
Programming OS/2 PM in Objective C

Version 0.5

Thomas Baier

baier@ci.tuwien.ac.at

August 26, 1994

Contents

1 Introduction 5

1.1 System Requirements : 6

1.2 Installation : 6

2 Library License 7

2.1 Distribution : 8

2.2 Warranty, bug reports, support : : : : : : : : : : : : : : : : : : : 8

I Tutorial 9

3 Writing a simple PM Application 10

3.1 Application main function : 10

3.2 A simple application : 12

3.3 Necessary include �les : 15

3.4 Compilation : 15

4 A simple File-Browser 17

4.1 Parts of the program : 18

4.1.1 Initialization : 18

4.2 Message loop : 21

4.3 Cleanup : 21

4.4 Compilation : 21

4.4.1 Complete source code of textview.m : : : : : : : : : : : : 22

1

4.5 Delegate objects : 24

4.6 Implementing the delegate : 25

4.6.1 Modi�ed version of Textview: textview2.m : : : : : : : : 26

4.7 Sample make�les : 28

5 Loading Resources 30

5.1 Adding a menu resource to Textview : : : : : : : : : : : : : : : : 30

5.2 Dialogs : 31

5.3 Command bindings : 32

5.4 An Application using a dialog and command bindings : : : : : : 32

5.4.1 \plot.m", the main implementation : : : : : : : : : : : : : 33

5.4.2 \controller.h", Gnuplot PM interface : : : : : : : : : : : : 34

5.4.3 \controller.m", Gnuplot PM interface : : : : : : : : : : : 36

5.4.4 Resource de�nition : 38

II Reference Manual 41

6 Overview 42

6.1 ActionWindow : 42

6.2 Button : 44

6.3 ComboBox : 44

6.4 Container : 44

6.5 EntryField : 44

6.6 Frame : 45

6.7 List : 45

6.8 ListBox : 46

6.9 Menu : 46

6.10 MultiLineEntryField : 46

6.11 NoteBook : 46

6.12 ScrollBar : 47

6.13 Slider : 47

6.14 SpinButton : 47

2

6.15 Static : 47

6.16 StdApp : 48

6.17 StdDialog : 48

6.18 StdWindow : 48

6.19 TitleBar : 49

6.20 ValueSet : 49

6.21 Window : 50

7 Classes 51

7.1 ActionWindow : 52

7.2 Button : 53

7.3 ComboBox : 56

7.4 Container : 56

7.5 EntryField : 56

7.6 Frame : 59

7.7 List : 59

7.8 ListBox : 59

7.9 Menu : 62

7.10 MultiLineEntryField : 62

7.11 NoteBook : 63

7.12 ScrollBar : 64

7.13 Slider : 64

7.14 SpinButton : 64

7.15 Static : 64

7.16 StdApp : 65

7.17 StdDialog : 66

7.18 StdWindow : 70

7.19 TitleBar : 76

7.20 ValueSet : 76

7.21 Window : 76

8 Protocols 81

8.1 Selection : 81

3

A Literature 83

B Future of this Library 84

C List of Tables 85

D List of Figures 86

4

Chapter 1

Introduction

Programming OS/2 PM applications is mostly done using the programming

language C. Because the OS/2 application programming interface (API) is in

most parts object oriented, more and more programmers choose an object ori-

ented programming language for their purposes. The most used object oriented

programming language today is C++.

Because of the mostly static binding and it's nearly completely missing run-

time system many people are searching for easy-to use alternatives to C++.

One of the most popular alternatives in object oriented programming to C++

is Smalltalk . Due to it's features, such as dynamic binding, messaging,. . . it is

better suited for developing complex applications using a graphical user interface

with PM.

There's another object oriented programming language, which is as easy to learn

as pure C (because it's not much more than C itself), but supports dynamic

binding just alike Smalltalk. This language is Objective C .

Objective C only adds some few new features to its \father" C, so it is an easy

to learn language for C programmers.

Another advantage of Objective C is that an Objective C compiler is part of

GCC, the GNU C compiler. All two ports of GCC, the EMX port, and the

native port called GCC/2 support this language.

So { get it and start developing native OS/2 32bit programs using Objective C.

This manual describes an Objective C class library currently under development

to simplify OS/2 PM programming. All you need to use it is the EMX port of

GCC.

5

1.1 System Requirements

I assume, you have EMX/GCC (0.8h) installed on your system. To install the

library you need a disk drive formatted using HPFS.

To simplify the task of designing the user interface for your programs, it's also

recommended to use a dialog editor of some kind. The dialog editor must be

capable of writing .rc �les, which can be compiled with rc.exe, the Resource

Compiler, or ready to use .res �les (compiled resources, binary resources). You

can �nd a dialog editor for example in the IBM OS/2 developer's toolkit. I also

tried to use the Guidelines development tool to create .rc �les, after manually

patching the generated �les, even this can be used.

1.2 Installation

To install the class library you have to unpack the compressed archive �les

pm.zip

1

, db.zip, header.zip and samples.zip.

Change the current working directory to the root directory of the HPFS drive,

where you want to install the library to and type

unzip pm

unzip db

unzip header

unzip samples

This automatically creates some directories:

� \usr\include\objc contains patched versions of os2.h and os2emx.h.

This �les had to be patched to work with Objective C.

� \usr\include\pm contains the include �les used for this class library.

� \usr\include\db contains the include �les for a simple database library

used in one sample program.

� \usr\lib contains the class library for PM programming (objcpm.a) and

the simple database library (objcdb.a).

� \usr\samples contains the source code for the sample programs.

1

use Info ZIP 5.0 or newer

6

Chapter 2

Library License

This libraries are distributed as Shareware. To become a registered user �ll in

the registration form in the �le register.txt and send it to me (the address

can be found in register.txt).

After registration you are automatically registered for all following versions of

the library until the major version number increases. That means by registering

this version of the library together with the PM class library (PM library: ver-

sion 0.5; DB library: version 0.3) you are automatically registered for all future

versions of the PM and DB libraries including version 1.0.

Starting at version 1.1 of the PM or DB library you have to register newly at a

special update price.

Support the Shareware distribution concept and register if you like this library

and want to use it in your own applications. Future Shareware releases of this

library depend heavily on the will of users to register. So, if no one registers

this library, surely no further e�ort will be made in adding functionality to the

libraries.

As a registered user you are allowed to write applications using these two libra-

ries and distribute them at whatever price you think of.

Before registering you are allowed to test this library package as much as you

like for a trial period of 30 days after �rst installing this package. You are not

allowed to sell any of the applications written using this package if you have not

registered it.

If you continue using the library package after the trial period of 30 days and

don't register, that's an act of software-piracy. May your bad conscious haunt

you till the end of your days ;-)

7

Think of the cheap pricing for this powerful library package and register. Future

versions will include some tools to make life easier for programmers (just look

at the NEXTSTEP development environment. Some kind of Project Builder

or Interface Builder would look �ne for OS/2 systems). But future Shareware-

releases of this software heavily depend on the number of registrations made.

2.1 Distribution

This program is Shareware. Feel free to distribute the whole and unmodi�ed

package to anyone. You are not allowed to change any of the �les part of the

package before distributing, you only are allowed to distribute the package as a

whole, including all �les you received with it.

You are allowed to charge a small amount of money for the physical act of

transferring the library. This amount of money must not exceed twice the cost

of the storage medium. So, if you for example use
oppy disks at a price of

10 ATS

1

each, you are allowed to charge at most 20 ATS for copying the disk.

That makes a total of 30 ATS (including packaging).

If you don't like these distribution restrictions, don't distribute the program.

It's a shame to see some vendors \selling" Public Domain or Shareware programs

at a price of 80 ATS per disk (3,5" HD disks are sold at a price between 5 and

10 ATS). Especially those vendors are not allowed to distribute the library

package at their normal copying costs. So, change your pricing policy, or just

don't distribute this library package.

If you're not sure, whether you are allowed to distribute the package, contact

me. Any vendors who want to distribute registered versions of the library should

do the same.

2.2 Warranty, bug reports, support

Well, as you might have thought, there's ABSOLUTELY NO WARRANTY for

this library package.

If you �nd any bugs in the library or want me to make improvements, drop a

short E-Mail message to me at baier@ci.tuwien.ac.at.

If you are a registered user of the application you will be noti�ed via E-Mail

(Internet) { if possible { when new versions of the library are released. If you

have any questions concerning the use of the library, working around some

special problems,. . . send me an E-Mail message, I'll try to do my best and

answer your question.

1

ATS is Austrian Schillings

8

Part I

Tutorial

9

Chapter 3

Writing a simple PM

Application

Programming OS/2 Presentation Manager can be a quite hard job, if you rely on

pure C and the OS/2 API functions. This is why I developed this class library.

As you will see in this and the following chapters, using Objective C normally

spares you the time to read the complex documentation of the OS/2 Application

programming interface. There are just some basics you should know.

Before doing any real work the program must do some initialization, which

means it has to allocate all necessary resources to run, it has to register itself

at PM.

After the program is run, all resources must be freed again.

So, let's look at a simple PM application written using C

3.1 Application main function

#define INCL_PM

#include <os2.h>

.

.

main ()

{

HAB hab; /* handle to the anchor block of the application */

HMQ hmq; /* handle to the main message queue of the appl. */

QMSG qmsg; /* message structure */

10

hab = WinInitialize (0); /* register application at PM */

hmq = WinCreateMsgQueue (hab,0);/* create main message queue */

.

. /* other initialization, allocate resources, ... */

.

while (WinGetMsg (hab,&qmsg,(HWND) NULL,0,0))

WinDispatchMsg (hmq,&qmsg); /* process all messages */

. /*

. * free all allocated resources,

. * prepare application to terminate

. */

WinDestroyMsgQueue (hmq); /* destroy main message queue */

WinTerminate (hab); /* de-register application */

}

The above example shows the necessary steps, a program has to go through to

be run under OS/2 Presentation Manager.

1. Initialization: registration at PM, create message queue,. . .

2. Message loop: receive all messages for the application and process them

3. Cleanup: destroy message queue, de-register application,. . .

The Objective C PM class library provides a class, called StdApp to meet the

purpose of standard initialization and message processing for every PM appli-

cation. The following source code demonstrates how to use it:

#include <pm/pm.h>

.

.

main ()

{

StdApp *application; /* pointer to our instance

of a StdApp class */

application = [StdApp alloc]; /* create application object */

[application init]; /* initialize application */

11

.

.

.

[application run]; /* process all messages */

.

.

.

[application free]; /* free application object */

}

As you can see, the �rst line of the sample includes <pm/pm.h>. This include �le

causes all include �les of the PM class library to be read. After doing this, you

can use all classes of the library and their methods without any restrictions.

And here a more compact version of the same part of code:

#include <pm/pm.h>

.

.

main ()

{

StdApp *application = [[StdApp alloc] init];

.

.

.

[application run];

.

.

.

[application free];

}

You can see, using this class library can really simplify your life. Instead of

creating and initializing dozens of local or, even worse, global variables, you

simply allocate and initialize an object.

3.2 A simple application

O.K. to show a complete PM application I'll show you a program that just

creates a standard window, waits until this window gets closed by the user and

then terminates. At �rst, again, the standard C version, only using OS/2 API

functions:

12

#define INCL_PM

#include <os2.h>

#define NEWCLASSNAME "NewClass"

MRESULT EXPENTRY windowFunction (HWND hwnd,ULONG msg,

MPARAM mp1,MPARAM mp2)

{

switch (msg) {

case WM_ERASEBACKGROUND:

return (MRESULT) FALSE;

default:

return WinDefWindowProc (hwnd,msg,mp1,mp2);

}

}

main ()

{

HAB hab;

HMQ hmq;

QMSG qmsg;

HWND mainWindow;

HWND clientWindow;

ULONG createFlags;

hab = WinInitialize (0);

hmq = WinCreateMsgQueue (hab,0);

WinRegisterClass (hab,NEWCLASSNAME,windowFunction,0L,0);

createFlags = FCF_SYSMENU | FCF_TITLEBAR | FCF_MINMAX |

FCF_SIZEBORDER | FCF_SHELLPOSITION |

FCF_TASKLIST;

mainWindow = WinCreateStdWindow (HWND_DESKTOP,

WS_VISIBLE,

&createFlags,

(PSZ) NEWCLASSNAME,

(PSZ) "",

0L,

NULLHANDLE,

1000,

&clientWindow);

13

while (WinGetMsg (hab,&qmsg,(HWND) NULL,0,0))

WinDispatchMsg (hab,&qmsg);

WinDestroyWindow (mainWindow);

WinDestroyMsgQueue (hmq);

WinTerminate (hab);

}

Figure 3.1: Sample application \test.exe"

The following source code illustrates how much simpler the PM class library is

to use than \normal" OS/2 PM API functions.

