
2

6 CONTENTS

5 Using the database library 35

5.1 Preparations : 35

5.2 Accessing a DBase III �le : 35

6 Modifying data 39

6.1 init and free : 41

6.2 Printing all records in the database �le : 41

6.3 Displaying the menu : 42

6.4 Deleting a record : 42

6.5 Marking a record as active : 43

6.6 Adding a new record : 44

6.7 Modifying an existing record : 44

7 A sample PM application using the database library 47

7.1 Purpose of the application : 47

7.2 Application menu : 47

7.3 Database �le : 48

7.4 Classes used in the application : 48

7.4.1 Instance variables : 49

7.4.2 Initializing methods : 50

7.4.3 Database access methods : 52

7.4.4 Delegate methods : 55

7.5 The main function of the application : 56

8 Using the Container Class 57

8.1 Simple container { Icon display : 57

8.1.1 Creating the application : 57

8.1.2 Step one: Creating the container : 58

8.1.3 Step two: Inserting data : 58

8.1.4 Complete source code : 59

8.2 Using the Details View : 60

8.2.1 Creating columns : 60

8.2.2 Which data is displayed? : 61

8.2.3 Direct editing : 63

A Literature 65

8 CHAPTER 1. INTRODUCTION

10 CHAPTER 2. WRITING A SIMPLE PM APPLICATION

. * prepare application to terminate

. */

WinDestroyMsgQueue (hmq); /* destroy main message queue */

WinTerminate (hab); /* de-register application */

}

The above example shows the necessary steps, a program has to go through to be run under OS/2

Presentation Manager.

1. Initialization: registration at PM, create message queue,. . .

2. Message loop: receive all messages for the application and process them

3. Cleanup: destroy message queue, de-register application,. . .

The Objective C PM class library provides a class, called StdApp to meet the purpose of stan-

dard initialization and message processing for every PM application. The following source code

demonstrates how to use it:

#include <pm/pm.h>

.

.

main ()

{

StdApp *application; /* pointer to our instance

of a StdApp class */

application = [StdApp alloc]; /* create application object */

[application init]; /* initialize application */

.

.

.

[application run]; /* process all messages */

.

.

.

[application free]; /* free application object */

}

As you can see, the �rst line of the sample includes <pm/pm.h>. This include �le causes all include

�les of the PM class library to be read. After doing this, you can use all classes of the library and

their methods without any restrictions.

And here a more compact version of the same part of code:

#include <pm/pm.h>

.

.

main ()

{

StdApp *application = [[StdApp alloc] init];

.

12 CHAPTER 2. WRITING A SIMPLE PM APPLICATION

Figure 2.1: Sample application \test.exe"

mainWindow = WinCreateStdWindow (HWND_DESKTOP,

WS_VISIBLE,

&createFlags,

(PSZ) NEWCLASSNAME,

(PSZ) "",

0L,

NULLHANDLE,

1000,

&clientWindow);

while (WinGetMsg (hab,&qmsg,(HWND) NULL,0,0))

WinDispatchMsg (hab,&qmsg);

WinDestroyWindow (mainWindow);

WinDestroyMsgQueue (hmq);

WinTerminate (hab);

}

The following source code illustrates how much simpler the PM class library is to use than \normal"

OS/2 PM API functions.

#include <pm/pm.h>

main ()

{

StdApp *application = [[StdApp alloc] init];

StdWindow *mainWindow = [[StdWindow alloc]

initWithId: 1000

andFlags: FCF_SIZEBORDER];

[mainWindow makeKeyAndOrderFront: nil];

[application run];

[mainWindow free];

[application free];

}

14 CHAPTER 2. WRITING A SIMPLE PM APPLICATION

16 CHAPTER 3. A SIMPLE FILE-BROWSER

Figure 3.1: \Textview" application displaying it's own source code

main(int argc,char *argv[])

{

FILE *inputFile;

struct stat statbuffer;

char *contents;

/*

* check for command line arguments and

* check given file (struct stat)

*/

if (argc != 2) /* check for command line arguments,

must be exactly one */

exit (-1);

if (stat (argv[1],&statbuffer) < 0) /* check file */

exit (-1);

/*

* open file and read contents to buffer

*/

inputFile = fopen (argv[1],"r"); /* open text

file read-only */

contents = (char *) malloc (statbuffer.st_size + 1);

/* allocate buffer */

fread (contents,statbuffer.st_size,1,inputFile);

/* read contents of file */

inputFile is a pointer to a �le structure returned by fopen. statbuffer is used to retrieve

information about the �le using the C-Library function stat. Here the size of the �le is stored.

After reading �le information, contents is allocated via malloc and the �le is opened and it's

contents are read to contents.

