

6 CONTENTS

1.28 TriStateButton : 21

1.29 ValueSet : 21

1.30 Window : 21

2 Classes 23

2.1 ActionWindow : 23

2.2 AutoCheckBox : 24

2.3 AutoRadioButton : 25

2.4 AutoTriStateButton : 25

2.5 Button : 25

2.6 CheckBox : 28

2.7 ComboBox : 29

2.8 CommandList : 31

2.9 Container : 31

2.10 EntryField : 42

2.11 FileDlg : 44

2.12 Frame : 47

2.13 ListBox : 47

2.14 MainWindow : 50

2.15 Menu : 50

2.16 MultiLineEntryField : 51

2.17 NoteBook : 51

2.18 PushButton : 52

2.19 RadioButton : 52

2.20 ScrollBar : 52

2.21 Slider : 55

2.22 SpinButton : 55

2.23 Static : 55

2.24 StdApp : 57

2.25 StdDialog : 58

2.26 StdWindow : 61

2.27 TitleBar : 66

2.28 TriStateButton : 66

2.29 ValueSet : 67

2.30 Window : 67

3 Protocols 71

3.1 Selection : 71

8 CONTENTS

12 CHAPTER 1. OVERVIEW

1.1 ActionWindow

@interface ActionWindow : Window

{

CommandList *commandBindings;

}

- init;

- free;

- bindCommand: (ULONG) command withObject: anObject

selector: (SEL) aSel;

- findCommandBinding: (ULONG) command;

- (MRESULT) execCommand: (ULONG) command;

@end

1.2 AutoCheckBox

@interface AutoCheckBox : Button

{

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

@end

1.3 AutoRadioButton

@interface AutoRadioButton : Button

{

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

@end

1.4 AutoTriStateButton

@interface AutoTriStateButton : Button

{

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

@end

14 CHAPTER 1. OVERVIEW

- init: (ULONG) aKey data: (void *) aData;

- free;

- insert: (CommandList *) element;

- (int) compare: (CommandList *) elem1

with: (CommandList *) elem2;

- find: (ULONG) aKey;

- setKey: (ULONG) aKey;

- setData: (void *) aData;

- setNext: (CommandList *) element;

- (ULONG) key;

- (void *) data;

- next;

@end

1.9 Container

@interface Container : Window

{

ULONG createFlags;

CONTAINER_MINIREC *recordBuffer;

FIELDINFO *columnBuffer;

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

- addColumn: (char *) aTitle;

- insertObject: anObject;

- insertObject: anObject withTitle: (const char *) aTitle;

- insertObject: anObject withTitle: (const char *) aTitle

andIcon: (ULONG) anIcon;

- arrange;

- iconView: sender;

- nameView: sender;

- textView: sender;

- treeView: sender;

- detailView: sender;

- (ULONG) records;

- object;

- (CONTAINER_MINIREC *) firstRecord;

- (CONTAINER_MINIREC *) lastRecord;

- (CONTAINER_MINIREC *) nextRecord;

- (CONTAINER_MINIREC *) previousRecord;

- (CONTAINER_MINIREC *) firstSelected;

16 CHAPTER 1. OVERVIEW

- copySelection;

- cutSelection;

- pasteSelection;

- (BOOL) changed;

- (BOOL) readOnly;

- setReadOnly;

- setReadWrite;

- setTextLimit: (SHORT) limit;

@end

1.11 FileDlg

@interface FileDlg : Object

{

FILEDLG fileDlg;

}

- init;

- initForOpen: (const char *) aTitle

withFilter: (char *) aFilter;

- initForSaveAs: (const char *) aTitle

withFilter: (char *) aFilter;

- setTitle: (char *) aTitle;

- setFilter: (char *) aFilter;

- setFlags: (ULONG) aFlags;

- setOKTitle: (const char *) aTitle;

- (ULONG) runModalFor: sender;

- (char *) fileName;

@end

1.12 Frame

@interface Frame : Window

{

}

@end

1.13 ListBox

@interface ListBox : Window

{

}

18 CHAPTER 1. OVERVIEW

1.17 NoteBook

@interface NoteBook : Window

{

}

@end

1.18 PushButton

@interface PushButton : Button

{

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

@end

1.19 RadioButton

@interface RadioButton : Button

{

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

@end

1.20 ScrollBar

@interface ScrollBar : Window

{

}

- initWithId: (ULONG) anId andFlags: (ULONG) flags

in: (Window *) parent;

- (SHORT) position;

- (SHORT) lowerBound;

- (SHORT) upperBound;

- setPosition: (SHORT) position;

- setScrollbar: (SHORT) position

withBounds: (SHORT) lower : (SHORT) upper;

- setThumbSizeForVisible: (SHORT) visible

of: (SHORT) all;

@end

20 CHAPTER 1. OVERVIEW

1.25 StdDialog

@interface StdDialog : ActionWindow

{

id delegate;

ULONG result;

BOOL running;

}

- initWithId: (ULONG) anId;

- loadMenu;

- free;

- delegate;

- setDelegate: aDelegate;

- (ULONG) result;

- makeKeyAndOrderFront: sender;

- runModalFor: sender;

- dismiss: sender;

- (MRESULT) handleMessage: (ULONG) msg

withParams: (MPARAM) mp1 and: (MPARAM) mp2;

@end

1.26 StdWindow

@interface StdWindow : ActionWindow

{

HWND frame;

id delegate;

}

- initWithId: (ULONG) anId;

- initWithId: (ULONG) anId andFlags: (ULONG) flags;

- free;

- setSize: (LONG) x : (LONG) y : (LONG) w : (LONG) h;

- setRect: (LONG) w : (LONG) h;

- (LONG) framexoffset;

- (LONG) frameyoffset;

- (LONG) framewidth;

- (LONG) frameheight;

- (HWND) frame;

- delegate;

- setDelegate: aDelegate;

- setTitle: (char *) aTitle;

22 CHAPTER 1. OVERVIEW

- createObjects;

- insertChild: aChild;

- insertSibling: aSibling;

- findFromID: (ULONG) anId;

- findFromHWND: (HWND) aHwnd;

- (char *) text: (char *) buffer;

- (int) textLength;

- setText: (char *) buffer;

- setSize: (LONG) x : (LONG) y : (LONG) w : (LONG) h;

- setRect: (LONG) w : (LONG) h;

- size: (PSWP) aSize;

- (LONG) width;

- (LONG) height;

- (LONG) xoffset;

- (LONG) yoffset;

- (HWND) window;

- (ULONG) pmId;

- enable;

- disable;

- activate;

- deactivate;

- invalidate;

- show;

- hide;

- (MRESULT) handleMessage: (ULONG) msg

withParams: (MPARAM) mp1 and: (MPARAM) mp2;

@end

24 CHAPTER 2. CLASSES

Instance Variables:

CommandList * commandBindings;

This variable stores a list of all command bindings set up for a certain instance of ActionWindow

or one of its subclasses.

Methods:

- init;

The instance method init initializes the instance variable commandBindings to nil.

- free;

free frees the memory allocated for the list of command bindings.

- bindCommand: (ULONG) command withObject: anObject selector: (SEL) aSel;

bindCommand: withObject: selector: sets up a new command binding. command is the

command identi�er, which normally is the identi�er of the sender of the command (Pushbutton,

Menuitem, : : :). anObject is the Target , aSel the selector

1

of the Action.

An Action must be of the form nameOfMethod: sender. Only these methods can be called by

execCommand. Actions should return nil on successful execution, a non-nil value otherwise.

