
OS/2 PM and database library

Version 0.6

Reference Manual

February 1995

Thomas Baier

baier@ci.tuwien.ac.at



Abstract

This manual is a reference manual for the Objective C class library for OS/2 PM and database

programming.

Here all necessary information concerning the classes provided by the library can be found.

If you are searching for speci�c information concerning

� Installation � � � Read the Installation Manual.

� Basics of Application development � � � Read the appropriate sections in the Tutorial. There

you can �nd a gentle introduction into using this library package for developing OS/2 PM

applications.

� Classes and Methods provided by the library � � � You can �nd special information about the

provided classes and methods in this manual, the Reference Manual.

� The Database Builder Utility � � � Read the appropriate sections in the Application Program-

ming Tools Manual.

� Literature � � � Look in the Literature section of this Manual.



Contents

I PM programming classes 9

1 Overview 11

1.1 ActionWindow : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

1.2 AutoCheckBox : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

1.3 AutoRadioButton : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

1.4 AutoTriStateButton : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

1.5 Button : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.6 CheckBox : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.7 ComboBox : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.8 CommandList : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.9 Container : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

1.10 EntryField : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

1.11 FileDlg : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

1.12 Frame : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

1.13 ListBox : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

1.14 MainWindow : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

1.15 Menu : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

1.16 MultiLineEntryField : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

1.17 NoteBook : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

1.18 PushButton : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

1.19 RadioButton : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

1.20 ScrollBar : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

1.21 Slider : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

1.22 SpinButton : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

1.23 Static : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

1.24 StdApp : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

1.25 StdDialog : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

1.26 StdWindow : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

1.27 TitleBar : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

5



CONTENTS 7

II Database programming classes 73

4 Overview 75

4.1 DBBoolField : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 75

4.2 DBCharField : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 75

4.3 DBDateField : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 76

4.4 DBField : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 76

4.5 DBFile : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 76

4.6 DBList : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 77

4.7 DBMemoField : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

4.8 DBNumField : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

4.9 DBRecord : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

5 Classes 81

5.1 DBBoolField : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 81

5.2 DBCharField : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 81

5.3 DBDateField : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

5.4 DBField : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

5.5 DBFile : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

5.6 DBList : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

5.7 DBMemoField : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 89

5.8 DBNumField : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 89

5.9 DBRecord : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 90



Part I

PM programming classes

9



Chapter 1

Overview

This manual describes all classes within the library, their instance variables and methods.

Object Window ActionWindow

CommandList

Button

StdApp
StdDialog

StdWindow

Container

EntryField

Frame

ListBox

Menu

MultiLineEntryField

NoteBook

ScrollBar

Slider

SpinButton

Static

TitleBar

ComboBox

AutoCheckBox

AutoRadioButton

AutoTriStateButton

CheckBox

PushButton

RadioButton

FileDlg

TriStateButton

MainWindow

Figure 1.1: Inheritance hierarchy in Presentation Manager Class library

Figure 1.1 on page 11 shows all classes implemented in this library and their inheritence hierarchy.

In the beginning you will be shown an alphabetically listed overview of all classes with their

instance variables and all supported methods. This was written in the style of an Objective C

Interface declaration.

General information about PM programming can be found in [2] and [1]

11



1.5. BUTTON 13

1.5 Button

@interface Button : Window

{

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

- clickdown;

- clickup;

- (USHORT) checked;

- (BOOL) highlighted;

- check;

- checkIndeterminate;

- uncheck;

@end

1.6 CheckBox

@interface CheckBox : Button

{

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

@end

1.7 ComboBox

@interface ComboBox : ListBox

{

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

@end

1.8 CommandList

@interface CommandList : Object

{

ULONG key;

void *data;

CommandList *next;

}



1.10. ENTRYFIELD 15

- (CONTAINER_MINIREC *) nextSelected;

- (BOOL) recordIsSelected;

- invalidateRecord;

- invalidateSelectedRecords;

- hideRecord : sender;

- hideSelectedRecords : sender;

- hideNotSelectedRecords : sender;

- showRecord : sender;

- showAllRecords : sender;

- (BOOL) recordIsHidden;

- (ULONG) columns;

- (FIELDINFO *) firstColumn;

- (FIELDINFO *) lastColumn;

- (FIELDINFO *) nextColumn;

- (FIELDINFO *) previousColumn;

- (char *) columnTitle;

- (ULONG) columnTitleAttributes;

- (ULONG) columnDataAttributes;

- hideColumn : sender;

- showColumn : sender;

- showAllColumns : sender;

- (BOOL) columnIsHidden;

- invalidateColumns;

- setColumnTitleAttributes: (ULONG) attr;

- setColumnDataAttributes: (ULONG) attr;

- select;

- deselect;

- selectAll: sender;

- deselectAll: sender;

- sort: (ULONG) column;

@end

1.10 EntryField

@interface EntryField : Window <Selection>

{

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

- clearSelection;



1.14. MAINWINDOW 17

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

- insertItem: (SHORT) pos text: (char *) buffer;

- (SHORT) count;

- (SHORT) selected;

- (SHORT) itemTextLength: (SHORT) pos;

- (char *) item: (SHORT) pos text: (char *) buffer;

- selectItem: (SHORT) pos;

- deleteItem: (SHORT) pos;

- deleteAll;

@end

1.14 MainWindow

@interface MainWindow : StdWindow

{

}

- initWithId: (ULONG) anId;

- initWithId: (ULONG) anId andFlags: (ULONG) flags;

@end

1.15 Menu

@interface Menu : Window

{

}

- enableItem: (USHORT) identifier;

- disableItem: (USHORT) identifier;

@end

1.16 MultiLineEntryField

@interface MultiLineEntryField : Window

{

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

@end



1.21. SLIDER 19

1.21 Slider

@interface Slider : Window

{

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

@end

1.22 SpinButton

@interface SpinButton : Window

{

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

@end

1.23 Static

@interface Static : Window

{

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

@end

1.24 StdApp

@interface StdApp : Object

{

HAB hab;

HMQ hmq;

}

- init;

- free;

- run;

- (HAB) hab;

@end



1.27. TITLEBAR 21

- makeKeyAndOrderFront: sender;

- performClose: sender;

- (MRESULT) handleMessage: (ULONG) msg

withParams: (MPARAM) mp1 and: (MPARAM) mp2;

@end

1.27 TitleBar

@interface TitleBar : Window

{

}

@end

1.28 TriStateButton

@interface TriStateButton : Button

{

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

@end

1.29 ValueSet

@interface ValueSet : Window

{

}

@end

1.30 Window

@interface Window : Object

{

HWND window;

Window *child;

Window *sibling;

}

- init;

- associate: (HWND) hwnd;

- free;



Chapter 2

Classes

This chapter describes all variables and methods of the classes implemented in this library.

The description consists of three to �ve parts:

1. The name of the class and the precessing inheritance hierarchy

2. A short description of the class and it's proposed usage

3. A list of all instance variables and their use

4. All newly implemented class and instance methods and their description

5. Methods of a delegate object { if it exists { which get called at certain times

The list of instance variables is omitted if there are none of them de�ned but those inherited from

the superclass.

If a class doesn't support delegate objects the corresponding section in the class description is

omitted.

If no return type of some method is speci�ed, the return type defaults to id, a generic pointer to

an Objective C object .

Methods returning an id value normally return self, which is a pointer to the object itself on

successful completion, nil otherwise.

All methods having just one parameter called sender can be used as targets for command/action

bindings. If not speci�ed explicitly, sender is ignored. Normally, this parameter should be a

pointer to the sending object which can be obtained by self.

2.1 ActionWindow

Inherits from: Window : Object

Class description:

ActionWindow is the common superclass for StdWindow and StdDialog. This class implements

the ability to bind command messages to methods in other objects.

Everytime a command message occurs in a StdWindow or StdDialog the Event-Handler sear-

ches for a command binding and { if found { executes the corresponding Action in the Target

object.

23



2.3. AUTORADIOBUTTON 25

2.3 AutoRadioButton

Inherits from: Button : Window : Object

Class description:

The class AutoRadioButton is a subclass of Button. It's only purpose is to simplify creating

a PM Button window for a special purpose.

