the WorkFrame/2 product).

| – DDE4C.NDX - Mapping file for C.

| – DDE4CPP.NDX - Mapping file for C++

| – DDE4CCL.NDX - Mapping file for the Collection class

| library.

| – DDE4UIL.NDX - Mapping file for the User Interface class

| library.

 4. INCLUDE

� Runtime library header files:

| � C++ Standard Class Library header files:

| � User Interface class library header files.

| � Collection class library header files.

<assert.h>

<builtin.h>

<conio.h>

<ctype.h>

<demangle.h>

<direct.h>

<errno.h>

<fcntrl.h>

<float.h>

<io.h>

<limits.h>

<locale.h>

<malloc.h>

<math.h>

<new.h>

<memory.h>

<process.h>

<search.h>

<setjmp.h>

<share.h>

<signal.h>

<stdarg.h>

<stddef.h>

<stdio.h>

<stdlib.h>

<string.h>

<sys\stat.h>

<sys\timeb.h>

<sys\types.h>

<sys\utime.h>

<terminat.h>

<time.h>

<unexpect.h>

<wcstr.h>

| <complex.h>

| <fstream.h>

| <generic.h>

| <iomanip.h>

| <iostream.h>

| <stdiostr.h>

| <stream.h>

| <strstrea.h>

| <task.h>

436 IBM C/C++ Tools: Programming Guide

 5. LIB

� Static runtime libraries for building both DLLs and executable

modules:

| – COMPLEX.LIB - Statically bound, single-thread Complex

| Mathematics Library.

| – COMPLEXM.LIB - Statically bound, multithread C++

| Complex Mathematics Library.

– DDE4MBS.LIB - Statically bound, multithread standard

library.

– DDE4NBS.LIB - Statically bound, subsystem library.

– DDE4SBS.LIB - Statically bound, single-thread standard

library.

| – TASK.LIB - Statically bound, single-thread C++ Task

| Library.

| � Import libraries for building both DLLs and executable modules:

– DDE4MBSI.LIB - Dynamically bound, multithread standard

import library.

– DDE4NBSI.LIB - Dynamically bound, subsystem import

library.

– DDE4SBSI.LIB - Dynamically bound, single-thread standard

import library.

| � Object libraries containing necessary startup routines:

| – DDE4MBSO.LIB - Statically bound, multithread standard

| object library.

| – DDE4NBSO.LIB - Statically bound, subsystem object

| library.

| – DDE4SBSO.LIB - Statically bound, single-thread standard

| object library.

| � Static libraries for EXTRA:

| – _DOSCALL.LIB

| – _PMGPI.LIB

| – _PMWIN.LIB

 Appendix E. Component Files 437

| � Static libraries for the User Interface class library:

| – IBASE.LIB

| – IBASEAPP.LIB

| – IBASECTL.LIB

| – ICNR.LIB

| – IDRAG.LIB

| � Static libraries for the Collection class library:

| – ICLCC.LIB

| � Object to link into your program to enable you to pass global

| file-name arguments to main (SETARGV.OBJ)

| � Object to link into your program for EXTRA (DDE4XTRA.OBJ)

| 6. IBMCLASS

| � Header files for the Collection class library.

| � Header files for the User Interface class library.

 7. LOCALE

� Locale object files:

| – IBMCCDEF.CLD

 – IBMCFRAN.CLD

 – IBMCGERM.CLD

 – IBMCITAL.CLD

 – IBMCJAPN.CLD

| – IBMCJAP2.CLD

| – IBMCJAP3.CLD

 – IBMCSPAI.CLD

 – IBMCUK.CLD

 – IBMCUSA.CLD

438 IBM C/C++ Tools: Programming Guide

 8. SAMPLES

| � The ICLCC directory contains the sample programs for the

| Collection class library.

| � The ICLUI directory contains the sample programs for the User

| Interface class library.

� The directories SAMPLEnn each contain the files for a sample

program and two command files used to compile, link, and run

the program. For example, the SAMPLE1A directory contains the

files for the SAMPLE1A program.

| 9. SYS

| � The device driver for EXTRA (DDE4XTRA.SYS)

| � The profile for the browser (DDE4BRS.PRF)

| 10. TUTORIAL

| � The BROWSER directory contains the files for the browser tutorial.

| � The DEBUG directory contains the files used for the online

| debugger tutorial.

| � The other directories under TUTORIAL contain the files for the

| Collection class library tutorials.

11. TMP

� This directory contains any temporary files created by the

compiler.

12. WKFRAME

� This directory contains the C/C++ Tools files provided for IBM

WorkFrame/2 support.

– DDE4CSET.PRF - Language profile for the C/C++ Tools

product.

– Each of the directories under WKFRAME contains the files for

a sample project that can be created using the

WorkFrame/2 and C/C++ Tools products. For example, the

TOUCH directory contains the files for the TOUCH sample

project.

 Appendix E. Component Files 439

440 IBM C/C++ Tools: Programming Guide

 Glossary

This glossary defines terms and abbreviations that

are used in this book. It does not include all

terms previously established in the SAA CPI C

Reference - Level 2. If you do not find the term

you are looking for, refer to the index or to the

IBM Dictionary of Computing, SC20-1699.

This glossary includes terms and definitions from

the American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,

copyright 1990 by the American National

Standards Institute (ANSI). Copies may be

purchased from the American National Standards

Institute, 1430 Broadway, New York, New York

10018.

A

absolute value. The magnitude of a real number

regardless of its algebraic sign.

| abstract code unit (ACU). A measurement used

| by the C/C++ Tools compiler for judging the size

| of a function. The number of ACUs that comprise

| a function is proportional to its size and

| complexity.

| access. An attribute that determines whether or

| not a class member is accessible in an

| expression or declaration.

| access declaration. A declaration used to

| restore access to members of a base class.

| access specifier. One of the C++ keywords

| public, private, or protected.

| ACU. Abstract code unit.

| address. A name, label, or number identifying a

| location in storage, a device in a system or

| network, or any other data source.

aggregate. An array or a structure. Also, a

compiler option to show the layout of a structure

or union in the listing.

alias. An alternate label used to refer to the

same data element or point in a computer

program.

American National Standard Code for

Information Interchange (ASCII). The code

developed by ANSI for information interchange

among data processing systems, data

communications systems, and associated

equipment. The ASCII character set consists of

7-bit control characters and symbolic characters.

Note: IBM has defined an extension to ASCII

code (characters 128-255).

American National Standards Institute (ANSI).

An organization consisting of producers,

consumers, and general interest groups, that

establishes the procedures by which accredited

organizations create and maintain voluntary

industry standards in the United States.

anonymous union. A union that is declared

within a structure or class and that does not have

a name.

ANSI. American National Standards Institute.

API. Application program interface.

 Copyright IBM Corp. 1992, 1993 441

application. The use to which an information

processing system is put, for example, a payroll

application, an airline reservation application, a

network application.

application program interface (API). The

formally defined programming language interface

between an IBM system control program or a

licensed program and the user of the program.

argument. In a function call, an expression that

represents a value that the calling function passes

to the function specified in the call. Also called a

parameter.

arithmetic object. An integral object, a bit field,

or floating-point object.

array. A variable that contains an ordered group

of data objects. All objects in an array have the

same data type.

ASCII. American National Standard Code for

Information Interchange.

assembly language. A symbolic programming

language in which the set of instructions includes

the instructions of the machine and whose data

structures correspond directly to the storage and

registers of the machine.

asynchronous. Without regular time

relationship; unexpected or unpredictable with

respect to the execution of program instructions.

B

base class. A class from which other classes

are derived. A base class may itself be derived

from another base class. See also abstract class.

binary. (1) Pertaining to a system of numbers to

the base two; the binary digits are 0 and 1.

(2) Involving a choice of two conditions, such as

on-off or yes-no.

binary expression. An expression containing

two operands and one operator.

binary stream. An ordered sequence of

untranslated characters.

bit. A binary digit.

bit field. A member of a structure or union that

contains a specified number of bits.

block. The unit of data transmitted to and from a

device. Each block contains one record, part of a

record, or several records.

block statement. Any number of data

definitions, declarations, and statements that

appear between the symbols { and }. The block

statement is considered to be a single C-language

statement.

boundary alignment. The position in main

storage of a fixed-length field (such as byte or

doubleword) on an integral boundary for that unit

of information. For the C/C++ Tools example, a

word boundary is a storage address evenly

divisible by two.

buffer. A portion of storage used to hold input

or output data temporarily.

built-in. A function which the compiler will

automatically inline instead of the function call

unless the programmer specifies not to.

byte. For IBM C compilers, 8 bits equal 1 byte.

