
ASPI Router for OS/2

Daniel Dorau (woodst@cs.tu-berlin.de)

Version 1.01 � June 1997

Licence and Warranty

ASPI Router and the accompaning library are provided to you �AS IS�, without

warranty of any kind. You may use ASPI Router and the accompaning library

for free. The use of ASPI Router and/or the accompaning library implies that

you use it at your own risk and that you agree that the author (Daniel Dorau)

has no warranty obligations and shall not be liable for any damages arising out

of your use of this code, even if they have been advised of the possibility of such

damages. You are allowed to use/modify the library code and use it in your own

code together with the ASPI Router device driver.

Furthermore you may freely distribute ASPI Router and the library as long

as you distribute it in the original non-modi�ed state together with this docu-

mentation and without taking any charge other than for making it available to

others.

2

Contents

1 Overview 3

1.1 Why ASPI Router? . 3

1.2 Why ASPI? . 4

1.3 What does ASPI Router? . 4

1.4 The ASPILIB library . 4

1.5 Current limitations . 4

2 Interface to ASPI Router 4

2.1 Opening the driver . 4

2.2 Semaphore initialization . 5

2.3 Bu�er initialization . 5

2.4 Host adapter inquiry . 6

2.5 Get Device Type . 7

2.6 Abort SRB . 7

2.7 Reset SCSI device . 8

2.8 Issuing SCSI commands . 8

2.9 Closing the driver . 9

2.10 Summary of ASPI Rounter function codes 10

3 The ASPILIB library 10

3.1 Initializing the library . 10

3.2 Using library funtions . 10

3.3 Closing the library . 10

4 Other Information 11

4.1 People I want to thank . 11

4.2 Contact, Reporting bugs . 11

1 Overview

1.1 Why ASPI Router?

In OS/2 it is not possible for Ring-3 applications to call OS2SCSI.DMD or OS2-

ASPI.DMD directly, therefore any application which wants to access the SCSI

bus has to provide its own driver to access the SCSI bus via OS2SCSI.DMD or

OS2ASPI.DMD. Since many users want to write their own SCSI applications but

shy away from writing their own driver, I decided to write a simple driver which

provides access to OS2ASPI.DMD for Ring-3 applications. Since it only routes

SRBs (SCSI request blocks) to OS2ASPI.DMD I named it �ASPI Router�.

3

1.2 Why ASPI?

Besides ASPI, in OS/2 there also exists the possibility to issue SCSI commands

through OS2SCSI.DMD. So why did I decide to use OS2ASPI.DMD?

I decided to use ASPI because a) it seemed to be easier to use for the application

developer as well as for the device driver developer (me) and b) I hope that

libraries for other platforms using ASPI can be ported more easily.

1.3 What does ASPI Router?

The interface of ASPI Router merely is an extension of the interface of OS2-

ASPI.DMD which expects a SRB and a callback function to call when the SRB

was processed. ASPI Router simply takes this SRB from your application via

DosDevIOCtl and calls OS2ASPI.DMD with this SRB after conversion of virtual

to physical addresses. Additionaly, ASPI Router provides a callback function

for OS2ASPI.DMD. If this function gets called by OS2ASPI.DMD, ASPI Router

posts an event semaphore opened by your application before. So before ASPI

Router can process the �rst SRB, the application has to pass the handle of this

semaphore to the driver. ASPI Router closes its own handle of the semaphore

automatically when the application closes the driver.

1.4 The ASPILIB library

The accompaning library consisting of the �les aspilib.cpp, aspilib.h and

srb.h is intended as an example of how to use the ASPI Router device driver.

You may use this library or parts of it in your own programs or modify parts of

it so that it meets your requirements.

1.5 Current limitations

ASPI Router does not support scatter/gather or SRB linking. The maximum

size of data transferred per SRB is 64K (=65536 bytes). Only one applica-

tion can use this driver at a time. Therefore you need to open it with the

OPEN_SHARE_DENYREADWRITE �ag to prevent other applications from opening

the driver while already in use.

2 Interface to ASPI Router

All functions of ASPI Router can be accessed with DosDevIOCtl after opening

the driver with DosOpen. The name of the driver handle is ASPIROU$.

2.1 Opening the driver

The driver can be opened with the following call:

4

ULONG rc; // return value

ULONG ActionTaken; // return value

rc = DosOpen((PSZ) "aspirou$", // open driver

&driver_handle,

&ActionTaken,

0,

0,

FILE_OPEN,

OPEN_SHARE_DENYREADWRITE |

OPEN_ACCESS_READWRITE,

NULL);

2.2 Semaphore initialization

Before any SRBs can be processed, ASPI Router needs a handle of an event

semaphore. ASPI Router will post this semaphore for every SRB which has been

processed. To create this semaphore and to send its handle to ASPI Router, the

following code can be used:

ULONG rc; // return value

USHORT openSemaReturn; // return value

HEV postSema; // event

// semaphore

unsigned long cbreturn;

unsigned long cbParam;

rc = DosCreateEventSem(NULL, &postSema, // create event

DC_SEM_SHARED, 0); // semaphore

rc = DosDevIOCtl(driver_handle, 0x92, // pass

0x03, // semaphore

(void*) &postSema, // handle to

sizeof(HEV), &cbParam, // driver

(void*) &openSemaReturn,

sizeof(USHORT), &cbreturn);

If ASPI Router could open the semaphore, openSemaReturn will be set to zero.