Following this part of code, the initialization of the used PM classes takes place:

Just add some more variable declarations to the �rst section of the code:

18 CHAPTER 3. A SIMPLE FILE-BROWSER

After initializing this, the main window is shown and the size of the MLE window is adapted to

the size of the main window, to �ll it's complete interior:

/*

* show window, set MLE size and display contents of file

*/

[window makeKeyAndOrderFront: nil]; /* show window */

[mle setSize: 0:0:[window width]:

[window height]]; /* set MLE size */

[mle setText: contents]; /* display contents of file */

This code also sets the text displayed in the MLE window to be the bu�er area contents.

3.2 Message loop

The main message loop is started by calling [application run]. As mentioned before, this

method terminates, when the main window gets closed.

3.3 Cleanup

After the window was closed, all objects are destroyed and the previously allocated bu�er area is

freed again:

/*

* free all resources

*/

free (contents); /* free contents buffer */

fclose (inputFile); /* close file */

[application free]; /* free application */

[window free]; /* free window */

Note, that [window free] automatically destroys all it's child windows, in our case, the MLE

window.

3.4 Compilation

To compile this application, store the code shown in the following subsection to the �le textview.m

(it can be found in \usr\samples\textview) and type:

gcc -c textview.m

gcc -o textview.exe textview.o -lobjcpm -lobjc

emxbind -ep textview.exe

20 CHAPTER 3. A SIMPLE FILE-BROWSER

initWithId: 1001

andFlags: (WS_VISIBLE | MLS_READONLY |

MLS_HSCROLL | MLS_VSCROLL)

in: window];

[window insertChild: mle]; /* insert MLE into window */

/*

* calculate title of window and set it

*/

title = (char *) malloc (11 + /* allocate buffer for title */

strlen (argv[1]));

sprintf (title,"Textview: %s",argv[1]); /* fill title buffer */

[window setTitle: title]; /* set window title */

free (title); /* free title buffer */

/*

* show window, set MLE size and display contents of file

*/

[window makeKeyAndOrderFront: nil]; /* show window */

[mle setSize: 0:0:[window width]:

[window height]]; /* set MLE size */

[mle setText: contents]; /* display contents of file */

/*

* run application

*/

[application run];

/*

* free all resources

*/

free (contents); /* free contents buffer */

fclose (inputFile); /* close file */

[application free]; /* free application */

[window free]; /* free window */

}

If you compile this program you will see, that the main window is resizable, but the MLE window

inside the window remains the same size, whatever size it's parent window is.

The rest of this chapter shows how an object can be automatically noti�ed, when the main window

resizes, to adapt the size of the MLE window.

3.5 Delegate objects

One of the main advantages of Objective C compared to most other object-oriented programming

languages is the possibility to check at runtime, if an object implements a speci�c method. This

provides a simple way for objects to send messages to other objects, if these messages can be

processed, to notify of some special occurrence.

22 CHAPTER 3. A SIMPLE FILE-BROWSER

By calling [sender findFromID: 1001] the method queries a pointer to an instance of Window

or one of it's subclasses. This window must be a child window of sender and have the OS/2 PM

identi�er 1001.

Using this method returns a pointer to the MLE window's associated Window object. This method

is sent a setSize:::: message to adapt it's size to the size of the sending window.

setSize:::: takes the coordinates of the lower left corner of the window (the �rst and second

parameters) relative to it's parent's lower left corner. The last two parameters represent the width

and height , the window should be resized to.

The lower left corner of the MLE window should be the same as the lower left corner of it's

parent, (0/0). The width and height of the MLE window is queried from the sender by using the

appropriate methods width and height.

As this method has a return type of id

1

, self is returned on successful completion of the method.

The following section shows the modi�ed source code of textview.m, which is stored in the

directory \usr\samples\textview under the name textview2.m.

3.6.1 Modi�ed version of Textview: \textview2.m"

#include <pm/pm.h>

#include <io.h>

#include <sys/types.h>

#include <sys/stat.h>

@interface Controller : Object

{

}

- windowDidResize: sender;

@end

@implementation Controller

- windowDidResize: sender

{

[[sender findFromID: 1001] setSize:

0:0:[sender width]:[sender height]];

return self;

}

@end

main(int argc,char *argv[])

{

StdApp *application;

StdWindow *window;

Window *mle;

Controller *controller;

FILE *inputFile;

struct stat statbuffer;

1

id is a pointer to a generic Objective C object

24 CHAPTER 3. A SIMPLE FILE-BROWSER

free (title); /* free title buffer */

/*

* show window and display contents of file

*/

[mle setText: contents]; /* display contents of file */

[window makeKeyAndOrderFront: nil]; /* show window */

/*

* run application

*/

[application run];

/*

* free all resources

*/

free (contents); /* free contents buffer */

fclose (inputFile); /* close file */

[application free]; /* free application */

[window free]; /* free window */

[controller free]; /* free controller */

}

3.7 Sample make�les

In the directory \usr\samples\makefile you can �nd a sample makefile together with the used

make-include �le makefile.preamble.