- �ndCommandBinding: (ULONG) command;

This method is used for checking, if a command binding for command has been set up previously.

findCommandBinding: returns nil, if no command binding for command has been set up, a

non-nil value otherwise.

- (MRESULT) execCommand: (ULONG) command;

execCommand: searches for the command binding for command and executes the corresponding

Action in the set up Target , if one was found.

2.2 AutoCheckBox

Inherits from: Button : Window : Object

Class description:

The class AutoCheckBox is a subclass of Button. It's only purpose is to simplify creating a

PM Button window for a special purpose.

For a short description of an instance of this class see table 2.1 on page 26. Figure 2.1 on

page 27 shows an instance of this class. See the description of the class Button for access

methods.

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG)
ags in: (Window *) parent;

This method initializes a newly created instance of AutoCheckBox. Using this class and method

is similar to creating a Button object while specifying the
ag BS AUTOCHECKBOX.

1

The selector of a method can be queried via @selector (...)

26 CHAPTER 2. CLASSES

Flag Description

BS PUSHBUTTON The created Button will be a Pushbutton.

BS CHECKBOX The Button will be a Checkbox.

BS AUTOCHECKBOX The Button will be an AutoCheckbox, this

one toggles it's state every time the user clicks

on the Button.

BS RADIOBUTTON The Button will be a Radiobutton. In con-

trast to Checkboxes, a dot appears if the But-

ton is checked.

BS AUTORADIOBUTTON In addition to a normal Radiobutton an

AutoRadiobutton automatically unchecks all

other Radiobuttons in the same group if it is

checked.

BS 3STATE A Tri-state Button has an additional check

state, which is called indeterminate.

BS AUTO3STATE same as AutoCheckbox, but Tri-state Button.

BS USERBUTTON The button created will be an application-

de�ned button. It has to be drawn by the

application when a BN PAIN message is recei-

ved by the parent window.

Table 2.1: Main Button styles used to de�ne the type of Button

Figure 2.1: This �gure shows (from left to right) the following Buttons types: Pushbutton, Radio-

button, Checkbox and Tri-state Button.

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG)
ags in: (Window *) parent;

Using this Initializer the Programmer can create a new Button in an existing parent window.

anId is the PM id of the button to be created, flags specify the creation
ags for the Button

control (BS xxxx and WS xxxx constants). parent is the parent window of the newly created

Button, which normally is either an instance of StdDialog or StdWindow.

After creation of the Button the size can be set via setSize:::: and the text to be displayed

via setText:.

Association to an existing PM Button Window should be done by using associate:.

A newly created Button Object is not automatically inserted as a child window of it's parent.

Use [parent insertChild: button] where parent is the parent window and button is the

newly created Button Object.

Flag Description

BS NOCURSORSELECT The Radiobutton is not selected when it is gi-

ven the focus from keyboard actions.

Table 2.2: Button styles which can be combined with an AutoRadiobutton

28 CHAPTER 2. CLASSES

Flag Description

CBS SIMPLE If this
ag is speci�ed, the entry �eld and the

listbox are visible at any time.

CBS DROPDOWN This
ag causes the listbox only to be dis-

played when requested by the user.

CBS DROPDOWNLIST CBS DROPDOWNLIST should be used, if

the only valid entries in the entry �eld are

items already shown in the listbox. Here

the listbox is only displayed on user demand,

and the entry �eld displays one of the listbox

items. It is not editable.

Table 2.5: Combo box control styles

2.6 CheckBox

Inherits from: Button : Window : Object

Class description:

The class CheckBox is a subclass of Button. It's only purpose is to simplify creating a PM

Button window for a special purpose.

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG)
ags in: (Window *) parent;

This method initializes a newly created instance of CheckBox. Using this class and method is

similar to creating a Button object while specifying the
ag BS CHECKBOX.

2.7 ComboBox

Inherits from: ListBox : Window : Object

Class description:

CombobBox is a class designed to provide an interface to OS/2 PM windows of class WC COM-

BOBOX.

The only method implemented speci�cally for this class is initWithId: andFlags: in:.

A ComboBox consists of a EntryField and a ListBox. Access to the text in the EntryField

is provided via setText: and text:. The items in the ListBox can be accessed by using the

inherited methods of the superclass ListBox.

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG)
ags in: (Window *) parent;

Using this method, a previously allocated instance of ComboBox is initialized. anId is the

OS/2 window identi�er of the object to be initialized, flags are the window
ags to use (see

table 2.5), which can be a combination of one of the
ags special to Combo boxes or general

window
ags (e.g. WS VISIBLE).

30 CHAPTER 2. CLASSES

Flag Description

CCS AUTOPOSITION If this
ag is speci�ed, whenever necessary,

the container automatically repositions the

items displayed in the container.

CCS MINIRECORDCORE This
ag speci�es that the information stored

in the container should consist of items of the

datatype MINIRECORDCORE. This
ag must be

speci�ed at the moment.

CCS READONLY Specifying this
ag causes all items in the

container to be read-only. If you want only

some of the information displayed to be read-

only, use setColumnTitleAttributes: or

setColumnDataAttributes:.

CCS VERIFYPOINTERS Setting this
ag ensures that all application

pointers used are members of a linked list

stored internally in the container. This
ag

should not only be used for debugging pur-

poses. Using this feature decreases response

time of the container object.

Table 2.6: Global container creation styles

Flag Description

CCS SINGLESEL Only selection of a single item is allowed.

CCS EXTENDEDSEL Enable extended selection of the container.

CCS MULTIPLESEL Enable multiple selection.

Table 2.7: Container creation styles concerning Selection

ULONG createFlags;

This instance variable is used to store the creation
ags speci�ed at initialization using init-

WithId: andFlags: in:. This will be used in later releases of this library to correctly store

the state of the object in a stream to be able to load it afterwards.

CONTAINER MINIREC * recordBu�er;

recordBuffer is used as an internal bu�er variable. Many of the methods described later store

temporary data in this variable.

FIELDINFO * columnBu�er;

Again, columnBuffer is an internal bu�er variable used by some of the methods for querying

column information in detail's view.

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG)
ags in: (Window *) parent;

Using this method, a newly created instance of Container gets initialized. The parameter

anId is the PM identi�er of the window, which is created. parent is a pointer to the parent

window (normally an instance of Window or one of it's subclasses) of this instance. flags is

used to pass creation
ags to the container window. The
ags which can be used in addition

to the standard creation
ags (e.g. WS VISIBLE) can be logically grouped. Tables 2.6 and 2.7

shortly describe the
ags speci�c to container controls.

32 CHAPTER 2. CLASSES

This method causes the items currently stored in the container to be rearranged. This can be

necessary after inserting some new items into the container.

If you plan to insert many items, don't call this method after inserting each of them, only after

inserting all of them.

- iconView: sender;

Using this method sets the display mode of the container window to icon view. The parameter

sender is ignored. It can be speci�ed as nil or self.

- nameView: sender;

Using this method sets the display mode of the container window to name view. The parameter

sender is ignored. It can be speci�ed as nil or self.

- textView: sender;

Using this method sets the display mode of the container window to text view. The parameter

sender is ignored. It can be speci�ed as nil or self.

- treeView: sender;

Using this method sets the display mode of the container window to tree view. The parameter

sender is ignored. It can be speci�ed as nil or self.

Figure 2.4: Container window in details view. The second record is selected.

- detailView: sender;

Using this method sets the display mode of the container window to detail view. The parameter

sender is ignored. It can be speci�ed as nil or self.