Otherwise an error occured.

2.3 Bu�er initialization

After passing the semaphore handle to the driver you still need to do one step

before you can issue SCSI commands. You have to initialize the bu�er. You have

to allocate a bu�er in your application where the driver can access the data to

5

be transferred. The driver has not only to convert virtual to physical addresses,

it also has to ensure that the virtual address is in physical memory (e.g. not

swapped out) and that it does not change its position in physical memory. To

achieve this, it calls a helper function which locks the bu�er down in memory.

Another important point is that the bu�er must not cross a 64K-boundary in

physical memory. Your task is to allocate this bu�er and pass its address to the

driver. You can do this as follows:

PVOID buffer // our buffer

ULONG rc; // return value

USHORT lockSegmentReturn; // return value

unsigned long cbreturn;

unsigned long cbParam;

rc = DosAllocMem(&buffer, bufsize, // allocate the

OBJ_TILE | PAG_READ // buffer at a

| PAG_WRITE // 64K boundary

| PAG_COMMIT);

rc = DosDevIOCtl(driver_handle, 0x92, // pass buffer

0x04, (void*) buffer, // pointer

sizeof(PVOID), // to driver

&cbParam,

(void*) &lockSegmentReturn,

sizeof(USHORT), &cbreturn);

If DosDevIOCtl returns with a non-zero value of lockSegmentReturn some-

thing went wrong with locking the bu�er.

2.4 Host adapter inquiry

Do determine the number of host adapters available and to retrieve information

about them you can issue the �Host adapter Inquiry� command. Refer to the

�Storage Device Driver Reference� [1] to get more information about it. Here is

an example:

ULONG rc; // return value

unsigned long cbreturn;

unsigned long cbParam;

SRBlock.cmd=SRB_Inquiry; // host adapter inquiry

SRBlock.ha_num=ha; // host adapter number

SRBlock.flags=0; // no flags set

rc = DosDevIOCtl(driver_handle, 0x92, 0x02,

(void*) &SRBlock, sizeof(SRB), &cbParam,

6

(void*) &SRBlock, sizeof(SRB), &cbreturn);

2.5 Get Device Type

To get the device type there is the �Get Device Type� command. Refer to the

�Storage Device Driver Reference� [1] to get more information about it. Here is

an example:

ULONG rc; // return value

unsigned long cbreturn;

unsigned long cbParam;

SRBlock.cmd=SRB_Device; // get device type

SRBlock.ha_num=0; // host adapter number

SRBlock.flags=0; // no flags set

SRBlock.u.dev.target=id; // target id

SRBlock.u.dev.lun=lun; // target LUN

rc = DosDevIOCtl(driver_handle, 0x92, 0x02,

(void*) &SRBlock, sizeof(SRB), &cbParam,

(void*) &SRBlock, sizeof(SRB), &cbreturn);

2.6 Abort SRB

With this command you tell OS2ASPI.DMD to abort the previous SRB. You have

to specify a second SRB with which you pass the address of the SRB to be

aborted to the driver. Aborting a SRB does not have to be successful. Watch

the status values and sense code of the SRB you aborted. For further information

about this command refer to the �Storage Device Driver Reference� [1]. Here is

an example:

ULONG rc; // return value

unsigned long cbreturn;

unsigned long cbParam;

AbortSRB.cmd=SRB_Abort; // abort SRB

AbortSRB.ha_num=0; // host adapter number

AbortSRB.flags=0; // no flags set

AbortSRB.u.abt.srb=&SRBlock; // SRB to abort

rc = DosDevIOCtl(driver_handle, 0x92, 0x02,

(void*) &AbortSRB, sizeof(SRB), &cbParam,

(void*) &AbortSRB, sizeof(SRB), &cbreturn);

7

2.7 Reset SCSI device

A SCSI device can be reset with the �Reset SCSI device� command as described

in the �Storage Device Driver Reference� [1]. Here is an example:

ULONG rc; // return value

unsigned long cbreturn;

unsigned long cbParam;

SRBlock.cmd=SRB_Reset; // reset device

SRBlock.ha_num=0; // host adapter number

SRBlock.flags=SRB_Post; // posting enabled

SRBlock.u.res.target=id; // target id

SRBlock.u.res.lun=lun; // target LUN

rc = DosDevIOCtl(driver_handle, 0x92, 0x02,

(void*) &SRBlock, sizeof(SRB), &cbParam,

(void*) &SRBlock, sizeof(SRB), &cbreturn);

