
OS/2 PM and database library

Version 0.6

Tutorial

January 1995

Thomas Baier

baier@ci.tuwien.ac.at



Abstract

This manual is an introduction into OS/2 PM programming using Objective C and this class

library. In addition to explaining the basics of the PM class library, an overview of the simple

database library is provided.

Before beginning to use this library in application development, you should read this manual

carefully. Most of the sample programs are explained here in detail, a fact that can save you lots

of time from studying the source code of the samples itself.

At the end of this document, you can �nd some recommendations, which books to read, if you

have any speci�c questions concerning Objective C , or OS/2 Programming .

When you already know the principles on which the class libraries are built on, you might better

look into the Reference Manual for speci�c information.

If you are searching for speci�c information concerning

� Installation � � � Read the Installation Manual.

� Basics of Application development � � � Read the appropriate sections in this manual, the Tu-

torial. Here you can �nd a gentle introduction into using this library package for developing

OS/2 PM applications.

� Classes and Methods provided by the library � � � You can �nd special information about the

provided classes and methods in the Reference Manual.

� The Database Builder Utility � � � Read the appropriate sections in the Application Program-

ming Tools Manual.

� Literature � � � Look in the Literature section of this Manual.



Contents

1 Introduction 7

2 Writing a simple PM Application 9

2.1 Application main function : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2.2 A simple application : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

2.3 Necessary include �les : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

2.4 Compilation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

3 A simple File-Browser 15

3.1 Parts of the program : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

3.1.1 Initialization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

3.2 Message loop : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

3.3 Cleanup : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

3.4 Compilation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

3.4.1 Complete source code of \textview.m" : : : : : : : : : : : : : : : : : : : : : 19

3.5 Delegate objects : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

3.6 Implementing the delegate : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

3.6.1 Modi�ed version of Textview: \textview2.m" : : : : : : : : : : : : : : : : : 22

3.7 Sample make�les : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

4 Loading Resources 27

4.1 Adding a menu resource to Textview : : : : : : : : : : : : : : : : : : : : : : : : : : 27

4.2 Dialogs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

4.3 Command bindings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

4.4 An Application using a dialog and command bindings : : : : : : : : : : : : : : : : 29

4.4.1 \plot.m", the main implementation : : : : : : : : : : : : : : : : : : : : : : : 29

4.4.2 \controller.h", Gnuplot PM interface : : : : : : : : : : : : : : : : : : : : : : 30

4.4.3 \controller.m", Gnuplot PM interface : : : : : : : : : : : : : : : : : : : : : 32

4.4.4 Resource de�nition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

5



Chapter 1

Introduction

Programming OS/2 PM applications is mostly done using the programming language C. Because

the OS/2 application programming interface (API ) is in most parts object oriented, more and

more programmers choose an object oriented programming language for their purposes. The most

used object oriented programming language today is C++.

Because of the mostly static binding and it's nearly completely missing run-time system many

people are searching for easy-to use alternatives to C++. One of the most popular alternatives in

object oriented programming to C++ is Smalltalk . Due to it's features, such as dynamic binding,

messaging,. . . it is better suited for developing complex applications using a graphical user interface

with PM.

There's another object oriented programming language, which is as easy to learn as pure C (because

it's not much more than C itself), but supports dynamic binding just alike Smalltalk. This

language is Objective C .

Objective C only adds some few new features to its \father" C, so it is an easy to learn language

for C programmers.

Another advantage of Objective C is that an Objective C compiler is part of GCC, the GNU C

compiler. All two ports of GCC, the EMX port, and the native port called GCC/2 support this

language.

So { get it and start developing native OS/2 32bit programs using Objective C.

This document is a simple { not yet complete { tutorial, showing you how to start using this

library, and also showing some of the basic classes provided. It is by no means a reference manual,

if you're searching for some special information, look in the Reference Manual which you should

also have received.

7



Chapter 2

Writing a simple PM Application

Programming OS/2 Presentation Manager can be a quite hard job, if you rely on pure C and

the OS/2 API functions. This is why I developed this class library. As you will see in this

and the following chapters, using Objective C normally spares you the time to read the complex

documentation of the OS/2 Application programming interface. There are just some basics you

should know.

Before doing any real work the program must do some initialization, which means it has to allocate

all necessary resources to run, it has to register itself at PM.

After the program is run, all resources must be freed again.

So, let's look at a simple PM application written using C

2.1 Application main function

#define INCL_PM

#include <os2.h>

.

.

main ()

{

HAB hab; /* handle to the anchor block of the application */

HMQ hmq; /* handle to the main message queue of the appl. */

QMSG qmsg; /* message structure */

hab = WinInitialize (0); /* register application at PM */

hmq = WinCreateMsgQueue (hab,0);/* create main message queue */

.

. /* other initialization, allocate resources, ... */

.

while (WinGetMsg (hab,&qmsg,(HWND) NULL,0,0))

WinDispatchMsg (hmq,&qmsg); /* process all messages */

. /*

. * free all allocated resources,

9



2.2. A SIMPLE APPLICATION 11

.

.

[application run];

.

.

.

[application free];

}

You can see, using this class library can really simplify your life. Instead of creating and initializing

dozens of local or, even worse, global variables, you simply allocate and initialize an object.

2.2 A simple application

O.K. to show a complete PM application I'll show you a program that just creates a standard

window, waits until this window gets closed by the user and then terminates. At �rst, again, the

standard C version, only using OS/2 API functions:

#define INCL_PM

#include <os2.h>

#define NEWCLASSNAME "NewClass"

MRESULT EXPENTRY windowFunction (HWND hwnd,ULONG msg,

MPARAM mp1,MPARAM mp2)

{

switch (msg) {

case WM_ERASEBACKGROUND:

return (MRESULT) FALSE;

default:

return WinDefWindowProc (hwnd,msg,mp1,mp2);

}

}

main ()

{

HAB hab;

HMQ hmq;

QMSG qmsg;

HWND mainWindow;

HWND clientWindow;

ULONG createFlags;

hab = WinInitialize (0);

hmq = WinCreateMsgQueue (hab,0);

WinRegisterClass (hab,NEWCLASSNAME,windowFunction,0L,0);

createFlags = FCF_SYSMENU | FCF_TITLEBAR | FCF_MINMAX |

FCF_SIZEBORDER | FCF_SHELLPOSITION |

FCF_TASKLIST;



2.3. NECESSARY INCLUDE FILES 13

In addition to inititializing an application object, the main window is created as an instance of

StdWindow. The OS/2 window identi�er is 1000, the window is created with a resizable border.