To use this make�le, just copy makefile and makefile.preamble to your application directory

and �ll in the correct places in makefile.

1. Add the name of your application �le to the line containing APPLICATION = (including the

su�x .exe).

2. Add the names of your object �les to the line containing OBJECTS =.

3. Add all OS/2 resource �les (the �les with extenstion .res) to the line containing the state-

ment RESOURCES =.

This make�le was written for GNU make. Possible targets are:

� no target � � � this automatically compiles and links the application program

� dep or depend � � � check all �les for dependencies and create a .depend �le, which is auto-

matically included.

� clean � � � removes all temporary �les (compiled resources, application program, object �les,

core dump �le, . . .)

Makefile for PM programs using Objective C class library

include Makefile.preamble

26 CHAPTER 3. A SIMPLE FILE-BROWSER

28 CHAPTER 4. LOADING RESOURCES

The menu File has id 2000, the menu items Open... and Exit the ids 2001 respectively 2002.

Between the two menu items Open... and Exit a separator item should be inserted.

The resulting menu is shown in �gure 4.1.

To load this menu, just create a resource de�nition �le, type in the menu declaration and use

RC.EXE to produce a binary resource �le. When linking the application, don't forget to specify

the name of the binary resource �le (just like any other object �le).

When creating the main window of Textview, binary or FCF MENU with the given ag FCF SIZEBOR-

DER. When creating the window, the menu resource will be loaded and displayed in the window's

actionbar. Which menu will be loaded depends on the OS/2 PM identi�er of the window, which

you specify at creation. It must be the same as the identi�er speci�ed in the resource de�nition

for the menu (in our case, it's 1000).

4.2 Dialogs

Using a dialog editor, you can easily create dialog windows and either store a resource de�nition

�le or a binary resource �le to disk.

Just like normal windows, dialog windows are created by the application using the appropriate

dialog window class StdDialog. In addition to creating the window object, the contents of the

dialog are loaded from the main resource �le linked to the application.

After creation, dialog windows can be displayed using makeKeyAndOrderFront:. In addition

to normally displaying the dialog windows, which causes the dialog to run non-modal, you can

also run a dialog modal for a given parent window. Using runModalFor: the dialog window is

displayed, but working with it's parent window, which it runs modal for, is not possible untill the

dialog window gets closed again (dismissed .

4.3 Command bindings

After a menu bar has been created, or a dialog window was loaded from a resource �le, some

of the menu items or window objects in the dialog send command messages to their owner. By

processing these messages, the program can react to user actions.

Using the classes provided by this library, you can bind command messages to designated methods

of an object. When a special command message was sent to a window, the appropriate method

of an object gets called.

All methods, which can be bound to command messages must be of the form nameOfMethod:

sender. The parameter sender stores a pointer to the sending instance of a StdWindow or a

StdDialog, which calls the method.

Command messages can be bound to objects and appropriate methods using bindCommand:

withObject: selector:. The �rst parameter of this method is the identi�er of the PM ob-

ject, which posts command messages, the second is a pointer to the Objective C object, which

implements the method to be called, the third and last is the selector of the method to be called.

The selector of a method can be queried using @selector(nameOfMethod).

To bind the command message sent by the menu item Exit , which has an OS/2 PM id of 2002 to

the performClose: method of the window object, just insert

[window bindCommand: 2002

withObject: window

andSelector: @selector(performClose:)];

30 CHAPTER 4. LOADING RESOURCES

StdApp *application = [[StdApp alloc] init];

StdDialog *mainDialog = [[StdDialog alloc]

initWithId: IDD_MAIN];

Controller *controller = [[Controller alloc] init];

[mainDialog createObjects];

[mainDialog bindCommand: DID_OK withObject: controller

selector: @selector(plot:)];

[mainDialog runModalFor: nil];

[controller free];

[mainDialog free];

[application free];

}

[[StdDialog alloc] initWithId: IDD MAIN] creates a dialog object and loads it's binary re-

source template from the main binary resource �le. The dialog id is IDD MAIN.

[mainDialog bindCommand: ... binds the command message sent by the pushbutton, which

has id DID OK to the plot: method of the object controller.

[mainDialog runModalFor: nil] runs a modal dialog. Normally, this dialog is run modal for

a certain window, but when nil is speci�ed, this only causes the method to wait for termination

of the dialog window.

The class Controller itself has to load the program gnuplot.exe and send it appropriate com-

mands to plot the given function.