34 CHAPTER 2. CLASSES

- (CONTAINER MINIREC *) nextRecord;

This method queries the next record. The searchmust have been initialized using firstRecord.

As firstRecord, this method returns a pointer to the appropriate CONTAINER MINIREC struc-

ture for the next record or NULL, if none exists.

- (CONTAINER MINIREC *) previousRecord;

This method queries the previous record. The search must have been initialized using last-

Record.

As lastRecord, this method returns a pointer to the appropriate CONTAINER MINIREC structure

for the previous record or NULL, if none exists.

- (CONTAINER MINIREC *) �rstSelected;

Using the methods firstSelected and nextSelected all selected records can be queried one

by one. Use this piece of code to visit all selected records:

.

.

if ([container firstSelected]) {

do {

/* specific manipulations */

/* for each record go here */

} while ([container nextSelected]);

}

.

.

If no record is currently selected, NULL is returned, otherwise a pointer to the CONTAINER MI-

NIREC structure of the �rst selected record.

- (CONTAINER MINIREC *) nextSelected;

nextSelected is the counterpart to nextRecord. It returns the CONTAINER MINIREC structure

of the next selected record. Before, the search must have been initialized using firstSelected.

If no more record is selected, NULL is returned.

- (BOOL) recordIsSelected;

This method returns YES, if the current record speci�ed in recordBuffer is selected. Otherwise

NO is returned.

- invalidateRecord;

After changing the data of an item, which could a�ect display, you should call this method.

This causes the current record to be redisplayed if necessary.

This method must be called, if you decide to change some parameters in the CONTAINER MI-

NIREC structure of the current record other than the data in the object stored.

- invalidateSelectedRecords;

invalidateSelectedRecords works the same as invalidateRecord, but it extends invalida-

tion to all selected records.

- hideRecord: sender;

36 CHAPTER 2. CLASSES

Flag Description

CFA BITMAPORICON If this
ag is set, the title string should be

really a handle of a bitmap or an icon. This

bitmap is displayed instead of a title string.

Because at the moment, only text strings are

supported by this class, you should not spe-

cify this
ag.

CFA FITITLEREADONLY Specifying this
ag causes the title text to be

read-only.

Table 2.8: Flags speci�ed for Container column titles

Flag Description

CFA LEFT This causes either the data or the title string

to be aligned to the left.

CFA CENTER If speci�ed, data or title string are horizon-

tally centered.

CFA RIGHT Align data or title string to the right.

CFA TOP Top-align the data or title string.

CFA VCENTER Cause the data or title string to be vertically

centered.

CFA BOTTOM Align the data or title string to the bottom.

Table 2.9: Container
ags specifying alignment of data and title text

.

.

if ([container firstColumn]) {

do {

/* specific manipulations */

/* for each column go here */

} while ([container nextColumn]);

}

.

.

- (FIELDINFO *) previousColumn;

This method queries information about the previous column. The search must have been

initialized using lastColumn.

This part of code can be used to query and modify information for all existing columns, starting

at the last one:

.

.

if ([container lastColumn]) {

do {

/* specific manipulations */

/* for each column go here */

} while ([container previousColumn]);

}

.

.

- (char *) columnTitle;

38 CHAPTER 2. CLASSES

This method restores the visibility state of a previously hidden column.

- showAllColumns: sender;

showAllColumns: shows all columns, including those previously hidden.

- (BOOL) columnIsHidden;

If the current column is hidden, YES is returned, otherwise NO.

- invalidateColumns;

After changing either the title attributes or the data attributes of a column, you should call

invalidateColumns to cause the modi�cations to be redisplayed.

- setColumnTitleAttributes: (ULONG) attr;

setColumnTitleAttributes: is used to change the title attributes stored for the current

column. After changing the attributes, don't forget to use invalidateColumns to cause the

columns to be redisplayed correctly.

attr speci�es, which
ags should be set. The current value of the title attributes can be

queried via columnTitleAttributes.

Table 2.8 on page 39 and table 2.9 on page 39 show all possible
ags which can be speci�ed.

See [3] for more information concerning title attributes settings.

- setColumnDataAttributes: (ULONG) attr;

setColumnDataAttributes: is the counterpart to columnDataAttributes and causes the

data attributes of the current column to be set to attr. Possible
ags which can be speci�ed

are shown in table 2.9 on page 39, table 2.10 on the facing page and table 2.11 on the preceding

page.

After modifying any data, don't forget to call invalidateColumns to redisplay the modi�ca-

tions.

See [3] for more information concerning data attributes settings.

- select;

Calling this method selects the current record. The selection is only displayed after calling

invalidateRecord or invalidateSelectedRecords.

- deselect;

Calling this method deselects the current record. The change in the selection state is only

displayed after calling invalidateRecord or invalidateSelectedRecords.

- selectAll: sender;

selectAll: selects all records in the container. This also a�ects temporary hidden records,

but does not display them. So be careful using this method when planning to modify all

selected records afterwards.

- deselectAll: sender;

deselectAll: deselects all records in the container. This also a�ects temporary hidden re-

cords, but does not display them. So be careful using this ethod when planning to modify all

selected records afterwards.

- sort: (ULONG) column;

40 CHAPTER 2. CLASSES

Figure 2.5: In this �gure you can see (from left to right) an EntryField without a margin, one

with a margin and an EntryField with margin and the style option BS UNREADABLE

After creating the Entry�eld the size can be set via setSize:::: and the text to be dis-

played via setText:. Clearing the text of an Entry�eld can be achieved calling [entryfield

setText: ""].

Association to an existing PM Entry�eld Window should be done by using associate:.

A newly created EntryField Object is not automatically inserted as a child window of it's

parent. Use [parent insertChild: entryfield] where parent is the parent window and

entryfield is the newly created EntryField Object.

Table 2.12 (page 42) shows most of the available ES xxxx
ags used at creation of the Entry-

Field.

In addition to these
ags there's also another group of
ags de�ning the encoding scheme for

the text in the EntryField. These
ags are only used when a double-byte encoding scheme is

used for text.

Figure 2.5 on page 43 shows three possible forms of how an EntryField can look.

- (BOOL) changed;

changed returns TRUE if the text displayed in the EntryField has changed since the last call to

this method, FALSE otherwise.

- (BOOL) readOnly;

By using this method the programmer can query if the EntryField is in read-only or in read-

write mode. When read-only no characters can be typed into the EntryField.

This method returns TRUE if the EntryField is in read-only mode, FALSE otherwise (read-write).

- setReadOnly;

Calling this method activates the read-only mode of the EntryField.

- setReadWrite;

setReadWrite switches the EntryField to read-write mode.

- setTextLimit: (SHORT) limit;

By calling setTextLimit: the programmer can set the maximum number of characters which

can be entered into the EntryField. limit is this maximum number of characters.

When querying the contents of the EntryField via text: the maximum number of characters

returned is limit + 1, including the concluding '\0x0' at the end of the string.

2.11 FileDlg

Inherits from: Object

Class description:

42 CHAPTER 2. CLASSES

Flag Description

FDS APPLYBUTTON Specifying this
ag causes an additional Ap-

ply Button to be displayed. This is useful

when the dialog is not run modal.

FDS CENTER This
ag causes the dialog to be centered in

its parent window.

FDS ENABLEFILELB When a Save As dialog is used and this
ag

is speci�ed, the �le listbox is enabled for se-

lection. Otherwise, the user is not allowed to

select an existing �le.

FDS HELPBUTTON Display a Help Button. The button has the

PM identi�er DID HELP PB.