Calling the method makeKeyAndOrderFront: shows the window.

Figure 2.1 shows the window created by this simple piece of source code.

2.3 Necessary include �les

To use the OS/2 PM class library simply include the �le <pm/pm.h> into your application. This

automatically includes all Objective C Interface Files and the patched OS/2 API header �le

<objc/os2.h> and <objc/os2emx.h>. The patches are based on the �les \emx\include\os2.h

and \emx\include\os2emx.h from emx0.8h.

When using the Database library, you have to include <db/db.h>.

After installing the libraries, these include �les can be found in the directories \usr\include\pm,

\usr\include\db, respectively \usr\include\objc.

If you encounter problems compiling any of the samples, check, if the �le TypedStream.h exists

in \emx\include\objc. This �le is part of the EMX port of GCC. After installing a new GCC

version, I found out, this �le had been renamed to \emx\include\objc\typedstr.h to match

the FAT �le name conventions. So the include �le could not be found by the Interface decla-

ration �le for the Object class. Just rename typedstr.h to TypedStream.h in the directory

\emx\include\objc.

2.4 Compilation

To compile programs using the PM class library just link the executable �le with the class library

�le and the Objective C runtime library.

If you save the above example in a �le called test.m, type the following to produce an executable

PM application called text.exe:

� gcc -c test.m � � � to produce the object �le test.o.

� gcc -o test.exe test.o -lobjcpm -lobjc � � � to produce the executable application �le

text.exe.

� emxbind -ep test.exe � � � to set the application type for test.exe to OS/2 Presentation

Manager Application.

After linking and setting the application type you can strip all debug symbols o� the executable

�le by using the -s option of emxbind. emxbind -s test.exe strips all debug information.

Normally it's better to use a make�le for compiling and linking applications. A sample make�le

is provided in \usr\samples\make. Just copy the two �les makefile.preamble and makefile to

your source code directory and �ll in the blanks in makefile. For a description of how to do this,

see section 3.7 on page 24.



Chapter 3

A simple File-Browser

This chapter describes a simple application, which does something useful. It's purpose is to read

a text �le and display it in an OS/2 PM window. The name of the text �le is given as the �rst

and only parameter at the command line. The program itself will be called textview.

The window should be resizable and it's contents area (the MLE window) should have the same

size as the window itself.

If you, for example, want to take a look at your main OS/2 con�guration �le, just type textview

c:\config.sys. The �le will be loaded and displayed.

Figure 3.1 shows the application main window displaying the source code of the program itself.

3.1 Parts of the program

As shown before, the program consists of three parts, Initialization, the Message loop and a

Cleanup section.

3.1.1 Initialization

The �rst section, Initialization, has to do the following:

� Check for the command line parameters. There must be exactly one parameter when calling

the program, the name of the �le to be displayed.

� Check, if the �le exists, create a bu�er area in memory with enough size to store the contents

of the whole �le.

� Read the �le to the bu�er area.

� If all is o.k., create the application instance and a window. Insert a multi line entry�eld into

the window, where the text will be displayed.

� load the text bu�er in memory to the display area of the multi line entry�eld.

The �rst three sections of the initialization don't have anything to do with this class library. They

only use functions of the EMX C-Library and are simple to understand:

15



3.1. PARTS OF THE PROGRAM 17

StdApp *application;

StdWindow *window;

Window *mle;

char *title;

title is used as a bu�er area to store the title of the main window, where the text will be displayed,

mle is a pointer to a generic window object, which will be initialized as a MultiLineEntryField.

application and window will hold pointers to the instances of the main application object and

the main window respectively.

The initialization of these variable is as follows:

/*

* create app instance and window,

* create MLE for text display

*/

application = [[StdApp alloc] init]; /* initialize

application

object */

window = [[StdWindow alloc] initWithId: 1000

andFlags: FCF_SIZEBORDER];

/* create main window */

[window createObjects]; /* create child windows

of main window */

mle = [[MultiLineEntryField alloc]

initWithId: 1001

andFlags: (WS_VISIBLE | MLS_READONLY |

MLS_HSCROLL | MLS_VSCROLL)

in: window];

[window insertChild: mle]; /* insert MLE into window */

/*

* calculate title of window and set it

*/

title = (char *) malloc (11 + /* allocate buffer for title */

strlen (argv[1]));

sprintf (title,"Textview: %s",argv[1]); /* fill title buffer */

[window setTitle: title]; /* set window title */

free (title); /* free title buffer */

This section of code creates and initializes the application object and creates a standard window

with PM identi�er 1000.

Afterwards all existing child objects of the window are created in memory using createObjects.

Then a PM MLE window is created (id 1001) and inserted into the main window.

The last part of the code simply allocates memory to hold the title string and creates the title

string, which consists of the name of the application (Textview) and the name of the �le to be

displayed.

The MLE window is created in read-only mode with a horizontal and a vertical scrollbar (ags

MLS READONLY, MLS HSCROLL and MLS VSCROLL).