The class implements one instance variable, gnuplot to store a �le handle to the gnuplot program,

and three methods, init to open the plotting program, free to close it at the end and plot:,

which does the plotting work. The following interface declarations is stored as controller.h in

\usr\samples\gnuplot.

4.4.2 \controller.h", Gnuplot PM interface

#include <pm/pm.h>

#include <stdio.h>

@interface Controller : Object

{

FILE *gnuplot;

}

- init;

- free;

- plot: sender;

@end

The implementation uses some of the unix-like features of the emx C-Library .

- init

{

32 CHAPTER 4. LOADING RESOURCES

return self;

}

The following section shows the complete source code of the implementation of the class Control-

ler.

4.4.3 \controller.m", Gnuplot PM interface

#include "Controller.h"

#include "gnuplot.h"

@implementation Controller

- init

{

[super init];

gnuplot = popen ("gnuplot.exe","w");

return self;

}

- free

{

pclose (gnuplot);

return [super free];

}

- plot: sender

{

char *string;

char *leftX,*rightX;

double left,right;

string = [[sender findFromID: IDD_PLOTSTRING] text: NULL];

if ([[sender findFromID: IDD_RANGECHECK] checked]) {

leftX = [[sender findFromID: IDD_LEFTX] text: NULL];

rightX = [[sender findFromID: IDD_RIGHTX] text: NULL];

if ((sscanf (leftX,"%lf",&left) == 1) &&

(sscanf (rightX,"%lf",&right) == 1) &&

(right > left)) {

fprintf (gnuplot,"plot [%lf:%lf] %s\n",left,right,string);

} else

fprintf (gnuplot,"plot %s\n",string);

free (leftX);

free (rightX);

} else

fprintf (gnuplot,"plot %s\n",string);

fflush (gnuplot);

free (string);

34 CHAPTER 4. LOADING RESOURCES

CONTROL "",

IDD_RANGECHECK, 179, 30, 10, 10, WC_BUTTON,

BS_AUTOCHECKBOX | WS_TABSTOP | WS_VISIBLE

CONTROL "Plot",

DID_OK, 145, 10, 40, 14, WC_BUTTON,

BS_PUSHBUTTON | BS_DEFAULT | WS_TABSTOP | WS_VISIBLE

}

}

gnuplot.dlg de�nes a dialog template for dialog IDD MAIN. This template is normally written by

a dialog editor.

#define IDD_MAIN 3000

#define IDD_PLOTSTRING 3001

#define IDD_PLOT 3002

#define IDD_LEFTX 3003

#define IDD_RIGHTX 3004

#define IDD_RANGECHECK 3005

The include �le gnuplot.h is also normally created by the used dialog editor. It contains de�nitions

for the constants used in the resource de�nition �le.

The binary resource �le can be created using RC.EXE by typing the command sequence rc -r

gnuplot.rc at an OS/2 command line. This creates the binary resource �le gnuplot.res, which

can be linked to the application as the main resource �le.

Compare the following makefile to the make�le template described in section 3.7 at page 24 to

realized, how to �ll in these templates.

Makefile for PM programs using Objective C class library

include Makefile.preamble

ifeq (.depend,$(wildcard .depend))

include .depend

endif

APPLICATION = plot.exe

OBJECTS = plot.o controller.o

RESOURCES = gnuplot.res

all: $(APPLICATION)

depend dep:

$(CPP) -MM *.m > .depend

$(APPLICATION): $(OBJECTS) $(RESOURCES)

$(CC) -o $(APPLICATION) $(OBJECTS) $(RESOURCES) \

-lobjcpm -lobjc

emxbind -ep $(APPLICATION)

$(STRIP) $(APPLICATION)

clean:

rm -rf $(OBJECTS) $(RESOURCES) $(APPLICATION) core *~

36 CHAPTER 5. USING THE DATABASE LIBRARY

myDBFile = [[DBFile alloc] // allocate and initialize

init: "test.dbf"]; // data file "test.dbf"

. /*

. * here the database file can be used, records can be

. * read, modified or written back.

. */

[myDBFile free]; // close data file and free resources

}

Access to a DBFile is record-oriented. Each DBFile-object contains a bu�er large enough to store

exactly one record.

This record bu�er can be �lled with a record already stored in the database �le and can be

written back to disk. Additionally the record can be modi�ed by the application program using

the database library.

The program fragment shown above allocates and initializes a DBFile object and opens a database

�le calles test.dbf for reading and writing.

This �le can be found in \usr\samples\dbtest after installing the sample �les.

It de�nes a simple database �le with two �elds. The �rst �eld is called NAME . It can hold a

string with a maximum length of 30 characters, the second is called PHONE , and is able to store

a string with a maximum length of 20 characters.