#include <pm/pm.h>

main ()

{

StdApp *application = [[StdApp alloc] init];

StdWindow *mainWindow = [[StdWindow alloc]

initWithId: 1000

andFlags: FCF_SIZEBORDER];

[mainWindow makeKeyAndOrderFront: nil];

[application run];

[mainWindow free];

[application free];

14

}

In addition to inititializing an application object, the main window is created

as an instance of StdWindow. The OS/2 window identi�er is 1000, the window

is created with a resizable border.

Calling the method makeKeyAndOrderFront: shows the window.

Figure 3.1 shows the window created by this simple piece of source code.

3.3 Necessary include �les

To use the OS/2 PM class library simply include the �le <pm/pm.h> into your

application. This automatically includes all Objective C Interface Files and the

patched OS/2 API header �le <objc/os2.h>.

After installation of the library, these include �les can be found in the directories

\usr\include\pm respectively \usr\include\objc.

If you encounter problems compiling any of the samples, check, if the �le

\emx\include\objc\TypedStream.h exists. This �le is part of the EMX port

of GCC. After installing a new GCC version, I found out, this �le had been

renamed to \emx\include\objc\typedstr.h to match the FAT �le name con-

ventions. So the include �le could not be found by the Interface declaration

�le for the Object class. Just rename \emx\include\objc\typedstr.h to

\emx\include\objc\TypedStream.h.

3.4 Compilation

To compile programs using the PM class library just link the executable �le

with the class library �le and the Objective C runtime library.

If you save the above example in a �le called test.m, type the following to

produce an executable PM application called text.exe:

� gcc -c test.m � � � to produce the object �le test.o.

� gcc -o test.exe test.o -lobjcpm -lobjc � � � to produce the executa-

ble application �le text.exe.

� emxbind -ep test.exe � � � to set the application type for test.exe to

OS/2 Presentation Manager Application.

15

After linking and setting the application type you can strip all debug symbols o�

the executable �le by using the -s option of emxbind. emxbind -s test.exe

strips all debug information.

Normally it's better to use a make�le for compiling and linking applications.

A sample make�le is provided in \usr\samples\make. Just copy the two �les

makefile.preamble and makefile to your source code directory and �ll in the

blanks in makefile. For a description of how to do this, see section 4.7 on page

28.

16

Chapter 4

A simple File-Browser

This chapter describes a simple application, which does something useful. It's

purpose is to read a text �le and display it in an OS/2 PM window. The name

of the text �le is given as the �rst and only parameter at the command line.

The program itself will be called textview.

Figure 4.1: \Textview" application displaying it's own source code

The window should be resizable and it's contents area (theMLEwindow) should

have the same size as the window itself.

If you, for example, want to take a look at your main OS/2 con�guration �le,

just type textview c:\config.sys. The �le will be loaded and displayed.

17

Figure 4.1 shows the application main window displaying the source code of the

program itself.

4.1 Parts of the program

As shown before, the program consists of three parts, Initialization, theMessage

loop and a Cleanup section.

4.1.1 Initialization

The �rst section, Initialization, has to do the following:

� Check for the command line parameters. There must be exactly one pa-

rameter when calling the program, the name of the �le to be displayed.

� Check, if the �le exists, create a bu�er area in memory with enough size

to store the contents of the whole �le.

� Read the �le to the bu�er area.

� If all is o.k., create the application instance and a window. Insert a multi

line entry�eld into the window, where the text will be displayed.

� load the text bu�er in memory to the display area of the multi line entry-

�eld.

The �rst three sections of the initialization don't have anything to do with this

class library. They only use functions of the EMX C-Library and are simple to

understand:

main(int argc,char *argv[])

{

FILE *inputFile;

struct stat statbuffer;

char *contents;

/*

* check for command line arguments and

* check given file (struct stat)

*/

if (argc != 2) /* check for command line arguments,

must be exactly one */

18

exit (-1);

if (stat (argv[1],&statbuffer) < 0) /* check file */

exit (-1);

/*

* open file and read contents to buffer

*/

inputFile = fopen (argv[1],"r"); /* open text

file read-only */

contents = (char *) malloc (statbuffer.st_size + 1);

/* allocate buffer */

fread (contents,statbuffer.st_size,1,inputFile);

/* read contents of file */

inputFile is a pointer to a �le structure returned by fopen. statbuffer is

used to retrieve information about the �le using the C-Library function stat.

Here the size of the �le is stored.

After reading �le information, contents is allocated via malloc and the �le is

opened and it's contents are read to contents.

Following this part of code, the initialization of the used PM classes takes place:

Just add some more variable declarations to the �rst section of the code:

StdApp *application;

StdWindow *window;

Window *mle;

char *title;

title is used as a bu�er area to store the title of the main window, where the

text will be displayed, mle is a pointer to a generic window object, which will

be initialized as a MultiLineEntryField. application and window will hold

pointers to the instances of the main application object and the main window

respectively.

The initialization of these variable is as follows:

/*

* create app instance and window,

* create MLE for text display

*/

application = [[StdApp alloc] init]; /* initialize

19

application

object */

window = [[StdWindow alloc] initWithId: 1000

andFlags: FCF_SIZEBORDER];

/* create main window */

[window createObjects]; /* create child windows

of main window */

mle = [[MultiLineEntryField alloc]

initWithId: 1001

andFlags: (WS_VISIBLE | MLS_READONLY |

MLS_HSCROLL | MLS_VSCROLL)

in: window];

[window insertChild: mle]; /* insert MLE into window */

/*

* calculate title of window and set it

*/

title = (char *) malloc (11 + /* allocate buffer for title */

strlen (argv[1]));

sprintf (title,"Textview: %s",argv[1]); /* fill title buffer */

[window setTitle: title]; /* set window title */

free (title); /* free title buffer */

This section of code creates and initializes the application object and creates a

standard window with PM identi�er 1000.

Afterwards all existing child objects of the window are created in memory using

createObjects. Then a PM MLE window is created (id 1001) and inserted

into the main window.

The last part of the code simply allocates memory to hold the title string and

creates the title string, which consists of the name of the application (Textview)

and the name of the �le to be displayed.

The MLE window is created in read-only mode with a horizontal and a vertical

scrollbar (
ags MLS READONLY, MLS HSCROLL and MLS VSCROLL).

After initializing this, the main window is shown and the size of theMLEwindow

is adapted to the size of the main window, to �ll it's complete interior:

/*

* show window, set MLE size and display contents of file

20

*/

[window makeKeyAndOrderFront: nil]; /* show window */

[mle setSize: 0:0:[window width]:

[window height]]; /* set MLE size */

[mle setText: contents]; /* display contents of file */

This code also sets the text displayed in the MLE window to be the bu�er area

contents.

4.2 Message loop

The main message loop is started by calling [application run]. As mentioned

before, this method terminates, when the main window gets closed.

4.3 Cleanup

After the window was closed, all objects are destroyed and the previously allo-

cated bu�er area is freed again:

/*

* free all resources

*/

free (contents); /* free contents buffer */

fclose (inputFile); /* close file */

[application free]; /* free application */

[window free]; /* free window */

Note, that [window free] automatically destroys all it's child windows, in our

case, the MLE window.

4.4 Compilation

To compile this application, store the code shown in the following subsection to

the �le textview.m (it can be found in \usr\samples\textview) and type:

gcc -c textview.m

gcc -o textview.exe textview.o -lobjcpm -lobjc

emxbind -ep textview.exe

21

4.4.1 Complete source code of textview.m

#include <pm/pm.h>

#include <io.h>

#include <sys/types.h>

#include <sys/stat.h>

main(int argc,char *argv[])

{

StdApp *application;

StdWindow *window;

Window *mle;

FILE *inputFile;

struct stat statbuffer;

char *contents;

char *title;

/*

* check for command line arguments and

* check given file (struct stat)

*/

if (argc != 2) /* check for command line arguments,

must be exactly one */

exit (-1);

if (stat (argv[1],&statbuffer) < 0) /* check file */

exit (-1);

/*

* open file and read contents to buffer

*/

inputFile = fopen (argv[1],"r"); /* open text

file read-only */

contents = (char *) malloc (statbuffer.st_size + 1);

/* allocate buffer */

fread (contents,statbuffer.st_size,1,inputFile);

/* read contents of file */

/*

* create app instance and window,

* create MLE for text display

*/

application = [[StdApp alloc] init]; /* initialize

22

application

object */

window = [[StdWindow alloc] initWithId: 1000

andFlags: FCF_SIZEBORDER];

/* create main window */

[window createObjects]; /* create child windows

of main window */

mle = [[MultiLineEntryField alloc]

initWithId: 1001

andFlags: (WS_VISIBLE | MLS_READONLY |

MLS_HSCROLL | MLS_VSCROLL)

in: window];

[window insertChild: mle]; /* insert MLE into window */

/*

* calculate title of window and set it

*/

title = (char *) malloc (11 + /* allocate buffer for title */

strlen (argv[1]));

sprintf (title,"Textview: %s",argv[1]); /* fill title buffer */

[window setTitle: title]; /* set window title */

free (title); /* free title buffer */

/*

* show window, set MLE size and display contents of file

*/

[window makeKeyAndOrderFront: nil]; /* show window */

[mle setSize: 0:0:[window width]:

[window height]]; /* set MLE size */

[mle setText: contents]; /* display contents of file */

/*

* run application

*/

[application run];

/*

* free all resources

*/

free (contents); /* free contents buffer */

23

fclose (inputFile); /* close file */

[application free]; /* free application */

[window free]; /* free window */

}

If you compile this program you will see, that the main window is resizable, but

the MLE window inside the window remains the same size, whatever size it's

parent window is.

The rest of this chapter shows how an object can be automatically noti�ed,

when the main window resizes, to adapt the size of the MLE window.

4.5 Delegate objects

One of the main advantages of Objective C compared to most other object-

oriented programming languages is the possibility to check at runtime, if an

object implements a speci�c method. This provides a simple way for objects to

send messages to other objects, if these messages can be processed, to notify of

some special occurrence.

An object implementing methods called by another object, to be noti�ed of

some special events, is called a delegate object.

So it's possible to create classes, and thereafter objects of these classes, which

can change one prede�ned class' behaviour without the need of subclassing one

of the prede�ned classes.

Delegation is used by some objects in this library { not as many as there will be

soon, but at least the two classes StdWindow and StdDialog, both representing

some kind of main window, make use of it.

Using the method setDelegate: you can assign a special object, implementing

some delegate functions, as the delegate object of an instance of StdWindow or

StdDialog.

If the delegate object implements any of the methods described in the section

Methods implemented by the delegate which is part of some class descriptions in

the reference part of this manual, these methods get called at the occurrences

described there.

For our purposes, we will use the delegate method windowDidResize:, which is

called whenever the window gets resized by the user or the application program.

This method will then query the size of the sending instance of StdWindow and

accustom the size of the MLE window according to this.

24

4.6 Implementing the delegate

First, we have to de�ne a new class, implementing the method windowDidRe-

size:. The class declaration is quite simple:

@interface Controller : Object

{

}

- windowDidResize: sender;

@end

This declaration de�nes a new class, a subclass of Object, called Controller,

which has no new instance variables but those inherited from it's superclass and

implements one method called windowDidResize:.

The implementation of this simple class looks like this:

@implementation Controller

- windowDidResize: sender

{

[[sender findFromID: 1001] setSize:

0:0:[sender width]:[sender height]];

return self;

}

@end

This is a simple method, just calling some methods of sender and of the pre-

viously created MLE window.