For a short description of an instance of this class see table 2.1 on the following page. Figure 2.1

on page 27 shows an instance of this class. See the description of the class Button for access

methods.

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG) ags in: (Window *) parent;

This method initializes a newly created instance of AutoRadioButton. Using this class and

method is similar to creating a Button object while specifying the ag BS AUTORADIOBUTTON.

2.4 AutoTriStateButton

Inherits from: Button : Window : Object

Class description:

The class AutoTriStateButton is a subclass of Button. It's only purpose is to simplify creating

a PM Button window for a special purpose.

For a short description of an instance of this class see table 2.1 on the following page. Figure 2.1

on page 27 shows an instance of this class. See the description of the class Button for access

methods.

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG) ags in: (Window *) parent;

This method initializes a newly created instance of AutoTriStateButton. Using this class and

method is similar to creating a Button object while specifying the ag BS AUTO3STATE.

2.5 Button

Inherits from: Window : Object

Class description:

The Objective C class Button represents a special type of a Window. Instances of this class

are normally associated with PM Windows of class WC BUTTON. The instance methods can be

used to set the state of a Button (to simulate a User Action to the Button) or to query the

Button's state if it is a Radiobutton, a Checkbox or a Tri-State Button.

Setting and querying the text displayed in the Button can be done using setText: and text:.

Support for displaying icons instead of a text on a Button is currently not implemented when

creating a Button Object \from Scratch", which means by not using a de�nition for this object

in a OS/2 Resource File.



2.5. BUTTON 27

Flag Description

BS HELP Instead of posting a command message (WM COMMAND),

a help message is posted (WM HELP).

BS SYSCOMMAND When this style is set, a WM SYSCOMMAND message is

posted instead of a command message (WM COMMAND).

BS NOBORDER The Pushbutton doesn't have a drawn border.

Table 2.3: Button styles which can be combined with a Pushbutton

Flag Description

BS DEFAULT Only one Button per window should have this style set.

In dialogs this button is automatically pushed whenever

the user presses the Enter key.

Table 2.4: Button styles which can be combined with a Pushbutton or a Userbutton

The following table list all possible BS xxxx styles and a short description of these.

First the primary Button styles, which de�ne the type of the Button. One of these must be

given. All other style options in the following tables can be combined with one of the primary

style via logical OR. Tables 2.1 (page 26), 2.2 (page 26), 2.3 (page 26) and 2.4 (page 28).

Figure 2.1 on page 27 shows the look of the main Button styles.

- clickdown;

By calling this method a click down with the left mouse button is simulated for this Button.

- clickup;

clickup simulates { as a counterpart to clickdown { a release of the left mouse button when

the mouse pointer is in the Button (\Click Up").

- (ULONG) checked;

checked queries the check state of the Button if it is a Radiobutton, a Checkbox or a Tri-State

Button.

This method returns 0 if the Button is in unchecked state, 1 when in checked state and 2 when

in indeterminate state.

- (BOOL) highlighted;

The result of highlighted is TRUE if the current state of the Button is highlighted, FALSE

otherwise.

- check;

check sets the checked state of the Button.

- checkIndeterminate;

checkIndeterminate sets the indeterminate state of the Button.

- uncheck;

uncheck sets the unchecked state of the Button.



2.8. COMMANDLIST 29

Figure 2.2: Combo Box controls (simple and dropdown)

As in all other initWithId: andFlags: in: methods, parent is a pointer to the parent

window, which must be an instance of Window or one of it's subclasses.

Figure 2.2 on the next page shows two combo boxes. The left one was created using CBS SIMPLE,

the right one using the ag CBS DROPDOWN. Using CBS DROPDOWNLIST would have the same

apperance as the right combo box.

2.8 CommandList

Inherits from: Object

Class description:

Instances of this class are used to store command bindings and associated data. Don't use this

class neither by instanciating nor by inheriting from it. This class will be replaced by a more

generic list class in the future.

It is only used in the class ActionWindow.

2.9 Container

Inherits from: Window : Object

Class description:

The OS/2 container class is one of the most exible user interface classes provided by the OS/2

API. Because of its exibility, there's a lot of work to do for the application programmer, before

he can use a container object in his programs successfully. The Objective C class Container

was created to simplify the handling of the API functions concerning this PM class.

Information concerning this speci�c PM class and how to use it in standard C programs can

be found in [3]. This series of articles is part of EDM/2 and can be obtained via anonymous

ftp from hobbes.nmsu.edu and many other sites which provide OS/2 software.

Instances of this class are designed to store Objective C objects as data. So anything you can

encapsulate in an Objective C class de�nition can be stored in container objects.

Don't forget to specify CCS MINIRECORDCORE at initialization. Only this style is supported at

the moment.

When using detail's view, the objects inserted must conform to the protocol ContainerItem.

Instance Variables:



2.9. CONTAINER 31

- addColumn: (char *) aTitle;

When in detail's view, the container displays data in multiple columns. This method can be

used to add a new column at run-time. aTitle is the title text of the column which is shown

if this feature is enabled.

- insertObject: anObject;

insertObject: inserts a new object into the container. anObject must be an allocated

and initialized Objective C object. The title text of the newly inserted object is empty, the

application uses the clock pointer (SPTR WAIT) as the icon to be displayed.

Figure 2.3: Container window in icon view showing objects created with the di�erent insertObject:

methods

This method is preferred for inserting new objects into a container when in detail's view, where

it doesn't matter, which icon or title is displayed.

Figure 2.3 on the facing page shows a cotainer window in icon view. The leftmost object was

inserted using insertObject:.

When in one of the other container views, consider using insertObject: withTitle: or

insertObject: withTitle: andIcon:.

- insertObject: anObject withTitle: (const char *) aTitle;

Just as with insertObject: a new object is inserted into the container. aTitle speci�es the

title text to be displayed. This method should be used if the container is in text view. The

clock pointer is used as icon.

Figure 2.3 on the page before shows a cotainer window in icon view. The middle object was

inserted using insertObject: withTitle:.

- insertObject: anObject withTitle: (const char *) aTitle andIcon: (ULONG) anIcon;

Using insertObject: withTitle: andIcon: the application programmer has full control

over the data displayed in any of the views. anObject is a pointer to the Objective C object,

which shall be inserted into the container.

The title text of the item is speci�ed via aTitle, a resource handle of the icon (as can be

queried using WinQuerySysPointer ()) is speci�ed in anIcon.

Use this method for inserting new objects when in icon view or tree view, of if you plan to

change the view of the container at run-time to one of these.

Figure 2.3 on the preceding page shows a cotainer window in icon view. The object to the

right was inserted using insertObject: withTitle: andIcon:.

- arrange;



2.9. CONTAINER 33

Figure 2.4 on the next page shows a container window in detail's view. It holds three records,

each of them consisting of two columns. The second record is selected. Note, that the second

column of the second record holds a multi-line entry.

- (ULONG) records;

records queries the number of items currently stored in the container. The number of items

(records) is returned.

- object;

This method returns a pointer to the object of the current record. The current record is set

using the methods firstRecord, lastRecord, nextRecord, previousRecord, firstSelected

and nextSelected.

- (CONTAINER MINIREC *) �rstRecord;

This method retrieves the �rst record in the container. A pointer to the data struction

CONTAINER MINIREC, which is used to store the data internally, is returned. The data of

the record can be accessed using object. It is stored in recordBuffer.

If you want to visit every record, consider using the following piece of code:

.

.

if ([container firstRecord]) {

do {

/* specific manipulations */

/* for each record go here */

} while ([container nextRecord]);

}

.

.

Here, the container object is assumed to be stored in a variable called container. The speci�c

code for manipulating or querying each record is put in the do loop.

firstRecord returns a pointer to the CONTAINER MINIREC structure of the �rst record, if none

exists, NULL is returned.

- (CONTAINER MINIREC *) lastRecord;

In contrast to firstRecord, this method searches for the last record stored in the container.

If none is found, NULL is returned, otherwise a pointer to the CONTAINER MINIREC structure of

the last record.