The following records are already stored in the database �le:

Nr. NAME PHONE remark

0 Joe 23987-3

1 Frank 6334589

2 Sue 523593

3 Michael 9845-43 deleted

4 Kurt 2543

As you can see, the database �le contains �ve records. The fourth is deleted. In the following, we

will see, how access to this �le is achieved.

DBFile provides a method to read in a record from the associated database �le. This method is

called readRecord:. This method takes one parameter, the position, where in the �le the record

is stored. After reading the record, the data is copied into the record bu�er, where it can be

accessed by the application program.

The access to the data is accomplished by using methods of objects of type DBField or one of its

subclasses. DBField implements the methods string to read the data stored in the record bu�er

and setString: to write data into the record bu�er.

When initializing a DBFile object, all needed DBField objects are automatically created and can

be used thereafter by the application program.

Access to a special DBField object is provided through the field: method of DBFile. So, if you

want to print the NAME �eld of the currently loaded record, you could do this:

printf ("Name: %s\n",[[myDBFile field:0] string])

Now, here's a simple program (it is stored as dbtest1.m in \usr\samples\dbtest) which reads

all records and prints the name and the phone number of each entry:

38 CHAPTER 5. USING THE DATABASE LIBRARY

#include <db/db.h>

main ()

{

DBFile *myDBFile = [[DBFile alloc] init: "test.dbf"];

if ([myDBFile findFirst]) {

printf ("NAME PHONE \n");

printf ("===\n");

do {

printf ("%-30s %s\n",[[myDBFile field:0] string],

[[myDBFile field:1] string]);

} while ([myDBFile findNext]);

}

[myDBFile free];

}

This program checks �rst, if an active record exists, and only if this condition is met, the title lines

are printed. Thereafter the record itself is printed and the next record is read. This procedure of

printing a record and reading a new record is continued until findNext noti�es the program that

no more active records exist.

Using the delete method, you can mark a record as deleted. But take care. The changes are

not written to the database �le automatically. The record is only marked as deleted in the record

bu�er. After modifying a record, you have to write it to disk again using replace.

Deleting the second record, the name and phone number of Frank, would look like this:

[myDBFile readRecord:1]; // read record

[myDBFile delete]; // mark record as deleted

[myDBFile replace]; // write changes to database

As simple as deleting a record, you can mark an already deleted record as active again. Just use

undelete. The following three lines mark the fourth record, Michaels name and phone number,

as active again:

[myDBFile readRecord:3]; // read record

[myDBFile undelete]; // mark record as active

[myDBFile replace]; // write changes to database

40 CHAPTER 6. MODIFYING DATA

menu shall print all active records stored in the database and display a simple menu, where the

user of the application can choose, what he wants to do.

printInfo is used to print a list of all active records in the database �le.

deleteRecord and undeleteRecord will ask the user, which record he wants to mark as deleted

or active, and then commit the task of deleting or activating the speci�ed record.

addRecord prompts the user for the necessary data (NAME, PHONE), which is to be stored in a

new record and then appends this newly created record to the database �le.

modifyRecord on the other hand allows the user to change the data of a record already stored in

the database �le.

The program will look like this:

#include <db/db.h>

@interface AddressDatabase : Object {

.

.

.

@end

@implementation AddressDatabase

.

.

.

@end

main ()

{

AddressDatabase *mydb = [[AddressDatabase alloc] init];

int chosen;

while ((chosen = [mydb menu]) != 5) {

switch (chosen) {

case 1:

[mydb addRecord];

break;

case 2:

[mydb modifyRecord];

break;

case 3:

[mydb deleteRecord];

break;

case 4:

[mydb undeleteRecord];

default: ;

}

}

[mydb free];

}

As you can see, the main function only creates and initializes the object mydb and then displays

42 CHAPTER 6. MODIFYING DATA

6.3 Displaying the menu

To provide an easy to use user-interface { which is by no means as elegant as a PM application

program { a simple menu is printed, to let the user choose, what actions he wants to do on the

database �le.

This user-interface is implemented in the method menu, which displays all active records and a

menu, and then lets the user choose, which program function he would like to execute. menu

returns the number of the chosen program function, which are shown in the following table:

Nr. Program function

1 add new record

2 modify existing record

3 delete record

4 mark record as active

5 exit program

This method { just a simple sequence of C statements, without using some of the methods provided

by the database library { is implemented like this:

- (int) menu

{

int chosen;

printf ("\n Address Database\n\n");

[self printInfo];

printf ("\n (1) ... add Record (2) ... modify Record\n");

printf (" (3) ... delete Record (4) ... restore Record\n");

printf (" (5) ... quit Program\n");

printf ("\n What shall I do? ");

scanf ("%d",&chosen);

printf ("\n");

return chosen;