442 IBM C/C++ Tools: Programming Guide

C

C/2. Pertaining to a version of the C language

designed for the OS/2 environment.

call. To transfer control to a procedure, program,

routine, or subroutine.

catch block. A block associated with a try block

that receives control when a C++ exception

matching its argument is thrown.

case clause. In a switch statement, a case label

followed by any number of statements.

case label. The word case followed by a

constant expression and a colon.

cast. An expression that converts the type of the

operand to a specified scalar data type (the

operator).

character constant. A character or an escape

sequence enclosed in single quotation marks.

character set. A group of characters used for a

specific reason; for example, the set of characters

a printer can print or a keyboard can support.

child process. The new process created by a

spawn or exec call.

| class. A C++ aggregate that may contain

| functions, types, and user-defined operators in

| addition to data. Classes may be defined

| hierarchically, allowing one class to be an

| expansion of another, and may restrict access to

| its members.

| class library. A collection of C++ classes.

| client program. A program that uses a class.

| The program is said to be a client of the class.

| Collection class library. A set of classes that

| provide basic functions and can be used as base

| classes.

command. A request to perform an operation or

run a program. When parameters, arguments,

flags, or other operands are associated with a

command, the resulting character string is a

single command.

comment. A comment contains text that the

compiler ignores. Comments begin with the /*

characters, end with the */ characters, and can

span any number of lines. For C++ files, and for

C files if the /Ss compiler option is used, //

characters begin a comment which ends at the

end of the line.

compile. To transform a set of programming

language statements (source file) into machine

instructions (object module).

compiler. A program that translates instructions

written in a programming language (such as C

language) into machine language.

| Complex Mathematics library. A class library

| that provides the facilities to manipulate complex

| numbers and perform standard mathematical

| operations on them.

complex number. A number consisting of an

ordered pair of real numbers, expressible in the

form a+bi, where a and b are real numbers and i

squared equals minus one.

condition. A relational expression in a program

or procedure that can be evaluated to a value of

either true or false.

const. An attribute of a data object that declares

the object cannot be changed.

 Glossary 443

| constructor. A special class member function

| that has the same name as the class and is used

| to construct and possibly initialize class objects.

control statement. A statement that changes

the path of execution.

conversion. A change in the type of a value.

For example, when you add values having

different data types, the compiler converts both

values to a common form before adding the

values. Because accuracy of data representation

varies among different data types, information

may be lost in a conversion.

D

data definition (DD). A statement that is stored

in the environment and that externally identifies a

file and the attributes with which it should be

opened.

data definition name (ddname). The part of the

data definition before the equal sign. It is the

name used in a call to fopen or freopen to refer to

the data definition stored in the environment.

data definition (DD) statement. Synonym for

data definition.

data object. A storage area used to hold a

value.

data stream. A continuous stream of data

elements being transmitted, or intended for

transmission, in character or binary-digit form,

using a defined format.

DBCS. (1) See double-byte character set.

(2) See ASCII.

ddname. Data definition name.

decimal. A base ten number system; decimal

digits range from 0 (zero) through 9 (nine).

declaration. A description that makes an

external object or function available to a function

or a block.

declare. To identify the variable symbols to be

used at preassembly time.

default. An attribute, value or option that is used

when no alternative is specified by the

programmer.

| default argument. An argument that is declared

| with a default value in a function prototype or

| declaration. If a call to the function omits this

| argument, the default value is used. Arguments

| with default values must be the trailing arguments

| in a function prototype argument list.

| default constructor. A constructor that takes no

| arguments, or for which all the arguments have

| default values.

define directive. A preprocessor statement that

directs the preprocessor to replace an identifier or

macro invocation with special code.

definition. A data description that reserves

storage and may provide an initial value.

definition (DEF) file. Synonym for module

definition file.

| delete. (1) A C++ keyword that identifies a free

| storage deallocation operator. (2) A C++ operator

| used to destroy objects created by new.

| demangling. The conversion of mangled names

| back to their original source code names. See

| also mangling.

| denormal. Pertaining to a number with a value

| so close to 0 that its exponent cannot be

| represented normally. The exponent can be

| represented in a special way at the possible cost

| of a loss of significance.

444 IBM C/C++ Tools: Programming Guide

| destructor. A special member function that has

| the same name as its class, preceded by a tilde

| (˜), and that "cleans up" after an object of that

| class, for example, freeing storage that was

| allocated when the object was created. A

| destructor has no arguments and no return type.

digit. Any of the numerals from 0 through 9.

directory. A file containing the names and

controlling information for other files or other

directories.

DOS. Disk Operating System.

domain. All the possible input values for a

function.

double-byte character set (DBCS). A set of

characters in which each character is represented

by 2 bytes. Languages such as Japanese,

Chinese, and Korean, which contain more

symbols than can be represented by 256 code

points, require double-byte character sets.

Because each character requires 2 bytes,

entering, displaying, and printing DBCS

characters requires hardware and supporting

software that are DBCS capable.

double precision. Pertaining to the use of two

computer words to represent a number with

greater accuracy. For example, a floating-point

number would be stored in the long format.

doubleword. A sequence of bits or characters

that comprises two computer words and can be

addressed as a unit. For the C/C++ Tools

compiler, a doubleword is 32 bits (4 bytes).

dynamic. Pertaining to an operation that occurs

at the time it is needed rather than at a

predetermined or fixed time.

E

EBCDIC. See extended binary-coded decimal

interchange code.

E-format. Floating-point format, consisting of a

number in scientific notation.

| elaborated type specifier. A specifier typically

| used in an incomplete class declaration to qualify

| types that are otherwise hidden.

element. A data object in an array.

| encapsulation. The hiding of the internal

| representation of data objects and implementation

| details from the client program.

enumeration constant. An identifier that is

defined in an enumerator and that has an

associated integer value. You can use an

enumeration constant anywhere an integer

constant is allowed.

enumeration data type. A type that represents

integers and a set of enumeration constants.

Each enumeration constant has an associated

integer value.

EOF. End of file.

escape sequence. A representation of a

character. An escape sequence contains the \

symbol followed by one of the characters: a, b, f,

n, r, t, v, ', ", x, \, or followed by one to three

octal or hexadecimal digits.

| exception. (1) Under the OS/2 operating

| system, a user or system error detected by the

| system and passed to an OS/2 or user exception

| handler. (2) For C++, any user, logic, or system

| error detected by a function that does not itself

| deal with the error but passes the error on to a

| handling routine (also called throwing the

| exception).

 Glossary 445

| exception handler. (1) Under the OS/2

| operating system, a function that receives the

| OS/2 exception and either corrects the problem

| and returns execution to the program, or

| terminates the program. (2) In C++, a catch

| block that catches a C++ exception when it is

| thrown from a function in a try block.

| exception handling. A type of error handling

| that allows control and information to be passed

| to an exception handler when an exception

| occurs. Under the OS/2 operating system,

| exceptions are generated by the system and

| handled by user code. In C++, try, catch, and

| throw expressions are the constructs used to

| implement C++ exception handling.

executable program. A program that can be run

on a processor.

expression. A representation for a value. For

example, variables and constants appearing alone

or in combination with operators.

extended binary-coded decimal interchange

code (EBCDIC). A set of 256 eight-bit

characters.

extension. (1) An element or function not

included in the standard language. (2) File name

extension.

external data definition. A definition appearing

outside a function. The defined object is

accessible to all functions that follow the definition

and are located within the same source file as the

definition.

eyecatcher. A recognizable sequence of bytes

that determine which parameters were passed in

which registers. This sequence is used for

functions that have not been prototyped, have a

variable number of parameters, and use _Optlink

linkage.

F

file. A collection of data that is stored and

retrieved by an assigned name.

file handle. A value created by the system that

identifies a drive, directory, and file so that the file

can be found and opened.

file name. The name used to identify a file.

float constant. A constant representing a

nonintegral number.

| friend class. A class in which all the member

| functions are granted access to the private and

| protected members of another class. It is named

| in the declaration of the other class with the prefix

| friend.

| friend function. A function that is granted

| access to the private and protected parts of a

| class. It is named in the declaration of the other

| class with the prefix friend.

function. A named group of statements that can

be invoked and evaluated and can return a value

to the calling statement.

function definition. The complete description of

a function. A function definition contains an

optional storage class specifier, an optional type

specifier, a function declarator, optional parameter

declarations, and a block statement (the function

body).

function prolog. The code that appears at the

beginning of a function and that links stack

frames, saves registers, and allocates automatic

storage.

446 IBM C/C++ Tools: Programming Guide

G

global. Pertaining to information available to

more than one program or subroutine.

global variable. A variable defined in one

portion of a computer program and used in at

least one other portion of the computer program.

guard page. The page of memory allocated

directly below the committed portion of the stack.

H

header file. A file that contains system-defined

control information that precedes user data.

hexadecimal. A base sixteen numbering system;

hexadecimal digits range from 0 through 9

(decimal 0 to nine) and uppercase or lowercase A

through F (decimal ten to fifteen).

I

| I/O Stream library. A class library that provides

| the facilities to deal with many varieties of input

| and output.

identifier. A sequence of letters, digits and

underscores used to designate a data object or

function.