Visiting all records, starting at the end can be accomplished using this piece of code.

.

.

if ([container lastRecord]) {

do {

/* specific manipulations */

/* for each record go here */

} while ([container previousRecord]);

}

.

.

The variables have the same meaning as shown before in firstRecord.



2.9. CONTAINER 35

Calling hideRecord: causes the current record to be hidden. The record is not deleted, it

only will not be displayed by the container.

This method automatically calls invalidateRecord.

If you want to hide more than one record, consider using hideSelectedRecords: or hideNot-

SelectedRecords: for performance issues. Hiding each record using hideRecord: is painfully

slow.

- hideSelectedRecords: sender;

This method hides all selected records and thereafter causing them to be invalidated.

If you want to hide some records which are currently not selected, walk through the list of

records using firstRecord and nextRecord and select or deselect some of the records using

select or deselect. Afterwards call hideSelectedRecords:.

Because this methods accepts a parameter sender it can be used as target of a command/action

binding. The parameter sender itself is ignored.

- hideNotSelectedRecords: sender;

In contrast to hideSelectedRecords: this method hides all records which are not selected.

sender is ignored.

- showRecord: sender;

This method is the counterpart to hideRecord:. It shows the current record, if it was previ-

ously hidden.

- showAllRecords: sender;

showAllRecords: changes the state of all hidden records to visible again and displays them.

- (BOOL) recordIsHidden;

If the current record is hidden, this method returns YES, otherwise NO is returned.

- (ULONG) columns;

columns is used to query the total number of columns currently existing in detail's view.

- (FIELDINFO *) �rstColumn;

As firstRecord sets the current record to the �rst record, this method a�ects the internal

bu�er variable columnBuffer. The �rst column is put into this variable and columnBuffer is

returned.

columnBuffer stores a pointer to the FIELDINFO structure of the current column.

If there are no columns, NULL is returned.

- (FIELDINFO *) lastColumn;

In contrast to firstColumn, lastColumn queries information about the last column stored in

the container. If no columns exist, NULL is returned.

- (FIELDINFO *) nextColumn;

This method queries information about the next column. The search must have been initialized

using firstColumn.

This part of code can be used to query and modify information for all existing columns, starting

at the �rst one:



2.9. CONTAINER 37

Flag Description

CFA BITMAPORICON The data stored is a bitmap or icon.

CFA STRING The data stored is a text string. This is

the only datatype currently supported. Don't

specify one of the other ags!

CFA ULONG Data is an unsigned long integer.

CFA DATE Data is a date structure.

CFA TIME Data is a time structure.

Table 2.10: Flags specifying the data type of a �eld in a container

Flag Description

CFA SEPARATOR Draw a vertical separator line to the right of

the current column.

CFA HORZSEPARATOR Draw a horizontal separator line underneath

the column title.

CFA OWNER Enable ownerdraw for this �eld. This is cur-

rently not supported by this class.

CFA INVISIBLE If this ag is set, the column is not visible.

CFA FIREADONLY This sets the data displayed to read-only

mode.

Table 2.11: Miscellaneous ags speci�ed for container column data.

columnTitle returns a pointer to the NULL-terminated title string of the current column.

- (ULONG) columnTitleAttributes;

Every column stored in the container has two di�erent attribute settings, one for the title data,

and one for the data itself.

columnTitleAttributes is used to query the title attribute settings of the current column.

These settings can be modi�ed using setColumnTitleAttributes.

Table 2.8 on the preceding page shows the attributes which can be set or queried for the title

data. Additionally, the appearance can be modi�ed using the alignment ags shown in table 2.9

on the page before.

- (ULONG) columnDataAttributes;

Every column stored in the container has two di�erent attribute settings, one for the title data,

and one for the data itself.

columnDataAttributes is used to query the data attribute settings of the current column.

These settings can be modi�ed using setColumnDataAttributes.

Each column can display data of a speci�c data type. The data type is speci�ed using the ags

shown in table 2.10.

Table 2.9 on the page before shows all possible ags used for alignment of the data, table 2.11

shows all other possible ags which can be speci�ed for column data.

- hideColumn: sender;

Using hideColumn: causes the current column to be hidden in the future. The data inside

this column is preserved and can be restored using showColumn:

- showColumn: sender;



2.10. ENTRYFIELD 39

Flag Description

ES LEFT The text in the EntryField is left-justi�ed. This style

is used when neither ES LEFT, nor ES RIGHT nor

ES CENTER is speci�ed.

ES RIGHT The text in the EntryField is right-justi�ed.

ES CENTER The text in the EntryField is centered.

ES AUTOSIZE When this ag is set, the text will be sized to �t in

the EntryField.

ES AUTOSCROLL The text in the EntryField is scrolled to the left or

right if it is longer than would �t in the EntryField.

ES MARGIN A margin is drawn around the EntryField.

ES READONLY The EntryField will be created in read-only mode.

ES UNREADABLE Every character in the text is displayed as an aste-

risk. This is useful when querying passwords.

ES COMMAND This style classi�es the EntryField as a command

entry �eld. This style should be applied to at most

one EntryField per Dialog or Window.

ES AUTOTAB When this ag is set, the focus is moved to the next

Window when a character is appended to the text.

Table 2.12: ES xxxx styles used at creation of an EntryField

Calling this method causes the records to be sorted by column number column. Do not use

this method if your records are not prepared to hold di�erent columns as needed in detail's

view.

The sorting is simply done in ascending order by the ASCII values of the data represented as

strings.

2.10 EntryField

Inherits from: Window : Object

Class description:

The class EntryField was designed to simplify access to OS/2 PM Entry�eld windows. Using

the methods implemented for this class the programmer can control all interesting features of

this prede�ned window class.

The text typed into the entry�eld can be accessed via the inherited methods setTest: and

text:. In future releases of this class library methods for automatically checking typed input

will be provided for integers , oating point numbers ,: : :

By adopting the procotol Selection simple access to Clipboard operations as copy or paste is

provided. See also the description of this protocol on page 71.

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG) ags in: (Window *) parent;

By using this Initializer the Programmer can create a new Entry�eld in an existing parent

window. anId is the PM id of the Entry�eld to be created, flags specify the creation ags

for the Button control (ES xxxx and WS xxxx constants). parent is the parent window of the

newly created Entry�eld, which normally is either an instance of StdDialog or StdWindow.



2.11. FILEDLG 41

To enable the users of your programs to perform simple �le selection as customary in OS/2

PM applications, the class FileDlg is provided. This dialog lets the user select a single �le on

one of the disks, supporting this action with various features shown in �gure 2.6 on the facing

page.

Figure 2.6: Sample �le dialog

A �le dialog can be created either for opening a �le (see initForOpen: withFilter:) or for

saving a new �le (see initForSaveAs: withFilter:).

The dialog provides user interface objects to select the disk drive, the directory and the �lename

of the �le to be opened or saved.

Depending on the initializing method either a Open or a Save button is present to close the

dialog.

Instance Variables:

FILEDLG �leDlg;

This variable is used to store the structure used to create and display a �le dialog. The result

of a �le dialog after closing is also stored here. There is normally no use to access this structure

directly.

Methods:

- init;

This method initializes the structure FILEDLG to zeros and calls the init method of it's su-

perclass.

- initForOpen: (const char *) aTitle withFilter: (char *) aFilter;

This method initializes a dialog for opening a �le. The dialog is always centered in it's parent

window, which is speci�ed as a parameter to runModalFor:.



2.12. FRAME 43

Figure 2.7: Here you can see a standard Listbox (left) and a Listbox window with an additional

horizontal Scrollbar.

Every dialog must either contain FDS OPEN DIALOG or FDS SAVEAS DIALOG. Otherwise an error

code is returned when calling runModalFor:.

Other ags, which can be speci�ed are shown in table 2.13 on the preceding page.

- setOKTitle: (const char *) aTitle;

Using setOKTitle: the application can set the title string of the OK -Button displayed in the

�le dialog. Normally the title string is either Open or Save.

- (ULONG) runModalFor: sender;

runModalFor: displays the �le dialog and runs it as a modal dialog box in respect to sender,

which must be an instance of Window or one of its subclasses.