3.4. COMPILATION 19

3.4.1 Complete source code of \textview.m"

#include <pm/pm.h>

#include <io.h>

#include <sys/types.h>

#include <sys/stat.h>

main(int argc,char *argv[])

{

StdApp *application;

StdWindow *window;

Window *mle;

FILE *inputFile;

struct stat statbuffer;

char *contents;

char *title;

/*

* check for command line arguments and

* check given file (struct stat)

*/

if (argc != 2) /* check for command line arguments,

must be exactly one */

exit (-1);

if (stat (argv[1],&statbuffer) < 0) /* check file */

exit (-1);

/*

* open file and read contents to buffer

*/

inputFile = fopen (argv[1],"r"); /* open text

file read-only */

contents = (char *) malloc (statbuffer.st_size + 1);

/* allocate buffer */

fread (contents,statbuffer.st_size,1,inputFile);

/* read contents of file */

/*

* create app instance and window,

* create MLE for text display

*/

application = [[StdApp alloc] init]; /* initialize

application

object */

window = [[StdWindow alloc] initWithId: 1000

andFlags: FCF_SIZEBORDER];

/* create main window */

[window createObjects]; /* create child windows

of main window */

mle = [[MultiLineEntryField alloc]



3.6. IMPLEMENTING THE DELEGATE 21

An object implementing methods called by another object, to be noti�ed of some special events,

is called a delegate object .

So it's possible to create classes, and thereafter objects of these classes, which can change one

prede�ned class' behaviour without the need of subclassing one of the prede�ned classes.

Delegation is used by some objects in this library { not as many as there will be soon, but at least

the two classes StdWindow and StdDialog, both representing some kind of main window, make

use of it.

Using the method setDelegate: you can assign a special object, implementing some delegate

functions , as the delegate object of an instance of StdWindow or StdDialog.

If the delegate object implements any of the methods described in the sectionMethods implemented

by the delegate which is part of some class descriptions in the reference part of this manual, these

methods get called at the occurrences described there.

For our purposes, we will use the delegate method windowDidResize:, which is called whenever

the window gets resized by the user or the application program.

This method will then query the size of the sending instance of StdWindow and accustom the size

of the MLE window according to this.

3.6 Implementing the delegate

First, we have to de�ne a new class, implementing the method windowDidResize:. The class

declaration is quite simple:

@interface Controller : Object

{

}

- windowDidResize: sender;

@end

This declaration de�nes a new class, a subclass of Object, called Controller, which has no new

instance variables but those inherited from it's superclass and implements one method called

windowDidResize:.

The implementation of this simple class looks like this:

@implementation Controller

- windowDidResize: sender

{

[[sender findFromID: 1001] setSize:

0:0:[sender width]:[sender height]];

return self;

}

@end

This is a simple method, just calling some methods of sender and of the previously created MLE

window.



3.6. IMPLEMENTING THE DELEGATE 23

char *contents;

char *title;

/*

* check for command line arguments

* and check given file (struct stat)

*/

if (argc != 2) /* check for command line arguments,

must be exactly one */

exit (-1);

if (stat (argv[1],&statbuffer) < 0) /* check file */

exit (-1);

/*

* open file and read contents to buffer

*/

inputFile = fopen (argv[1],"r"); /* open text file read-only */

contents = (char *) malloc (statbuffer.st_size + 1);

/* allocate buffer */

fread (contents,statbuffer.st_size,1,inputFile);

/* read contents of file */

/*

* create app instance and window, create MLE for text display

*/

application = [[StdApp alloc] init]; /* initialize application

object */

window = [[StdWindow alloc] initWithId: 1000

andFlags: FCF_SIZEBORDER];

/* create main window */

controller = [[Controller alloc] init];

[window createObjects]; /* create child windows of

main window */

[window setDelegate: controller];

mle = [[MultiLineEntryField alloc]

initWithId: 1001

andFlags: (WS_VISIBLE | MLS_READONLY |

MLS_HSCROLL | MLS_VSCROLL)

in: window];

[window insertChild: mle]; /* insert MLE into window */

/*

* calculate title of window and set it

*/

title = (char *) malloc (11 + /* allocate buffer for title */

strlen (argv[1]));

sprintf (title,"Textview: %s",argv[1]); /* fill title buffer */

[window setTitle: title]; /* set window title */



3.7. SAMPLE MAKEFILES 25

ifeq (.depend,$(wildcard .depend))

include .depend

endif

APPLICATION =

OBJECTS =

RESOURCES =

all: $(APPLICATION)

depend dep:

$(CPP) -MM *.m > .depend

$(APPLICATION): $(OBJECTS) $(RESOURCES)

$(CC) -o $(APPLICATION) $(OBJECTS) $(RESOURCES) \

-lobjcpm -lobjc

emxbind -ep $(APPLICATION)

$(STRIP) $(APPLICATION)

clean:

rm -rf $(OBJECTS) $(RESOURCES) $(APPLICATION) core *~



Chapter 4

Loading Resources

Using the OS/2 Resource Compiler RC.EXE, you can create a binary resource �le from a resource

de�nition �le. This binary resource �le can be linked to your application main module just like

normal object �les. Application then can load some of the resource templates instead of creating

dialog windows , menus or many other window objects from scratch by creating and inserting

window objects into a parent window.

4.1 Adding a menu resource to Textview

Just for demonstration issues, I'd like to show how to add a simple menu resource to the main

window (the only window) of the previously described Textview application.

Only one menu shall be added to Textview, a menu called File, which just includes the following

menu items:

� Open... � � � to open and display a text�le

� Exit � � � to close the application window and exit

The de�nition of these menu items are as follows:

MENU 1000

{

SUBMENU "~File", 2000

{

MENUITEM "Open...", 2001

MENUITEM SEPARATOR

MENUITEM "Exit", 2002

}

}

Figure 4.1: Simple menu for \Textview"

27



4.4. AN APPLICATION USING A DIALOG AND COMMAND BINDINGS 29

Figure 4.2: Simple PM interface to \Gnuplot"

into the source code of textview before the makeKeyAndOrderFront: statement.

This results in calling [window performClose: window] whenever the menu item Exit gets

selected by the user.

4.4 An Application using a dialog and command bindings

To demonstrate how to use and load dialog windows from a binary resource �le and command

bindings, let's look at a simple application providing a (very limitated) interface to the powerful

plotting program Gnuplot .