By calling [sender findFromID: 1001] the method queries a pointer to an

instance of Window or one of it's subclasses. This window must be a child

window of sender and have the OS/2 PM identi�er 1001.

Using this method returns a pointer to the MLE window's associated Window

object. This method is sent a setSize:::: message to adapt it's size to the

size of the sending window.

setSize:::: takes the coordinates of the lower left corner of the window (the

�rst and second parameters) relative to it's parent's lower left corner. The last

two parameters represent the width and height, the window should be resized

to.

25

The lower left corner of the MLE window should be the same as the lower

left corner of it's parent, (0/0). The width and height of the MLE window is

queried from the sender by using the appropriate methods width and height.

As this method has a return type of id

1

, self is returned on successful com-

pletion of the method.

The following section shows the modi�ed source code of textview.m, stored in

\usr\samples\textview with the name textview2.m.

4.6.1 Modi�ed version of Textview: textview2.m

#include <pm/pm.h>

#include <io.h>

#include <sys/types.h>

#include <sys/stat.h>

@interface Controller : Object

{

}

- windowDidResize: sender;

@end

@implementation Controller

- windowDidResize: sender

{

[[sender findFromID: 1001] setSize:

0:0:[sender width]:[sender height]];

return self;

}

@end

main(int argc,char *argv[])

{

StdApp *application;

StdWindow *window;

Window *mle;

Controller *controller;

FILE *inputFile;

1

id is a pointer to a generic Objective C object

26

struct stat statbuffer;

char *contents;

char *title;

/*

* check for command line arguments

* and check given file (struct stat)

*/

if (argc != 2) /* check for command line arguments,

must be exactly one */

exit (-1);

if (stat (argv[1],&statbuffer) < 0) /* check file */

exit (-1);

/*

* open file and read contents to buffer

*/

inputFile = fopen (argv[1],"r"); /* open text file read-only */

contents = (char *) malloc (statbuffer.st_size + 1);

/* allocate buffer */

fread (contents,statbuffer.st_size,1,inputFile);

/* read contents of file */

/*

* create app instance and window, create MLE for text display

*/

application = [[StdApp alloc] init]; /* initialize application

object */

window = [[StdWindow alloc] initWithId: 1000

andFlags: FCF_SIZEBORDER];

/* create main window */

controller = [[Controller alloc] init];

[window createObjects]; /* create child windows of

main window */

[window setDelegate: controller];

mle = [[MultiLineEntryField alloc]

initWithId: 1001

andFlags: (WS_VISIBLE | MLS_READONLY |

MLS_HSCROLL | MLS_VSCROLL)

in: window];

27

[window insertChild: mle]; /* insert MLE into window */

/*

* calculate title of window and set it

*/

title = (char *) malloc (11 + /* allocate buffer for title */

strlen (argv[1]));

sprintf (title,"Textview: %s",argv[1]); /* fill title buffer */

[window setTitle: title]; /* set window title */

free (title); /* free title buffer */

/*

* show window and display contents of file

*/

[mle setText: contents]; /* display contents of file */

[window makeKeyAndOrderFront: nil]; /* show window */

/*

* run application

*/

[application run];

/*

* free all resources

*/

free (contents); /* free contents buffer */

fclose (inputFile); /* close file */

[application free]; /* free application */

[window free]; /* free window */

[controller free]; /* free controller */

}

4.7 Sample make�les

In the directory \usr\samples\makefile you can �nd a sample makefile to-

gether with the used make-include �le makefile.preamble.

To use this make�le, just copy makefile and makefile.preamble to your ap-

plication directory and �ll in the correct places in makefile.

28

1. Add the name of your application �le to the line containing APPLICATION

= (including the su�x .exe).

2. Add the names of your object �les to the line containing OBJECTS =.

3. Add all OS/2 resource �les (extenstion .res) to the line containing the

statement RESOURCES =.

This make�le was written for GNU make. Possible targets are:

� no target � � � this automatically compiles and links the application program

� dep or depend � � � check all �les for dependencies and create a .depend

�le, which is automatically included.

� clean � � � removes all temporary �les (compiled resources, application pro-

gram, object �les, core dump �le, . . .)

Makefile for PM programs using Objective C class library

include Makefile.preamble

ifeq (.depend,$(wildcard .depend))

include .depend

endif

APPLICATION =

OBJECTS =

RESOURCES =

all: $(APPLICATION)

depend dep:

$(CPP) -MM *.m > .depend

$(APPLICATION): $(OBJECTS) $(RESOURCES)

$(CC) -o $(APPLICATION) $(OBJECTS) $(RESOURCES) \

-lobjcpm -lobjc

emxbind -ep $(APPLICATION)

$(STRIP) $(APPLICATION)

clean:

rm -rf $(OBJECTS) $(RESOURCES) $(APPLICATION) core *~

29

Chapter 5

Loading Resources

Using the OS/2 Resource Compiler RC.EXE, you can create a binary resource

�le from a resource de�nition �le. This binary resource �le can be linked to

your application main module just like normal object �les. Application then can

load some of the resource templates instead of creating dialog windows, menus

or many other window objects from scratch by creating and inserting window

objects into a parent window.

5.1 Adding a menu resource to Textview

Just for demonstration issues, I'd like to show how to add a simple menu resource

to the main window (the only window) of the previously described Textview

application.

Only one menu shall be added to Textview, a menu called File, which just

includes the following menu items:

� Open... � � � to open and display a text�le

� Exit � � � to close the application window and exit

The de�nition of these menu items are as follows:

MENU 1000

{

SUBMENU "~File", 2000

{

MENUITEM "Open...", 2001

30

Figure 5.1: Simple menu for \Textview"

MENUITEM SEPARATOR

MENUITEM "Exit", 2002

}

}

The menu File has id 2000, the menu items Open... and Exit the ids 2001

respectively 2002.

Between the two menu items Open... and Exit a separator item should be

inserted.

The resulting menu is shown in �gure 5.1.

To load this menu, just create a resource de�nition �le, type in the menu de-

claration and use RC.EXE to produce a binary resource �le. When linking the

application, don't forget to specify the name of the binary resource �le (just like

any other object �le).

When creating the main window of Textview, binary or FCF MENU with the

given
ag FCF SIZEBORDER. When creating the window, the menu resource will

be loaded and displayed in the window's actionbar. Which menu will be loaded

depends on the OS/2 PM identi�er of the window, which you specify at creation.

It must be the same as the identi�er speci�ed in the resource de�nition for the

menu (in our case, it's 1000).

5.2 Dialogs

Using a dialog editor, you can easily create dialog windows and either store a

resource de�nition �le or a binary resource �le to disk.

Just like normal windows, dialog windows are created by the application using

the appropriate dialog window class StdDialog. In addition to creating the

window object, the contents of the dialog are loaded from the main resource �le

linked to the application.

After creation, dialog windows can be displayed using makeKeyAndOrderFront:.

In addition to normally displaying the dialog windows, which causes the dialog

31

to run non-modal, you can also run a dialog modal for a given parent window.

Using runModalFor: the dialog window is displayed, but working with it's

parent window, which it runs modal for, is not possible untill the dialog window

gets closed again (dismissed .

5.3 Command bindings

After a menu bar has been created, or a dialog window was loaded from a

resource �le, some of the menu items or window objects in the dialog send

command messages to their owner. By processing these messages, the program

can react to user actions.

Using the classes provided by this library, you can bind command messages to

designated methods of an object. When a special command message was sent

to a window, the appropriate method of an object gets called.

All methods, which can be bound to command messages must be of the form

nameOfMethod: sender. The parameter sender stores a pointer to the sending

instance of a StdWindow or a StdDialog, which calls the method.

Command messages can be bound to objects and appropriate methods using

bindCommand: withObject: selector:. The �rst parameter of this method

is the identi�er of the PM object, which posts command messages, the second is

a pointer to the Objective C object, which implements the method to be called,

the third and last is the selector of the method to be called. The selector of a

method can be queried using @selector(nameOfMethod).

To bind the command message sent by the menu item Exit, which has an OS/2

PM id of 2002 to the performClose: method of the window object, just insert

[window bindCommand: 2002

withObject: window

andSelector: @selector(performClose:)];

into the source code of textview before the makeKeyAndOrderFront: statement.

This results in calling [window performClose: window] whenever the menu

item Exit gets selected by the user.

5.4 An Application using a dialog and com-

mand bindings

To demonstrate how to use and load dialog windows from a binary resource

�le and command bindings, let's look at a simple application providing a (very

32

limitated) interface to the powerful plotting program Gnuplot .

The backend (gnuplot.exe) is assumed to be installed somewhere in the pro-

gram search path. This interface doesn't check, if the program could be suc-

cessfully found and started.

Figure 5.2: Simple PM interface to \Gnuplot"

The program itself only consists of a dialog, which is displayed when starting the

program. This dialog contains three entry�elds, a checkbox and a pushbutton.

The �rst entry�eld is used to specify, which function to plot, the other two to

specify the horizontal plotting range. The plotting range is only used, when the

checkbox is in checked state. After pressing the pushbutton Plot, the entry�elds

and the checkbox are computed and the function is plotted.

Figure 5.2 shows how the dialog looks.

The main implementation �le called plot.m is really simple. It just creates the

necessary instances of StdApp and StdDialog. In addition to this, a controller

object is instantiated, which does the reading from the entry�elds and the plot-

ting.

After creating all objects, a command binding is set up for the pushbutton Plot

with the method plot: of controller.

Then the dialog is shown and run modal and afterwards all previously allocated

objects get freed again.

5.4.1 \plot.m", the main implementation

#include <pm/pm.h>

#include "gnuplot.h"

#include "controller.h"

33

main()

{

StdApp *application = [[StdApp alloc] init];

StdDialog *mainDialog = [[StdDialog alloc]

initWithId: IDD_MAIN];

Controller *controller = [[Controller alloc] init];

[mainDialog createObjects];

[mainDialog bindCommand: DID_OK withObject: controller

selector: @selector(plot:)];

[mainDialog runModalFor: nil];

[controller free];

[mainDialog free];

[application free];

}

[[StdDialog alloc] initWithId: IDD MAIN] creates a dialog object and

loads it's binary resource template from the main binary resource �le. The

dialog id is IDD MAIN.

[mainDialog bindCommand: ... binds the command message sent by the pu-

shbutton, which has id DID OK to the plot: method of the object controller.

[mainDialog runModalFor: nil] runs a modal dialog. Normally, this dialog

is run modal for a certain window, but when nil is speci�ed, this only causes

the method to wait for termination of the dialog window.

The class Controller itself has to load the program gnuplot.exe and send it

appropriate commands to plot the given function.

The class implements one instance variable, gnuplot to store a �le handle to the

gnuplot program, and three methods, init to open the plotting program, free

to close it at the end and plot:, which does the plotting work. The following

interface declarations is stored as controller.h in \usr\samples\gnuplot.

5.4.2 \controller.h", Gnuplot PM interface

#include <pm/pm.h>

#include <stdio.h>

@interface Controller : Object

34

{

FILE *gnuplot;

}

- init;

- free;

- plot: sender;

@end

The implementation uses some of the unix-like features of the emx C-Library.

- init

{

[super init];

gnuplot = popen ("gnuplot.exe","w");

return self;

}

init �rst initializes it's superclass Object and thereafter opens a pipe for writing

to the plotting program gnuplot.exe. This binds stdin of gnuplot.exe to the

pipe, which is represented as the �le structure stored in the instance variable

gnuplot.

- free

{

pclose (gnuplot);

return [super free];

}

free just closes the pipe and frees it's instance by calling the free method of

it's superclass.

The following source code for the method plot: is a bit more complicated.

Using the findFromID: method of sender, pointers to the entry�eld and check-

box objects are found out.

The function to be plot is stored in text, the left and right range boundaries

are stored in leftX and rightX.

If the checkbox is checked, the left and right boundaries are read and converted

to double numbers. Then gnuplot is sent the appropriate plot string used to

plot a function in a given horizontal range.

If the checkbox is unchecked or one of the boundaries is not valid, gnuplot is

sent a normal string to plot the function without specifying a plot range.