On successful completion this method returns DID OK, otherwise DID CANCEL is returned.

- (char *) �leName;

After successful execution of the �le dialog, this method returns a pointer to the �lename which

was selected.

This method only returns a valid string after successful execution using runModalFor:.

2.12 Frame

Inherits from: Window : Object

Class description:

Frame is a class designed to provide an interface to OS/2 PM windows of class WC FRAME (Frame

windows).

At the moment no additional functionality to it's superclass Window has been added. Special

support for OS/2 PM Frame windows will be added in the future.

2.13 ListBox

Inherits from: Window : Object

Class description:

ListBox is a class designed to be associated to the OS/2 PM class WC LISTBOX. The class

provides methods to give access to the items in the Listbox window.



2.14. MAINWINDOW 45

- (SHORT) itemTextLength: (SHORT) pos;

This method returns the length of the item text of the item at position pos. Only the number

of characters in the item text is returned. Don't forget to allocate an extra character for the

NULL at the end of the string before querying via item: text:.

- (char *) item: (SHORT) pos text: (char *) bu�er;

item: text: copies the item text of the item at position pos in the Listbox into the array

of characters pointed to by buffer. This method assumes, there is enough space in buffer to

hold all of the item text, including the NULL at the end of the text.

This method returns buffer.

If buffer is NULL, a string is allocated via malloc to hold all of the item text. This string

must be freed by the programmer later using free ().

- (SHORT) selectItem: (SHORT) pos;

Calling this method the speci�ed item at position pos will be selected. If pos is out of the

range of the Listbox items, nothing happens.

- (SHORT) deleteItem: (SHORT) pos;

deleteItem: deletes the item at position pos. If pos is out of the range of the Listbox items,

no item gets deleted.

Deletion of the currently selected item can be accomplished by sending this message:

[listbox deleteItem: [listbox selected]];

Here listbox is a pointer to the ListBox object.

- (SHORT) deleteAll;

deleteAll deletes all items in the Listbox.

2.14 MainWindow

Inherits from: StdWindow : ActionWindow : Window : Object

Class description:

This class is only provided for simpli�cation purposes. It extends it's superclass StdWindow only

by means of specifying default ags when using the methods initWithId: and initWithId:

andFlags:.

By default, the ags

� FCF MINMAX

� FCF SHELLPOSITION

� FCF SYSMENU

� FCF TASKLIST

� FCF TITLEBAR

are speci�ed at creation.

Methods:



2.17. NOTEBOOK 47

MultiLineEntryField is a class designed to provide an interface to OS/2 PM windows of class

WC MLE.

At the moment the only additional functionality to it's superclass Window is the initializer

initWithId: andFlags: in:. Special support for OS/2 PM MLE windows will be added

in the future.

The whole text in the MLE can be accessed via setText: and text:.

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG) ags in: (Window *) parent;

Using initWithId: andFlags: in: you can create an instance of class MultiLineEntry-

Field and an OS/2 PM MLE window from scratch. anId is the PM identi�er of the window,

flags are the ags speci�ed at creation of the MLE. parent represents the parent window of

the object, where the MLE shall be inserted.

Table 2.15 lists all possible style ags to be used for instances of this class.

2.17 NoteBook

Inherits from: Window : Object

Class description:

NoteBook is a class designed to provide an interface to OS/2 PM windows of class WC NOTEBOOK.

At the moment no additional functionality to it's superclass Window has been added. Special

support for OS/2 PM Notebook windows will be added in the future.

2.18 PushButton

Inherits from: Button : Window : Object

Class description:

The class PushButton is a subclass of Button. It's only purpose is to simplify creating a PM

Button window for a special purpose.

For a short description of an instance of this class see table 2.1 on page 26. Figure 2.1 on

page 27 shows an instance of this class. See the description of the class Button for access

methods.

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG) ags in: (Window *) parent;

This method initializes a newly created instance of PushButton. Using this class and method

is similar to creating a Button object while specifying the ag BS PUSHBUTTON.

2.19 RadioButton

Inherits from: Button : Window : Object



2.21. SLIDER 49

Figure 2.9: This �gure shows a horizontal and a vertical slider and a spinbutton

This method is used to initialize a newly created instance of ScrollBar.

The PM identi�er of the window is speci�ed with anId, the parent window, in which the

scrollbar shall be displayed is set via parent.

flags is used to specify, what kind of scrollbar shall be created. See table 2.16 for more

information on the ags.

Figure 2.8 on the next page shows examples of a horizontal scrollbar (left) and a vertical

scrollbar (right).

- (SHORT) position;

This method returns the current scrollbar position. This position is always in the range of

[lowerBound;upperBound].

- (SHORT) lowerBound;

Return the lower bound of the scrollbar range.

- (SHORT) upperBound;

Return the upper bound of the scrollbar range.

- setPosition: (SHORT) position;

setPosition: sets the current position of the slider in respect to the upper and lower bounds.

- setScrollBar: (SHORT) position withBounds: (SHORT) lower : (SHORT) upper;

This method sets the slider position and the upper and lower bounds of the scrollbar. The

slider position must be in the range of [lower;upper].

- setThumbSizeForVisible: (SHORT) visible of: (SHORT) all;

Using setThumbSizeForVisible: of: the size of the slider is adjusted to match visible

visible items of a total of all items.

2.21 Slider

Inherits from: Window : Object

Class description:

A Slider object is used to let the user visually choose a discrete value in a speci�ed range.

Currently, only creation of a Slider object is supported.



2.24. STDAPP 51

Figure 2.10: This �gure shows a simple dialog window containing three Buttons , three Entry�elds

and a drop-down Combobox .

2.24 StdApp

Inherits from: Object

Class description:

This class is used to initialize and free all necessary PM recources needed to run the application.

Every Application written using this library should use exactly one instance of this class.

Instance Variables:

HAB hab;

This variable is used to store the Handle Anchor Block of the application. Read-only access

to this instance variable is provided via hab.

HMQ hmq;

hmq stores the handle of the Application Message Queue. Through this message queue all

application-relevant messages are passed to the designated receiver of these messages.

Because there is normally no need for the programmer to have direct access to this message

queue, no methods for access to hmq are provided.

Methods:

- init;

This is the standard initializer of this class. init creates the Handle Anchor Block and the

Application Message Queue. The appropriate handles are stored in hab respectively hmq.

- free;

free destroys the Application Message Queue and the Anchor Block . After calling this method,

the program is ready to exit.

- run;

run fetches all messages and posts them to the appropriate receivers. This method exits when

a WM QUIT message is received.



2.25. STDDIALOG 53

- free;

free destroys the PM window and frees all resources allocated previously.

- delegate;

This method returns the delegate object of this dialog.

- setDelegate: aDelegate;

Using setDelegate:, the object speci�ed with aDelegate is set the delegate object of this

dialog. See the appropriate section of this class description for the methods which can be

processed by the delegate object.

- (ULONG) result;

result returns the value stored in the instance variable result. result is set after the dialog

gets dismissed.

Therefore calling this method should be done only after the dialog has been dismissed.

- makeKeyAndOrderFront: sender;

Calling makeKeyAndOrderFront: results in the dialog becoming the active window (key win-

dow), where all PM messages are sent to. It is also brought to the front, if hidden by other

windows, or currently invisible.

- runModalFor: sender;

runModalFor: does the same as the previously described method makeKeyAndOrderFront:.

In addition, the dialog is run modal for the window speci�ed by sender. While the dialog is

run, no message processing takes place in the sending window.

runModalFor: terminates, when the dialog gets dismissed.

When sender is nil, the dialog is not run modal for any window, but runModalFor: still

doesn't terminate while the dialog is not dismissed. This can be used for applications consisting

of only a single (or more) dialogs, but no StdWindow. In this case, don't call [application

run], but [dialog runModalFor: nil] (application is the current instance of a StdApp,

dialog the dialog to be run instead of a StdWindow).

- dismiss: sender;

Calling dismiss: causes the dialog { either running modal or not modal { to be dismissed.