FDS MULTIPLESEL Allow multiple selection of �le names.

FSD OPEN DIALOG Create an open dialog.

FDS PRELOAD VOLINFO Preload the volume info (volume name,: : :).

FDS SAVEAS DIALOG Create a save as dialog.

Table 2.13: Window
ags which can be speci�ed for �le dialogs

The only way to change the appearance of the dialog is to use setFlags:.

aTitle is the title text of the dialog, which can also be speci�ed at a later time using setTitle:.

The parameter aFilter speci�es a �lter by which the �les in the displayed directory are selected

for display. This string can hold some of the special characters * and ?, which here have the

same meaning as using then as a �lename argument to an OS/2 command.

So specifying *.dat as �lter string would cause only �lenames to be displayed which are ending

in .dat.

- initForSaveAs: (const char *) aTitle withFilter: (char *) aFilter;

This method initializes a dialog for saving a �le. The dialog is always centered in it's parent

window, which is speci�ed as a parameter to

aTitle is the title text of the dialog, which can also be speci�ed at a later time using setTitle:.

The parameter aFilter speci�es a �lter by which the �les in the displayed directory are selected

for display. This string can hold some of the special characters * and ?, which here have the

same meaning as using then as a �lename argument to an OS/2 command. runModalFor:.

The only way to change the appearance of the dialog is to use setFlags:.

So specifying *.dat as �lter string would cause only �lenames to be displayed which are ending

in .dat.

- setTitle: (char *) aTitle;

Using this method, you can change the title string displayed in the dialog after initializing the

object. aTitle is this title string.

- setFilter: (char *) aFilter;

This method is used to set the �lter string aFilter after initializing the dialog.

- setFlags: (ULONG) aFlags;

setFlags: is the only possibility to change the appearance of the �le dialog to other set-

tings than the default (either (FDS OPEN DIALOG | FDS CENTER) or (FDS SAVEAS DIALOG |

FDS CENTER), depending on the initializing method used).

44 CHAPTER 2. CLASSES

Flag Description

LS HORZSCROLL This
ags adds a horizontal Scrollbar to the Listbox

window, if it is speci�ed at creation.

LS MULTIPLESEL Normally only one item in the Listbox can be se-

lected once. If this
ag is set, multiple selection is

enabled. Currently querying the multiple selection

is not supported by methods of this class.

LS EXTENDEDSEL Specifying this
ag enables the extended selection

user interface of the Listbox window.

LS OWNERDRAW This
ag tells the Listbox not to draw the items itself.

Appropriate messages are sent to the owner of the

listbox, which has to draw them.

LS NOADJUSTPOS This
ag tells the listbox not to adjust the size and

position of the window. If this
ag is set, maybe only

part of the �rst or last item shown is drawn.

Table 2.14: LS xxxx styles used at creation of a Listbox window

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG)
ags in: (Window *) parent;

initWithId: andFlags: in: can be used to create a Listbox window at runtime. The

parameters are the same as those used in the appropriate method of the class Button.

Figure 2.7 on page 48 shows two forms of Listbox windows. The left is a standard Listbox

with only one Scrollbar { a vertical one. The right Listbox also has a horizontal Scrollbar.

How a Listbox window appears depends on what control
ags you specify in the parameter

flags. Table 2.14 shows which control
ags are possible and what e�ect is caused by speci�fy-

ing them. One ore more of the
ags can be speci�ed. These
ags must be binary or-ed using

the | operator. If none of them should be used, 0L should be given as flags parameter.

- insertItem: (SHORT) pos text: (char *) bu�er;

Using this method you can insert a new item into the Listbox. pos is the position in the

Listbox where the item shall be inserted. If pos is LIT END, the item will be inserted as the

last item in the Listbox.

buffer is the title of the item to be inserted. This string is shown afterwards in the Listbox

at the speci�ed position.

The �rst item in the Listbox is at position 0, the last at count - 1.

- (SHORT) count;

count returns the number of items which are currently in the Listbox.

- (SHORT) selected;

selected returns the position of the selected item. If no item is currently selected, a value

below 0 is returned.

Multiple selection is currently not supported by this class. If you want to query multiple

selection you have to use the appropriate OS/2 API functions, or just wait untill the next

version of this library is released.

46 CHAPTER 2. CLASSES

Flag Description

MLS BORDER This
ag causes a border to be drawn around the

MLE window

MLS READONLY Disable editing in the MLE window (read-only

mode)

MLS WORDWRAP Enable word wrap

MLS HSCROLL Draw a horizontal scroll bar

MLS VSCROLL Draw a vertical scroll bar

MLS IGNORETAB If this
ag is set, the MLE window ignores pres-

sing the TAB key

MLS DISABLEUNDO Disable the undo function of the MLE window.

Table 2.15: MLE xxxx styles used at creation of a MLE window

- initWithId: (ULONG) anId;

This method only calls initWithId: andFlags: of it's superclass StdWindowwhile specifying

the window
ags as shown above.

- initWithId: (ULONG) anId andFlags: (ULONG)
ags;

This method only calls initWithId: andFlags: of it's superclass StdWindowwhile specifying

the window
ags as shown above.

2.15 Menu

Inherits from: Window : Object

Class description:

Menu is a class designed to provide an interface to OS/2 PM windows of class WC MENU. Windows

of these type are the Actionbar or simply whole menus.

The menu items not displayed are no windows on their own. They are created newly before

they get displayed (when the menu they are in gets selected).

Methods:

- enableItem: (USHORT) identi�er;

Calling this method, the menu item speci�ed by identifier is enabled. After calling this

method, the user can select this item.

- disableItem: (USHORT) identi�er;

Calling this method, the menu item speci�ed by identifier is disabled. After calling this

method, the user is not able to select this item.

The menu item can be re-enabled using enableItem:

2.16 MultiLineEntryField

Inherits from: Window : Object

Class description:

48 CHAPTER 2. CLASSES

Flag Description

SBS HORZ This
ags causes a horizontal scrollbar to be

created.

SBS VERT Create a vertical scrollbar. Either this
ag, or

SBS HORZ must be speci�ed.

SBS AUTOTRACK As more information is displayed, the slider au-

tomatically scrolls.

SBS AUTOSIZE When this
ag is speci�ed, the size of the slider

automatically changes to re
ect the amount of

data to be displayed.

Table 2.16: Flags which can be speci�ed at scrollbar creation

Figure 2.8: This �gure shows a window containing a horizontal and a vertical scrollbar.

Class description:

The class RadioButton is a subclass of Button. It's only purpose is to simplify creating a PM

Button window for a special purpose.

For a short description of an instance of this class see table 2.1 on page 26. Figure 2.1 on

page 27 shows an instance of this class. See the description of the class Button for access

methods.

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG)
ags in: (Window *) parent;

This method initializes a newly created instance of RadioButton. Using this class and method

is similar to creating a Button object while specifying the
ag BS RADIOBUTTON.

2.20 ScrollBar

Inherits from: Window : Object

Class description:

If more data is to be displayed in OS/2 PM windows or in window controls than would �t

inside the control, scrollbars are used to let the user choose, which part of the data is to be

shown.

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG)
ags in: (Window *) parent;

50 CHAPTER 2. CLASSES

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG)
ags in: (Window *) parent;

This method initializes the object with the PM identi�er anId in its parent window parent.

flags is used to specify creation
ags for this window.

Figure 2.9 on the following page shows a horizontal and a vertical slider control.