35

- plot: sender

{

char *string;

char *leftX,*rightX;

double left,right;

string = [[sender findFromID: IDD_PLOTSTRING] text: NULL];

if ([[sender findFromID: IDD_RANGECHECK] checked]) {

leftX = [[sender findFromID: IDD_LEFTX] text: NULL];

rightX = [[sender findFromID: IDD_RIGHTX] text: NULL];

if ((sscanf (leftX,"%lf",&left) == 1) &&

(sscanf (rightX,"%lf",&right) == 1) &&

(right > left)) {

fprintf (gnuplot,"plot [%lf:%lf] %s\n",left,right,string);

} else

fprintf (gnuplot,"plot %s\n",string);

free (leftX);

free (rightX);

} else

fprintf (gnuplot,"plot %s\n",string);

fflush (gnuplot);

free (string);

return self;

}

The following section shows the complete source code of the implementation of

the class Controller.

5.4.3 \controller.m", Gnuplot PM interface

#include "Controller.h"

#include "gnuplot.h"

@implementation Controller

- init

{

[super init];

36

gnuplot = popen ("gnuplot.exe","w");

return self;

}

- free

{

pclose (gnuplot);

return [super free];

}

- plot: sender

{

char *string;

char *leftX,*rightX;

double left,right;

string = [[sender findFromID: IDD_PLOTSTRING] text: NULL];

if ([[sender findFromID: IDD_RANGECHECK] checked]) {

leftX = [[sender findFromID: IDD_LEFTX] text: NULL];

rightX = [[sender findFromID: IDD_RIGHTX] text: NULL];

if ((sscanf (leftX,"%lf",&left) == 1) &&

(sscanf (rightX,"%lf",&right) == 1) &&

(right > left)) {

fprintf (gnuplot,"plot [%lf:%lf] %s\n",left,right,string);

} else

fprintf (gnuplot,"plot %s\n",string);

free (leftX);

free (rightX);

} else

fprintf (gnuplot,"plot %s\n",string);

fflush (gnuplot);

free (string);

return self;

}

@end

37

5.4.4 Resource de�nition

The resource de�nition consists of three �les, the main resource de�nition �le,

which only includes the dialog template de�nition. The dialog template de�-

nition �le de�nes the main dialog; and the header �le to declare all constants

used by the dialog de�nition.

#define INCL_PM

#define INCL_NLS

#include <os2.h>

#include "gnuplot.h"

rcinclude gnuplot.dlg

The above �le is stored as gnuplot.rc. It only includes the �les os2.h and

gnuplot.h, which are the header�les used for the resource de�nition, and after-

wards includes the dialog de�nition �le gnuplot.dlg.

DLGTEMPLATE IDD_MAIN LOADONCALL MOVEABLE DISCARDABLE

{

DIALOG "GNUPLOT Interface",

IDD_MAIN, 158, 90, 210, 65,

FS_NOBYTEALIGN | FS_DLGBORDER |

FS_SCREENALIGN | NOT WS_VISIBLE |

WS_CLIPSIBLINGS | WS_SAVEBITS,

FCF_TITLEBAR | FCF_SYSMENU | FCF_NOBYTEALIGN

{

CONTROL "",

IDD_PLOTSTRING, 60, 43, 127, 8, WC_ENTRYFIELD,

ES_MARGIN | ES_AUTOSCROLL | WS_TABSTOP | WS_VISIBLE

CTLDATA 8, 32, 0, 0

CONTROL "Function:",

0, 15, 43, 40, 8, WC_STATIC,

SS_TEXT | DT_LEFT | DT_TOP | DT_MNEMONIC | WS_GROUP |

WS_VISIBLE

CONTROL "Range:",

0, 15, 30, 40, 8, WC_STATIC,

SS_TEXT | DT_LEFT | DT_TOP | DT_MNEMONIC | WS_GROUP |

WS_VISIBLE

CONTROL "",

IDD_LEFTX, 60, 30, 50, 8, WC_ENTRYFIELD,

ES_MARGIN | ES_AUTOSCROLL | WS_TABSTOP | WS_VISIBLE

38

CTLDATA 8, 8, 0, 0

CONTROL "",

IDD_RIGHTX, 120, 30, 50, 8, WC_ENTRYFIELD,

ES_MARGIN | ES_AUTOSCROLL | WS_TABSTOP | WS_VISIBLE

CTLDATA 8, 8, 0, 0

CONTROL "",

IDD_RANGECHECK, 179, 30, 10, 10, WC_BUTTON,

BS_AUTOCHECKBOX | WS_TABSTOP | WS_VISIBLE

CONTROL "Plot",

DID_OK, 145, 10, 40, 14, WC_BUTTON,

BS_PUSHBUTTON | BS_DEFAULT | WS_TABSTOP | WS_VISIBLE

}

}

gnuplot.dlg de�nes a dialog template for dialog IDD MAIN. This template is

normally written by a dialog editor.

#define IDD_MAIN 3000

#define IDD_PLOTSTRING 3001

#define IDD_PLOT 3002

#define IDD_LEFTX 3003

#define IDD_RIGHTX 3004

#define IDD_RANGECHECK 3005

The include �le gnuplot.h is also normally created by the used dialog editor.

It contains de�nitions for the constants used in the resource de�nition �le.

The binary resource �le can be created using RC.EXE by typing the command

sequence rc -r gnuplot.rc at an OS/2 command line. This creates the binary

resource �le gnuplot.res, which can be linked to the application as the main

resource �le.

Compare the following makefile to the make�le template described in section

4.7 at page 28 to realized, how to �ll in these templates.

Makefile for PM programs using Objective C class library

include Makefile.preamble

ifeq (.depend,$(wildcard .depend))

include .depend

endif

APPLICATION = plot.exe

39

OBJECTS = plot.o controller.o

RESOURCES = gnuplot.res

all: $(APPLICATION)

depend dep:

$(CPP) -MM *.m > .depend

$(APPLICATION): $(OBJECTS) $(RESOURCES)

$(CC) -o $(APPLICATION) $(OBJECTS) $(RESOURCES) \

-lobjcpm -lobjc

emxbind -ep $(APPLICATION)

$(STRIP) $(APPLICATION)

clean:

rm -rf $(OBJECTS) $(RESOURCES) $(APPLICATION) core *~

40

Part II

Reference Manual

41

Chapter 6

Overview

This part describes all classes within the library, their instance variables and

methods.

Figure 6.1 on page 43 shows all classes implemented in this library and their

inheritence hierarchy.

At �rst an alphabetically listed overview of all classes with their instance varia-

bles and all supported methods. This was written in the style of an Objective

C Interface declaration.

6.1 ActionWindow

@interface ActionWindow : Window

{

List *commandBindings;

}

- init;

- free;

- bindCommand: (ULONG) command withObject: anObject

selector: (SEL) aSel;

- findCommandBinding: (ULONG) command;

- (MRESULT) execCommand: (ULONG) command;

@end

42

Object

Window

ActionWindow

List

Button

StdApp

StdDialog

StdWindow

Container

EntryField

Frame

ListBox

Menu

MultiLineEntryField

NoteBook

ScrollBar

Slider

SpinButton

Static

TitleBar

ComboBox

Figure 6.1: Inheritance hierarchy in Presentation Manager Class library

43

6.2 Button

@interface Button : Window

{

}

- initWithId: (USHORT) anId andFlags: (ULONG) flags

in: (Window *) parent;

- clickdown;

- clickup;

- (USHORT) checked;

- (BOOL) highlighted;

- check;

- checkIndeterminate;

- uncheck;

6.3 ComboBox

@interface ComboBox : ListBox

{

}

6.4 Container

@interface Container : Window

{

}

@end

6.5 EntryField

@interface EntryField : Window <Selection>

{

}

- initWithId: (USHORT) anId andFlags: (ULONG) flags

in: (Window *) parent;

- clearSelection;

- copySelection;

44

- cutSelection;

- pasteSelection;

- (BOOL) changed;

- (BOOL) readOnly;

- setReadOnly;

- setReadWrite;

- setTextLimit: (SHORT) limit;

@end

6.6 Frame

@interface Frame : Window

{

}

@end

6.7 List

@interface List : Object

{

ULONG key;

void *data;

List *next;

}

- init: (ULONG) aKey data: (void *) aData;

- free;

- insert: (List *) element;

- (int) compare: (List *) elem1 with: (List *) elem2;

- find: (ULONG) aKey;

- setKey: (ULONG) aKey;

- setData: (void *) aData;

- setNext: (List *) element;

- (ULONG) key;

- (void *) data;

- next;

@end

45

6.8 ListBox

@interface ListBox : Window

{

}

- initWithId: (USHORT) anId andFlags: (ULONG) flags

in: (Window *) parent;

- insertItem: (SHORT) pos text: (char *) buffer;

- (SHORT) count;

- (SHORT) selected;

- (SHORT) itemTextLength: (SHORT) pos;

- (char *) item: (SHORT) pos text: (char *) buffer;

- selectItem: (SHORT) pos;

- deleteItem: (SHORT) pos;

- deleteAll;

@end

6.9 Menu

@interface Menu : Window

{

}

@end

6.10 MultiLineEntryField

@interface MultiLineEntryField : Window

{

}

- initWithId: (USHORT) anId andFlags: (ULONG) flags

in: (Window *) parent;

@end

6.11 NoteBook

@interface NoteBook : Window

{

46

}

@end

6.12 ScrollBar

@interface ScrollBar : Window

{

}

@end

6.13 Slider

@interface Slider : Window

{

}

@end

6.14 SpinButton

@interface SpinButton : Window

{

}

@end

6.15 Static

@interface Static : Window

{

}

@end

47

6.16 StdApp

@interface StdApp : Object

{

HAB hab;

HMQ hmq;

}

- init;

- free;

- run;

- (HAB) hab;

@end

6.17 StdDialog

@interface StdDialog : ActionWindow

{

id delegate;

ULONG result;

}

- initWithId: (ULONG) anId;

- loadMenu;

- free;

- delegate;

- setDelegate: aDelegate;

- (ULONG) result;

- makeKeyAndOrderFront: sender;

- runModalFor: sender;

- (MRESULT) handleMessage: (ULONG) msg

withParams: (MPARAM) mp1 and: (MPARAM) mp2;

@end

6.18 StdWindow

@interface StdWindow : ActionWindow

{

HWND frame;

48

id delegate;

}

- initWithId: (ULONG) anId;

- initWithId: (ULONG) anId andFlags: (ULONG) flags;

- free;

- setSize: (USHORT) x : (USHORT) y : (USHORT) w : (USHORT) h;

- (HWND) frame;

- delegate;

- setDelegate: aDelegate;

- setTitle: (char *) aTitle;

- makeKeyAndOrderFront: sender;

- performClose: sender;

- (MRESULT) handleMessage: (ULONG) msg

withParams: (MPARAM) mp1 and: (MPARAM) mp2;

@end

6.19 TitleBar

@interface TitleBar : Window

{

}

@end

6.20 ValueSet

@interface ValueSet : Window

{

}

@end

49

6.21 Window

@interface Window : Object

{

HWND window;

Window *child;

Window *sibling;

}

- init;

- associate: (HWND) hwnd;

- free;

- createObjects;

- insertChild: aChild;

- insertSibling: aSibling;

- findFromID: (USHORT) anId;

- findFromHWND: (HWND) aHwnd;

- (char *) text: (char *) buffer;

- (int) textLength;

- setText: (char *) buffer;

- setSize: (USHORT) x : (USHORT) y : (USHORT) w : (USHORT) h;

- size: (PSWP) aSize;

- (USHORT) width;

- (USHORT) height;

- (USHORT) xoffset;

- (USHORT) yoffset;

- (HWND) window;

- (USHORT) pmId;

- enable;

- disable;

- activate;

- deactivate;

- (MRESULT) handleMessage: (ULONG) msg

withParams: (MPARAM) mp1 and: (MPARAM) mp2;

@end

50

Chapter 7

Classes

This chapter describes all variables and methods of the classes implemented in

this library.

The description consists of three to �ve parts:

1. The name of the class and the precessing inheritance hierarchy

2. A short description of the class and it's proposed usage

3. A list of all instance variables and their use

4. All newly implemented class and instance methods and their description

5. Methods of a delegate object { if it exists { which get called at certain

times

The list of instance variables is omitted if there are none of them de�ned but

those inherited from the superclass.