The instance variable running is reset to NO and the dialog is hidden from display.

- (MRESULT) handleMessage: (ULONG) msg withParams: (MPARAM) mp1 and:

(MPARAM) mp2;

handleMessage: withParams: and: gets called by the default dialog procedure.

This function evaluates the type of message received and reacts by calling a delegate method,

if implemented (see \Functions implemented by the delegate").

If the received message is of type COMMAND or SYS COMMAND, and a command binding for the

command identi�er has been set up, the corresponding Action in the set up Target gets called.

(see class ActionWindow)

If the corresponding delegate function could not be found, the OS/2 default dialog procedure

WinDefDlgProc is called.

Methods implemented by the delegate:



2.26. STDWINDOW 55

Figure 2.11: This �gure shows an instance of the class StdWindow. At creation of the window, the

ags FCF MENU, FCF SIZEBORDER and FCF ACCELTABLE were speci�ed

.

This method gets called, if a button posts a system command. It should react just alike

buttonWasPressed::.

- sysMenuWasSelected: (ULONG) menuId : sender;

sysMenuWasSelected:: is the counterpart to menuWasSelected::, but this method only gets

called, whenever a system menu item was selected.

- sysCommandPosted: (USHORT) origin : sender;

sysCommandPosted:: is called by the window's handleMessage: withParams: and: whe-

never a system command was posted, and neither sysButtonWasPressed:: and sysMenuWas-

Selected:: return nil.

It's behaviour should be analogous to commandPosted::.

- (MRESULT) handleMessage: (ULONG) msg withParams: (MPARAM) mp1 and:

mp2 : sender;

Every time an event coult not be handle either by the window itself or by one of the delegate

functions, handleMessage: withParams: and: gets called. So all types of events can be

processed without the need to subclass StdDialog.

The return type should always be converted explicitly to type MRESULT.

See also the StdDialog build in method handleMessage: withParams: and:.

2.26 StdWindow

Inherits from: ActionWindow : Window : Object



2.26. STDWINDOW 57

free destroys the PM window and frees all resources allocated previously.

- setSize: (LONG) x : (LONG) y : (LONG) w : (LONG) h;

setSize:::: sets the size of the window to (w/h) and its position to (x/y).

- setRect: (LONG) w : (LONG) h;

Just as with setSize:::: setRect: is used to set the size of the window. In contrast to

setSize:::: the position of the window is not changed.

The size of the window is set to (w/h).

- (LONG) framexo�set;

framexoffset returns the horizontal o�set of the frame window relative to the lower left corner

of its parent window (normally the desktop).

- (LONG) frameyo�set;

This method returns the vertical o�set of the frame window relative to its parent window.

- (LONG) framewidth;

framewidth returns the width of the frame window.

- (LONG) frameheight;

frameheigth returns the heigth of the frame window.

- (HWND) frame;

frame returns the OS/2 PM window handle of the frame window of the StdWindow.

- delegate;

This function returns a pointer to the current set delegate object of the window.

- setDelegate: aDelegate;

setDelegate: sets the object aDelegate as the delegate object of the window.

- setTitle: (char *) aTitle;

Using setTitle: you can set the title of the window. This title appears in the TitleBar of

the window and also in the tasklist.

aTitle is the title to be set.

- makeKeyAndOrderFront: sender;

Calling makeKeyAndOrderFront: results in the StdWindow becoming the active window (key

window), where all PM messages are sent to. It is also brought to the front, if hidden by other

windows, or currently invisible.

- performClose: sender;

performClose: sends an OS/2 PM close message to the window (WM CLOSE), which causes the

window to be closed and { normally { the application to terminate.

- handleMessage: (ULONG) msg withParams: (MPARAM) mp1 and: (MPARAM)

mp2;



2.27. TITLEBAR 59

menuWasSelected:: should return nil if the menu selection could be processed successfully,

a non-nil value otherwise.

- commandPosted: (USHORT) origin : sender;

Every time a command was posted and it could not be processed by buttonWasPressed:: or

menuWasSelected::, or if one of these methods or both are not implemented by the window

delegate, or the command does not result from a button or a menu item, this delegate method

is called.

commandPosted:: should return nil, if the event could be processed successfully, a non-nil

value otherwise.

- sysButtonWasPressed: (ULONG) buttonID : sender;

This method gets called, if a button posts a system command. It should react just alike

buttonWasPressed::.

- sysMenuWasSelected: (ULONG) menuId : sender;

sysMenuWasSelected:: is the counterpart to menuWasSelected::, but this method only gets

called, whenever a system menu item was selected.

- sysCommandPosted: (USHORT) origin : sender;

sysCommandPosted:: is called by the window's handleMessage: withParams: and: whe-

never a system command was posted, and neither sysButtonWasPressed:: and sysMenuWas-

Selected:: return nil.

It's behaviour should be analogous to commandPosted::.

- (MRESULT) handleMessage: (ULONG) msg withParams: (MPARAM) mp1 and:

mp2 : sender;

Every time an event coult not be handle either by the window itself or by one of the delegate

functions, handleMessage: withParams: and: gets called. So all types of events can be

processed without the need to subclass StdWindow.

The return type should always be converted explicitly to type MRESULT.

See also the StdWindow build in method handleMessage: withParams: and:.

2.27 TitleBar

Inherits from: Window : Object

Class description:

Container is a class designed to provide an interface to OS/2 PM windows of class WC TITLE-

BAR.

At the moment no additional functionality to it's superclass Window has been added. Special

support for OS/2 PM Titlebar windows will be added in the future.

2.28 TriStateButton

Inherits from: Button : Window : Object



2.30. WINDOW 61

Methods:

- init;

This method initializes the instance variables to default values, which means it sets window to

NULLHANDLE. init returns self.

- associate: (HWND) hwnd;

This instance method is used to associate an already existing Presentation Manager Window

(Pushbutton, : : : ) with an instance of the class Window.

The only parameter hwnd is the window handle of the OS/2 PM window.

By using this method the programmer can create an Objective C Object without creating a

PM window. After associating a PM window with a window Object, window data can be set

and queried and manipulation can be done by using instance methods.

- free;

free frees all resources allocated by this object. free returns self.

free does not destroy an associated window using the OS/2 API function WinDestroyWindow.

If child windows or sibling windows exist, they are freed before this window.

- createObjects;

createObjects searches if any PM child windows of this window exist, and then creates

appropriate Objective C objects for each of them and inserts them in the window hierarchy of

this window as child windows.

This method is maily used after loading a StdDialog from a resource �le to build the complete

object hierarchy.

- insertChild: aChild;

insertChild: inserts aChild as a child into the window hierarchy of this window. aChild

must be an instance of Window or one of its subclasses.

- insertSibling: aSibling;

insertSibling: inserts aSibling as a child into the window hierarchy of this window.

aSibling must be an instance of Window or one of its subclasses.

- �ndFromID: (ULONG) anId;

findFromID: returns a pointer to an Objective C window identi�ed by its OS/2 identi�er anId,

if there's a window identi�ed by anId beyond the children of this window.

- �ndFromHWND: (HWND) aHwnd;

findFromHWND: returns a pointer to an Objective C window identi�ed by its OS/2 window

handle aHwnd, if there's a window identi�ed by aHwnd beyond the children of this window.

- (char *) text: (char *) bu�er;

By using text: the Window Text of the associated PM window can be queried. If buffer is

NULL, enough memory to hold the window text is allocated via malloc and can be freed later

by the application program using free.



2.30. WINDOW 63

- disable;

disable disables this window. No message processing is done by this window before re-enabling

the window by using enable.

- activate;

activate activates the window.

- deactivate;

deactivate deactivates the window.

- invalidate;

Calling invalidate causes the display area occupied by the window to be invalidated. As a

consequence of this, the window is redrawn.

- show;

If the window was previously hidden (either by using the hide-method or by not specifying

WS VISIBLE at creation time, the window object is shown.

If the window is already visible, this method has no e�ect.

- hide;

hide hides the window object. It can be made visible again using show.