The backend (gnuplot.exe) is assumed to be installed somewhere in the program search path.

This interface doesn't check, if the program could be successfully found and started.

The program itself only consists of a dialog, which is displayed when starting the program. This

dialog contains three entry�elds, a checkbox and a pushbutton.

The �rst entry�eld is used to specify, which function to plot, the other two to specify the horizontal

plotting range. The plotting range is only used, when the checkbox is in checked state. After

pressing the pushbutton Plot, the entry�elds and the checkbox are computed and the function is

plotted.

Figure 4.2 shows how the dialog looks.

The main implementation �le called plot.m is really simple. It just creates the necessary instances

of StdApp and StdDialog. In addition to this, a controller object is instantiated, which does

the reading from the entry�elds and the plotting.

After creating all objects, a command binding is set up for the pushbutton Plot with the method

plot: of controller.

Then the dialog is shown and run modal and afterwards all previously allocated objects get freed

again.

4.4.1 \plot.m", the main implementation

#include <pm/pm.h>

#include "gnuplot.h"

#include "controller.h"

main()

{



4.4. AN APPLICATION USING A DIALOG AND COMMAND BINDINGS 31

[super init];

gnuplot = popen ("gnuplot.exe","w");

return self;

}

init �rst initializes it's superclass Object and thereafter opens a pipe for writing to the plotting

program gnuplot.exe. This binds stdin of gnuplot.exe to the pipe, which is represented as the

�le structure stored in the instance variable gnuplot.

- free

{

pclose (gnuplot);

return [super free];

}

free just closes the pipe and frees it's instance by calling the free method of it's superclass.

The following source code for the method plot: is a bit more complicated. Using the findFromID:

method of sender, pointers to the entry�eld and checkbox objects are found out.

The function to be plot is stored in text, the left and right range boundaries are stored in leftX

and rightX.

If the checkbox is checked, the left and right boundaries are read and converted to double numbers.

Then gnuplot is sent the appropriate plot string used to plot a function in a given horizontal range.

If the checkbox is unchecked or one of the boundaries is not valid, gnuplot is sent a normal string

to plot the function without specifying a plot range.

- plot: sender

{

char *string;

char *leftX,*rightX;

double left,right;

string = [[sender findFromID: IDD_PLOTSTRING] text: NULL];

if ([[sender findFromID: IDD_RANGECHECK] checked]) {

leftX = [[sender findFromID: IDD_LEFTX] text: NULL];

rightX = [[sender findFromID: IDD_RIGHTX] text: NULL];

if ((sscanf (leftX,"%lf",&left) == 1) &&

(sscanf (rightX,"%lf",&right) == 1) &&

(right > left)) {

fprintf (gnuplot,"plot [%lf:%lf] %s\n",left,right,string);

} else

fprintf (gnuplot,"plot %s\n",string);

free (leftX);

free (rightX);

} else

fprintf (gnuplot,"plot %s\n",string);

fflush (gnuplot);

free (string);



4.4. AN APPLICATION USING A DIALOG AND COMMAND BINDINGS 33

return self;

}

@end

4.4.4 Resource de�nition

The resource de�nition consists of three �les, the main resource de�nition �le, which only includes

the dialog template de�nition. The dialog template de�nition �le de�nes the main dialog; and the

header �le to declare all constants used by the dialog de�nition.

#define INCL_PM

#define INCL_NLS

#include <os2.h>

#include "gnuplot.h"

rcinclude gnuplot.dlg

The above �le is stored as gnuplot.rc. It only includes the �les os2.h and gnuplot.h, which are

the header�les used for the resource de�nition, and afterwards includes the dialog de�nition �le

gnuplot.dlg.

DLGTEMPLATE IDD_MAIN LOADONCALL MOVEABLE DISCARDABLE

{

DIALOG "GNUPLOT Interface",

IDD_MAIN, 158, 90, 210, 65,

FS_NOBYTEALIGN | FS_DLGBORDER |

FS_SCREENALIGN | NOT WS_VISIBLE |

WS_CLIPSIBLINGS | WS_SAVEBITS,

FCF_TITLEBAR | FCF_SYSMENU | FCF_NOBYTEALIGN

{

CONTROL "",

IDD_PLOTSTRING, 60, 43, 127, 8, WC_ENTRYFIELD,

ES_MARGIN | ES_AUTOSCROLL | WS_TABSTOP | WS_VISIBLE

CTLDATA 8, 32, 0, 0

CONTROL "Function:",

0, 15, 43, 40, 8, WC_STATIC,

SS_TEXT | DT_LEFT | DT_TOP | DT_MNEMONIC | WS_GROUP |

WS_VISIBLE

CONTROL "Range:",

0, 15, 30, 40, 8, WC_STATIC,

SS_TEXT | DT_LEFT | DT_TOP | DT_MNEMONIC | WS_GROUP |

WS_VISIBLE

CONTROL "",

IDD_LEFTX, 60, 30, 50, 8, WC_ENTRYFIELD,

ES_MARGIN | ES_AUTOSCROLL | WS_TABSTOP | WS_VISIBLE

CTLDATA 8, 8, 0, 0

CONTROL "",

IDD_RIGHTX, 120, 30, 50, 8, WC_ENTRYFIELD,

ES_MARGIN | ES_AUTOSCROLL | WS_TABSTOP | WS_VISIBLE

CTLDATA 8, 8, 0, 0



Chapter 5

Using the database library

In contrast to the previous chapters, this chapter does not describe how to write Presentation

Manager programs. Here, a simple overview of the database library is presented. To simplify

things, the �rst application making use of the database features has no PM interface. The next

chapter describes how to integrate both libraries, for PM and database programming, in one

application program.

5.1 Preparations

After installing the library package, the include �les for the database library can be found in

\usr\include\db. Modules which use some of the classes provided, simply have to include the

�le <db/db.h>. Just as with <pm/pm.h>, this single include �le includes all necessary �les to

provide full access to all classes and methods.