}

6.4 Deleting a record

- deleteRecord

{

long recNumber;

printf ("\nWhich record shall I delete? ");

scanf ("%d",&recNumber);

[database readRecord: recNumber];

if ([database deleted]) {

printf ("\nThis record is already deleted!\n");

return nil;

44 CHAPTER 6. MODIFYING DATA

6.6 Adding a new record

- addRecord

{

char nameField[31];

char phoneField[21];

printf ("\nName: ");

scanf ("%s",nameField);

printf ("Phone: ");

scanf ("%s",phoneField);

[database clear];

[[database field: 0] setString: nameField];

[[database field: 1] setString: phoneField];

[database append];

return self;

}

6.7 Modifying an existing record

- modifyRecord

{

long recNumber;

char nameField[31];

char phoneField[21];

printf ("\nWhich record would you like to modify? ");

scanf ("%d",&recNumber);

[database readRecord: recNumber];

if ([database deleted]) {

printf ("\nThis record is deleted! You can't modify it!\n");

return nil;

}

printf ("\nName: ");

scanf ("%s",nameField);

printf ("Phone: ");

scanf ("%s",phoneField);

[database clear];

[[database field: 0] setString: nameField];

[[database field: 1] setString: phoneField];

[database replace];

return self;

46 CHAPTER 6. MODIFYING DATA

48 CHAPTER 7. A SAMPLE PM APPLICATION USING THE DATABASE LIBRARY

Figure 7.1: Main window of address database

The second menu used by this program is called Data. Here all actions concerning data manipu-

lation, such as adding new records, deleting records etc. can be found.

The menu items found here are New... to add a new record to the end of the database, Edit... to

change the data stored for the selected record in the listbox, Delete to delete a record from the

database and Info... to display the information associated with the selected record in the listbox

control.

This program will only display the records which are not marked as deleted in the database �le.

Deleting a record only marks it as deleted, but by means of this program, the record can not be

undeleted again.

7.3 Database �le

The program automatically opens a database �le called ADDRESS.DBF in the current directory at

startup and writes the changes to this �le when exiting the application.

An empty database template �le is provided in \usr\samples\addresswith the name EMPTY.DBF.

7.4 Classes used in the application

In addition to the standard PM and database classes, only one class is created anew. This class is

called Controller. This class implements all necessary methods used by the program, as record

insertion etc.

The methods de�ned here can be divided into three parts. The initializing methods are used to

open the database �le and read in all records at program start. The database access methods will

be called directly from the appropriate menu items and all display dialog windows to change or

view the data stored. At last, the delegate methods are implemented, which are used to react to

some user actions, such as resizing the window and exiting the program.

50 CHAPTER 7. A SAMPLE PM APPLICATION USING THE DATABASE LIBRARY

Figure 7.3: Dialog window for editing already existing records

Figure 7.4: Dialog window used to display all information stored in a record

is shown in �gure 7.3) and for displaying the information associated with a record (see �gure 7.4).

The instance variables de�ned as ids are initialized to provide easy and fast access to the dialog

items themselves. they are initialized at dialog creation time.

database is a pointer to a DBFile object which is used to retrieve and save records from and to

the database �le itself.

recordList is a list object to enable the application to hold more than one record at a time in

memory. This provides faster and easier access to the single records. When the program is started,

all record information is retrieved into this object and at exit time, all modi�ed or new records

are written to the database again.

7.4.2 Initializing methods

The initializing methods are used to initialize the object itself and all objects used by this one.

Additionally, the only destructor method, free, is also described here.

� init is used to create all dialog windows in memory. Here all instance variables of this

object are initialized. Additionally the database �le is opened and the record list object is

52 CHAPTER 7. A SAMPLE PM APPLICATION USING THE DATABASE LIBRARY

Last, the database object is created and initialized and the database �le address.dbf is opened.

The record list used to hold all records in memory is created and the method returns to the caller.

free only frees all objects associated or created with/by this object. The simple source code for

this method looks like this:

- free

{

[database free];

[insertRecord free];

[replaceRecord free];

[infoRecord free];

return [super free];

}

The last one of the initializer methods, called readList: is used to �ll the record list with all data

in the database. This can simply be accomplished by calling [recordList fetchAllRecords].

Then the �rst data �eld of each record is extracted from the list and displayed in the listbox in

the main window.

- readList: sender;

{

ListBox *nameListBox = [sender findFromID: IDD_PUSHBUTTON1];

int i;

[recordList fetchAllRecords];

for (i = 0;i < [recordList count];i++) {

[[recordList findRecordAt: i] copyToDB];

[nameListBox insertItem: LIT_END text: [[database field: 0] string]];

}

return self;

}

You can see that a simple for loop is used to visit all records in the list. The line [[recordList

findRecordAt: i] copyToDB] copies the record information stored in the record list of record

i to the database bu�er. Then the string stored in the �rst data �eld is appended to the listbox

as a new listbox item.