- (MRESULT) handleMessage: (ULONG) msg withParams: (MPARAM) mp1 and:

(MPARAM) mp2;

handleMessage: withParams: and: gets called by the default Window procedure for the

OS/2 PM-class WINDOW CLASS if a message was sent to this window. This function only reacts

to WM ERASEBACKGROUND. If this message is received, TRUE is returned, otherwise the result of

the default window procedure (WinDefWindowProc).

The result should always be converted explicitly to the PM type MRESULT.



Chapter 3

Protocols

This chapter describes all available protocols. This descriptions consists of two parts,

1. The name of the protocol and a list of all classes which adopt it

2. A list of all methods declared and a short description of these

3.1 Selection

Adopted by: EntryField

Protocol description:

This protocol is used to declare all OS/2 Clipboard functions which can be used by the imple-

mented Window classes.

- clearSelection;

clearSelection clears the current Selection of items in the object which adopts this protocol.

- copySelection;

Using copySelection the selected items are copied into the system clipboard. The items

themselves remain unchanged.

- cutSelection;

cutSelection works alike a combination of copySelection and clearSelection. The selec-

ted items are copied into the system clipboard and they are deleted from the source window.

- pasteSelection;

When calling pasteSelection all selected Items in the system clipboard are pasted into the

object implementing this method.

65



Part II

Database programming classes

67



Chapter 4

Overview

This part of the reference manual describes the classes provided by the database library. Figure 4.1

shows all classes implemented by this library.

Object

DBField

DBBoolField

DBList

DBCharField

DBFile

DBDateField

DBMemoField

DBRecord

DBNumField

DBSearchArg

Figure 4.1: Inheritance hierarchy in Database Class library

Before using any of the classes in one of your source code �les, include <db/db.h>. The object

�les must be linked with objcdb.a. This can be accomplished by specifying the linker option

-lobjcdb in addition to -lobjc.

An introduction into using this classes can be found in the tutorial.

Methods and classes not listed here should not be used by the application programmer.

4.1 DBBoolField

@interface DBBoolField : DBField

{

}

@end

4.2 DBCharField

@interface DBCharField : DBField

69



4.6. DBLIST 71

long currentRecord;

}

- init:(char *) fileName;

- create: (char *) fileName withFields: (int) count

list: (DBFIELD *) fields;

- free;

- field: (int) fieldNumber;

- (int) fieldCount;

- readRecord: (long) offset;

- writeRecord: (long) offset;

- (long) currentRecord;

- (BOOL) deleted;

- append;

- replace;

- delete;

- undelete;

- clear;

- (BOOL) findFirst;

- (BOOL) findNext;

- (void *) copyBuffer;

- (void *) copyBufferTo: (void *) aBuffer;

- setBuffer: (void *) aBuffer;

- (long) recordCount;

@end

4.6 DBList

@interface DBList : Object

{

DBRecord *firstRecord;

DBFile *database;

int count;

}

- init;

- initForDatabase: (DBFile *) aDatabase;

- free;

- insertRecord: (DBRecord *) aRecord;

- insertRecord: (DBRecord *) aRecord at: (int) index;

- deleteRecordAt: (int) index;

- findRecordAt: (int) index;

- fetchAllRecords;



4.9. DBRECORD 73

- setNext: (DBRecord *) aRecord;

- next;

@end



Chapter 5

Classes

This chapter describes all variables and methods of the classes implemented in this library.

The description consists of three to �ve parts:

1. The name of the class and the precessing inheritance hierarchy

2. A short description of the class and it's proposed usage

3. A list of all instance variables and their use

4. All newly implemented class and instance methods and their description

The list of instance variables is omitted if there are none of them de�ned but those inherited from

the superclass.

If no return type of some method is speci�ed, the return type defaults to id, a generic pointer to

an Objective C object .

Methods returning an id value normally return self, which is a pointer to the object itself on

successful completion, nil otherwise.

5.1 DBBoolField

Inherits from: DBField : Object

Class description:

DBBoolField is a a special class for handling of �elds storing boolean values.

At the moment, no additional functionality to its superclass DBField is provided.

5.2 DBCharField

Inherits from: DBField : Object

Class description:

DBCharField is a a special class for handling of �elds storing string values.

At the moment, no additional functionality to its superclass DBField is provided.

75



5.5. DBFILE 77

Methods:

- initWithName: (char *) aName andLength: (char) aLength andDecimals: (char)

someDecimals;

initWithName: andLength: andDecimals is used to initialize a DBField object. The �rst

parameter, aName, should be a NULL-terminated string and represents the name of the database

�eld.

aLength speci�es the total length of the data stored in the �eld in bytes. someDecimals

represents the number of decimals stored.

If someDecimals is greater than 0, the total length of the numeric value stored is aLength -

1 - someDecimals digits before the comma, and someDecimals decimals.

- free;

Free the storage allocated for this object and all following database �elds, which are stored in

next.

- setData: (void *) aPointer;

Using this method, the pointer to the data area for this �eld in the internal record bu�er can

be set. Without using this method, data is initialized to NULL.

- (char *) data;

This method returns the pointer to the data area used to store the data for this �eld in the

internal record bu�er.

- add: (DBField *) newField;

Using add: the initialized object newField is appended to the list of �elds.

- next;

next returns a pointer to the next �eld or nil if this one is the last.

- setString: (char *) aString;

This method is used to modify the data in the internal record bu�er.

aString is a NULL-terminated string representing the data to be stored. The data is copied

into the record bu�er.

- (char *) string;

string returns the data currently stored in the internal record bu�er for this �eld as a NULL-

terminated string.

5.5 DBFile

Inherits from: Object

Class description:



5.5. DBFILE 79

- create: (char *) �leName withFields: (int) count list: (DBFIELD *) �elds;

The method previously described (init:) can only be used to open an existing database

�le. When you want to create a new database �le, you have to specify all necessary header

information to write a new template database.

fileName is the name of the database �le, which shall be created. If this �le already exists, it

is overwritten.

count speci�es the number of �elds the database shall contain.

The information what �elds shall be stored is passed in the fields parameter. fields is an

array of structures of type DBFIELD. This type is de�ned in <db/dbtypes.h>.

You must �ll in the following �elds

� name � � � must be a NULL-terminated string of uppercase letters (for compatibility reasons)

with at most 11 characters (including the terminating NULL character). This is the name

of the �eld.

Use toupper () to convert the name to uppercase letter.

� type � � � speci�es the type of data stored in this �eld. This can be DB FLD CHAR for

character �elds (strings), DB FLD NUM for numeric �elds (with and without decimals),

DB FLD LOGIC for �elds storing logic values (boolean values), or DB FLD DATE for �elds

storing dates.

DB FLD MEMO should not be used because handling of memo �elds is not implemented now.

� data ptr � � � is the pointer to the data for this �eld in the record bu�er. This is calculated

at creation of the database. You must initialize this variable to NULL.

� length � � � is the length of the �eld data in bytes. The datatype used for this variable is

unsigned char.

Remember to count all characters to be stored. When using numeric data with decimals,

length is decimals + 1 + number of digits before comma.

When using a date �eld, length must be 8.

Character data is stored without a terminating NULL character.

� dec point � � � is an unsigned int designed to hold the number of decimals for numeric

�elds. For all other �eld types this must be set to 0.

So creating a simple database with two �elds, where the �rst is designed to store a string with

at most 10 characters and a numeric �eld with 5 digits before and 2 after the comma would

look like this:

.

.

DBFile *newDatabase = [DBFile alloc];

DBFIELD fieldinfo[2];

/* set information for first field */

strcpy (fieldinfo[0].name,"FIELD 1");

fieldinfo[0].type = DB_FLD_CHAR;

fieldinfo[0].data_ptr = NULL;

fieldinfo[0].length = 10;

fieldinfo[0].dec_point = 0;

/* set information for second field */

strcpy (fieldinfo[1].name,"FIELD 2");

fieldinfo[1].type = DB_FLD_NUM;

fieldinfo[1].data_ptr = NULL;



5.5. DBFILE 81

Write the record in the internal record bu�er to the database �le. A new record is appended.

This method is equal to using [database writeRecord: [database recordCount]].