IEEE. Institute of Electrical and Electronics

Engineers.

include file. A file included with a, #include

directive (#include).

include directive. A preprocessor directive that

causes the preprocessor to replace the statement

with the contents of a specified file.

| incomplete class declaration. A class

| declaration that does not define any members of

| a class. Typically an incomplete class declaration

| is used as a forward declaration.

initialize. To set the starting value of a data

object.

initializer. The assignment operator followed by

an expression (or multiple expressions, for

aggregate variables) used to set the initial value

of a data object.

inlined function. A function call that the

compiler replaces with the actual code for the

| function. You can direct the compiler to inline a

| function with the _Inline keyword and the /Oi

| compiler option.

input. Data to be processed.

input stream. A sequence of control statements

and data submitted to a system from an input

unit.

instance. Synonym for object, a particular

instantiation of a data type.

instantiate. To create or generate a particular

instance or object of a data type.

Institute of Electrical and Electronics

Engineers (IEEE). A professional society that

sponsors many standards activities, including the

binary floating point standard sponsored by its

Computer Society.

integer constant. A decimal, octal, or

hexadecimal constant.

integral object. A character object, an object

having an enumeration type, an object having

variations of the type int, or an object that is a bit

field.

| intermediate code linker. A part of the

| C/C++ Tools compiler that combines the

 Glossary 447

| information in all intermediate code files to

| improve optimization.

internal data definition. A description of a

variable appearing at the beginning of a block that

causes storage to be allocated for the lifetime of

the block.

interrupt. A temporary suspension of a process

caused by an external event, performed in such a

way that the process can be resumed.

intrinsic function. A function supplied by a

program as opposed to a function supplied by the

compiler.

K

keyword. (1) A predefined word reserved for the

C or C++ language, that may not be used as an

identifier. (2) A symbol that identifies a

parameter.

L

label. (1) An identifier followed by a colon. It is

the target of a goto statement. (2) An identifier

within or attached to a set of data elements.

lexically. Relating to the left-to-right order of

units.

library. (1) A collection of functions, function

calls, subroutines, or other data. (2) A set of

object modules that can be specified in a link

command.

link. To interconnect items of data or portions of

one or more computer programs; for example,

linking of object programs by a linkage editor to

produce an executable file.

linkage editor. Synonym for linker.

linker. A program that resolves cross-references

between separately compiled object modules and

then assigns final addresses to create a single

executable program.

local. Pertaining to information that is defined

and available in only one function of a computer

program.

long constant. An integer constant followed by

the letter L in uppercase or lowercase.

lvalue. An expression that represents a data

object that can be both examined and altered.

M

macro. An identifier followed by arguments (may

be a parenthesized list of arguments) that the

preprocessor replaces with the replacement code

located in a preprocessor #define directive.

main function. A function with the identifier main

that is the first user function to get control when

program execution begins. Each C program must

have exactly one function named main.

| mangling. The encoding during compilation of

| identifiers such as function and variable names to

| include type and scope information. The linker

| uses these mangled names to ensure type-safe

| linkage.

map. A set of values having a defined

correspondence with the quantities or values of

another set.

map file. A listing file that can be created during

the link step and that contains information on the

size and mapping of segments and symbols.

mapping. The establishing of correspondences

between a given logical structure and a given

physical structure.

448 IBM C/C++ Tools: Programming Guide

mask. A pattern of characters that controls the

keeping, deleting, or testing of portions of another

pattern of characters.

member. (1) A data object in a structure or a

| union. (2) In C++, classes and structures can

| also contain functions and types as members.

| member function. An operator or function that

| is declared as a member of a class. A member

| function has access to the private and protected

| data members and member functions of objects of

| its class.

method. Synonym for member function.

migrate. To move to a changed operating

environment, usually to a new release or version

of a system.

module. A program unit that usually performs a

particular function or related functions, and that is

distinct and identifiable with respect to compiling,

combining with other units, and loading.

multibyte character. A mixture of single-byte

characters from a single-byte character set and

double-byte characters from a double-byte

character set.

multitasking. A mode of operation that allows

concurrent performance, or interleaved execution

of more than one task or program.

multithread. Pertaining to concurrent operation

of more than one path of execution within a

computer.

N

NaN. Not-a-Number.

| nested class. A class defined within the scope

| of another class.

| new. (1) A C++ keyword identifying a free

| storage allocation operator. (2) A C++ operator

| used to create class objects.

new-line character. A control character that

causes the print or display position to move to the

first position on the next line. This control

character is represented by \n in the C language.

Not-a-Number (NaN). A binary bit value for a

floating-point type that is not equal to any other

valid floating-point value, including itself. A NaN

is typically the result of an operation that is not

valid, such as division of zero by zero. A NaN

can be either a signalling NaN (NaNS) that raises

signals or exceptions, or a quiet NaN (NaNQ) that

does not.

NMAKE. A compiling and linking aid that

searches for files changed since the last

compilation and recompiles only the changed

files.

NPX. Numeric processor extension.

NULL. A pointer guaranteed not to point to a

data object.

null character (\0). The ASCII or EBCDIC

character with the hex value 00 (all bits turned

off).

null value. A parameter position for which no

value is specified.

 Glossary 449

O

object code. Machine-executable instructions,

usually generated by a compiler from source code

written in a higher level language (such as C

language).

object module. A portion of an object program

produced by a compiler from a source program,

and suitable as input to a linkage editor.

| object-oriented programming. A programming

| approach based on the concepts of data

| abstraction and inheritance. Unlike procedural

| programming techniques, object-oriented

| programming concentrates not on how something

| is accomplished, but on what data objects

| comprise the problem and how they are

| manipulated.

operand. An entity on which an operation is

performed.

operating system. Software that controls

functions such as resource allocation, scheduling,

input/output control, and data management.

operation. A specific action such as add,

multiply, shift.

operator. A symbol (such as +, -, \) that

represents an operation (in this case, addition,

subtraction, multiplication).

| operator function. An overloaded operator that

| is either a member of a class or that takes at

| least one argument that is a class type or a

| reference to a class type.

OS/2. Pertaining to the operating system for the

PS/2 workstation.

overflow. A condition that occurs when a portion

of the result of an operation exceeds the capacity

of the intended unit of storage.

overlay. To write over existing data in storage.

| overloading. An object-oriented programming

| technique that allows you to redefine functions

| and most standard C++ operators when the

| functions and operators are used with class types.

P

pack. To store data in a compact form in such a

way that the original form can be recovered.

pad. To fill unused positions in a field with data,

usually zeros, ones, or blanks.

parameter declaration. A description of a value

that a function receives. A parameter declaration

determines the storage class and the data type of

the value.

parent process. The program that originates the

creation of other processes by means of spawn or

exec function calls. See also child process.

pointer. A variable that holds the address of a

data object or function.

| pointer to member. An operator used to access

| the address of non-static members of a class.

portability. The ability of a programming

language to compile successfully on different

operating systems without requiring changes to

the source code.

precision. A measure of the ability to distinguish

between nearly equal values.

preprocessor. A phase of the compiler that

examines the source program for preprocessor

statements that are then executed, resulting in the

alteration of the source program.

450 IBM C/C++ Tools: Programming Guide

preprocessor statement. A statement that

begins with the symbol # and is interpreted by the

preprocessor.

primary expression. An identifier, a

parenthesized expression, a function call, an array

element specification, or a structure or union

member specification.

| private. Pertaining to a class member that is

| only accessible to member functions and friends

| of that class.

process. An instance of an executing application

and the resources it uses.

program. One or more files containing a set of

instructions conforming to a particular

programming language syntax.

| protected. Pertaining to a class member that is

| only accessible to member functions and friends

| of that class, or to member functions and friends

| of classes derived from that class.

prototype. A function declaration or definition

that includes both the return type of the function

and the types of its parameters.

| public. Pertaining to a class member that is

| accessible to all functions.

| pure virtual function. A virtual function that has

| a function definition of = 0;.

R

recoverable error. An error condition that allows

continued execution of a program.

reentrant. The attribute of a program or routine

that allows the same copy of a program or routine

to be used concurrently by two or more tasks.

register. A storage area commonly associated

with fast-access storage, capable of storing a

specified amount of data such as a bit or an

address.

reserved word. In programming languages, a

keyword that may not be used as an identifier.

rounding. To omit one or more of the least

significant digits in a positional representation and

to adjust the remaining digits according to a

specified rule. The purpose of rounding is usually

to limit the precision of a number or to reduce the

number of characters in the number.

run. To cause a program, utility, or other

machine function to be performed.

runtime library. A collection of functions in

object code form, whose members can be

referred to by an application program during the

linking step.