2.22 SpinButton

Inherits from: Window : Object

Class description:

A Spinbutton is an entry �eld where only numeric values can be entered. The object provides

to arrows, which allow the user to increment or decrement the value currently shown in the

accompanying entry �eld.

Currently, only creation of a SpinButton object is supported.

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG)
ags in: (Window *) parent;

This method initializes the object with the PM identi�er anId in its parent window parent.

flags is used to specify creation
ags for this window.

In �gure 2.9 on the next page you can see an example of a spinbutton.

2.23 Static

Inherits from: Window : Object

Class description:

PM windows of this class are used to display static data (e.g. text or bitmaps) on the screen.

Currently, only creation of a Static object is supported.

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG)
ags in: (Window *) parent;

This method initializes the object with the PM identi�er anId in its parent window parent.

flags is used to specify creation
ags for this window.

52 CHAPTER 2. CLASSES

- (HAB) hab;

hab returns the Handle Anchor Block of the application.

2.25 StdDialog

Inherits from: ActionWindow : Window : Object

Class description:

Instances of this class are used to represent OS/2 Dialog windows . At the moment dialogs are

loaded from a resource �le. This also initializes all controls (Buttons, EntryFields,: : :) in the

dialog which are de�ned in the resource �le.

Dialogs can be run modal for a given window, which means, while the dialog is active, no

actions can be processed in the speci�ed parent window, or not modal , where dialogs behave

just like normal OS/2 PM main windows.

Figure 2.10 shows a simple dialog window.

Instance Variables:

id delegate;

delegate stores the handle of the delegate object of the dialog. Any events not processed by

methods of this class are forwarded to the delegate.

See also Methods implemented by the delegate.

ULONG result;

After a dialog is dismissed (closed), the result of the dialog is stored in the instance variable

result. This result can be queried by using the instance method result.

BOOL running;

When a dialog is run either modal or not modal, this variable is set to YES. When the dialog

is dismissed again, it is set back to NO.

This variable is used as a
ag to prevent one instance of a dialog to be run only once at a given

time.

Methods:

- initWithId: (ULONG) anId;

initWithId: loads a dialog resource from the main resource �le, which is linked into the

executable �le. anId is a key value, which uniquely identi�es the dialog to be loaded in the

resource �le.

This method returns self if successful, nil otherwise.

- loadMenu;

If the loaded dialog shall contain an Application menu, the menu must be explicitly loaded

from the resource �le by calling this method. The menu resource is assumed to have the same

resource identi�er as the dialog window itself.

loadMenu returns self.

54 CHAPTER 2. CLASSES

- windowDidMove: sender;

After a window has been successfully moved, the delegate method windowDidMove: gets called.

- windowDidResize: sender;

windowDidResize: gets called after resizing a dialog. The newly achieved size of the window

can be queried by sending the window (sender) appropriate messages (width, height).

- windowDidResizeFrom: (LONG) oldX : (LONG) oldY to: (LONG) newX : (LONG)

newY : sender;

windowDidResizeFrom:: to::: is just the same as the previously described method win-

dowDidResize:. In contrast to this method, windowDidResizeFrom:: to::: also sends the

old (oldX, oldY) and new (newX, newY) width and height of the resized window.

These values can be directly used without querying the width and height of the window via

[sender width] and [sender height].

It can also be useful for some special purposes to know the width and height of the window

before the process of resizing it. These parameters cannot be queried by using any of the

methods of sender.

- windowWillClose: sender;

This function gets called if the StdDialog is about to close. If this function returns a non-nil

value or the delegate object doesn't implement this method, the window will be closed.

If { otherwise { the delegate returns nil, closing the window is stopped and the normal

execution of the program continues.

sender is a pointer to the sending instance of StdDialog.

- buttonWasPressed: (ULONG) buttonId : sender;

Everytime a WM COMMAND message is received by handleMessage: withParams: and: from

a Pushbutton, this message is sent to the delegate of the StdDialog.

buttonId is the OS/2 PM ID of the Button sending the WM COMMAND message. sender is a

pointer to the sending instance of StdDialog.

This method should return nil if the button event could be handled, a non-nil value otherwise.

- menuWasSelected: (ULONG) menuId : sender;

Analogous to buttonWasPressed:: this delegate method is called whenever a menu item gets

selected by the user.

menuWasSelected:: should return nil if the menu selection could be processed successfully,

a non-nil value otherwise.

- commandPosted: (USHORT) origin : sender;

Every time a command was posted and it could not be processed by buttonWasPressed:: or

menuWasSelected::, or if one of these methods or both are not implemented by the window

delegate, or the command does not result from a button or a menu item, this delegate method

is called.

commandPosted:: should return nil, if the event could be processed successfully, a non-nil

value otherwise.

- sysButtonWasPressed: (ULONG) buttonID : sender;

56 CHAPTER 2. CLASSES

Class description:

An instance of this class is a simple OS/2 PM Window, consisting of a frame window and a

client window . It is possible to load resources like an Icon, a Menu Bar or an Accelerator

Table.

Normally there's only one StdWindow in an application, showing and handling the application's

Menu Bar and some default informations.

All messages of interest can be captured by an object called the delegate of the window. This

object can then react to these messages. Normally there's no need to subclass this class.

Figure 2.11 shows a StdWindow containing a menu bar.

For information about simplifying creation of a StdWindow see the class description of Main-

Window.

Instance Variables:

HWND frame;

The instance variable frame is used to store the window handle of the frame window , where

the inherited variable window is used to store the handle of the client window .

id delegate;

This variable is used to store a pointer to the delegate object of this window.

Methods:

- initWithId: (ULONG) anId;

This method is used to initialize an instance of the class StdWindow.

anId is the PM identi�cation number of the window.

This method creates the frame window and the client window. The client window is an instance

of the OS/2 PM-class WINDOW CLASS. (Note the di�erence between Objective C classes and

OS/2 PM-classes!)

The frame window handle is stored in frame, the client window handle in window.

The title of the window can be set via setTitle:.

- initWithId: (ULONG) anId andFlags: (ULONG)
ags;

This method is used to initialize an instance of the class StdWindow. In contrast to init:

id: you can specify some frame creation
ags to specify the resources to be loaded.

flags can be a combination of FCF MENU, FCF ICON and FCF ACCELTABLE. FCF MENU tells the

object, that a Menu Bar should be loaded. The resource id of the Menu Bar must match the

parameter anId. FCF ICON is used to specify an Application Icon to be loaded and shown,

whereas FCF ACCELTABLE loads an Accelerator Table.

You should also specify the type of border to be drawn for the window. This can either be

FCF SIZEBORDER for a resizable border or FCF BORDER for a normal border. A thin border can

be created by specifying FCF THINBORDER.

If you, for example, want to load a Menu Bar and an Icon you have to specify FCF MENU |

FCF ICON as
ags.

- free;

58 CHAPTER 2. CLASSES

handleMessage: withParams: and: gets called by the default window procedure for the

OS/2 PM-class WINDOW CLASS.

This function evaluates the type of message received and reacts by calling a delegate method,

if implemented (see \Functions implemented by the delegate").

If the received message is of type COMMAND or SYS COMMAND, and a command binding for the

command identi�er has been set up, the corresponding Action in the set up Target gets called.

(see class ActionWindow)

If the corresponding delegate function could not be found, handleMessage: withParams:

and: of its precessor in the class hierarchy is called.

Methods implemented by the delegate:

- windowDidMove: sender;

After a window has been successfully moved, the delegate method windowDidMove: gets called.