If a class doesn't support delegate objects the corresponding section in the class

description is omitted.

If no return type of some method is speci�ed, the return type defaults to id, a

generic pointer to an Objective C object.

Methods returning an id value normally return self, which is a pointer to the

object itself on successful completion, nil otherwise.

51

7.1 ActionWindow

Inherits from: Window : Object

Class description:

ActionWindow is the common superclass for StdWindow and StdDialog.

This class implements the ability to bind command messages to methods

in other objects.

Everytime a command message occurs in a StdWindow or StdDialog the

Event-Handler searches for a command binding and { if found { executes

the corresponding Action in the Target object.

Instance Variables:

List * commandBindings;

This variable stores a list of all command bindings set up for a certain

instance of ActionWindow or one of its successors.

Methods:

- init;

The instance method init initializes the instance variable commandBindings

to nil.

- free;

free frees the memory allocated for the list of command bindings.

- bindCommand: (ULONG) command withObject: anObject selec-

tor: (SEL) aSel;

bindCommand: withObject: selector: sets up a new command bin-

ding. command is the command identi�er, which normally is the identi�er of

the sender of the command (Pushbutton, Menuitem, . . .). anObject is the

Target, aSel the selector

1

of the Action.

An Action must be of the form nameOfMethod: sender. Only these me-

thods can be called by execCommand. Actions should return nil on successful

execution, a non-nil value otherwise.

- �ndCommandBinding: (ULONG) command;

1

The selector of a method can be queried via @selector (...)

52

This method is used for checking, if a command binding for command has

been set up previously. findCommandBinding: returns nil, if no command

binding for command has been set up, a non-nil value otherwise.

- (MRESULT) execCommand: (ULONG) command;

execCommand: searches for the command binding for command and executes

the corresponding Action in the set up Target, if one was found.

7.2 Button

Inherits from: Window : Object

Class description:

The Objective C class Button represents a special type of a Window. In-

stances of this class are normally associated with PM Windows of class

WC BUTTON. The instance methods can be used to set the state of a Button

(to simulate a User Action to the Button) or to query the Button's state if

it is a Radiobutton, a Checkbox or a Tri-State Button.

Setting and querying the text displayed in the Button can be done using

setText: and text:.

Support for displaying icons instead of a text on a Button is currently not

implemented when creating a Button Object \from Scratch", which means

by not using a de�nition for this object in a OS/2 Resource File.

Methods:

- initWithId: (USHORT) anId andFlags: (ULONG)
ags in: (Win-

dow *) parent;

Using this Initializer the Programmer can create a new Button in an existing

parent window. anId is the PM id of the button to be created, flags specify

the creation
ags for the Button control (BS xxxx and WS xxxx constants).

parent is the parent window of the newly created Button, which normally

is either an instance of StdDialog or StdWindow.

After creation of the Button the size can be set via setSize:::: and the

text to be displayed via setText:.

Association to an existing PM Button Window should be done by using

associate:.

A newly created Button Object is not automatically inserted as a child

window of it's parent. Use [parent insertChild: button] where parent

is the parent window and button is the newly created Button Object.

53

Flag Description

BS PUSHBUTTON The created Button will be a Pushbutton.

BS CHECKBOX The Button will be a Checkbox.

BS AUTOCHECKBOX The Button will be an AutoCheckbox, this

one toggles it's state every time the user clicks

on the Button.

BS RADIOBUTTON The Button will be a Radiobutton. In con-

trast to Checkboxes, a dot appears if the But-

ton is checked.

BS AUTORADIOBUTTON In addition to a normal Radiobutton an

AutoRadiobutton automatically unchecks all

other Radiobuttons in the same group if it is

checked.

BS 3STATE A Tri-state Button has an additional check

state, which is called indeterminate.

BS AUTO3STATE same as AutoCheckbox, but Tri-state Button.

BS USERBUTTON The button created will be an application-

de�ned button. It has to be drawn by the

application when a BN PAIN message is recei-

ved by the parent window.

Table 7.1: Main Button styles used to de�ne the type of Button

Figure 7.1: This �gure shows (from left to right) the following Buttons types:

Pushbutton, Radiobutton, Checkbox and Tri-state Button.

The following table list all possible BS xxxx styles and a short description of

these.

First the primary Button styles, which de�ne the type of the Button. One

of these must be given. All other style options in the following tables can

be combined with one of the primary style via logical OR. Tables 7.1 (page

54), 7.2 (page 55), 7.3 (page 55) and 7.4 (page 55).

Figure 7.1 on page 54 shows the look of the main Button styles.

- clickdown;

By calling this method a click down with the left mouse button is simulated

for this Button.

- clickup;

54

Flag Description

BS NOCURSORSELECT The Radiobutton is not selected when it is gi-

ven the focus from keyboard actions.

Table 7.2: Button styles which can be combined with an AutoRadiobutton

Flag Description

BS HELP Instead of posting a command message (WM COMMAND),

a help message is posted (WM HELP).

BS SYSCOMMAND When this style is set, a WM SYSCOMMAND message is

posted instead of a command message (WM COMMAND).

BS NOBORDER The Pushbutton doesn't have a drawn border.

Table 7.3: Button styles which can be combined with a Pushbutton

clickup simulates { as a counterpart to clickdown { a release of the left

mouse button when the mouse pointer is in the Button (\Click Up").

- (USHORT) checked;

checked queries the check state of the Button if it is a Radiobutton, a Check-

box or a Tri-State Button.

This method returns 0 if the Button is in unchecked state, 1 when in checked

state and 2 when in indeterminate state.

- (BOOL) highlighted;

The result of highlighted is TRUE if the current state of the Button is

highlighted, FALSE otherwise.

- check;

check sets the checked state of the Button.

- checkIndeterminate;

checkIndeterminate sets the indeterminate state of the Button.

Flag Description

BS DEFAULT Only one Button per window should have this style set.

In dialogs this button is automatically pushed whenever

the user presses the Enter key.

Table 7.4: Button styles which can be combined with a Pushbutton or a User-

button

55

- uncheck;

uncheck sets the unchecked state of the Button.

7.3 ComboBox

Inherits from: ListBox : Window : Object

Class description:

CombobBox is a class designed to provide an interface to OS/2 PM windows

of class WC COMBOBOX.

At the moment no additional functionality to it's superclass ListBox has been

added. Special support for OS/2 PM Combobox windows will be added in the

future.

A ComboBox consists of a EntryField and a ListBox. Access to the text

in the EntryField is provided via setText: and text:. The items in the

ListBox can be accessed by using the inherited methods of the superclass

ListBox.

7.4 Container

Inherits from: Window : Object

Class description:

Container is a class designed to provide an interface to OS/2 PM windows

of class WC CONTAINER.

At the moment no additional functionality to it's superclass Window has been

added. Special support for OS/2 PM Container windows will be added in the

future.

7.5 EntryField

Inherits from: Window : Object

Class description:

The class EntryField was designed to simplify access to OS/2 PM Entry�eld

windows. Using the methods implemented for this class the programmer can

control all interesting features of this prede�ned window class.

56

Figure 7.2: In this �gure you can see (from left to right) an EntryField without a

margin, one with a margin and an EntryField with margin and the style option

BS UNREADABLE

The text typed into the entry�eld can be accessed via the inherited methods

setTest: and text:. In future releases of this class library methods for

automatically checking typed input will be provided for integers,
oating

point numbers,. . .

By adopting the procotol Selection simple access to Clipboard operations

as copy or paste is provided. See also the description of this protocol on page

81.

Methods:

- initWithId: (USHORT) anId andFlags: (ULONG)
ags in: (Win-

dow *) parent;

By using this Initializer the Programmer can create a new Entry�eld in an

existing parent window. anId is the PM id of the Entry�eld to be created,

flags specify the creation
ags for the Button control (ES xxxx and WS xxxx

constants). parent is the parent window of the newly created Entry�eld,

which normally is either an instance of StdDialog or StdWindow.

After creating the Entry�eld the size can be set via setSize:::: and the

text to be displayed via setText:. Clearing the text of an Entry�eld can be

achieved calling [entryfield setText: ""].

Association to an existing PM Entry�eld Window should be done by using

associate:.

A newly created EntryField Object is not automatically inserted as a child

window of it's parent. Use [parent insertChild: entryfield] where

parent is the parent window and entryfield is the newly created Entry-

Field Object.

Table 7.5 (page 58) shows most of the available ES xxxx
ags used at creation

of the EntryField.

In addition to these
ags there's also another group of
ags de�ning the

encoding scheme for the text in the EntryField. These
ags are only used

when a double-byte encoding scheme is used for text.

57

Flag Description

ES LEFT The text in the EntryField is left-justi�ed. This style

is used when neither ES LEFT, nor ES RIGHT nor

ES CENTER is speci�ed.

ES RIGHT The text in the EntryField is right-justi�ed.

ES CENTER The text in the EntryField is centered.

ES AUTOSIZE When this
ag is set, the text will be sized to �t in

the EntryField.

ES AUTOSCROLL The text in the EntryField is scrolled to the left or

right if it is longer than would �t in the EntryField.

ES MARGIN A margin is drawn around the EntryField.

ES READONLY The EntryField will be created in read-only mode.

ES UNREADABLE Every character in the text is displayed as an aste-

risk. This is useful when querying passwords.

ES COMMAND This style classi�es the EntryField as a command

entry �eld. This style should be applied to at most

one EntryField per Dialog or Window.

ES AUTOTAB When this
ag is set, the focus is moved to the next

Window when a character is appended to the text.

Table 7.5: ES xxxx styles used at creation of an EntryField

Figure 7.2 on page 57 shows three possible forms of how an EntryField can

look.

- (BOOL) changed;

changed returns TRUE if the text displayed in the EntryField has changed

since the last call to this method, FALSE otherwise.

- (BOOL) readOnly;

By using this method the programmer can query if the EntryField is in read-

only or in read-write mode. When read-only no characters can be typed into

the EntryField.

This method returns TRUE if the EntryField is in read-only mode, FALSE

otherwise (read-write).

- setReadOnly;

Calling this method activates the read-only mode of the EntryField.

- setReadWrite;

setReadWrite switches the EntryField to read-write mode.

58

- setTextLimit: (SHORT) limit;

By calling setTextLimit: the programmer can set the maximum number of

characters which can be entered into the EntryField. limit is this maximum

number of characters.

When querying the contents of the EntryField via text: the maximum num-

ber of characters returned is limit + 1, including the concluding '\0x0' at

the end of the string.

7.6 Frame

Inherits from: Window : Object

Class description:

Frame is a class designed to provide an interface to OS/2 PM windows of

class WC FRAME (Frame windows).

At the moment no additional functionality to it's superclass Window has been

added. Special support for OS/2 PM Frame windows will be added in the future.

7.7 List

Inherits from: Object

Class description:

Instances of this class are used to store command bindings and associated

data. Don't use this class neither by instanciating nor by inheriting from it.

This class will be replaced by a more generic list class in the future.

It is only used in the class ActionWindow.

7.8 ListBox

Inherits from: Window : Object

Class description:

ListBox is a class designed to be associated to the OS/2 PM class WC LIST-

BOX. The class provides methods to give access to the items in the Listbox

window.

59

Figure 7.3: Here you can see a standard Listbox (left) and a Listbox window

with an additional horizontal Scrollbar.

Methods:

- initWithId: (USHORT) anId andFlags: (ULONG)
ags in: (Win-

dow *) parent;

initWithId: andFlags: in: can be used to create a Listbox window

at runtime. The parameters are the same as those used in the appropriate

method of the class Button.

Figure 7.3 on page 60 shows two forms of Listbox windows. The left is a

standard Listbox with only one Scrollbar { a vertical one. The right Listbox

also has a horizontal Scrollbar.

How a Listbox window appears depends on what control
ags you specify in

the parameter flags. Table 7.6 shows which control
ags are possible and

what e�ect is caused by speci�fying them. One ore more of the
ags can be

speci�ed. These
ags must be binary or-ed using the | operator. If none of

them should be used, 0L should be given as flags parameter.