S

SAA. Systems Application Architecture.

scalar. An arithmetic object, or a pointer to an

object of any type.

scope. That part of a source program in which

an object is defined and recognized.

| scope operator (::). An operator that defines the

| scope for the argument on the right. If the left

| argument is blank, the scope is global; if the left

| argument is a class name, the scope is within that

| class. Also called the scope resolution operator.

semaphore. An object used by multithread

applications for signalling purposes and for

controlling access to serially reusable resources.

signal. A condition that may or may not be

reported during program execution. For example,

 Glossary 451

SIGFPE is the signal used to represent erroneous

arithmetic operations such as a division by zero.

signal handler. A function to be called when the

signal is reported.

software signal. A signal that is explicitly raised

by the user (by using the raise function).

source file. A file that contains source

statements for such items as language programs

and data description specifications.

source program. A set of instructions written in

a programming language that must be translated

to machine language before the program can be

run.

stack. An area of storage used for keeping

variables associated with each call to a function

or block.

stack probe. Code generated by the compiler to

avoid stack allocation faults when a function

requires more than one new page (4K bytes) of

stack space Stack probes allow the stack to grow

in increments larger than one page.

stand-alone. Pertaining to operation that is

independent of any other device, program, or

system.

statement. An instruction that ends with the

character ; (semicolon) or several instructions that

are surrounded by the characters { and }.

static. (1) Pertaining to properties that can be

established before execution of a program, for

example, the length of a fixed length variable.

(2) Pertaining to an operation that occurs at a

predetermined or fixed time. (3) Pertaining to a

variable that receives private and permanent

storage, and is not known outside of the block or

file in which it is declared.

stream. See data stream.

string constant. Zero or more characters

enclosed in double quotation marks.

structure. A construct that contains an ordered

group of data objects. Unlike an array, the data

objects within a structure can have varied data

types.

subsystem. A secondary or subordinate system,

or programming support, usually capable of

operating independently of or asynchronously with

a controlling system.

swap. To exchange one thing for another.

syntax. The rules for the construction of a

command or a program.

system default. A default value defined in the

system profile.

Systems Application Architecture (SAA).

Pertaining to the definition of a common

programming interface, conventions, and

protocols for designing and developing

applications with cross-system consistency.

T

tag. One or more characters attached to a set of

data that identifies the set.

task. One or more sequences of instructions

treated by a control program as an element of

work to be accomplished by a computer.

| Task library. A class library that provides the

| facilities to write programs that are made up of

| tasks.

| template. A family of classes or functions with

| variable types.

452 IBM C/C++ Tools: Programming Guide

| this. A C++ keyword that identifies a special type

| of pointer in a member function, that references

| the class object with which the member function

| was invoked.

thread. A unit of execution within a process.

| throw expression. An argument to the C++

| exception being thrown.

trap. An unprogrammed conditional jump to a

specified address that is automatically activated

by hardware. A recording is made of the location

from which the jump occurred.

truncate. To shorten a value to a specified

length.

| try block. A block in which a known C++

| exception is passed to a handler.

type. See data type.

U

unary expression. An expression that contains

one operand.

underflow. A condition that occurs when the

result of an operation is less than the smallest

possible nonzero number.

union. A construct that can hold any one of

several data types, but only one data type at a

time.

unrecoverable error. An error for which

recovery is impossible without use of recovery

techniques external to the computer program or

run.

V

| virtual function. A function of a class that is

| declared with the keyword virtual. The

| implementation that is executed when you make a

| call to a virtual function depends on the type of

| the object for which it is called, which is

| determined at run time.

volatile. An attribute of a data object that

indicates the object is changeable. Any

expression referring to a volatile object is

evaluated immediately (for example,

assignments).

W

whitespace. Space characters, tab characters,

form feed characters, and new-line characters.

wide character. A character whose range of

values can represent distinct codes for all

members of the largest extended character set

specified among the supporting locales. For the

C/C++ Tools compiler, the character set is DBCS,

and the value is 2 bytes.

word boundary. The storage position at which

data must be aligned for certain processing

operations. The word boundary must be divisible

by 2, the doubleword boundary by 4, and the

quadword boundary by 8.

 Glossary 453

454 IBM C/C++ Tools: Programming Guide

 Bibliography

This bibliography lists the publications that make up the IBM C/C++ Tools

library and publications of related IBM products referenced in this book. The

list of related publications is not exhaustive but should be adequate for most

C/C++ Tools users.

The IBM C/C++ Tools Library

The following books are part of the IBM

C/C++ Tools library.

| � Programming Guide, S61G-1181

| � Reference Summary, S61G-1441

| � Debugger Introduction, S61G-1184

| � Execution Trace Analyzer Introduction,

| S61G-1398

| � Browser Introduction, S61G-1397

| � C/C++�Tools Installation, S61G-1363

| � C Library Reference, S61G-1183

| � C Language Reference, S61G-1399

| � C++ Language Reference, S61G-1185

| � Standard Class Library Reference,

| S61G-1180

| � User Interface Class Library Reference,

| S61G-1179

| � Collection Class Library Reference,

| S61G-1178

| � Class Libraries Reference Summary,

| S61G-1186

C and C++ Related
Publications

� SAA Common Programming Interface C

Reference, SC09-1308

� Portability Guide for IBM C, SC09-1405

| �

| � American National Standard for Information

| Systems / International Standards

| Organization — Programming Language C

| (ANSI/ISO 9899-1990[1992])

| � Draft Proposed American National Standard

| for Information Systems — Programming

| Language C++ (X3J16/92-0060)

 IBM WorkFrame/2
Publications

� IBM WorkFrame/2: Introduction,

S10G-4475-01

IBM OS/2 2.0 Publications

The following books describe the OS/2 2.0

operating system and the Developer's Toolkit.

� IBM OS/2 2.0 Overview Manual, S84F-8465

� IBM OS/2 2.0 Installation Guide, S84F-8464

� IBM OS/2 2.0 Quick Reference, S10G-5964

� Getting Started, S10G-6199

 Copyright IBM Corp. 1992, 1993 455

IBM OS/2 2.0 Technical
Library

The following books make up the OS/2 2.0

Technical Library (10G3356).

� Application Design Guide, S10G-6260

� Programming Guide, S10G-6261

� Information Presentation Facility Guide and

Reference, S10G-6262

� System Object Model Guide and Reference,

S10G-6309

� Control Program Programming Reference,

S10G-6263

� Presentation Manager Programming

Reference Volume 1, S10G-6264

� Presentation Manager Programming

Reference Volume 2, S10G-6265

� Physical Device Driver Reference, S10G-6266

� Virtual Device Driver Reference, S10G-6310,

� Presentation Manager Driver Reference,

S10G-6267

� Procedures Language 2/REXX Reference,

S10G-6268,

� Procedures Language 2/REXX User's Guide,

S10G-6269

� SAA Common User Access Guide to User

Interface Design, SC34-4289

� SAA Common User Access Advanced User

Interface Design Guide. SC34-4290

Other Books You Might Need

The following list contains the titles of IBM books

that you might find helpful. These books are not

part of the C/C++ Tools, WorkFrame/2, or OS/2

2.0 libraries.

 BookManager READ/2
Publications

� IBM BookManager READ/2: General

Information, GB35-0800

� IBM BookManager READ/2: Getting Started

and Quick Reference, SX76-0146

� IBM BookManager READ/2: Displaying Online

Books, SB35-0801

� IBM BookManager READ/2: Installation,

GX76-0147

 Systems Application
Architecture Publications

� An Overview, GC26-4341

� C Reference Level 1, SC26-4353

� C Reference Level 2, SC09-1308

� Common User Access: Panel Design and

User Interaction, SC26-4351

� Communications Reference, SC26-4399

� Database Reference, SC26-4353

� Dialog Reference, SC26-4356

� SAA Common Programming Interface PL/I

Reference, SC26-4381

� Presentation Reference, SC26-4359

� Procedures Language Reference, SC26-4358

� Query Reference, SC26-4349

� Writing Applications: A Design Guide,

SC26-4362

456 IBM C/C++ Tools: Programming Guide

 Index

Special Characters
_ (underscore) character 385

? global file-name character 141

// (comments) 102

* global file-name character 141

\ (continuation character) 39

\n (new-line) character 305

\x1a (Ctrl-Z) character 151, 373

Numerics
386 processor 115

48-bit function pointers 283

486 processor 115

A
abort function 374

abstract code units (ACUs)

definition 441

example 58

accessing environment settings 191

aggregates

See also structures, unions

_Optlink linkage 239

16-bit calling conventions 299

16-bit calls 290

alignment 101

packing 101

alignment

See also packing

16-bit calls 290

automatic variables 389

char data type 389

character strings 394

compiler option (/Sp) 101

fixed-length arrays 395

alignment (continued)