After compilation the program must be linked with objcdb.a, the library �le. This can be

accomplished by specifying -lobjcdb when creating the program with gcc.

5.2 Accessing a DBase III �le

As mentioned before, the database library provides read and write access to DBase III data �les.

At the moment, Memo-�elds are not supported. There's also no way to use indexing or sorting

now. As this restricts the usability of the library to very small database �les, at least indexing

will be provided soon, to grant real fast, non-linear access to all records stored in the data �les.

The basic class for accessing DBase III �les is DBFile. When allocating and initializing an object

of this class, an existing data �le is opened for reading and writing. This implies, that concurrent

access to the same database �les is not provided. So be carefull not to write programs accessing

the same database �les at the same time.

A main function of a C program using database �les would look like that:

main ()

{

DBFile *myDBFile;

.

.

.

35



5.2. ACCESSING A DBASE III FILE 37

#include <db/db.h>

main ()

{

DBFile *myDBFile = [[DBFile alloc] init: "test.dbf"];

int i;

printf ("NAME PHONE \n");

printf ("===================================================\n");

for (i = 0;i < 5;i++)

{

[myDBFile readRecord: i];

printf ("%-30s %s\n",[[myDBFile field:0] string],

[[myDBFile field:1] string]);

}

[myDBFile free];

}

Using readRecord: all records are read and by using the string method of DBField, the two

�elds NAME and PHONE are printed to stdout.

To compile this program simply type in

gcc -o dbtest1.exe dbtest1.m -lobjcdb -lobjc

As you may have noticed, if you compiled and started the application, the name and the phone

number of Michael is also printed. It seams the library does not notice, when a record is marked

as deleted.

Using readRecord: the application program can access all stored records, even those, which

have been marked as deleted. There's a method called deleted, returning a boolean value, to

determine, if the current record is deleted or not.

So by extending the program with the line

if (![myDBFile deleted])

before the line printing the contents, only those records would be printed, which are not marked

as deleted. Look at dbtest2.m to see the whole source code including this modi�cation.

In this program, the number of records stored in the database is hard-coded into the program. But

normally, we don't know, how many records are stored. Therefore a method called recordCount

was implemented for objects of class DBFile. This method returns the number of records stored

in the database �le.

This example just reads each record stored in the database and prints only those records, which are

not marked as deleted. As many programs are likely to use this kind of \linear addressing scheme",

two methods are implemented which allow to read all active (not deleted) records sequentially.

These two methods are called findFirst and findNext.

findFirst tries to �nd the �rst active record in the database. It starts searching at the beginning

of the database �le, �rst checking record 0. This method returns FALSE, if there's no active record

in the whole database.

findNext then searches for the next appearance of an active record in the �le. If no more active

records are in the database, FALSE is returned.

Rewriting the application dbtest2.m to dbtest3.m utilizing these methods would look like this:



Chapter 6

Modifying data

As shown in the last chapter, opening a database �le and reading records from them is quite

simple. Some pages ago, I mentioned, that the database �le is opened for reading and writing.

This chapter describes how to modify data and append new records to an existing database �le.

In this chapter, an application for managing the data in the previously introduced database �le

test.dbf will be created. This application shall be able to:

� display all records stored in the database

� add new records

� modify existing records

� delete record

� mark deleted records as active

For this purpose, a new class is de�ned, called AddressDatabase, which can handle all these

functions als instance methods. The interface de�nition looks like this:

@interface AddressDatabase : Object {

DBFile *database;

}

- init;

- free;

- (int) menu;

- printInfo;

- deleteRecord;

- undeleteRecord;

- addRecord;

- modifyRecord;

@end

The class is derived from Object, and it has one instance variable, called database, which holds

the DBFile instance used for all operations.

The methods init and free are implemented to create the DBFile instance and initialize it,

respectively to free it.

39



6.1. INIT AND FREE 41

and queries the menu. If menu selection 5 is chosen (end program), mydb is freed again and the

application terminates.

6.1 init and free

At the beginning, we will implement the two methods init, which is the proposed constructor

method for AddressDatabase and free, which is the destructor method .

- init

{

[super init];

database = [[DBFile alloc] init: "test.dbf"];

return self;

}

- free

{

[database free];

return [super free];

}

It should be clear enough, what these simple methods are doing, so no more explanation has to

be done.

6.2 Printing all records in the database �le

printInfo is used to read all active records and print their contents to stdout. This is accom-

plished by using the following code:

- printInfo

{

if ([database findFirst]) {

printf ("Nr. NAME PHONE \n");

printf ("=======================================================\n");

do {

printf ("%3d %-30s %s\n",

[database currentRecord],

[[database field:0] string],

[[database field:1] string]);

} while ([database findNext]);

}

}

This looks like the simple program dbtest3 which was described in the previous chapter. In

addition to printing the �elds NAME and PHONE , the number of the record is printed in the

�rst column. The number of the currently read record (the record fetched into the internal record

bu�er of the DBFile object) can be queried using currentRecord.



6.5. MARKING A RECORD AS ACTIVE 43

}

[database delete];

[database replace];

return self;

}

6.5 Marking a record as active

- undeleteRecord

{

int i;

int j = [database recordCount];

BOOL found = FALSE;

for (i = 0;i < j;i++)

{

[database readRecord: i];

if ([database deleted]) {

if (!found) {

printf ("Nr. NAME PHONE \n");

printf ("=======================================================\n");

found = TRUE;

}

printf ("%3d %-30s %s\n",i,

[[database field:0] string],

[[database field:1] string]);

}

}

if (!found) {

printf ("No deleted records found!\n\n");

return nil;

}

printf ("\nWhich record shall I restore? ");

scanf ("%d",&i);

[database readRecord: i];

if (![database deleted]) {

printf ("\nThis record is not deleted, no need to restore!\n");

return nil;

}

[database undelete];

[database replace];

return self;

}



6.7. MODIFYING AN EXISTING RECORD 45

}

This program is stored as dbtest4.m in \usr\samples\dbtest. You can compile it typing

gcc -o dbtest4.exe dbtest4.m -lobjcdb -lobjc

Note that this application does very little error-checking. It's really not written as an end-user

application, but to demonstrate the usage of the diverse methods provided by the DBFile class.