- insertItem: (SHORT) pos text: (char *) bu�er;

Using this method you can insert a new item into the Listbox. pos is the

position in the Listbox where the item shall be inserted. If pos is LIT END,

the item will be inserted as the last item in the Listbox.

buffer is the title of the item to be inserted. This string is shown afterwards

in the Listbox at the speci�ed position.

The �rst item in the Listbox is at position 0, the last at count - 1.

- (SHORT) count;

count returns the number of items which are currently in the Listbox.

60

Flag Description

LS HORZSCROLL This
ags adds a horizontal Scrollbar to the Listbox

window, if it is speci�ed at creation.

LS MULTIPLESEL Normally only one item in the Listbox can be se-

lected once. If this
ag is set, multiple selection is

enabled. Currently querying the multiple selection

is not supported by methods of this class.

LS EXTENDEDSEL Specifying this
ag enables the extended selection

user interface of the Listbox window.

LS OWNERDRAW This
ag tells the Listbox not to draw the items itself.

Appropriate messages are sent to the owner of the

listbox, which has to draw them.

LS NOADJUSTPOS This
ag tells the listbox not to adjust the size and

position of the window. If this
ag is set, maybe only

part of the �rst or last item shown is drawn.

Table 7.6: LS xxxx styles used at creation of a Listbox window

- (SHORT) selected;

selected returns the position of the selected item. If no item is currently

selected, a value below 0 is returned.

Multiple selection is currently not supported by this class. If you want to

query multiple selection you have to use the appropriate OS/2 API functions,

or just wait untill the next version of this library is released.

- (SHORT) itemTextLength: (SHORT) pos;

This method returns the length of the item text of the item at position pos.

Only the number of characters in the item text is returned. Don't forget

to allocate an extra character for the NULL at the end of the string before

querying via item: text:.

- (char *) item: (SHORT) pos text: (char *) bu�er;

item: text: copies the item text of the item at position pos in the Listbox

into the array of characters pointed to by buffer. This method assumes,

there is enough space in buffer to hold all of the item text, including the

NULL at the end of the text.

This method returns buffer.

If buffer is NULL, a string is allocated via malloc to hold all of the item

text. This string must be freed by the programmer later using free.

61

- (SHORT) selectItem: (SHORT) pos;

Calling this method the speci�ed item at position pos will be selected. If

pos is out of the range of the Listbox items, nothing happens.

- (SHORT) deleteItem: (SHORT) pos;

deleteItem: deletes the item at position pos. If pos is out of the range of

the Listbox items, no item gets deleted.

Deletion of the currently selected item can be accomplished by sending this

message:

[listbox deleteItem: [listbox selected]];

Here listbox is a pointer to the ListBox object.

- (SHORT) deleteAll;

deleteAll deletes all items in the Listbox.

7.9 Menu

Inherits from: Window : Object

Class description:

Menu is a class designed to provide an interface to OS/2 PM windows of class

WC MENU. Windows of these type are the Actionbar or simply whole menus.

The menu items not displayed are no windows on their own. They are

created newly before they get displayed (when the menu they are in gets

selected).

At the moment no additional functionality to it's superclass Window has been

added. Special support for OS/2 PM Menus will be added in the future.

7.10 MultiLineEntryField

Inherits from: Window : Object

Class description:

MultiLineEntryField is a class designed to provide an interface to OS/2

PM windows of class WC MLE.

At the moment the only additional functionality to it's superclass Window is

the initializer initWithId: andFlags: in:. Special support for OS/2 PM

MLE windows will be added in the future.

62

Flag Description

MLS BORDER This
ag causes a border to be drawn around the

MLE window

MLS READONLY Disable editing in the MLE window (read-only

mode)

MLS WORDWRAP Enable word wrap

MLS HSCROLL Draw a horizontal scroll bar

MLS VSCROLL Draw a vertical scroll bar

MLS IGNORETAB If this
ag is set, the MLE window ignores pres-

sing the TAB key

MLS DISABLEUNDO Disable the undo function of the MLE window.

Table 7.7: MLE xxxx styles used at creation of a MLE window

The whole text in the MLE can be accessed via setText: and text:.

Methods:

- initWithId: (USHORT) anId andFlags: (ULONG)
ags in: (Win-

dow *) parent;

Using initWithId: andFlags: in: you can create an instance of class

MultiLineEntryField and an OS/2 PM MLE window from scratch. anId

is the PM identi�er of the window, flags are the
ags speci�ed at creation

of the MLE. parent represents the parent window of the object, where the

MLE shall be inserted.

Table 7.7 lists all possible style
ags to be used for instances of this class.

7.11 NoteBook

Inherits from: Window : Object

Class description:

NoteBook is a class designed to provide an interface to OS/2 PM windows

of class WC NOTEBOOK.

At the moment no additional functionality to it's superclass Window has been

added. Special support for OS/2 PM Notebook windows will be added in the

future.

63

7.12 ScrollBar

Inherits from: Window : Object

Class description:

ScrollBar is a class designed to provide an interface to OS/2 PM windows

of class WC SCROLLBAR.

At the moment no additional functionality to it's superclass Window has been

added. Special support for OS/2 PM Scrollbar windows will be added in the

future.

7.13 Slider

Inherits from: Window : Object

Class description:

Slider is a class designed to provide an interface to OS/2 PM windows of

class WC SLIDER.

At the moment no additional functionality to it's superclass Window has been

added. Special support for OS/2 PM Slider windows will be added in the future.

7.14 SpinButton

Inherits from: Window : Object

Class description:

SpinButton is a class designed to provide an interface to OS/2 PM windows

of class WC SPINBUTTON.

At the moment no additional functionality to it's superclass Window has been

added. Special support for OS/2 PM Spinbutton windows will be added in the

future.

7.15 Static

Inherits from: Window : Object

Class description:

64

Static is a class designed to provide an interface to OS/2 PM windows

of class WC STATIC. Windows of this class are used for Labels or simply

informational messages .

At the moment no additional functionality to it's superclass Window has been

added. Special support for OS/2 PM Static windows will be added in the future.

7.16 StdApp

Inherits from: Object

Class description:

This class is used to initialize and free all necessary PM recources needed to

run the application.

Every Application written using this library should use exactly one instance

of this class.

Instance Variables:

HAB hab;

This variable is used to store the Handle Anchor Block of the application.

Read-only access to this instance variable is provided via hab.

HMQ hmq;

hmq stores the handle of the Application Message Queue . Through this

message queue all application-relevant messages are passed to the designated

receiver of these messages.

Because there is normally no need for the programmer to have direct access

to this message queue, no methods for access to hmq are provided.

Methods:

- init;

This is the standard initializer of this class. init creates the Handle Anchor

Block and the Application Message Queue. The appropriate handles are

stored in hab respectively hmq.

- free;

free destroys the Application Message Queue and the Anchor Block . After

calling this method, the program is ready to exit.

65

Figure 7.4: This �gure shows a simple dialog window containing three Buttons,

three Entry�elds and a drop-down Combobox .

- run;

run fetches all messages and posts them to the appropriate receivers. This

method exits when a WM QUIT message is received.

- (HAB) hab;

hab returns the Handle Anchor Block of the application.

7.17 StdDialog

Inherits from: ActionWindow : Window : Object

Class description:

Instances of this class are used to represent OS/2 Dialog windows. At the

moment dialogs are loaded from a resource �le. This also initializes all

controls (Buttons, EntryFields,. . .) in the dialog which are de�ned in the

resource �le.

Dialogs can be runmodal for a given window, which means, while the dialog

is active, no actions can be processed in the speci�ed parent window, or not

modal , where dialogs behave just like normal OS/2 PM main windows.

Figure 7.4 shows a simple dialog window.

Instance Variables:

66

id delegate;

delegate stores the handle of the delegate object of the dialog. Any events

not processed by methods of this class are forwarded to the delegate .

See also Methods implemented by the delegate .

ULONG result;

After a dialog is dismissed (closed), the result of the dialog is stored in the

instance variable result. This result can be queried by using the instance

method result.

Methods:

- initWithId: (ULONG) anId;

initWithId: loads a dialog resource from the main resource �le, which is

linked into the executable �le. anId is a key value, which uniquely identi�es

the dialog to be loaded in the resource �le.

This method returns self if successful, nil otherwise.

- loadMenu;

If the loaded dialog shall contain an Application menu, the menu must be

explicitly loaded from the resource �le by calling this method. The menu

resource is assumed to have the same resource identi�er as the dialog window

itself.

loadMenu returns self.

- free;

free destroys the PM window and frees all resources allocated previously.

- (ULONG) result;

result returns the value stored in the instance variable result. result is

set after the dialog gets dismissed.

Therefore calling this method should be done only after the dialog has been

dismissed.

- makeKeyAndOrderFront: sender;

Calling makeKeyAndOrderFront: results in the dialog becoming the active

window (key window), where all PM messages are sent to. It is also brought

to the front, if hidden by other windows, or currently invisible.

- runModalFor: sender;

67

runModalFor: does the same as the previously described method make-

KeyAndOrderFront:. In addition, the dialog is run modal for the window

speci�ed by sender. While the dialog is run, no message processing takes

place in the sending window.

runModalFor: terminates, when the dialog gets dismissed.

When sender is nil, the dialog is not run modal for any window, but

runModalFor: still doesn't terminate while the dialog is not dismissed. This

can be used for applications consisting of only a single (or more) dialogs, but

no StdWindow. In this case, don't call [application run], but [dialog

runModalFor: nil] (application is the current instance of a StdApp,

dialog the dialog to be run instead of a StdWindow).

- (MRESULT) handleMessage: (ULONG) msg withParams: (MPA-

RAM) mp1 and: (MPARAM) mp2;

handleMessage: withParams: and: gets called by the default dialog

procedure.

This function evaluates the type of message received and reacts by calling

a delegate method, if implemented (see \Functions implemented by the

delegate").

If the received message is of type COMMAND or SYS COMMAND, and a command

binding for the command identi�er has been set up, the corresponding Action

in the set up Target gets called. (see class ActionWindow)

If the corresponding delegate function could not be found, the OS/2 default

dialog procedure WinDefDlgProc is called.

Methods implemented by the delegate:

- windowDidMove: sender;

After a window has been successfully moved, the delegate method window-

DidMove: gets called.

- windowDidResize: sender;

windowDidResize: gets called after resizing a dialog. The newly achieved

size of the window can be queried by sending the window (sender) appro-

priate messages (width, height).

- windowDidResizeFrom: (USHORT) oldX : (USHORT) oldY to:

(USHORT) newX : (USHORT) newY : sender;

68

windowDidResizeFrom:: to::: is just the same as the previously descri-

bed method windowDidResize:. In contrast to this method, windowDidRe-

sizeFrom:: to::: also sends the old (oldX, oldY) and new (newX, newY)

width and height of the resized window.

These values can be directly used without querying the width and height of

the window via [sender width] and [sender height].

It can also be useful for some special purposes to know the width and height

of the window before the process of resizing it. These parameters cannot be

queried by using any of the methods of sender.

- windowWillClose: sender;

This function gets called if the StdDialog is about to close. If this func-

tion returns a non-nil value or the delegate object doesn't implement this

method, the window will be closed.

If { otherwise { the delegate returns nil, closing the window is stopped

and the normal execution of the program continues.

sender is a pointer to the sending instance of StdDialog.

- buttonWasPressed: (ULONG) buttonId : sender;

Everytime a WM COMMAND message is received by handleMessage: withPa-

rams: and: from a Pushbutton, this message is sent to the delegate of the

StdDialog.

buttonId is the OS/2 PM ID of the Button sending the WM COMMAND message.

sender is a pointer to the sending instance of StdDialog.

This method should return nil if the button event could be handled, a

non-nil value otherwise.

- menuWasSelected: (ULONG) menuId : sender;

Analogous to buttonWasPressed:: this delegate method is called whenever

a menu item gets selected by the user.

menuWasSelected:: should return nil if the menu selection could be pro-

cessed successfully, a non-nil value otherwise.

- commandPosted: (USHORT) origin : sender;

Every time a command was posted and it could not be processed by but-

tonWasPressed:: or menuWasSelected::, or if one of these methods or

both are not implemented by the window delegate, or the command does

not result from a button or a menu item, this delegate method is called.

commandPosted:: should return nil, if the event could be processed suc-

cessfully, a non-nil value otherwise.