floating-point values 391—393

integers 390

structures 396

_alloca function 168

allocating storage 168

ANSI

function prototypes 412

implementation-defined behavior 363

language level 42, 100

standards supported 13

argc argument to main 140, 304

arguments

escape sequences in 140

global file-name characters 141

passing to a program 139

to main 140, 304

argv argument to main 140, 304

arrays

mapping and alignment 395, 399

troubleshooting 427

assembler listing file 45

asynchronous exceptions 328, 334

auto-inlining 57

automatic template generation 229

automatic variables, mapping and alignment 389

B
/B compiler option 120

backslash (\) 39

/BASE linker option 124, 167

_beginthread function 67, 181

binary streams 151, 152, 162

binding

resources 128

runtime messages 126

 Copyright IBM Corp. 1992, 1993 457

bit fields

default type 367

definition 442

implementation-defined behavior 367

mapping and alignment 291, 399

bit masks 354

blksize attribute 156, 159

block size, setting 159

BookManager books 10, 456

browser

See also Browser Introduction

context-sensitive help 19

description 16

DLLs 434

features 13

files 82

listing files 45

buffering

buffer size 156

modes 156, 157

redirected streams 374

subsystems 310

built-in functions 57, 171, 177

C
/C compiler option 120

C language

allowing constructs 100

common problems 401

restricted compiler options 77

sharing header files with C++ 378

specifying source files 103

standards 13

C/C++ Tools

component files 431

directory structure 431

exception handlers 328

predefined macros 381

publications 455

C++ language

See also Online Language Reference

calling convention for member functions 238

compatibility with older versions 43

demangling names 386

DLLs 201, 202, 210

exception handling 115, 317

implementation-defined behavior 375

improving performance 174

multithread support 180

restricted compiler options 77

sample (SAMPLE1B) 25

sharing header files with C 378

signal handling 327

specifying source files 103

standard streams 143, 149

standards 13

subsystem DLLs 307

callback functions 292

calling 16-bit code

callbacks to 32-bit code 292

calling conventions 288

compiler option 114

converting structures 291

general rules 297

migrating header files 377

passing pointers 289

#pragma seg16 290

restrictions 293

returning values 299

sample program (SAMPLE04) 294

sharing objects 290

static linking, restrictions 287

tiled memory 292

calling conventions

#pragma linkage 62

16-bit code 288, 297

default 62, 238

description 237

linkage keywords 62

member functions 238

458 IBM C/C++ Tools: Programming Guide

calling conventions (continued)

_Optlink 238—263

See also Optlink calling

_Pascal 272

See also Pascal calling conv

setting 116

subsystems 306

_System 264—271

See also System calling c

VDDs 283

case sensitivity

compiler options 71

for identifiers 363

linker option 363

memory files 155

case values, limit of 368

_Cdecl calling convention

description 297—299

keyword 62

return values 299

setting 62

cerr 143, 149

changes from C Set/2 V1.0 xvii—xxiv

character devices

buffering 161

restriction on seeking 162

characters

backslash (\) 73

code page 364

continuation (\) 39

control 150

Ctrl-Z 373

ctype functions 369

default type 364

default type, setting 120

escape sequences 364

implementation-defined behavior 364

multibyte 364

new-line 152

new-line (\n) 150, 305

significant 372

characters (continued)

underscore 385

checkout messages

See also diagnostic messages

compiler options 92

choosing runtime libraries 63

cin 143, 149

class libraries

description 16

multithread programs 180

subsystem development 304

classes, exporting from DLLs 235

clock function, era for 375

clog 143, 149

closing files 162

code generation options 111

code segments

defining attributes 200, 201

naming 116

combining C and C++ files 31

command file

CSETENV.CMD 36, 433

search path 133

setting variables 36

command interpreter, locating 136

command line

compiler options 71

defining macros on 107

passing data on 139

precedence over ICC options 72, 76

redirecting standard streams 145

setting environment variables 37

comments

double slash (//) 102

in preprocessor output 108

common C problems 401

compatibility language level (C++) 43, 100

compiler

description 15

features 11

invoking 29

 Index 459

compiler (continued)

messages

See messages

output 44

controlling 111

listing file 88

messages 50

temporary files 49

return code 50

compiler options

accumulation of 76

/B option 67, 120

/C option 120

changes from C Set/2 V1.0 xviii

classification by function 81

code generation 111

combinations for specifying libraries 79

conflicting 77

/D option 107

debugging and diagnostics 92

/F options 82

for PM programming 79

/G options 111

/H option 120

/I option 40, 86

improving performance 165

#include search path 40, 86

/J option 120

/K options 92

/L options 88

language-dependent 77

listing files 88

/M options 116

multiple source files 78

/N option 94

new xix

/O option 116

online listing 30, 120

output file management 82

/P options 107

parameters 73

compiler options (continued)

precedence 72, 76

preprocessor control 107

/Q option 67, 120

/R options 117

reducing program size 175

related 76

response files 32

/S options 100

scope 75

source code 100

specifying 71

switches (+|-) 74

syntax for 7

/T debugger options 94

/T source control options 103

/U options 109

/V option 120

/W options 92, 95

/X options 40, 86

compiling and linking

See also compiler options

C and C++ files 31

compiling only 120

DLLs 203

environment variables 34

icc command 29

linking only 123

multiple source files 31, 78

multithread program 193

running preprocessor only 107

specifying C or C++ 103

subsystems 310

Complex Mathematics library 180, 183, 437

component files 431

components 14

COMSPEC environment variable 136

CONFIG.SYS file 36

conflicting compiler options 77

constructors

See also Online Language Reference

460 IBM C/C++ Tools: Programming Guide

constructors (continued)

initializing 210, 307

terminating 210

context-sensitive help

Enhanced editor (EPM) 10, 22

tools (debugger, browser, EXTRA) 19

CONTEXTRECORD structure 339

continuation character (\) 39

control word, floating-point 354

_control87 function 354

controlling

buffering 156

#include search path 40, 41, 86

language level 100

messages 95

converting

integers 365

pointers for 16-bit calls 289

structures for 16-bit calls 291

cout 143, 149, 163

CPPFILT utility 388

creating runtime library DLLs 216, 313

creating threads 180

critical functions 333

_CRT_init function 210

_CRT_term function 210

CSETENV.CMD file 36, 433

__ctordtorInit function 210, 307

__ctordtorTerm function 210, 307

Ctrl-Z character 151, 373

ctype functions, characters in 369

cumulative compiler options 76

cumulative options 41

D
/D option 107

data

global, in multithread programs 188

mapping 389

members 235

data (continued)

passing to a program 139

type conversion rules 102

data segments

defining attributes 200, 201

naming 116

daylight saving time 137

_daylight variable 191

DBCS

compiler option 101

definition 445

restriction 365

DDE4MBS.LIB library 180

DDE4MBSI.LIB library 180

DDE4MBSO.LIB library 217

DDE4NBS.LIB library 304

DDE4NBSI.LIB library 304

DDE4NBSO.LIB library 304, 314

DDE4SBSO.LIB library 217

ddnames

attributes 158

blksize attribute 156, 159

compiler option 101

creating memory files 154

opening streams 157

precedence with fopen 161

setting 157, 158

setting file characteristics 158

debugger

See also Debugger Introduction

compiler option for (/Ti) 94

context-sensitive help 19

description 17

DLLs 434

features 12

generating information for 46

linker option 46

optimization with 46, 95

debugging

compiler options 92, 94

generating diagnostic messages 92

 Index 461

debugging (continued)

problem determination aids 13

declarators, limit of 368

decreasing program size 175—177

default

buffering 156, 157

calling convention 62, 238

char type 120, 364

file extensions 33

fopen attributes 161

icc linker options 124

language level 42

libraries, overriding 218, 315

locale 375

runtime library 63

signal handling 319

stack size 67

time zone 136, 375

type of bit field 367

defect support 429

definition file

See module definition file

demangling

CPPFILT utility 388

definition 444

library functions 386

description of C/C++ Tools 11

destructors

See also Online Language Reference

initializing 210, 307

terminating 210

diagnostic messages

assert macro 369

controlling with compiler options 96

generating 92

direction flag 239, 265

directory structure 431

_DLL_InitTerm function

_exception_dllinit function 210

creating your own 209

initialization function 210

_DLL_InitTerm function (continued)

sample of user-created

(SAMPLE03) 211—214

subsystem version 306, 308—309

termination function 210

using 197

DLLs

_exception_dllinit function 210

C++ considerations 235

compiler option 111, 118

compiling and linking 203

constructors and destructors 210

_DLL_InitTerm function 197

environment 197, 407

exception handling 196

exporting functions 201

initializing environment 197, 199, 210

module definition files 198

OS/2 exception handling 348

resource 215

runtime library

creating your own 216—222

including with your program 125

list of 434

sample program (SAMPLE03) 207

search path 134

signal handlers 326

signal handling 348

source files 196

steps for creating 195

subsystem

creating 306

_DLL_InitTerm function 306

sample program (SAMPLE05) 310

templates 205

terminating environment 197, 199, 210

troubleshooting 407

types 195

using 205

DosCreateThread API 181

462 IBM C/C++ Tools: Programming Guide

_doserrno variable 189

double-byte character set

compiler option 101

definition 445

restriction 365

DPATH environment variable 35, 134

dumps, machine-state

compiler option (/Tx) 94

description 356

example 358

dynamic link libraries (DLLs)