- windowDidResize: sender;

windowDidResize: gets called after resizing a window. The newly achieved size of the window

can be queried by sending the window (sender) appropriate messages (width, height).

- windowDidResizeFrom: (LONG) oldX : (LONG) oldY to: (LONG) newX : (LONG)

newY : sender;

windowDidResizeFrom:: to::: is just the same as the previously described method win-

dowDidResize:. In contrast to this method, windowDidResizeFrom:: to::: also sends the

old (oldX, oldY) and new (newX, newY) width and height of the resized window.

These values can be directly used without querying the width and height of the window via

[sender width] and [sender height].

It can also be useful for some special purposes to know the width and height of the window

before the process of resizing it. These parameters cannot be queried by using any of the

methods of sender.

- windowWillClose: sender;

This function gets called if the StdWindow is about to close. If this function returns a non-nil

value or the delegate object doesn't implement this method, the window will be closed.

If { otherwise { the delegate returns nil, closing the window is stopped and the normal

execution of the program continues.

sender is a pointer to the sending instance of StdWindow.

- buttonWasPressed: (ULONG) buttonId : sender;

Everytime a WM COMMAND message is received by handleMessage: withParams: and: from

a Pushbutton, this message is sent to the delegate of the StdWindow.

buttonId is the OS/2 PM ID of the Button sending the WM COMMAND message. sender is a

pointer to the sending instance of StdWindow.

This method should return nil if the button event could be handled, a non-nil value otherwise.

- menuWasSelected: (ULONG) menuId : sender;

Analogous to buttonWasPressed:: this delegate method is called whenever a menu item gets

selected by the user.

60 CHAPTER 2. CLASSES

Class description:

The class TriStateButton is a subclass of Button. It's only purpose is to simplify creating a

PM Button window for a special purpose.

For a short description of an instance of this class see table 2.1 on page 26. Figure 2.1 on

page 27 shows an instance of this class. See the description of the class Button for access

methods.

Methods:

- initWithId: (ULONG) anId andFlags: (ULONG)
ags in: (Window *) parent;

This method initializes a newly created instance of TriStateButton. Using this class and

method is similar to creating a Button object while specifying the
ag BS 3STATE.

2.29 ValueSet

Inherits from: Window : Object

Class description:

ValueSet is a class designed to provide an interface to OS/2 PM windows of class WC VALUESET.

At the moment no additional functionality to it's superclass Window has been added. Special

support for OS/2 PM Valueset windows will be added in the future.

2.30 Window

Inherits from: Object

Class description:

Window is an abstract superclass for all classes representing some kind of window (e.g. an

Entry�eld, a StdWindow or a Dialog).

This class should never be instantiated. It doesn't provide enough functionality to be really

useful. It can be compared to the Objective C root class Object, it's the root class for all PM

windows.

Only PM Windows with minimal functionality should be associated directly with instances of

this class (e.g. Static Texts, Pushbuttons, : : :).

Instance Variables:

HWND window;

window is an OS/2 PM window handle. It stores the handle of the PM window associated with

an instance of this class.

Window * child;

This variable points to the �rst child window of this window.

Window * sibling;

sibling points to the �rst sibling window of this window.

62 CHAPTER 2. CLASSES

The window text is copied into buffer, which must be large enough to hold all of the text,

and bu�er, or a pointer to the newly allocated area is returned.

The length of the window text can be queried via textLength.

- (int) textLength;

This method returns the number of characters the window text consists of. Don't forget to

allocate an extra byte for the End-of-String-character before using text:.

- setText: (char *) bu�er;

setText: is used to set the window text to a new string. This string is stored in buffer.

- setSize: (LONG) x : (LONG) y : (LONG) w : (LONG) h;

The instance method setSize:::: is used for resizing a PM window by the application pro-

gram. The parameters x and y represent the lower left corner of the window relative to its

parent, w and h the width and the height of the window.

- setRect: (LONG) w : (LONG) h;

setRect: is used to set the size of the window without changing the relative position in its

parent window.

The new size of the window is speci�ed by (w/h).

- size: (PSWP) aSize;

size: �lls the SWP-structure aSize with the appropriate values by querying this window's

instance variables.

- (LONG) width;

width returns the width of the window in pixels.

- (LONG) height;

height returns the height of the window in pixels.

- (LONG) xo�set;

xoffset returns the horizontal o�set of the lower left corner of the window from the lower left

corner of the desktop in pixels.

- (LONG) yo�set;

yoffset returns the vertical o�set of the lower left corner of the window from the lower left

corner of the desktop in pixels.

- (HWND) window;

This method returns the handle of the Presentation Manager window associated with this

window object. If no PM window is associated with this object, NULLHANDLE is returned.

- (ULONG) pmId;

pmId returns the OS/2 PM identi�cation key of the window.

- enable;

enable (re-) enables this window. Message processing for this window continues after receiving

this message, if the window was previously in disabled state.

64 CHAPTER 2. CLASSES

66 CHAPTER 3. PROTOCOLS

70 CHAPTER 4. OVERVIEW

{

}

@end

4.3 DBDateField

@interface DBDateField : DBField

{

}

@end

4.4 DBField

@interface DBField : Object

{

DBField *next;

char *data,

length,

decimals,

*name,

*string;

}

- initWithName: (char *) aName

andLength: (char) aLength

andDecimals: (char) someDecimals;

- free;

- setData: (void *) aPointer;

- (char *) data;

- add: (DBField *) newField;

- next;

- setString: (char *) aString;

- (char *) string;

@end

4.5 DBFile

@interface DBFile : Object

{

DBHEADER *dbHeader;

DBField *fieldList;

FILE *fileHandle;

void *buffer;

72 CHAPTER 4. OVERVIEW

- setDatabase: (DBFile *) aDatabase;

- (DBFile *) database;

- (int) count;

@end

4.7 DBMemoField

@interface DBMemoField : DBField

{

}

@end

4.8 DBNumField

@interface DBNumField : DBField

{

}

@end

4.9 DBRecord

@interface DBRecord : Object

{

DBRecord *nextRecord;

DBFile *database;

long recNo;

void *buffer;

BOOL changed;

}

- initForDatabase: (DBFile *) aDatabase;

- free;

- insert: (DBRecord *) aRecord at: (int) index;

- deleteAt: (int) index;

- findAt: (int) index;

- copyToDB;

- copyFromDB;

- replace;

- setChanged: (BOOL) value;

- (BOOL) changed;

- (long) recNo;

74 CHAPTER 4. OVERVIEW

76 CHAPTER 5. CLASSES

5.3 DBDateField

Inherits from: DBField : Object

Class description:

DBDateField is a a special class for handling of �elds storing dates.

At the moment, no additional functionality to its superclass DBField is provided.

5.4 DBField

Inherits from: Object

Class description:

DBField provides an interface to any database �eld stored in a DBase III compatible database.

Providing methods for simple access, the program is enabled to query the information stored

in a record and modify it.

Access to all �elds of a database is provided by a linked list of DBField objects.

Instance Variables:

DBField * next;

This variable is used to hold a pointer to the DBField object representing the next database

�eld. If the current �eld is the last one, next is initialized to nil.

char * data;

Information for the �elds are stored in a global record bu�er. data is a pointer to a location

in the bu�er, where the data for this �eld stands.