69

- sysButtonWasPressed: (ULONG) buttonID : sender;

This method gets called, if a button posts a system command. It should

react just alike buttonWasPressed::.

- sysMenuWasSelected: (ULONG) menuId : sender;

sysMenuWasSelected:: is the counterpart to menuWasSelected::, but this

method only gets called, whenever a system menu item was selected.

- sysCommandPosted: (USHORT) origin : sender;

sysCommandPosted:: is called by the window's handleMessage: withPa-

rams: and: whenever a system command was posted, and neither sys-

ButtonWasPressed:: and sysMenuWasSelected:: return nil.

It's behaviour should be analogous to commandPosted::.

- (MRESULT) handleMessage: (ULONG) msg withParams: (MPA-

RAM) mp1 and: mp2 : sender;

Every time an event coult not be handle either by the window itself or by

one of the delegate functions, handleMessage: withParams: and: gets

called. So all types of events can be processed without the need to subclass

StdDialog.

The return type should always be converted explicitly to type MRESULT.

See also the StdDialog build in method handleMessage: withParams:

and:.

7.18 StdWindow

Inherits from: ActionWindow : Window : Object

Class description:

An instance of this class is a simple OS/2 PM Window, consisting of a frame

window and a client window. It is possible to load resources like an Icon, a

Menu Bar or an Accelerator Table.

Normally there's only one StdWindow in an application, showing and hand-

ling the application's Menu Bar and some default informations.

All messages of interest can be captured by an object called the delegate of

the window. This object can then react to these messages. Normally there's

no need to subclass this class.

70

Figure 7.5: This �gure shows an instance of the class StdWindow. At creation

the
ags FCF MENU, FCF SIZEBORDER and FCF ACCELTABLE were speci�ed

.

71

Figure 7.5 shows a StdWindow containing a menu bar.

Instance Variables:

HWND frame;

The instance variable frame is used to store the window handle of the frame

window, where the inherited variable window is used to store the handle of

the client window.

Methods:

- initWithId: (ULONG) anId;

This method is used to initialize an instance of the class StdWindow.

anId is the PM identi�cation number of the window.

This method creates the frame window and the client window. The cli-

ent window is an instance of the OS/2 PM-class WINDOW CLASS. (Note the

di�erence between Objective C classes and OS/2 PM-classes!)

The frame window handle is stored in frame, the client window handle in

window.

The title of the window can be set via setTitle:.

- initWithId: (ULONG) anId andFlags: (ULONG)
ags;

This method is used to initialize an instance of the class StdWindow. In

contrast to init: id: you can specify some frame creation
ags to specify

the resources to be loaded.

flags can be a combination of FCF MENU, FCF ICON and FCF ACCELTABLE.

FCF MENU tells the object, that a Menu Bar should be loaded. The resource id

of theMenu Bar must match the parameter anId. FCF ICON is used to specify

an Application Icon to be loaded and shown, whereas FCF ACCELTABLE loads

an Accelerator Table.

You should also specify the type of border to be drawn for the window. This

can either be FCF SIZEBORDER for a resizable border or FCF BORDER for a

normal border. A thin border can be created by specifying FCF THINBORDER.

If you, for example, want to load a Menu Bar and an Icon you have to specify

FCF MENU | FCF ICON as
ags.

- free;

free destroys the PM window and frees all resources allocated previously.

72

- (HWND) frame;

frame returns the OS/2 PM window handle of the frame window of the

StdWindow.

- delegate;

This function returns a pointer to the current set delegate object of the

window.

- setDelegate: aDelegate;

setDelegate: sets the object aDelegate as the delegate object of the win-

dow.

- setTitle: (char *) aTitle;

Using setTitle: you can set the title of the window. This title appears in

the TitleBar of the window and also in the tasklist.

aTitle is the title to be set.

- makeKeyAndOrderFront: sender;

Calling makeKeyAndOrderFront: results in the StdWindow becoming the

active window (key window), where all PM messages are sent to. It is also

brought to the front, if hidden by other windows, or currently invisible.

- performClose: sender;

performClose: sends an OS/2 PM close message to the window (WM CLOSE),

which causes the window to be closed and { normally { the application to

terminate.

- handleMessage: (ULONG) msg withParams: (MPARAM) mp1

and: (MPARAM) mp2;

handleMessage: withParams: and: gets called by the default window

procedure for the OS/2 PM-class WINDOW CLASS.

This function evaluates the type of message received and reacts by calling

a delegate method, if implemented (see \Functions implemented by the

delegate").

If the received message is of type COMMAND or SYS COMMAND, and a command

binding for the command identi�er has been set up, the corresponding Action

in the set up Target gets called. (see class ActionWindow)

If the corresponding delegate function could not be found, handleMessage:

withParams: and: of its precessor in the class hierarchy is called.

73

Methods implemented by the delegate:

- windowDidMove: sender;

After a window has been successfully moved, the delegate method window-

DidMove: gets called.

- windowDidResize: sender;

windowDidResize: gets called after resizing a window. The newly achieved

size of the window can be queried by sending the window (sender) appro-

priate messages (width, height).

- windowDidResizeFrom: (USHORT) oldX : (USHORT) oldY to:

(USHORT) newX : (USHORT) newY : sender;

windowDidResizeFrom:: to::: is just the same as the previously descri-

bed method windowDidResize:. In contrast to this method, windowDidRe-

sizeFrom:: to::: also sends the old (oldX, oldY) and new (newX, newY)

width and height of the resized window.

These values can be directly used without querying the width and height of

the window via [sender width] and [sender height].

It can also be useful for some special purposes to know the width and height

of the window before the process of resizing it. These parameters cannot be

queried by using any of the methods of sender.

- windowWillClose: sender;

This function gets called if the StdWindow is about to close. If this func-

tion returns a non-nil value or the delegate object doesn't implement this

method, the window will be closed.

If { otherwise { the delegate returns nil, closing the window is stopped

and the normal execution of the program continues.

sender is a pointer to the sending instance of StdWindow.

- buttonWasPressed: (ULONG) buttonId : sender;

Everytime a WM COMMAND message is received by handleMessage: withPa-

rams: and: from a Pushbutton, this message is sent to the delegate of the

StdWindow.

buttonId is the OS/2 PM ID of the Button sending the WM COMMAND message.

sender is a pointer to the sending instance of StdWindow.

74

This method should return nil if the button event could be handled, a

non-nil value otherwise.

- menuWasSelected: (ULONG) menuId : sender;

Analogous to buttonWasPressed:: this delegate method is called whenever

a menu item gets selected by the user.

menuWasSelected:: should return nil if the menu selection could be pro-

cessed successfully, a non-nil value otherwise.

- commandPosted: (USHORT) origin : sender;

Every time a command was posted and it could not be processed by but-

tonWasPressed:: or menuWasSelected::, or if one of these methods or

both are not implemented by the window delegate, or the command does

not result from a button or a menu item, this delegate method is called.

commandPosted:: should return nil, if the event could be processed suc-

cessfully, a non-nil value otherwise.

- sysButtonWasPressed: (ULONG) buttonID : sender;

This method gets called, if a button posts a system command. It should

react just alike buttonWasPressed::.

- sysMenuWasSelected: (ULONG) menuId : sender;

sysMenuWasSelected:: is the counterpart to menuWasSelected::, but this

method only gets called, whenever a system menu item was selected.

- sysCommandPosted: (USHORT) origin : sender;

sysCommandPosted:: is called by the window's handleMessage: withPa-

rams: and: whenever a system command was posted, and neither sys-

ButtonWasPressed:: and sysMenuWasSelected:: return nil.

It's behaviour should be analogous to commandPosted::.

- (MRESULT) handleMessage: (ULONG) msg withParams: (MPA-

RAM) mp1 and: mp2 : sender;

Every time an event coult not be handle either by the window itself or by

one of the delegate functions, handleMessage: withParams: and: gets

called. So all types of events can be processed without the need to subclass

StdWindow.

The return type should always be converted explicitly to type MRESULT.

See also the StdWindow build in method handleMessage: withParams:

and:.

75

7.19 TitleBar

Inherits from: Window : Object

Class description:

Container is a class designed to provide an interface to OS/2 PM windows

of class WC TITLEBAR.

At the moment no additional functionality to it's superclass Window has been

added. Special support for OS/2 PM Titlebar windows will be added in the

future.

7.20 ValueSet

Inherits from: Window : Object

Class description:

ValueSet is a class designed to provide an interface to OS/2 PM windows

of class WC VALUESET.

At the moment no additional functionality to it's superclass Window has been

added. Special support for OS/2 PM Valueset windows will be added in the

future.

7.21 Window

Inherits from: Object

Class description:

Window is an abstract superclass for all classes representing some kind of

window (e.g. an Entry�eld, a StdWindow or a Dialog).

This class should never be instantiated. It doesn't provide enough functio-

nality to be really useful. It can be compared to the Objective C root class

Object, it's the root class for all PM windows.

Only PM Windows with minimal functionality should be associated directly

with instances of this class (e.g. Static Texts, Pushbuttons, . . .).

Instance Variables:

HWND window;

76

window is an OS/2 PM window handle. It stores the handle of the PM

window associated with an instance of this class.

Window * child;

This variable points to the �rst child window of this window.

Window * sibling;

sibling points to the �rst sibling window of this window.

Methods:

- init;

This method initializes the instance variables to default values, which means

it sets window to NULLHANDLE. init returns self.

- associate: (HWND) hwnd;

This instance method is used to associate an already existing Presentation

Manager Window (Pushbutton, . . .) with an instance of the class Window.

The only parameter hwnd is the window handle of the OS/2 PM window.

By using this method the programmer can create an Objective C Object

without creating a PM window. After associating a PM window with a

window Object, window data can be set and queried and manipulation can

be done by using instance methods.

- free;

free frees all resources allocated by this object. free returns self.

free does not destroy an associated window using the OS/2 API function

WinDestroyWindow.

If child windows or sibling windows exist, they are freed before this window.

- createObjects;

createObjects searches if any PM child windows of this window exist, and

then creates appropriate Objective C objects for each of them and inserts

them in the window hierarchy of this window as child windows.

This method is maily used after loading a StdDialog from a resource �le to

build the complete object hierarchy.

- insertChild: aChild;

77

insertChild: inserts aChild as a child into the window hierarchy of this

window. aChild must be an instance of Window or one of its subclasses.

- insertSibling: aSibling;

insertSibling: inserts aSibling as a child into the window hierarchy

of this window. aSibling must be an instance of Window or one of its

subclasses.

- �ndFromID: (USHORT) anId;

findFromID: returns a pointer to an Objective C window identi�ed by its

OS/2 identi�er anId, if there's a window identi�ed by anId beyond the

children of this window.

- �ndFromHWND: (HWND) aHwnd;

findFromHWND: returns a pointer to an Objective C window identi�ed by its

OS/2 window handle aHwnd, if there's a window identi�ed by aHwnd beyond

the children of this window.

- (char *) text: (char *) bu�er;

By using text: the Window Text of the associated PM window can be

queried. If buffer is NULL, enough memory to hold the window text is

allocated via malloc and can be freed later by the application program

using free.

The window text is copied into buffer, which must be large enough to hold

all of the text, and bu�er, or a pointer to the newly allocated area is returned.

The length of the window text can be queried via textLength.

- (int) textLength;

This method returns the number of characters the window text consists of.

Don't forget to allocate an extra byte for the End-of-String-character before

using text:.

- setText: (char *) bu�er;

setText: is used to set the window text to a new string. This string is

stored in buffer.

- setSize: (USHORT) x : (USHORT) y : (USHORT) w : (USHORT)

h;

The instance method setSize:::: is used for resizing a PM window by the

application program. The parameters x and y represent the lower left corner

of the window relative to its parent, w and h the width and the height of the

window.

78

- size: (PSWP) aSize;

size: �lls the SWP-structure aSize with the appropriate values by query-

ing this window's instance variables.

- (USHORT) width;

width returns the width of the window in pixels.

- (USHORT) height;

height returns the height of the window in pixels.