7.4.3 Database access methods

To modify the information stored in the database �le and displayed in the listbox, four methods,

called insert:, replace:, info: and delete: have been implemented. These methods are

called directly as response to user actions. Therefor every method has exactly one parameter,

called sender.

The most simple method is delete:. This method shall display a message box querying the user,

if he really wants to delete the selected record. If no record was selected, delete: has to return

nil without further processing.

54 CHAPTER 7. A SAMPLE PM APPLICATION USING THE DATABASE LIBRARY

.

[[recordList findRecordAt: selected] copyToDB];

[infoName setText: [[database field: 0] string]];

[infoAddress setText: [[database field: 1] string]];

[infoPhone setText: [[database field: 2] string]];

[infoFax setText: [[database field: 3] string]];

[infoEMail setText: [[database field: 4] string]];

[infoRecord runModalFor: sender];

return self;

}

This copies the data associated with the selected record from the record list to the database bu�er.

Afterwards the text in the data �elds is displayed in the entry �eld objects, and the dialog window

is run modal.

replace: is used to edit the data for an already existing record. In the beginning, the corre-

sponding entry �elds must be �lled with the strings stored in the data �elds of the selected record,

as shown previously.

After running the dialog modal, the data must be copied back from the entry �elds to the database

bu�er and then into the record list again.

- replace: sender

{

.

.

.

[replaceRecord runModalFor: sender];

if ([replaceRecord result] == DID_OK) {

nameBuffer = [replaceName text: NULL];

addressBuffer = [replaceAddress text: NULL];

phoneBuffer = [replacePhone text: NULL];

faxBuffer = [replaceFax text: NULL];

emailBuffer = [replaceEMail text: NULL];

[[database field: 0] setString: nameBuffer];

[[database field: 1] setString: addressBuffer];

[[database field: 2] setString: phoneBuffer];

[[database field: 3] setString: faxBuffer];

[[database field: 4] setString: emailBuffer];

[[recordList findRecordAt: selected] copyFromDB];

[[recordList findRecordAt: selected] replace];

[nameListBox deleteItem: selected];

[nameListBox insertItem: selected text: nameBuffer];

free (nameBuffer);

free (addressBuffer);

free (phoneBuffer);

56 CHAPTER 7. A SAMPLE PM APPLICATION USING THE DATABASE LIBRARY

For a more complete description of the methods used here and others provided by the database

library, see the reference manual.

7.5 The main function of the application

The main function of the application can be found in the �le addresses.m. It only performs the

standard actions, as creating and initializing the objects, and after creating all necessary objects

but before starting execution of the application, the record list is read in by calling [controller

readList: mainWindow]. The complete source code is shown below.

Here you can see that all menu items which are used are bound directly to the previously described

methods of the class Controller.

main()

{

StdApp *addresses = [[StdApp alloc] init];

MainWindow *mainWindow = [[MainWindow alloc] initWithId: IDD_MAIN

andFlags: (FCF_MENU | FCF_ACCELTABLE |

FCF_SIZEBORDER)];

Controller *controller = [[Controller alloc] init];

[mainWindow setTitle: "Addresses"];

[mainWindow setDelegate: controller];

[mainWindow bindCommand: IDM_EXIT withObject: controller

selector: @selector(closeApp:)];

[mainWindow bindCommand: IDM_NEWAD withObject: controller

selector: @selector(insert:)];

[mainWindow bindCommand: IDM_EDITAD withObject: controller

selector: @selector(replace:)];

[mainWindow bindCommand: IDM_INFOAD withObject: controller

selector: @selector(info:)];

[mainWindow bindCommand: IDM_DELETEAD withObject: controller

selector: @selector(delete:)];

[mainWindow createObjects];

[mainWindow insertChild: [[ListBox alloc] initWithId: IDD_PUSHBUTTON1

andFlags: WS_VISIBLE | WS_TABSTOP

in: mainWindow]];

[controller readList: mainWindow];

[mainWindow makeKeyAndOrderFront: nil];

[addresses run];

[mainWindow free];

[addresses free];

}

58 CHAPTER 8. USING THE CONTAINER CLASS

// => here goes the container stuff

[application run];

[mainwindow free];

[application free];

}

8.1.2 Step one: Creating the container

The �rst thing, we will have to do, is to declare a new variable of type Container *, which we

will use to access the container control.

So, add Container *container to the declaration section of the main function.