The data for a �eld is always stored in an array of characters of length length. To provide

simpler access the data can be copied into a NULL-terminated string and written back into the

record bu�er after modifying it.

char length;

length is used to store the complete length of the �eld data in bytes.

char decimals;

If the �eld is used to store numeric values, decimals can be used to specify the number of

decimals stored.

char * name;

The instance variable name holds a pointer to a NULL-terminated string containing the name

of the �eld.

char * string;

As mentioned above in the description of data, this variable points to a NULL-terminated string

holding the data as needed by the library functions to modify strings (strlen (), strcat

(),: : :)

Reading and writing this variable should only be done using the string and setString:

methods. This guarantees that the internal record bu�er is up to date.

78 CHAPTER 5. CLASSES

The class DBFile is designed to provide access to DBase III databases. It provides methods

to read, modify and write single records in such database �les.

At the moment, records are not really deleted from the database if you call the appropriate

delete method. They are only marked as deleted. Future versions of this library will add a

pack method, where the space allocated for those records is reused again.

So at this time, deletion of a record can easily be redone by using undelete.

No synchronization or locking is done by this class. So you have to take care not to open a

single database �le by two di�erent DBFile objects, neither in the same process, nor in another

one.

Instance Variables:

DBHEADER * dbHeader;

Every DBase III database �le consists of a header and a body part.

The header stores information as the last date of update to this �le, a record count and the

length of a single record.

The body of the �le is used to store the records themselves.

The instance variable dbHeader is used to store the header information for the database �le.

This information is modi�ed whenever records are appended or modi�ed.

You should never modify the header information by yourself.

DBField * �eldList;

fieldList is a pointer to a linked list of �elds. This variable points to the �rst DBField object

for this database.

FILE * �leHandle;

The variable fileHandle is used internally to read data from and write data to the database

�le. There is also no need to use it directly.

void * bu�er;

When retrieving a record or storing it back into the database, an internal record bu�er is used

which is big enough to hold exactly one database record. buffer points to this area in memory.

long currentRecord;

As the internal record bu�er can hold exactly one record at a given time, the DBFile object

mus know, which record was read (to write it back into the database again). currentRecord

stores the number of the last record which was retrieved into the record bu�er.

Methods:

- init: (char *) �leName;

This initializer method init: is used to set up all necessary data for the database.

First, the �le referenced by fileName is opened and the database header is read. Then the

instance variables are initialized to the appropriate values. The �eld list is created and set up

correctly.

After calling this method, you can be sure that the database you want to access is ready-to-use.

80 CHAPTER 5. CLASSES

fieldinfo[1].length = 5 + 1 + 2;

fieldinfo[1].dec_point = 2;

[newDatabase create: "newdb.dbf"

withFields: 2

list: fieldinfo];

[newDatabase free];

.

.

Note the calculation of the �eld length for the second database �eld. The total length is

calculated by adding the number of digits before the comma with 1 for the comma itself to the

number of digits after the comma.

- free;

Calling free causes all memory allocated previously by this object to be freed again and closes

the �le.

An eventually modi�ed record in the record bu�er is not saved automatically. By default, the

information is discarded.

- �eld: (int) �eldNumber;

This method returns a pointer to the DBField object for �eld number fieldNumber.

Enumeration starts at 0.

If fieldNumber is out of range, nil is returned.

- (int) �eldCount;

fieldCount returns the total number of �elds for the current database �le.

The �eld numbers are in a range of 0 to [database fieldCount] - 1.

- readRecord: (long) o�set;

Retrieve the record speci�ed by offset into the record bu�er.

Enumeration of records starts at 0 and ends at [database recordCount].

Normally, this method should not be used by the application programmer.

- writeRecord: (long) o�set;

Write the information in the internal record bu�er to the database �le.

offset must be in a range of 0 to [database recordCount].

If offset is equal to [database recordCount], a new record is appended to the database �le.

Normally, this method should not be used by the application programmer.

- (long) currentRecord;

This method returns the number of the record in the internal record bu�er.

- (BOOL) deleted;

if the current record is marked as deleted, YES is returned. Otherwise deleted returns NO.

- append;

82 CHAPTER 5. CLASSES

- setBu�er: (void *) aBu�er;

setBuffer: copies the data in the memory ared pointed to by aBuffer to the internal record

bu�er.

- (long) recordCount;

recordCount returns the number of records currently stored in the database �le.

5.6 DBList

Inherits from: Object

Class description:

To provide access not only to single records in a database �le and to avoid time-consuming

fetching and storing before and after modifying a record, this class was created.

DBList administers a list of records, which can be retrieved in the beginning, and then modi-

�cation is only done in memory, till at the end of the program, all records are stored in the

database again.

At the moment, no methods for saving all records are implemented. This will change in the

next release of the library.

Instance Variables:

DBRecord * �rstRecord;

firstRecord stores a pointer to the linked list of records.

DBFile * database;

database stores a pointer to the associated instance of a DBFile object. Before any operations

to records, this association must be set up.

int count;

The instance variable count holds the total number of records currently stored in the list.

Methods:

- init;

This method initializes an instance of DBList. No association with a database object is made.

Before inserting or modi�ying any records you must set up an association with setDatabase:.

- initForDatabase: (DBFile *) aDatabase;

This method initializes an instance of DBList to an existing and initialized instance of DBFile.

This sets up an association of this object with the database object aDatabase.

- free;

free frees the record list and all other memory allocated by this object.

- insertRecord: (DBRecord *) aRecord;

84 CHAPTER 5. CLASSES

DBNumField is a a special class for handling of �elds storing numeric values.

At the moment, no additional functionality to its superclass DBField is provided.

5.9 DBRecord

Inherits from: Object

Class description:

The previously class DBList is used to store many records in memory at once. DBRecord is

used to to the internal storage of the records and to modify the data stored here.

Instance Variables:

DBRecord * nextRecord;

The instance variable nextRecord points to the next record in the linked list of records.

DBFile * database;

This is a pointer to the associated instance of DBFile.

long recNo;

recNo stores the number of the record this object was created to store.

void * bu�er;

buffer is a pointer to a memory area used as the data bu�er for the record. This bu�er

is initialized by copying the data from the internal record bu�er of the database �le and all

modi�cations to the database are accomplished by simply copying this bu�er to the internal

record bu�er.

BOOL changed;

This variable stores the change-state of the record. After retrieving, this variable holds the

boolean value NO. Whenever the record is changed, this variable is set to YES.

After saving the changes, changed is reset to NO.

Methods:

- initForDatabase: (DBFile *) aDatabase;

This method is used to initialize a newly created record object for the database �le aDatabase.

- free;

free frees the complete record list and all memory previously allocated by this object.

- insert: (DBRecord *) aRecord at: (int) index;

Using insert: at: you can insert a new record object at index index into the record list.

- deleteAt: (int) index;

Delete the record at index index. This does not modify the deleted
ag of the record associated

with this object in the database object.