As you can see, it's really simple to utilize the provided class DBFile to create your own database

applications. Most of the code shown above is concerned with printing information on the screen

and prompt for user actions. In the next chapter you will see, how to combine the features of the

OS/2 PM class library and the database library in a simple Presentation Manager application.



Chapter 7

A sample PM application using

the database library

This chapter shows how to combine the PM library with the database library to create an appli-

cation used to store phone numbers and e-mail addresses.

7.1 Purpose of the application

This sample program will be used to demonstrate an implementation of a presentation manager

application using DBase III �les. In addition to this the program provides a framework for an

address database maybe useful to some people.

The application will store records with a format speci�ed in table 7.1.

The main window of the application will contain a single listbox, only displaying the �rst �eld of

each record (NAME).

Adding new records, editing records, deleting records and displaying all information stored for a

speci�c record will be realized with dialog windows.

Figure 7.1 on the next page shows the main window of the address database displaying some

records.

7.2 Application menu

To process user actions, the application will provide a menu bar with two menus in it.

The menu File will only provide one menu item to let the user exit the application. It is called

Exit.

Field Nr. Name Length Type Description

1 NAME 40 Character Name of the person.

2 ADDRESS 40 Character Address of the person.

3 PHONE 40 Character Phone number of the person.

4 FAX 40 Character Fax number of the person.

5 EMAIL 40 Character E-Mail address of the person.

Table 7.1: Data format used for storing addresses

47



7.4. CLASSES USED IN THE APPLICATION 49

Figure 7.2: Dialog window to add a new record

In addition to the methods, Controller de�nes many instance variables which are used by some

of the methods to access the database or the dialog windows on the screen.

7.4.1 Instance variables

The following instance variables are de�ned and used by this class.

@interface Controller : Object

{

StdDialog *insertRecord;

StdDialog *replaceRecord;

StdDialog *infoRecord;

id insertName;

id insertAddress;

id insertPhone;

id insertFax;

id insertEMail;

id replaceName;

id replaceAddress;

id replacePhone;

id replaceFax;

id replaceEMail;

id infoName;

id infoAddress;

id infoPhone;

id infoFax;

id infoEMail;

DBFile *database;

DBList *recordList;

}

insertRecord, replaceRecord and infoRecord are used to store pointers to the dialogs for

adding a new record (see �gure 7.2), editing and saving the data for an existing record (the dialog



7.4. CLASSES USED IN THE APPLICATION 51

initialized.

� free is the destructor method of this object. Here all objects are destroyed again.

� readList: retrieves all records stored in the database �le into the record list and afterwards

displays the �rst data �eld of every record in the listbox. See �gure 7.1 on page 48 for an

example main window as created and �lled by this method.

The Controller object used in the application is created and initialized by the main () function

of the program. This function also creates the main window including the listbox and calls

readList:.

The method init of the Controller class looks like this:

- init

{

insertRecord = [[StdDialog alloc] initWithId: IDD_INSREP];

replaceRecord = [[StdDialog alloc] initWithId: IDD_INSREP];

infoRecord = [[StdDialog alloc] initWithId: IDD_INFO];

[insertRecord setText: "Insert new Record"];

[replaceRecord setText: "Replace existing Record"];

[insertRecord createObjects];

[replaceRecord createObjects];

[infoRecord createObjects];

insertName = [insertRecord findFromID: IDD_NAMEENTRY];

insertAddress = [insertRecord findFromID: IDD_ADDRESSENTRY];

insertPhone = [insertRecord findFromID: IDD_PHONEENTRY];

insertFax = [insertRecord findFromID: IDD_FAXENTRY];

insertEMail = [insertRecord findFromID: IDD_EMAILENTRY];

replaceName = [replaceRecord findFromID: IDD_NAMEENTRY];

replaceAddress = [replaceRecord findFromID: IDD_ADDRESSENTRY];

replacePhone = [replaceRecord findFromID: IDD_PHONEENTRY];

replaceFax = [replaceRecord findFromID: IDD_FAXENTRY];

replaceEMail = [replaceRecord findFromID: IDD_EMAILENTRY];

infoName = [infoRecord findFromID: IDD_NAMEENTRY];

infoAddress = [infoRecord findFromID: IDD_ADDRESSENTRY];

infoPhone = [infoRecord findFromID: IDD_PHONEENTRY];

infoFax = [infoRecord findFromID: IDD_FAXENTRY];

infoEMail = [infoRecord findFromID: IDD_EMAILENTRY];

database = [[DBFile alloc] init: "address.dbf"];

recordList = [[DBList alloc] initForDatabase: database];

return self;

}

In the beginning, the three necessary dialog windows are created. Note, that the dialog windows

for adding a new record and editing an existing record are created from the same dialog template.

They di�er only in the dialog title. Therefor the next two lines set the title strings for these two

dialog windows to either Insert new Record or Replace existing record.

Afterwards the user interface objects in the dialogs are created and the instance variables used to

simplify access to these are initialized.



7.4. CLASSES USED IN THE APPLICATION 53

- delete: sender

{

ListBox *nameListBox = [sender findFromID: IDD_PUSHBUTTON1];

SHORT selected = [nameListBox selected];

if (selected < 0)

return nil;

.

.

.

return self;

}

This piece of source code �rst queries a pointer to the listbox object using findFromID: of the

sending object, which always is the main window. This pointer is stored in nameListBox. The

variable selected is used to store the index of the selected item in the listbox. If no item is

selected, selected is lower than 0.