- replace;

Replace the current record in the database �le with the data in the internal record bu�er.

This is equal to using [database writeRecord: [database currentRecord]].

- delete;

Mark the current record as deleted. The information is not written to the database automati-

cally. Don't forget to call replace after modifying the record.

- undelete;

Mark the current record as not deleted. The information is not written to the database

automatically. Don't forget to call replace after modifying the record.

- clear;

clear clears the record bu�er. All values are reset to their defaults. You should always call

this method before setting up the record bu�er to append a new record.

- (BOOL) �ndFirst;

To access all records in the database, you should use findFirst and findNext.

findFirst searches for the �rst not deleted record in the database and returns YES on success.

If no active record could be found, NO is returned.

Visiting all records in a database can be accomplished using the following piece of source code

.

.

if ([database findFirst])

do {

.

. /* do modifications to records */

.

} while (![database findNext]);

.

.

Here, database is assumed to be a pointer to a successfully initialized DBFile object.

- (BOOL) �ndNext;

findNext searches for the next record in the database �le which is not marked as deleted.

The search must have been initially started using findFirst.

- (void *) copyBu�er;

copyBuffer creates a new bu�er area in memory. This bu�er area is �lled with the contents

of the internal record bu�er. The newly created bu�er area is returned.

This bu�er area has to be freed again after using it with free ().

- (void *) copyBu�erTo: (void *) aBu�er;

This method copies the internal record bu�er to a new bu�er area pointed to by aBuffer.

After completion, aBuffer is returned.



5.7. DBMEMOFIELD 83

This method appends a new record aRecord to the end of the record list. aRecord must be a

valid instance of DBRecord.

- insertRecord: (DBRecord *) aRecord at: (int) index;

This method inserts a new record aRecord into the record list. aRecord must be a valid

instance of DBRecord.

index is the index in the record list, where the record gets inserted.

Enumeration starts at 0.

- deleteRecordAt: (int) index;

Delete the record at position index. Enumeration of the records starts at 0 and ends at

[dblist count] - 1.

This does not mark the record as deleted. This only deletes the record from the list. All

modi�cations to this record are lost.

- �ndRecordAt: (int) index;

Return a pointer to the DBRecord object of the record a position index. Enumeration of the

records starts at 0 and ends at [dblist count] - 1.

The record returned can be modi�ed with the appropriate methods of DBRecord.

- fetchAllRecords;

Using findFirst and findNext all active records are retrieved into this object.

- setDatabase: (DBFile *) aDatabase;

Associated the database object aDatabase with the record list.

- (DBFile *) database;

This returns the associated instance of DBFile.

- (int) count;

count returns the number of records stored in the database �le.

5.7 DBMemoField

Inherits from: DBField : Object

Class description:

DBMemoField is a a special class for handling of �elds storing multiple lines of text.

Memo �elds are currently not supported.

At the moment, no additional functionality to its superclass DBField is provided.

5.8 DBNumField

Inherits from: DBField : Object

Class description:



5.9. DBRECORD 85

- �ndAt: (int) index;

This method returns the record object a index index in the linked list of records. If index is

0 self is returned.

If the index is out of range, this method returns nil.

Normally, you should not use this method.

- copyToDB;

copyToDB copyies the record bu�er of this object to the internal record bu�er of the database

object.

The number of the record in the database �le is not set. So don't try saving the data using

[database replace].

- copyFromDB;

copyFromDB retrieves the data stored in the internal record bu�er of the database object to

the record bu�er of this object.

- replace;

This method copies the record bu�er to the database object and replaces the record associated

with this object on disk.

- setChanged: (BOOL) value;

Using setChanged: you can modify the value of the instance variable changed by hand.

changed is set to value.

- (BOOL) changed;

The method changed returns the value stored in the instance variable changed.

Normally, YES is returned, if the record got modi�ed, otherwise NO is returned.

- (long) recNo;

recNo returns the number of the record in the database �le, which is associated with this

object.

- setNext: (DBRecord *) aRecord;

Using setNext: the initialized aRecord is set as the next element in the linked list of records.

- next;

next returns a pointer to the next record in the linked list.



Bibliography

[1] Introduction to PM Programming. Salomon, Larry Jr. Article series starting in EDM/2 Vol.

1, issue 7.

[2] OS/2 Version 2.0, Volume 4: Application Development. IBM International Technical Support

Center, Boca Raton. IBM Document Number GG24-3774-00.

[3] Programming the Container Control. Salomon, Larry Jr. Article series in EDM/2 Vol. 1,

issues 3{5.

87



List of Tables

2.1 Main Button styles used to de�ne the type of Button : : : : : : : : : : : : : : : : : 26

2.2 Button styles which can be combined with an AutoRadiobutton : : : : : : : : : : : 26

2.3 Button styles which can be combined with a Pushbutton : : : : : : : : : : : : : : : 26

2.4 Button styles which can be combined with a Pushbutton or a Userbutton : : : : : 28

2.5 Combo box control styles : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

2.6 Global container creation styles : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

2.7 Container creation styles concerning Selection : : : : : : : : : : : : : : : : : : : : : 32

2.8 Flags speci�ed for Container column titles : : : : : : : : : : : : : : : : : : : : : : : 39

2.9 Container ags specifying alignment of data and title text : : : : : : : : : : : : : : 39

2.10 Flags specifying the data type of a �eld in a container : : : : : : : : : : : : : : : : 40

2.11 Miscellaneous ags speci�ed for container column data. : : : : : : : : : : : : : : : 40

2.12 ES xxxx styles used at creation of an EntryField : : : : : : : : : : : : : : : : : : : 42

2.13 Window ags which can be speci�ed for �le dialogs : : : : : : : : : : : : : : : : : : 46

2.14 LS xxxx styles used at creation of a Listbox window : : : : : : : : : : : : : : : : : 49

2.15 MLE xxxx styles used at creation of a MLE window : : : : : : : : : : : : : : : : : : 51

2.16 Flags which can be speci�ed at scrollbar creation : : : : : : : : : : : : : : : : : : : 53

89



List of Figures

1.1 Inheritance hierarchy in Presentation Manager Class library : : : : : : : : : : : : : 11

2.1 This �gure shows (from left to right) the following Buttons types: Pushbutton,

Radiobutton, Checkbox and Tri-state Button. : : : : : : : : : : : : : : : : : : : : : 27

2.2 Combo Box controls (simple and dropdown) : : : : : : : : : : : : : : : : : : : : : : 30

2.3 Container window in icon view showing objects created with the di�erent insert-

Object: methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

2.4 Container window in details view. The second record is selected. : : : : : : : : : : 35

2.5 In this �gure you can see (from left to right) an EntryField without a margin, one

with a margin and an EntryField with margin and the style option BS UNREAD-

ABLE : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43

2.6 Sample �le dialog : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45

2.7 Here you can see a standard Listbox (left) and a Listbox window with an additional

horizontal Scrollbar. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

2.8 This �gure shows a window containing a horizontal and a vertical scrollbar. : : : : 54

2.9 This �gure shows a horizontal and a vertical slider and a spinbutton : : : : : : : : 56

2.10 This �gure shows a simple dialog window containing three Buttons , three Entry�elds

and a drop-down Combobox . : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57

2.11 This �gure shows an instance of the class StdWindow. At creation of the window,

the ags FCF MENU, FCF SIZEBORDER and FCF ACCELTABLE were speci�ed : : : : : : 62

4.1 Inheritance hierarchy in Database Class library : : : : : : : : : : : : : : : : : : : : 75

91



Index

- activate

Window, 63

- add:

DBField, 77

- addColumn:

Container, 31

- append

DBFile, 80

- arrange

Container, 32

- associate:

Window, 61

- bindCommand: withObject: selector:

ActionWindow, 24

- buttonWasPressed::

StdDialog, 54

StdWindow, 58

- changed

DBRecord, 85

EntryField, 40

- check

Button, 27

- checkIndeterminate

Button, 27

- checked

Button, 27

- clear

DBFile, 81

- clearSelection

Selection, 65

- clickdown

Button, 27

- clickup

Button, 27

- columnDataAttributes

Container, 37

- columnIsHidden

Container, 38

- columnTitle

Container, 37

- columnTitleAttributes

Container, 37

- columns

Container, 35

- commandPosted::