86 CHAPTER 5. CLASSES

88 BIBLIOGRAPHY

90 LIST OF TABLES

92 LIST OF FIGURES

94 INDEX

Container, 38

- deselectAll:

Container, 38

- detailView:

Container, 32

- disable

Window, 63

- disableItem:

Menu, 46

- dismiss

StdDialog, 53

- enable

Window, 62

- enableItem:

Menu, 46

- execCommand:

ActionWindow, 24

- fetchAllRecords

DBList, 83

- �eld:

DBFile, 80

- �eldCount

DBFile, 80

- �leName

FileDlg, 43

- �ndAt:

DBRecord, 85

- �ndCommandBinding:

ActionWindow, 24

- �ndFirst

DBFile, 81

- �ndFromHWND:

Window, 61

- �ndFromID:

Window, 61

- �ndNext

DBFile, 81

- �ndRecordAt:

DBList, 83

- �rstColumn

Container, 35

- �rstRecord

Container, 33

- �rstSelected

Container, 34

- frame

StdWindow, 57

- frameheight

StdWindow, 57

- framewidth

StdWindow, 57

- framexo�set

StdWindow, 57

- frameyo�set

StdWindow, 57

- free

ActionWindow, 24

DBField, 77

DBFile, 80

DBList, 82

DBRecord, 84

StdApp, 51

StdDialog, 53

StdWindow, 56

Window, 61

- hab

StdApp, 52

- handleMessage: withParams: and:

StdDialog, 53

StdWindow, 57

Window, 63

- handleMessage: withParams: and::

StdDialog, 55

StdWindow, 59

- height

Window, 62

- hide

Window, 63

- hideColumn:

Container, 37

- hideNotSelectedRecords:

Container, 35

- hideRecord:

Container, 34

- hideSelectedRecords:

Container, 35

- highlighted

Button, 27

- iconView:

Container, 32

- init

ActionWindow, 24

DBList, 82

FileDlg, 41

StdApp, 51

Window, 61

- init:

DBFile, 78

- initForDatabase:

DBList, 82

DBRecord, 84

- initForOpen: withFilter:

FileDlg, 41

- initForSaveAs: withFilter:

FileDlg, 42

- initWithId:

MainWindow, 45

StdDialog, 52

96 INDEX

DBFile, 81

DBRecord, 85

- result

StdDialog, 53

- run

StdApp, 51

- runModalFor:

FileDlg, 43

StdDialog, 53

- select

Container, 38

- selectAll:

Container, 38

- selectItem:

ListBox, 45

- selected

ListBox, 44

- setBu�er:

DBFile, 82

- setChanged:

DBRecord, 85

- setColumnDataAttributes:

Container, 38

- setColumnTitleAttributes:

Container, 38

- setData:

DBField, 77

- setDatabase:

DBList, 83

- setDelegate:

StdDialog, 53

StdWindow, 57

- setFilter:

FileDlg, 42

- setFlags:

FileDlg, 42

- setNext:

DBRecord, 85

- setOKTitle:

FileDlg, 43

- setPosition:

ScrollBar, 49

- setReadOnly

EntryField, 40

- setReadWrite

EntryField, 40

- setRect::

StdWindow, 57

Window, 62

- setScrollBar: withBounds::

ScrollBar, 49

- setSize::::

StdWindow, 57

Window, 62

- setString:

DBField, 77

- setText:

Window, 62

- setTextLimit:

EntryField, 40

- setThumbSizeForVisible: of:

ScrollBar, 49

- setTitle:

FileDlg, 42

StdWindow, 57

- show

Window, 63

- showAllColumns:

Container, 38

- showAllRecords:

Container, 35

- showColumn:

Container, 37

- showRecord:

Container, 35

- size:

Window, 62

- sort:

Container, 38

- string

DBField, 77

- sysButtonWasPressed::

StdDialog, 54

StdWindow, 59

- text:

Window, 61

- textLength

Window, 62

- textView:

Container, 32

- treeView:

Container, 32

- uncheck

Button, 27

- undelete

DBFile, 81

- upperBound

ScrollBar, 49

- width

Window, 62

- window

Window, 62

- windowDidMove:

StdDialog, 54

StdWindow, 58

- windowDidResize:

StdDialog, 54

StdWindow, 58

98 INDEX

createFlags

Container, 30

currentRecord

DBFile, 78

data

DBField, 76

database

DBList, 82

DBRecord, 84

DBBoolField, 75

DBCharField, 75

DBDateField, 76

DBField, 76

- add:, 77

- data, 77

- free, 77

- initWithName: andLength: andDeci-

mals:, 77

- next, 77

- setData:, 77

- setString:, 77

- string, 77

data, 76

decimals, 76

length, 76

name, 76

next, 76

string, 76

DBFile, 77

- append, 80

- clear, 81

- copyBu�er, 81

- copyBu�erTo:, 81

- create: withFields: list:, 79

- currentRecord, 80

- delete, 81

- deleted, 80

- �eld:, 80

- �eldCount, 80

- �ndFirst, 81

- �ndNext, 81

- free, 80

- init:, 78

- readRecord:, 80

- recordCount, 82

- replace, 81

- setBu�er:, 82

- undelete, 81

- writeRecord:, 80

bu�er, 78

currentRecord, 78

dbHeader, 78

�eldList, 78

�leHandle, 78

dbHeader

DBFile, 78

DBList, 82

- count, 83

- database, 83

- deleteRecordAt:, 83

- fetchAllRecords, 83

- �ndRecordAt:, 83

- free, 82

- init, 82

- initForDatabase:, 82

- insertRecord:, 83

- insertRecord: at:, 83

- setDatabase:, 83

count, 82

database, 82

�rstRecord, 82

DBMemoField, 83

DBNumField, 83

DBRecord, 84

- changed, 85

- copyFromDB, 85

- copyToDB, 85

- deleteAt:, 84

- �ndAt:, 85

- free, 84

- initForDatabase:, 84

- insert: at:, 84

- next, 85

- recNo, 85

- replace, 85

- setChanged:, 85

- setNext:, 85

bu�er, 84

changed, 84

database, 84

nextRecord, 84

recNo, 84

decimals

DBField, 76

delegate

StdDialog, 52

StdWindow, 56

EntryField, 39

- changed, 40

- initWithId: andFlags: in:, 39

- readOnly, 40

- setReadOnly, 40

- setReadWrite, 40

- setTextLimit:, 40

�eldList

100 INDEX

- loadMenu, 52

- makeKeyAndOrderFront:, 53

- menuWasSelected::, 54, 55

- result, 53

- runModalFor:, 53

- setDelegate:, 53

- sysButtonWasPressed::, 54

- windowDidMove:, 54

- windowDidResize:, 54

- windowDidResizeFrom:: to:::, 54

- windowWillClose:, 54

delegate, 52

result, 52

running, 52

StdWindow, 55

- buttonWasPressed::, 58

- commandPosted::, 59

- delegate, 57

- frame, 57

- frameheight, 57

- framewidth, 57

- framexo�set, 57

- frameyo�set, 57

- free, 56

- handleMessage: withParams: and:, 57

- handleMessage: withParams: and::, 59

- initWithId:, 56

- initWithId: andFlags:, 56

- makeKeyAndOrderFront:, 57

- menuWasSelected::, 58, 59

- performClose:, 57

- setDelegate:, 57

- setRect::, 57

- setSize::::, 57

- setTitle:, 57

- sysButtonWasPressed::, 59

- windowDidMove:, 58

- windowDidResize:, 58

- windowDidResizeFrom:: to:::, 58

- windowWillClose:, 58

delegate, 56

frame, 56

string

DBField, 76

TitleBar, 59

TriStateButton, 59

- initWithId: andFlags: in:, 60

ValueSet, 60

Window, 60

- activate, 63

- associate:, 61

- createObjects, 61

- deactivate, 63

- disable, 63

- enable, 62

- �ndFromHWND:, 61

- �ndFromID:, 61

- free, 61

- handleMessage: withParams: and:, 63

- height, 62

- hide, 63

- init, 61

- insertChild:, 61

- insertSibling:, 61

- invalidate, 63

- pmId, 62

- setRect::, 62

- setSize::::, 62

- setText:, 62

- show, 63

- size:, 62

- text:, 61

- textLength, 62

- width, 62

- window, 62

- xo�set, 62

- yo�set, 62

child, 60

sibling, 60

window, 60

window

Window, 60