See DLLs

dynamic linking

compiler option 111

description 64

LIBPATH environment variable 134

E
end of file

Ctrl-Z character 151, 373

seeking past 162

_endthread function 181

Enhanced editor (EPM)

context-sensitive help 10, 22

enum data type

messages about usage 93

setting size 103

size of 291

types 367

_environ variable 191

environment table 141

environment variables

accessing 141, 191

compiler 34

COMSPEC 136

DPATH 35, 134

ICC 35, 71

See also ICC environment variable

INCLUDE 35

LIB 35

environment variables (continued)

LIBPATH 134

multithread programs 191

PATH 34, 133

runtime 133—137

setting 36, 133

TEMPMEM 135, 156

TMP 35, 135

TZ 136

envp argument to main 141, 304

EPM

See Enhanced editor (EPM)

era for clock function 375

errno global variable 189, 374

error codes 50, 146, 371

ERRORLEVEL batch file statement 146

errors

controlling level and number 50

handling 318

incrementing count 95

intermediate code linker 55

setting limit 94

escape sequences 73, 140, 364

establishing a signal handler 321

_Exception function

CONTEXTRECORD structure 339

description of 328

DLLs 348

EXCEPTIONREGISTRATIONRECORD structure 345

EXCEPTIONREPORTRECORD structure 336

flags 338, 343

floating-point 354

exception handlers, OS/2

considerations 352

creating your own

processing information 336

prototype 335

registering 345, 346

critical functions 333

default (_Exception) 328

deregistering 346, 352

 Index 463

exception handlers, OS/2 (continued)

DLLs 348

example 341

_Exception 328

floating-point exceptions 354

_Lib_excpt 332

math functions 332

multiple library environments 350

registering

#pragma handler 344

OS/2 APIs 346

special situations 351

stack space required 353

subsystem libraries 353

TIB chain 347

exception handling, C++ 115, 317

See also Online Language Reference

_exception_dllinit function 210

EXCEPTIONREPORTRECORD structure 336, 345

exceptions, OS/2

See OS/2 exceptions

executable file 47

compiler option 111, 118

importing from DLLs 207

module definition file 205

naming 82

search path 34, 133

execution trace analyser (EXTRA)

See also Execution Trace Analyzer

Introduction

choosing functions to inline 59

compiler options 112

context-sensitive help 19

description 17

DLLs 434

features 12

generating information for 47

linker option 47

exit function 146, 374

exiting from main 146

expanding global file-name arguments 141

expanding macros 88

_Export keyword 54, 202

exporting from DLLs

_Export keyword 54, 202

C++ considerations 201, 202

classes 235

description 201

specifying in .DEF file 201

extended language level 42, 100

external names

reserved 65, 385

setting length of 120

eyecatchers 241, 242

F
/Fa option 82

_Far16 calling convention

_Cdecl

See Cdecl calling convention

description 297—299

_Fastcall

See Fastcall calling conv

keyword 62

_Pascal

See Pascal calling conv

return values 299

setting 62

_Far32 _Pascal

calling convention

description 272

VDDs 283

keywords 283

pointers 275, 283

fast floating-point option 112

fast integer option 113

_Fastcall calling convention

description 297—299

keyword 62

register use 298

464 IBM C/C++ Tools: Programming Guide

_Fastcall calling convention (continued)

return values 299

setting 62

/Fb option 82

/Fc option 82

fclose function 162

/Fd option 82

/Fe option 82

features of C/C++ Tools 11

fflush function 150, 151

fgetpos function 374

fgets function 152

/Fi option 51

file extensions

default 33

setting default 100, 105

with /F options 84

file handles, with standard streams 149

file management options 82

file position, accessing within character

device 150

files

browser 82

characteristics 158, 161

closing 162

compiler option parameters 74

DLL

See DLLs

executable (EXE) 47, 82

extensions 33

header

See header files

implementation-defined behavior 373

#include

See #include files

intermediate

See intermediate files

listing 83

See also listing files

make 129

memory 154

files (continued)

object

creating 45

naming 83

suppressing 83

source

See source code

temporary

See temporary files

ways of opening 158

/Fl option 83

floating point

exceptions 354

fast execution option 112

IEEE format 391

implementation-defined behavior 366

mapping and alignment 391—393

range of values 366

registers 238

stack 265

/Fm option 83

/Fo option 83

fopen function

blksize attribute 156, 161

creating memory files 154

default attributes 161

precedence with ddnames 161

forced writes, controlling 160

_fpreset function 181

freeing

freopen function 144, 151

/Ft option 83, 225, 231

ftell function 374

fully-buffered I/O 156

functions

callback 292

called on termination 351

critical 333

demangling C++ names 386

designing for performance 171

disabling inlining

 Index 465

functions (continued)

exporting from DLLs 201

implementation-defined behavior 369

importing from DLLs 207

inlined 383

intrinsic 171

nonreentrant 184

process control 187

prototyping 411

reentrant 182

structuring manually 233

templates

example 227

generating definitions 225

internal linkage 226

static data members 235

template-implementation files 229

template-include files 231

tiled memory management 292

/Fw option 53

G
/G compiler options 111

/Ge compiler option 111, 118

getenv function 191

gets function 152

/Gh compiler option 47

global

compiler options 75

file-name characters 141

variables

multithread programs 188

per-thread 189

serialization of access 191

volatile attribute 192

goto statements, messages about 93

/Gr compiler option 282

/Gs compiler option 69, 113

/Gt compiler option 114, 292

/Gu compiler option 54, 114

guard page

allocation failure 68

definition 447

description 68

stack probes 68

/Gv compiler option 114, 282

H
/H compiler option 120

hardware requirements 20

header files

compiler options 101

default file extensions 33

definition 447

list of 436

migrating from 16-bit code 377

precompiled

compiler options 51, 83

description 51

search path 35, 40

sharing between C and C++ 378

syntax 39

system and user 38

help files 435

High Performance File System (HPFS)

considerations 90

I
/I compiler option 40, 86

I/O

See input/output (I/O)

I/O Stream library 180, 187

icc command

default linker options 124

file extensions for 105

for DLLs 203

multiple source files 31

online listing of options 30

466 IBM C/C++ Tools: Programming Guide

icc command (continued)

response files 32

syntax 30

system function 29

ICC environment variable

#include search path 40

contents 71

file names 38

precedence with command line 72, 76

setting 72

specifying

identifiers

case sensitivity in 363

reserved 385

significant characters in 363

IEEE floating-point format 391

IF ERRORLEVEL batch file statement 146

implementation-defined behavior 363

IMPLIB utility 205

import libraries

creating 205

list of 437

importing from DLLs 207

importing source from other systems 101, 102

#include directive 38

definition 447

INCLUDE environment variable 35, 40, 86

#include files

See also header files

expanding in listing file 88

search path 40, 86

syntax 39

system and user 38

initializing

DLL environment 197, 210

static constructors and destructors 210, 307

inline keyword 56

inlining user code

compiler option 57, 116

description 56

improving performance 59

inlining user code (continued)

keywords 56

restrictions 60

input/output (I/O)

buffering 156

improving performance 170

memory files 154

PM considerations 163

restrictions 162

serialization 185

subsystems 310

installation 17

instruction scheduler 117

integers

casting to pointers 366

conversions 365

fast execution option 113

implementation-defined behavior 365

mapping and alignment 390

range of values 365

size of 291

intermediate code linker

/Gu compiler option 54, 114

compiler options 84, 117

description 52

error checking 55

intermediate files

compiler options 84

linking 52

See also intermediate code linker

naming in ICC 38

internal linkage

effect on template generation 226

internal names 385

intrinsic functions 57, 171, 177

invoking the compiler 29

IPF tool 127

ISO C language standard 13

 Index 467

J
/J compiler option 120

K
/Kn compiler options 92, 96

L
/L compiler option 88

/La compiler option 88

language constructs, allowing 100

language level

compiler options for 100

description 41

industry (ANSI, ISO) 13

#pragma langlvl 41

specifying 41

/Lb compiler option 88

/Le compiler option 88

/Lf compiler option 88

/Li compiler option 88

LIB environment variable 35

LIB utility 217

_Lib_excpt function

description 332

restricted OS/2 APIs 353

LIBPATH environment variable 134

libraries, class

See class libraries

libraries, dynamic link (DLLs)