StdDialog, 54, 55

StdWindow, 59

- copyBu�er

DBFile, 81

- copyBu�erTo:

DBFile, 81

- copyFromDB

DBRecord, 85

- copySelection

Selection, 65

- copyToDB

DBRecord, 85

- count

DBList, 83

ListBox, 44

- create: withFields: list:

DBFile, 79

- createObjects

Window, 61

- currentRecord

DBFile, 80

- cutSelection

Selection, 65

- data

DBField, 77

- database

DBList, 83

- deactivate

Window, 63

- delegate

StdDialog, 53

StdWindow, 57

- delete

DBFile, 81

- deleteAll

ListBox, 45

- deleteAt:

DBRecord, 84

- deleteItem:

ListBox, 45

- deleteRecordAt:

DBList, 83

- deleted

DBFile, 80

- deselect

93



INDEX 95

StdWindow, 56

- initWithId: andFlags:

MainWindow, 46

StdWindow, 56

- initWithId: andFlags: in:

AutoCheckBox, 24

AutoRadioButton, 25

AutoTriStateButton, 25

Button, 26

CheckBox, 28

ComboBox, 28

Container, 30

EntryField, 39

ListBox, 44

MultiLineEntryField, 47

PushButton, 47

RadioButton, 48

ScrollBar, 48

Slider, 50

SpinButton, 50

Static, 50

TriStateButton, 60

- initWithName: andLength: andDecimals:

DBField, 77

- insert: at:

DBRecord, 84

- insertChild:

Window, 61

- insertItem: text:

ListBox, 44

- insertObject:

Container, 31

- insertObject: withTitle:

Container, 31

- insertObject: withTitle: andIcon:

Container, 31

- insertRecord:

DBList, 83

- insertRecord: at:

DBList, 83

- insertSibling:

Window, 61

- invalidate

Window, 63

- invalidateColumns

Container, 38

- invalidateRecord

Container, 34

- invalidateSelectedRecords

Container, 34

- item: text:

ListBox, 45

- itemTextLength:

ListBox, 44

- lastColumn

Container, 35

- lastRecord

Container, 33

- loadMenu

StdDialog, 52

- lowerBound

ScrollBar, 49

- makeKeyAndOrderFront:

StdDialog, 53

StdWindow, 57

- menuWasSelected::

StdDialog, 54, 55

StdWindow, 58, 59

- nameView:

Container, 32

- next

DBField, 77

DBRecord, 85

- nextColumn

Container, 35

- nextRecord

Container, 34

- nextSelected

Container, 34

- object

Container, 33

- pasteSelection

Selection, 65

- performClose:

StdWindow, 57

- pmId

Window, 62

- position

ScrollBar, 49

- previousColumn

Container, 36

- previousRecord

Container, 34

- readOnly

EntryField, 40

- readRecord:

DBFile, 80

- recNo

DBRecord, 85

- recordCount

DBFile, 82

- recordIsHidden

Container, 35

- recordIsSelected

Container, 34

- records

Container, 33

- replace



INDEX 97

- windowDidResizeFrom:: to:::

StdDialog, 54

StdWindow, 58

- windowWillClose:

StdDialog, 54

StdWindow, 58

- writeRecord:

DBFile, 80

- xo�set

Window, 62

- yo�set

Window, 62

ActionWindow, 23

- bindCommand: withObject: selector:,

24

- execCommand:, 24

- �ndCommandBinding:, 24

- free, 24

- init, 24

commandBindings, 24

AutoCheckBox, 24

- initWithId: andFlags: in:, 24

AutoRadioButton, 25

- initWithId: andFlags: in:, 25

AutoTriStateButton, 25

- initWithId: andFlags: in:, 25

bu�er

DBFile, 78

DBRecord, 84

Button, 25

- check, 27

- checkIndeterminate, 27

- checked, 27

- clickdown, 27

- clickup, 27

- highlighted, 27

- initWithId: andFlags: in:, 26

- uncheck, 27

changed

DBRecord, 84

CheckBox, 28

- initWithId: andFlags: in:, 28

child

Window, 60

columnBu�er

Container, 30

ComboBox, 28

- initWithId: andFlags: in:, 28

commandBindings

ActionWindow, 24

CommandList, 29

Container, 29

- addColumn:, 31

- arrange, 32

- columnDataAttributes, 37

- columnIsHidden, 38

- columnTitle, 37

- columnTitleAttributes, 37

- columns, 35

- deselect, 38

- deselectAll:, 38

- detailView:, 32

- �rstColumn, 35

- �rstRecord, 33

- �rstSelected, 34

- hideColumn:, 37

- hideNotSelectedRecords:, 35

- hideRecord:, 34

- hideSelectedRecords:, 35

- iconView:, 32

- initWithId: andFlags: in:, 30

- insertObject:, 31

- insertObject: withTitle:, 31

- insertObject: withTitle: andIcon:, 31

- invalidateColumns, 38

- invalidateRecord, 34

- invalidateSelectedRecords, 34

- lastColumn, 35

- lastRecord, 33

- nameView:, 32

- nextColumn, 35

- nextRecord, 34

- nextSelected, 34

- object, 33

- previousColumn, 36

- previousRecord, 34

- recordIsHidden, 35

- recordIsSelected, 34

- records, 33

- select, 38

- selectAll:, 38

- setColumnDataAttributes:, 38

- setColumnTitleAttributes:, 38

- showAllColumns:, 38

- showAllRecords:, 35

- showColumn:, 37

- showRecord:, 35

- sort:, 38

- textView:, 32

- treeView:, 32

columnBu�er, 30

createFlags, 30

recordBu�er, 30

count

DBList, 82



INDEX 99

DBFile, 78

FileDlg, 40

- �leName, 43

- init, 41

- initForOpen: withFilter:, 41

- initForSaveAs: withFilter:, 42

- runModalFor:, 43

- setFilter:, 42

- setFlags:, 42

- setOKTitle:, 43

- setTitle:, 42

�leDlg, 41

�leDlg

FileDlg, 41

�leHandle

DBFile, 78

�rstRecord

DBList, 82

Frame, 43

frame

StdWindow, 56

hab

StdApp, 51

hmq

StdApp, 51

length

DBField, 76

ListBox, 43

- count, 44

- deleteAll, 45

- deleteItem:, 45

- initWithId: andFlags: in:, 44

- insertItem: text:, 44

- item: text:, 45

- itemTextLength:, 44

- selectItem:, 45

- selected, 44

MainWindow, 45

- initWithId:, 45

- initWithId: andFlags:, 46

Menu, 46

- disableItem:, 46

- enableItem:, 46

MultiLineEntryField, 46

- initWithId: andFlags: in:, 47

name

DBField, 76

next

DBField, 76

nextRecord

DBRecord, 84

NoteBook, 47

PushButton, 47

- initWithId: andFlags: in:, 47

RadioButton, 47

- initWithId: andFlags: in:, 48

recNo

DBRecord, 84

recordBu�er

Container, 30

result

StdDialog, 52

running

StdDialog, 52

ScrollBar, 48

- initWithId: andFlags: in:, 48

- lowerBound, 49

- position, 49

- setPosition:, 49

- setScrollBar: withBounds::, 49

- setThumbSizeForVisible: of:, 49

- upperBound, 49

Selection, 65

- clearSelection, 65

- copySelection, 65

- cutSelection, 65

- pasteSelection, 65

sibling

Window, 60

Slider, 49

- initWithId: andFlags: in:, 50

SpinButton, 50

- initWithId: andFlags: in:, 50

Static, 50

- initWithId: andFlags: in:, 50

StdApp, 51

- free, 51

- hab, 52

- init, 51

- run, 51

hab, 51

hmq, 51

StdDialog, 52

- buttonWasPressed::, 54

- commandPosted::, 54, 55

- delegate, 53

- dismiss, 53

- free, 53

- handleMessage: withParams: and:, 53

- handleMessage: withParams: and::, 55

- initWithId:, 52