Additionally, the following variables are declared in this method:

char numberBuffer[6];

long numberOfRecord;

char *nameBuffer;

The working part of the method �rst shows a message box querying the user if he really wants

to delete the record, and then marks the record as deleted and deletes it from the listbox. The

record must also be deleted from the record list.

if (WinMessageBox (HWND_DESKTOP,[sender window],

"Do you really want to delete the selected Item?",

"Addresses",

0,MB_YESNO | MB_QUERY) == MBID_YES) {

numberOfRecord = atoi(numberBuffer);

[database readRecord: [[recordList findRecordAt: selected] recNo]];

[nameListBox deleteItem: selected];

[database delete];

[recordList deleteRecordAt: selected];

}

For a description of WinMessageBox () see the OS/2 PM API documentation.

info: is used to display a dialog window previously allocated (infoRecord) and �ll the entry

�elds with the data associated with the selected record.

The source code for the interesting parts of the implementation is shown below:

- info: sender

{

.

.



7.4. CLASSES USED IN THE APPLICATION 55

free (faxBuffer);

free (emailBuffer);

}

return self;

}

As the memory used for temporarily storing the strings in the entry�eld controls is allocated

automatically by text:, this must be freed again later using free (). The implementation is

really simple. The text strings are retrieved from the entry �elds, written to the database bu�er

and then the modi�cations are written to the database �le and copied into the record list.

The implementation of insert: is just the same as replace: with the di�erence, that the entry

�elds must be initialized with empty strings because a new record is allocated at the end.

So the lines in replace: copying the record bu�er and replacing the contents of the record,

including the modi�cation of the item in the listbox must be changed to

[database append];

[recordList insertRecord: [[DBRecord alloc] initForDatabase: database]];

[nameListBox insertItem: LIT_END text: nameBuffer];

This appends a new record to the data �le and also creates a new data object at the end of the

record list. At the end, a new item is inserted and displayed in the listbox.

All methods described above are fully responsible for displaying all necessary information (dialog

windows, message boxes) and leave the database and the record list in memory in a consistent

state. Don't forget to update all storage structures (record list, data �le, listbox) every time you

modify one of the records, or add or delete one.

The next two methods are used as delegate methods for the main window.

7.4.4 Delegate methods

The �rst of the delegate methods is called closeApp:. It is called by the menu item Exit to

terminate the application. The implementation of this method is shown below. Because of it's

simplicity, there is no need to describe what is done here.

- closeApp: sender

{

WinPostMsg ([sender window],WM_CLOSE,0L,0L);

return self;

}

As shown in section 3.6 on page 21, the following simple method is called every time the size of

the main window is changed by the user. It's only purpose is to adjust the size of the listbox to

the size of the main window.

- windowDidResize: sender

{

ListBox *nameListBox = [sender findFromID: IDD_PUSHBUTTON1];

[nameListBox setSize: 0:0:[sender width]:[sender height]];

return self;

}



Chapter 8

Using the Container Class

One of the most interesting window classes provided by PM is the Container class. Newly intro-

duced with OS/2 2.0, it provides a storage for general objects of any type. These objects can be

displayed in several forms, as icons, as text, as a combination of both, or similar to multi-column

listboxes, also supporting direct editing of the values shown.

This chapter will show how to use the Objective C class Container, which is provided by objcpm.a.

Section 8.1 will show how to create a container from scratch and display the contents as icons.

The following section, starting at page 60 will present a simple example of using the container as

a multi-column listbox including direct editing.

8.1 Simple container { Icon display

Containers can be used to store any data, you want. The only restriction set up is, that all data

must be encapsulated in Objective C objects.

The information presented in this section assumes, you already have a simple PM application

including a main window. The container, which will be used here, will �ll the whole client part of

the main window.

8.1.1 Creating the application

Here you will once more be shown, how the typical source code for creating a PM application

looks like, including a main window.

#include <pm/pm.h>

main ()

{

StdApp *application = [[StdApp alloc] init];

MainWindow *mainwindow = [[MainWindow alloc]

initWithId: 1000

andFlags: FCF_SIZEBORDER];

[mainwindow createObjects];

[mainwindow makeKeyAndOrderFront: nil];

57



8.1. SIMPLE CONTAINER { ICON DISPLAY 59

Figure 8.1: First container sample \cont1.exe"

[container insertObject: [[Object alloc] init]]; // first object

[container insertObject: [[Object alloc] init]

withTitle: "Title of object"]; // second object

[container insertObject: [[Object alloc] init]

withTitle: "Another object"

andIcon: WinQuerySysPointer (HWND_DESKTOP,

SPTR_APPICON,

FALSE)]; // third object

[container arrange];

The Icon resource used for the third object is queried using the API function WinQuerySysPointer.

Here the resource handle for the current application Icon is queried.

At the end, an arrange message is sent to the container to re-arrange the icons now displayed.

This is necessary in this example program, otherwise all icons would cover the same space in the

container in the lower left corner.

8.1.4 Complete source code

After inserting this code into the application program, the source code should look like this.

#include <pm/pm.h>

main ()

{

StdApp *application = [[StdApp alloc] init];

MainWindow *mainwindow = [[MainWindow alloc]

initWithId: 1000

andFlags: FCF_SIZEBORDER];

Container *container;

[mainwindow createObjects];

[mainwindow makeKeyAndOrderFront: nil];

container = [[Container alloc] initWithId: 1001

andFlags: (CCS_MINIRECORDCORE |

WS_VISIBLE)

in: mainwindow];

[mainwindow insertChild: container];



8.2. USING THE DETAILS VIEW 61

appended to the list of columns already existing. There is no way of deleting columns or rearranging

them.

After creating the columns, the container window should be displayed in detail's view, which can

be accomplished using detailView:. Below is a simple piece of source code adding four columns

to a Container object and switching the display to detail's view.

.

.

[container addColumn: "first Column"];

[container addColumn: "second Column"];

[container addColumn: "third Column"];

[container addColumn: "fourth Column"];

[container detailView: self];

.

.

You should add all used columns in the beginning. If not, you must manually change the data

stored for all records already stored in the container object. As normally, you should know,

what columns you need, already at creation time of the object, this complicated procedure is not

described here.