Creation of the object itself is just as simple, as creating a Button object. Using initWithId:

andFlags: in: a new object, previously allocated with alloc, will be initialized.

container = [[Container alloc] initWithId: 1001

andFlags: (CCS_MINIRECORDCORE |

WS_VISIBLE)

in: mainwindow];

[mainwindow insertChild: container];

[container setSize: 0:0:[mainwindow width]:[mainwindow height]];

The container object is created using the ags CCS MINIRECORDCORE and WS VISIBLE. The second

one only tells the container to be visible. CCS MINIRECORDCORE is used to specify, which kind of

data will be stored in the container. At the moment, only this style is supported. Don't use the

ag CCS RECORDCORE.

Then the container set a child window of mainwindow, and the size of the newly created control

is set according to the size of it's parent window.

8.1.3 Step two: Inserting data

After creation, it's possible to insert data into the container. As stated before, all kinds of Objective

C objects can be stored in a container. For simplicity, only instances of Object are used here.

Insertion itself can be performed using three distinct methods, insertObject:, insertObject:

withTitle: and insertObject: withTitle: andIcon:. If you are going to display the data

stored in the container as icons, you will normally use the third method shown above, because it

let's you set all information, which will be displayed later.

� insertObject: � � � inserts a new object into the container. In Icon View, no Icon text will

be displayed. The Icon used for this object will be the clock-mouse pointer.

� insertObject: withTitle: � � � analogous to insertObject: an object is inserted into

the container, but here, a title text can be speci�ed.

� insertObject: withTitle: andIcon: � � � here all data, which will be displayed in Icon

View, can be speci�ed. The Icon parameter must be a valid Icon resource.

We will use all three methods described above to insert three di�erent objects into the container.

Here goes the code:

60 CHAPTER 8. USING THE CONTAINER CLASS

[container setSize: 0:0:[mainwindow width]:[mainwindow height]];

[container insertObject: [[Object alloc] init]]; // first object

[container insertObject: [[Object alloc] init]

withTitle: "Title of object"]; // second object

[container insertObject: [[Object alloc] init]

withTitle: "Another object"

andIcon: WinQuerySysPointer (HWND_DESKTOP,

SPTR_APPICON,

FALSE)]; // third object

[container arrange];

[application run];

[mainwindow free];

[application free];

}

Just compile and link this program:

gcc -o cont1.exe cont1.m -lobjcpm -lobjc

emxbind -ep cont1.exe

Figure 8.1 on the page before shows the output produced by this application.

8.2 Using the Details View

The detail's view of a container object looks like a multi-column Listbox. In addition to the features

of a simple Listbox control, the container class makes it possible to edit the data displayed by

simply selecting it and entering the new data.

Container objects in detail's view are widely used across the user interface provided by the Work-

place Shell. Each folder object can be opened in detail's view to provide access to all data

associated with the data or program objects stored inside.

As mentioned before, a Container object in detail's view looks like a multi-column Listbox. So {

in contrast to all other views of Container objects { the data is always some kind of sorted. Every

record (item) stored in a Container is displayed in one line of the Container. Every data �eld of

the items is displayed in one column.

8.2.1 Creating columns

So �rst we have to specify the number of columns to be displayed in the Container object. After

allocation and initialization using alloc and initWithId: andFlags: in: the program must

create all columns needed for display. This is done using addColumn:.

addColumn: takes one parameter of type (char *), which is the column title. This column title

normally is displayed at the head of the column, in the topmost line of the display area of the

Container object.

Adding columns at the moment is done one column at a time. So creating more than one column

results in calling addColumn: for each of them. Take care that the created column is always

62 CHAPTER 8. USING THE CONTAINER CLASS

}

- init;

- setFieldData: (ULONG) field withString: (char *) aString;

- (char *) fieldData: (ULONG) field;

@end

As no data will be allocated dynamically, the class does not have to implement a free method.

The implementation is just as simple.

@implementation ContainerObject

- init

{

[super init];

fields[0][0] = 0x0;

fields[1][0] = 0x0;

fields[2][0] = 0x0;

fields[3][0] = 0x0;

return self;

}

- setFieldData: (ULONG) field withString: (char *) aString

{

if (field > 3) // field number not valid ?

return nil;

strncpy (fields[field],aString,29); // copy at most 29 chars

fields[field][29] = 0x0; // last character is NULL

return self;

}

- (char *) fieldData: (ULONG) field

{

if (field > 3) // field number not valid ?

return NULL;

else

return fields[field];

}

@end

Note that the method init is only implemented to initialize the four strings, so the data displayed

is always valid.

setFieldData: withString: just copies at most 29 characters into the bu�er area for the string.

As strncpy () does not append a NULL character if the source string is longer than the speci�ed

maximum size, the 30

th

character is set to 0x0.

fieldData: just returns a pointer to the internal bu�er area of the �eld data referenced by field.

64 CHAPTER 8. USING THE CONTAINER CLASS

66 APPENDIX A. LITERATURE