- (USHORT) xo�set;

xoffset returns the horizontal o�set of the lower left corner of the window

from the lower left corner of the desktop in pixels.

- (USHORT) yo�set;

yoffset returns the vertical o�set of the lower left corner of the window

from the lower left corner of the desktop in pixels.

- (HWND) window;

This method returns the handle of the Presentation Manager window asso-

ciated with this window object. If no PM window is associated with this

object, NULLHANDLE is returned.

- (USHORT) pmId;

pmId returns the OS/2 PM identi�cation key of the window.

- enable;

enable (re-) enables this window. Message processing for this window con-

tinues after receiving this message, if the window was previously in disabled

state.

- disable;

disable disables this window. No message processing is done by this window

before re-enabling the window by using enable.

- activate;

activate activates the window.

- deactivate;

79

deactivate deactivates the window.

- (MRESULT) handleMessage: (ULONG) msg withParams: (MPA-

RAM) mp1 and: (MPARAM) mp2;

handleMessage: withParams: and: gets called by the default Window

procedure for the OS/2 PM-class WINDOW CLASS if a message was sent to this

window. This function only reacts to WM ERASEBACKGROUND. If this message

is received, TRUE is returned, otherwise the result of the default window

procedure (WinDefWindowProc).

The result should always be converted explicitly to the PM type MRESULT.

80

Chapter 8

Protocols

This chapter describes all available protocols. This descriptions consists of two

parts,

1. The name of the protocol and a list of all classes which adopt it

2. A list of all methods declared and a short description of these

8.1 Selection

Adopted by: EntryField

Protocol description:

This protocol is used to declare all OS/2 Clipboard functions which can be

used by the implemented Window classes.

- clearSelection;

clearSelection clears the current Selection of items in the object which

adopts this protocol.

- copySelection;

Using copySelection the selected items are copied into the system clip-

board. The items themselves remain unchanged.

- cutSelection;

81

cutSelection works alike a combination of copySelection and clearSe-

lection. The selected items are copied into the system clipboard and they

are deleted from the source window.

- pasteSelection;

When calling pasteSelection all selected Items in the system clipboard are

pasted into the object implementing this method.

82

Appendix A

Literature

If you are searching for good books about the programming language Objective

C itself, and you have access to any machine running NEXTSTEP, try reading

the according sections of the NEXTDEVELOPER manual pages. An easy to

understand document about Objective C and it's rootclass can be found there.

At the moment, it's recommended to read some documentation about PM pro-

gramming. The documentation for this toolbox and the classes themselves are

not as complete, as they will be in the near future. Nevertheless, they are quite

usable to create some simple { and by capturing some OS/2 PM messages {

also more comples Presentation Manager applications. To �nd out more about

\pure PM programming" get the issues of the Electronic Developer's Magazine,

which also can be found on Hobbes.

Before sending any questions to me, be sure to read all of this manual, especially

the reference sections. Also have a look at the sample programs, which can be

found in \usr\samples. Two of the samples stored there are not described in

this manual, but can contain some information, you might need.

83

Appendix B

Future of this Library

In the near future I plan to extend most of the classes to what the PM API pro-

vides { and some tricky methods more. I just recently tried writing a completely

new window class derived from Window and it seems to work �ne.

It's also necessary to write better documentation for the classes themselves, at

most the tutorial is quite short at this time.

I'm currently working on some kind of a Project-Builder like development envi-

ronment, as known from NEXTSTEP. That will a point-and-click environment

to quickly assemble applications, generate make�les, compile and link and so

on.

Next I'd like to provide a simple program for creating Objective C classes in a

graphical way and then writing the appropriate interface and also skeletons of

the implementation �les.

If you have any good ideas, what should be included to build a really usable deve-

lopment environment, drop me an E-Mail message at baier@ci.tuwien.ac.at.

If anyone is working on a dialog editor, just let me know. Using Objective C

as the main programming language makes it possible to create the command

bindings using point-and-click actions and then store them in a Objective C

typed stream.

84

Appendix C

List of Tables

7.1 Main Button styles used to de�ne the type of Button : : : : : : : 54

7.2 Button styles which can be combined with an AutoRadiobutton : 55

7.3 Button styles which can be combined with a Pushbutton : : : : : 55

7.4 Button styles which can be combined with a Pushbutton or a

Userbutton : 55

7.5 ES xxxx styles used at creation of an EntryField : : : : : : : : : 58

7.6 LS xxxx styles used at creation of a Listbox window : : : : : : : 61

7.7 MLE xxxx styles used at creation of a MLE window : : : : : : : : 63

85

Appendix D

List of Figures

3.1 Sample application \test.exe" : 14

4.1 \Textview" application displaying it's own source code : : : : : : 17

5.1 Simple menu for \Textview" : 31

5.2 Simple PM interface to \Gnuplot" : : : : : : : : : : : : : : : : : 33

6.1 Inheritance hierarchy in Presentation Manager Class library : : : 43

7.1 This �gure shows (from left to right) the following Buttons types:

Pushbutton, Radiobutton, Checkbox and Tri-state Button. : : : : 54

7.2 In this �gure you can see (from left to right) an EntryField wi-

thout a margin, one with a margin and an EntryField with margin

and the style option BS UNREADABLE : : : : : : : : : : : : : : 57

7.3 Here you can see a standard Listbox (left) and a Listbox window

with an additional horizontal Scrollbar. : : : : : : : : : : : : : : 60

7.4 This �gure shows a simple dialog window containing three But-

tons, three Entry�elds and a drop-down Combobox . : : : : : : : : 66

7.5 This �gure shows an instance of the class StdWindow. At creation

the
ags FCF MENU, FCF SIZEBORDER and FCF ACCELTABLE were

speci�ed : 71

86

Index

- activate

Window, 79

- associate:

Window, 77

- bindCommand: withObject: se-

lector:

ActionWindow, 52

- buttonWasPressed::

StdDialog, 69

StdWindow, 74

- changed

EntryField, 58

- check

Button, 55

- checkIndeterminate

Button, 55

- checked

Button, 55

- clearSelection

Selection, 81

- clickdown

Button, 54

- clickup

Button, 55

- commandPosted::

StdDialog, 69, 70

StdWindow, 75

- copySelection

Selection, 81

- count

ListBox, 60

- createObjects

Window, 77

- cutSelection

Selection, 81

- deactivate

Window, 79

- delegate

StdWindow, 73

- deleteAll

ListBox, 62

- deleteItem:

ListBox, 62

- disable

Window, 79

- enable

Window, 79

- execCommand:

ActionWindow, 53

- �ndCommandBinding:

ActionWindow, 52

- �ndFromHWND:

Window, 78

- �ndFromID:

Window, 78

- frame

StdWindow, 73

- free

ActionWindow, 52

StdApp, 65

StdDialog, 67

StdWindow, 72

Window, 77

- hab

StdApp, 66

- handleMessage: withParams: and:

StdDialog, 68

StdWindow, 73

Window, 80

- handleMessage: withParams: and::

87

StdDialog, 70

StdWindow, 75

- height

Window, 79

- highlighted

Button, 55

- init

ActionWindow, 52

StdApp, 65

Window, 77

- initWithId:

StdDialog, 67

StdWindow, 72

- initWithId: andFlags:

StdWindow, 72

- initWithId: andFlags: in:

Button, 53

EntryField, 57

ListBox, 60

MultiLineEntryField, 63

- insertChild:

Window, 77

- insertItem: text:

ListBox, 60

- insertSibling:

Window, 78

- item: text:

ListBox, 61

- itemTextLength:

ListBox, 61

- loadMenu

StdDialog, 67

- makeKeyAndOrderFront:

StdDialog, 67

StdWindow, 73

- menuWasSelected::

StdDialog, 69, 70

StdWindow, 75

- pasteSelection

Selection, 82

- performClose:

StdWindow, 73

- pmId

Window, 79

- readOnly

EntryField, 58

- result

StdDialog, 67

- run

StdApp, 66

- runModalFor:

StdDialog, 68

- selectItem:

ListBox, 62

- selected

ListBox, 61

- setDelegate:

StdWindow, 73

- setReadOnly

EntryField, 58

- setReadWrite

EntryField, 58

- setSize::::

Window, 78

- setText:

Window, 78

- setTextLimit:

EntryField, 59

- setTitle:

StdWindow, 73

- size:

Window, 79

- sysButtonWasPressed::

StdDialog, 70

StdWindow, 75

- text:

Window, 78

- textLength

Window, 78

- uncheck

Button, 56

- width

Window, 79

- window

Window, 79

- windowDidMove:

StdDialog, 68

StdWindow, 74

88

- windowDidResize:

StdDialog, 68

StdWindow, 74

- windowDidResizeFrom:: to:::

StdDialog, 68

StdWindow, 74

- windowWillClose:

StdDialog, 69

StdWindow, 74

- xo�set

Window, 79

- yo�set

Window, 79

ActionWindow, 52

- bindCommand: withObject:

selector:, 52

- execCommand:, 53

- �ndCommandBinding:, 52

- free, 52

- init, 52

commandBindings, 52

Button, 53

- check, 55

- checkIndeterminate, 55

- checked, 55

- clickdown, 54

- clickup, 55

- highlighted, 55

- initWithId: andFlags: in:, 53

- uncheck, 56

child

Window, 77

ComboBox, 56

commandBindings

ActionWindow, 52

Container, 56

delegate

StdDialog, 67

EntryField, 56

- changed, 58

- initWithId: andFlags: in:, 57

- readOnly, 58

- setReadOnly, 58

- setReadWrite, 58

- setTextLimit:, 59

Frame, 59

frame

StdWindow, 72

hab

StdApp, 65

hmq

StdApp, 65

List, 59

ListBox, 59

- count, 60

- deleteAll, 62

- deleteItem:, 62

- initWithId: andFlags: in:, 60

- insertItem: text:, 60

- item: text:, 61

- itemTextLength:, 61

- selectItem:, 62

- selected, 61

Menu, 62

MultiLineEntryField, 62

- initWithId: andFlags: in:, 63

NoteBook, 63

result

StdDialog, 67

ScrollBar, 64

Selection, 81

- clearSelection, 81

- copySelection, 81

- cutSelection, 81

- pasteSelection, 82

sibling

Window, 77

Slider, 64

89

SpinButton, 64

Static, 64

StdApp, 65

- free, 65

- hab, 66

- init, 65

- run, 66

hab, 65

hmq, 65

StdDialog, 66

- buttonWasPressed::, 69

- commandPosted::, 69, 70

- free, 67

- handleMessage: withParams:

and:, 68

- handleMessage: withParams:

and::, 70

- initWithId:, 67

- loadMenu, 67

- makeKeyAndOrderFront:, 67

- menuWasSelected::, 69, 70

- result, 67

- runModalFor:, 68

- sysButtonWasPressed::, 70

- windowDidMove:, 68

- windowDidResize:, 68

- windowDidResizeFrom:: to:::,

68

- windowWillClose:, 69

delegate, 67

result, 67

StdWindow, 70

- buttonWasPressed::, 74

- commandPosted::, 75

- delegate, 73

- frame, 73

- free, 72

- handleMessage: withParams:

and:, 73

- handleMessage: withParams:

and::, 75

- initWithId:, 72

- initWithId: andFlags:, 72

- makeKeyAndOrderFront:, 73

- menuWasSelected::, 75

- performClose:, 73

- setDelegate:, 73

- setTitle:, 73

- sysButtonWasPressed::, 75

- windowDidMove:, 74

- windowDidResize:, 74

- windowDidResizeFrom:: to:::,

74

- windowWillClose:, 74

frame, 72

TitleBar, 76

ValueSet, 76

Window, 76

- activate, 79

- associate:, 77

- createObjects, 77

- deactivate, 79

- disable, 79

- enable, 79

- �ndFromHWND:, 78

- �ndFromID:, 78

- free, 77

- handleMessage: withParams:

and:, 80

- height, 79

- init, 77

- insertChild:, 77

- insertSibling:, 78

- pmId, 79

- setSize::::, 78

- setText:, 78

- size:, 79

- text:, 78

- textLength, 78

- width, 79

- window, 79

- xo�set, 79

- yo�set, 79

child, 77

sibling, 77

90

window, 77

window

Window, 77

91