See DLLs

libraries, runtime

choosing 63, 113

creating your own 216—222

default 63

default in object file 113

description 15

dynamically linking 195

example of using compiler options 79

features 11

libraries, runtime (continued)

including with your program 125

list of 434, 437

multiple environments 349, 350

multithread

compiler options 66, 113

file names 180

naming conventions 64, 432

object 217, 314

overriding defaults in objects 218, 315

search path 35

single-thread

compiler options 66, 113

specifying linking for 111

subsystem

creating your own 313

provided 304

library files

import 205

list of 437

naming conventions 64, 432

naming in ICC 38

library functions

See also functions

demangling 386

exception handling 331

exporting from user DLLs 216

implementation-defined behavior 369

intrinsic 383

new xxi

subsystem libraries 305

troubleshooting 414

#line directives in preprocessor output 109

line-buffered I/O 156

LINK386 program

for DLLs 204

improving performance 167

invoking 124

option for debugger and EXTRA 46

options

icc defaults 124, 204

recommended 124

468 IBM C/C++ Tools: Programming Guide

LINK386 program (continued)

passing options to 120

reducing program size 176

STACK option 67

syntax 124

troubleshooting 405

linkage

See also calling conventions

keywords 62

linker map files 83

linking

compiler option 111, 120

default library 63

DLLs 204

dynamic 64

independently of icc 123

options 67

overview 123

recommended options 124

static 64

subsystems 310

listing file, producing (/L) 88

listing files

assembler 45

compiler option for 82

compiler options 88

cross-reference table 91

description 48

minimum contents 48

naming 83

structure and union table 90

/Lj compiler option 88

local compiler options 75

locales

default 375

list of supported 438

search path 134

time zone 136

logo display, disabling 67, 120

longjmp function 322, 324

/Lp compiler option 89

lrecl attribute 159

/Ls compiler option 89

/Lt compiler option 89

/Lu compiler option 89

/Lx compiler option 89

/Ly compiler option 89

M
/M options 116

machine-state dumps

compiler option (/Tx) 94

description 356

example 358

macros

assert 369

defining 107

definition 448

expanding in listing file 88

language levels 41

NULL 369

predefined 381

troubleshooting 419

undefining 109

main program

arguments to 140, 304, 374

return value 146

make files

generating 129

samples 18

make utility (NMAKE) 129

mangling, definition 448

map files 83

mapping

#pragma checkout xx

automatic variables 389

bit fields 291

char data type 389

character strings 394

data 389

 Index 469

mapping (continued)

definition 448

diagnostic messages about 94

exceptions to signals 329

files for context-sensitive help 436

fixed-length arrays 395

floating-point values 391—393

integers 390

internal names 385

names 385

of structures 396

underscored names 385

margins 101

masking floating-point exceptions 354

math functions

exception handling 332

implementation-defined behavior 369

_matherr function 210

memory

See storage

memory attribute 160

memory files

creating and removing 154

creating with ddnames 160

option 103

restrictions 155

temporary files 135, 156

tmpfile function 156

messages

compiler options 50

controlling level produced 95

diagnostic

See diagnostic messages

files 435

output device 143

preprocessor 93, 94

runtime

See also runtime, messages

binding to your program 126

machine-state dumps 356

search path 134

messages (continued)

search path 35

severity 371

migration

compiler option 101

data type changes 291

header files 377

language level, elimination xvii

language standards for C++ 43

mapping underscored names 385

tiled memory 114

module definition files

CPPFILT utility 388

DLLs

creating 198

exports 201

sample (SAMPLE03) 198—201

setting code segment attributes 200

setting data segment attributes 200

executables 205, 206—207

naming in ICC 38

samples 19

setting stack size 67

VDDs 285

MSGBIND utility 126

multibyte support in subsystems 305

multiple library environments 349, 350

multithread

definition 449

description 179

libraries 180

compiler options 66, 113

programs

compiling and linking 193

environment variables 191

global data 188

sample program (SAMPLE02) 194

serialized I/O 185

signal handling 188, 325

troubleshooting 420

470 IBM C/C++ Tools: Programming Guide

must-complete code 326

N
/N option 94

name mapping 385

naming conventions for libraries 64, 432

naming segments 116

/Nd and /Nt options 201

nesting levels, limits on 372

new-line character (/n)

in binary streams 152

in memory files 155

in subsystems 305

text streams 150

NMAKE program 129

/NOD linker option 218, 315, 405

/NOE linker option 208

/NOI linker option 124, 363, 406

nonreentrant functions 184, 187

NULL macro, definition 369

O
/O option 116

object files

creating 45

including version string 120

naming 83

naming in ICC 38

suppressing 83

object libraries 217, 314

/Oi option 57, 116

/Ol option 53, 117

/Om option 117

online information

BookManager books 10

compiler options listing 30

context-sensitive help 10, 19, 435

creating 127

references (.INF) 9, 19, 435

/Op option 117

opening files 158

operating requirements 20

optimizing

compiler options 46, 116

description 46

for size 175—177

for speed 165—175

for speed and size 178

inlining user code 56

intermediate code linker 52

using _Optlink 240

with debugger 46, 94, 95

options, compiler

See compiler options

_Optlink calling convention

description 238

examples of code produced 243—263

eyecatchers 241

features 238

keyword 62, 238

performance tips 240

register use 241

setting 62, 116

/Os option 117

OS/2

publications 455

OS/2 exceptions

See also exception handlers, OS/2

asynchronous 328, 334

critical functions 333

default handling 328

description 328

floating-point 332

guard page 68

handling

See also exception handlers, OS/2

DLLs 196

machine-state dumps 356

in math functions 332

in subsystems 305

 Index 471

OS/2 exceptions (continued)

mapping to C signals 329

restricted OS/2 APIs 353

synchronous 328, 333

output file management options 82

output from compiler 44

P
/P options 107

_Packed keyword 378

packed structures 397

packing

See also alignment

compiler option (/Sp) 101

parameters

See also arguments

_Optlink convention 73, 238, 243—263

_Pascal conventions 272—279

_System convention 264, 265—271

__parmdwords function 264

_Pascal calling conventions

16-bit

description 297—299

return values 299

32-bit

description 272

examples of code produced 272—279

register use in 275

VDDs 283

keywords 62, 283

setting 62

passing data to a program 139

PATH environment variable 34, 133

Pentium microprocessor 115

per-thread global variables 189

performance, improving 59, 165—175

piping standard streams 163

pointers

_Far32 _Pascal 283

_Seg16 qualifier 289

pointers (continued)

casting to integers 366

portability

considerations 3, 363

diagnostic messages about 93

language standards 44

publications 9, 455

#pragma directives

See also Online Language Reference

&pinfo. xx

alloc_text 201

changes from C Set/2 V1.0 xx

checkout xx

data_seg 201

define xx, 234

entry xx

export xx, 54, 202

handler 344

implementation xx, 230

import 207

langlvl xx, 41

linkage 62

map 345

pack 377

seg16 290

stack16 288

undeclared xx, 233

precedence of compiler options 72

precompiled header files

compiler options 51, 83, 101

description 51

predefined macros 381

preprocessor

compiler options (/D, /P, /U options) 107

defining macros 107

generating messages about 93, 94

implementation-defined behavior 368

#include directive 38

output 107

redirecting output 108

472 IBM C/C++ Tools: Programming Guide

prerequisite products 20

Presentation Manager (PM)

compiler options 79

printf, hints and tips 414

processes

functions called at termination 351

termination functions 187

processor, specifying 115

profiling hooks 47

prototyping functions 411

ptrdiff_t, size of 366

publications

online 9

related 7, 455

_putenv function 158

Q
/Q compiler option 67, 120

R
/R compiler options 117

raise function 318

random numbers, seed for 191

reading syntax diagrams 4

recfm attribute 159

record length, setting 159

redirecting

preprocessor output 108

standard streams 144, 163

reducing program size 175—177

reentrant functions 182, 183

registering exception handlers 344

registers

_Fastcall convention 298

_Optlink convention 238, 241, 243—263

_Pascal conventions 272—279

_System convention 264, 265—271

handling in VDDs 282

implementation-defined behavior 367

related products 21

related publications

BookManager 456

C/C++ Tools 7, 455

OS/2 455

portability 455

SAA 456

remove function 155, 373

removing stack probes 69, 113

rename function 373

reporting product defects 429

requirements 20

reserved identifiers 65, 385

resource compiler 215

resource compiler (RC) 128

resource DLLs 215

response files 32

return codes 50, 146, 371

return value from main 146

ring 0 code 113, 282

running your program 139

runtime

environment

compiler option 117

DLLs 197, 210

multiple 349, 350

environment variables 133—137

libraries, list of 434

messages

binding to your program 126

list of files 435

machine-state dumps 356

search path 134

runtime libraries

choosing 63, 113

creating your own 216—222

default 63

default in object file 113

description 15

dynamically linking 195

example of using compiler options 79

 Index 473

runtime libraries (continued)

features 11

including with your program 125

list of 434, 437

multiple environments 349, 350

multithread

compiler options 66, 113

file names 180

naming conventions 64, 432

object 217, 314

overriding defaults in objects 218, 315

search path 35

single-thread

compiler options 66, 113

specifying linking for 111

subsystem

creating your own 313

provided 304

S
/S2 compiler option 100

/Sa compiler option 100

SAA

language level 42, 100

publications 456

standard supported by C/C++ Tools 14

sample code

C PM program (SAMPLE1A) 23

C++ program (SAMPLE1B) 25

calling 16-bit code (SAMPLE04) 294

description of 18

for DLL (SAMPLE03)