8.2.2 Which data is displayed?

Normally OS/2 container windows store all kinds of data structures as items. When using this

library, container windows can store all Objective C objects. But how does the container window

know, what data shall be displayed in each column?

Plain OS/2 API programming makes this quite di�cult. You have to de�ne a data structure, put

pointers to some memory areas in it, where strings to be displayed are really stored, and every

column must be initialized with an index pointer to the column data.

The Container class only expects the objects stored as items to implement some methods to

provide access to the data.

Every object must implement the usual initializer and destructor methods init and free. As

init is never called directly, you can also use some other method. free is used whenever an item

is deleted, and it must take care of freeing all memory allocated by the object.

To provide access to the single data �elds, the methods setFieldData: withString: and

fieldData: must be present.

setFieldData: (ULONG field) withString: (char *) aString) is used to set a string to

�eld number field. Field numbering starts at 0. Don't expect aString to be a pointer to a

const char area. This memory area can be reused again, so your method must copy the data to

a memory area in your object.

(char *) fieldData: (ULONG) field is used to retrieve a pointer to the string stored for �eld

field. As the data pointed to is never modi�ed by the container object, this method can return

a pointer to the memory used internally for storing the data.

A simple class designed to store four �elds could look like this:

@interface ContainerObject : Object

{

char fields[4][30];



8.2. USING THE DETAILS VIEW 63

free must be implemented, if any dynamic allocation is used by the object. Otherwise the default

method inherited from the superclass provides enough functionality.

8.2.3 Direct editing

Direct editing support is not implemented at this time. If you want to use this, you have to catch

the window message CN REALLOCPSZ and return the appropriate value.

When using static storage, it should be enough to just catch the message and return TRUE. Take

care, that also the title string of the column can be edited, so a distinction must be made.

A sample implementation of the handleMessage: withParams: and:: method of a delegate

object of the window containing the container object could look like this:

- (MRESULT) handleMessage: (ULONG) msg withParams: (MPARAM) mp1

and: (MPARAM) mp2 : sender

{

// catch WM_CONTROL message of type CN_REALLOCPSZ

if ((msg == WM_CONTROL) && (SHORT2FROMMP (mp1) == CN_REALLOCPSZ)) {

CNREDITDATA *cnrEditData = PVOIDFROMMP (mp2);

// check what text was edited; either column data or title data

switch (cnrEditData->id) {

case CID_LEFTDVWND: // column data was edited

return (MRESULT) TRUE; // just return TRUE, memory is static!

case CID_LEFTCOLTITLEWND: { // column title was edited

char **buffer = (char **) cnrEditData->ppszText; // old text

char *buffer2 = (char *) malloc (cnrEditData->cbText + 1); // new text

free (*buffer); // free memory occupied by the column title

*buffer = buffer2; // set memory area for new column title. The

// data is copied into this area automatically

return (MRESULT) TRUE; // memory for column title was allocated

default: // nothing for us!

return (MRESULT) FALSE;

}

}

This looks quite complicated. But simply this means, the container window sends a message

asking the program, if the new text (length is given in cnrEditData->cbText should be copied.

If TRUE is returned, the text is copied to the string pointed to by *(cnrEditData->ppszText).

When this message is sent, *(cnrEditData->ppszText) stores a pointer to the string currently

stored.

If you don't want the column title or the data to be copied, just return FALSE.

Formatting the columns or setting read-only ags can be done separately for the column data and

the column title. Just use setColumnTitleAttributes: to set the attributes for the title data

and setColumnDataAttributes: to set the data attributes. See the description of the Container

class in the reference manual for more information.



Appendix A

Literature

If you are searching for good books about the programming language Objective C itself, and

you have access to any machine running NEXTSTEP, try reading the according sections of the

NEXTDEVELOPER manual pages. An easy to understand document about Objective C and it's

rootclass can be found there.

Another good introduction into Objective C is a book by Brad J. Cox, who speci�ed the language

itself, Object-Oriented Programming, An Evolutionary Approach, second edition. Addison Wesley,

1991.

German users should look for a copy of the December 1994 issue of the magazine iX . You can �nd

a (mostly) good overview of Objective C and the implementation found with GCC.

Some information concerning Objective C or special questions towards using this language can

be found in comp.lang.objective-c. An FAQ on Objective C in general and on the GNU

implementation of this language is posted regularly.

Work on an Objective C class library providing some Smalltalk-like classes is being done now.

Check for an OS/2 port of libobjects on hobbes. This library provides many classes simplifying

handling of object storage (e.g. List classes, HashTable,. . . ).

At the moment, it's recommended to read some documentation about PM programming. The

documentation for this toolbox and the classes themselves are not as complete, as they will be

in the near future. Nevertheless, they are quite usable to create some simple { and by capturing

some OS/2 PM messages { also more comples Presentation Manager applications. To �nd out

more about \pure PM programming" get the issues of the Electronic Developer's Magazine, which

also can be found on Hobbes. Most information ever needed for PM programming can be in

the documentation accompanying the IBM OS/2 developer's toolkit . An introduction into PM

programming, it's concepts and the API functions provided by OS/2 can also be found in one of

the Redbooks, OS/2 Version 2.0; Volume 4: Application Development . This book can be found

in .INF -format on Hobbes.

Before sending any questions to me, be sure to read all of this manual and the reference manual.

Also have a look at the sample programs, which can be found in \usr\samples. Some of the

samples stored there are not described in this manual, but can contain some information, you

might need.

65



List of Figures

2.1 Sample application \test.exe" : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

3.1 \Textview" application displaying it's own source code : : : : : : : : : : : : : : : : 16

4.1 Simple menu for \Textview" : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

4.2 Simple PM interface to \Gnuplot" : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

7.1 Main window of address database : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

7.2 Dialog window to add a new record : : : : : : : : : : : : : : : : : : : : : : : : : : : 49

7.3 Dialog window for editing already existing records : : : : : : : : : : : : : : : : : : 50

7.4 Dialog window used to display all information stored in a record : : : : : : : : : : 50

8.1 First container sample \cont1.exe" : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

67