.DEF file for .EXE 206—207

compile and link instructions 207

creating library DLLs 219—222

module definition file 198—201

user-created _DLL_InitTerm

function 211—214

for subsystem DLL (SAMPLE05) 310

_DLL_InitTerm function 308—309

sample code (continued)

for the WorkFrame/2 product 20

list of 439

multithread program (SAMPLE02) 194

/Sc compiler option 100

scanf, hints and tips 416

/Sd compiler option 100, 105

/Se compiler option 100

search order for header files 40, 41

search path

command files 133

DLLs 134

executable files 133

executable modules 34

header files

compiler options 86

controlling 40

default 40

INCLUDE environment variable 35

help and message files 35

libraries 35

locale information 134

runtime messages 134

seeking, restrictions on 162

_Seg16 type qualifier 289

segmented pointers, declaring 289

segments

code 200

data 200

defining attributes 201

naming 116

semaphores 184, 351

sequence numbers 102

serialization

global variables 191

I/O 185

reentrant functions 183

subsystems 305

SET command

appending values 37

ddnames 157

474 IBM C/C++ Tools: Programming Guide

SET command (continued)

environment variables 36, 133

SETARGV.OBJ 141

setbuf function 156

setjmp function 322, 324

setting

default char type 120

environment variables 133

length of external names 120

maximum number of errors 94

page length for listing file 89

stack size 67

time zone 136

type conversion rules 102

SETUPARG module 142

setvbuf function 156

severity, compiler return codes 50

/Sg compiler option 101

/Sh compiler option 101

share attribute 159

sharing objects between 32 and 16-bit code 290

/Si compiler option 51, 101

signal handlers

C++ consideration 327

considerations 326

creating your own 322

default 319

description 318

DLLs 348

establishing 321

example 323

multiple library environments 350

multithread programs 188, 325

signal function 318

signals

default handling 319

description 318

functions 318

handlers

See signal handlers

implementation-defined behavior 371

signals (continued)

list of 320

mapping exceptions 329

multithread programs 325

single-thread

compiler options 66, 113

libraries

16-bit code

callbacks to 32-bit code 292

calling conventions 288, 297

compiler option 114

converting structures 291

converting structures for 291

migrating header files 377

passing pointers to 289

#pragma seg16 290

restrictions 293

returning values from 299

sample program (SAMPLE04) 294

setting stack size 288

sharing objects 290

tiled memory 292

size_t, size of 366

/Sm compiler option 101

/Sn compiler option 101

source code

compiler options (/S options) 100

default file extensions 33

importing from other systems 101, 102

including in listing file 89, 90

language level 41

multiple files 31

naming in ICC 38

preserving comments in 108

specifying C or C++ 103

/Sp compiler option 101

space and memory requirements 21

specifying source file language 103

/Sq compiler option 102

/Sr compiler option 102

 Index 475

/Ss compiler option 102

stack

allocation 68

allocation of 67

exception handling requirements 353

size

default 67

setting 67

setting for 16-bit calls 288

stack pointer optimizations 117

stack probes

compiler option 113

definition 452

description 68

removing 69, 113

standard streams

buffering 374

description 143

file handles 149

redirecting 144, 145

standard time zone 136

standards, language 13

static data members in templates 235

static linking

16-bit code 287

compiler option 111

description 64

stderr

description 143

file handle 149

redirecting 163

stdin 143, 149

stdout

description 143

file handle 149

piping 163

redirecting 163

redirecting preprocessor to 108

storage, managing 168

strdup function

streams

binary 151, 152

changing mode 151

difference between text and binary 152

fflush function 150, 151

implementation-defined behavior 373

opening using ddnames 157

standard 143, 149

See also standard streams

text 150

See also text streams

strings

compiler option parameters 73

DBCS considerations 365

implementation-defined behavior 364

improving performance 169

mapping and alignment 394

structure and union table 90

structures

_Pascal conventions 275

_System convention 264, 268

arrays of, mapping 399

containing bit-fields 399

cross-reference in listing file 88, 90

mapping and alignment 396

packing 101, 397

padding of 367

sharing with 16-bit code 291

/Su compiler option 103

subsystems

arguments to main 304, 310

buffering 310

calling conventions 306

compiler option 117

compiling and linking 310

constructors and destructors 307

creating 304

definition 303, 452

DLLs

creating 306

_DLL_InitTerm function 307

sample program (SAMPLE05) 310

476 IBM C/C++ Tools: Programming Guide

subsystems (continued)

exception handling 353

exception handling in 305

functions available 305

libraries

creating your own 313

provided 304

multibyte support 305

restrictions 310

serialization 305

thread support 66

subtitle string 89

summary of changes xvii—xxiv

support channels 429

/Sv compiler option 103

switches (+|-) 74

synchronous exceptions 328, 333

syntax check, performing 82

syntax diagrams

#include directive 38

for compiler options 7

header file 39

how to read 4

icc command 30

IPFC (IPF compiler) 127

LINK386 command 124

MSGBIND 126

RC (resource compiler) 128

system #include files 40, 88

_System calling convention

__parmdwords function 264

calls with structures 264

description 264

examples of code produced 265—271

features 264

keyword 62, 264

register use in 267

setting 62, 116

system function 29

Systems Application Architecture (SAA)

language level 42, 100

Systems Application Architecture (SAA)

(continued)

publications 456

standard supported by C/C++ Tools 14

T
Task library 180, 437, 452

/Tc compiler option 31, 103

/Td compiler option 31, 104

TEMPINC directory 231

template-implementation files

#pragma implementation 230

creating 229

naming 230

specifying directory 83

template-include files 231, 232

templates

See also Online Language Reference

#pragma define 234

compiler options 83, 106

definition 452

DLLs 205

example 227

generating function definitions 225

implementation files 229

internal linkage 226

static data members 235

structuring manually 233

TEMPINC directory 231

template-include files 231

TEMPMEM environment variable 135, 156

temporary files

creating as memory files 156

description 49

directory 35, 135

implementation-defined behavior 373

memory files 135

specifying storage area for 82

storing on disk or in memory 49

TMP environment variable 135

 Index 477

terminating

DLL environment 197, 210

static constructors and destructors 210

termination, functions called at 351

text streams

changing to binary 151

Ctrl-Z character 151, 373

description 150

difference from binary stream 152

seeking past end of file 162

thread information block (TIB) chain 347

_threadid global variable 180

threads

_beginthread function 181

creating 180

description 179

/Ti compiler option 46, 94

tiled memory

compiler option 114

description 292

#pragma seg16 290

time zone

default 136, 375

setting (TZ variable) 136

_timezone variable 191

title string 89

TMP environment variable

compile time 35, 49

run time 135

tmpfile function 156

tmpnam function 373

Toolkit tools 123

/Tp compiler option 31, 104

translation limits 372

troubleshooting 401—428

/Ts compiler option 94

tutorial files 439

/Tx compiler option 94, 356

type conversion rules 102

TZ environment variable 136

_tzname variable 191

_tzset function 137

U
/U compiler option 109

unbuffered I/O 156

undefining macros 109

underscore character 385

uninitialized variables, messages about 93

unions

cross-reference in listing file 88, 90

implementation-defined values 367

packing 101

unreferenced variables 94

user #include files 40, 88

User Interface class library 180, 187

DLLs 435

V
/V compiler option 120

variables

automatic, mapping and alignment 389

cross-reference in listing file 88, 91

diagnostic messages about 94

environment

See also environment variables

accessing 141

compiler 34

COMSPEC 136

DPATH 134

LIBPATH 134

multithread program 191

PATH 133

runtime 133—137

setting 133

TEMPMEM 135, 156

TMP 135

TZ 136

global

multithread programs 188

478 IBM C/C++ Tools: Programming Guide

variables (continued)

global (continued)

per-thread 189

serialization of access 191

_threadid

passing to 16-bit code 114, 290

uninitialized, messages about 93

VDDs

See virtual device drivers (VDDs)

version string, setting 120

virtual device drivers (VDDs)

calling conventions 272, 283

compiler options 114, 282

description 281

function pointers 283

module definition file 285

register handling 282

virtual disk (VDISK) 49

volatile attribute

access 368

multithread programs 192

signal handling 327

W
/W<grp> compiler options 92, 95, 96

wildcard characters 141

See also global file name characters

/Wn compiler option 95

work files 35, 49

WorkFrame/2

changing library modules 142

description 22

files for 439

LIB utility 142, 217, 314

Make File Creation utility 129

publications 455

samples 20

setting compiler options 72

support 20, 22

writethru attribute 160

X
/X compiler options 40, 86

 Index 479

ÉÂÔ

Part Number: 61G1181

Program Number: 61G1176

 61G1426

Printed in U.S.A.

61
G

11
81

S61G-1181-00