2.8 Issuing SCSI commands

SCSI commands can be issued by sending ASPI SRBs (SCSI Request Blocks)

to the ASPI Router. The data structure de�nition of the SRB and it's constant

de�nitions can be found in srb.h. The cdb_st �eld has to be �lled with a valid

SCSI command. Refer to the SCSI command reference [2] for a description of

the di�erent SCSI devices and their commands. An example of sending a SRB

to ASPI Router follows below:

ULONG rc; // return value

SRB SRBlock;

unsigned long cbreturn;

unsigned long cbParam;

SRBlock.cmd=SRB_Command; // execute SCSI

// command

SRBlock.ha_num=0; // host adapter

// number

SRBlock.flags=SRB_Read | SRB_Post; // data transfer,

// posting enabled

SRBlock.u.cmd.target=6; // Target SCSI ID

SRBlock.u.cmd.lun=0; // Target SCSI LUN

SRBlock.u.cmd.data_len=512*transfer; // # of bytes

// transferred

SRBlock.u.cmd.sense_len=32; // length of

8

// sense buffer

SRBlock.u.cmd.data_ptr=NULL; // pointer to

// data buffer

SRBlock.u.cmd.link_ptr=NULL; // pointer to

// next SRB

SRBlock.u.cmd.cdb_len=6; // SCSI command

// length

SRBlock.u.cmd.cdb_st[0]=0x08; // read command

SRBlock.u.cmd.cdb_st[1]=1; // fixed length

SRBlock.u.cmd.cdb_st[2]=(transfer >> 16) // transfer

& 0xFF; // length MSB

SRBlock.u.cmd.cdb_st[3]=(transfer >> 8) // transfer

& 0xFF; // length

SRBlock.u.cmd.cdb_st[4]=transfer & 0xFF; // transfer

// length LSB

SRBlock.u.cmd.cdb_st[5]=0;

rc = DosDevIOCtl(driver_handle, 0x92, 0x02,

(void*) &SRBlock, sizeof(SRB), &cbParam,

(void*) &SRBlock, sizeof(SRB), &cbreturn);

After the SRB is being processed you may read the status �elds out of the SRB

and decide whether the SRB was processed successfully or not. Notice that

the �eld data_ptr is always set to NULL. Since you initialize the data bu�er

before any SRBs can be processed the driver knows the correct physical address

and inserts it automatically. Note that the valid bit in sense data does not

always represent its current state. Refer to the target status �eld of the SRB to

determine whether the sense data is valid or not.

2.9 Closing the driver

After you're done you have to close the driver. The driver will close its semaphore

handle and unlock the bu�er (otherwise you won't be able to free the memory).

Then don't forget to close the semaphore in your app and free the bu�er memory.

This shows how it can be done:

ULONG rc; // return value

rc = DosCloseEventSem(postSema); // close event semaphore

rc = DosClose(driver_handle); // close driver

rc = DosFreeMem(buffer); // free our buffer

Be careful to close the driver before you free the memory. Attempting to free

locked memory does not work.

9

2.10 Summary of ASPI Rounter function codes

ASPI Router provides the following functions:

Category Function Description

92h 02h Route SRB to ASPI driver

The driver expects the address of a SRB. The

'Data Bu�er Pointer' �eld needs not to be �lled.

92h 03h Pass semaphore handle

The driver expects the pointer to an event

semaphore handle to notify the application that

a SRB has be processed.

92h 04h Pass Data Bu�er Pointer

The driver expects the pointer to a data bu�er.

The bu�er must not cross a 64K-boundary.

3 The ASPILIB library

The ASPILIB library is written as a C++ object to be used with (hopefully) any

C++ compiler. I developed it as an example library that shows how to use the

driver. Since I need it for my tape drive, only functions I need for this application

are implemented. If you need additional functions, add them.

3.1 Initializing the library

First, create a variable of the object type scsiObj. Then you have to call the

init(ULONG bufsize) function to which you have to pass the size of the data

bu�er you wish to use. Note that the maximum size supported by the driver

is 64K (=65536 bytes). If the call returns with TRUE, all went ok, otherwise

something went wrong.

3.2 Using library funtions

After initializing the library you can use any public member functions of your

SCSI object. Be careful to check if your calls return successful and check the

error codes or sense data if necessary.

3.3 Closing the library

Before you quit your application you have to close the library. This is done by

calling the close() function.

10

4 Other Information

4.1 People I want to thank

Big thanks go to Alger Pike (acp107@psu.edu) who wrote the Hello World Device

Driver. Without this I wouldn't have known where to start.

4.2 Contact, Reporting bugs

If you use my driver and/or the library, please tell me what you think about it.

Furthermore you're welcome to report any bugs to me you encounter. My email

address is woodst@cs.tu-berlin.de.

If you want to use PGP for your email, you can retrieve my public key by sending

me a mail with send pgp key in the subject line.

References

[1] Storage Device Driver Reference, part of IBM's Device Driver Kit (DDK),

freely available at http://service.boulder.ibm.com/ddk

[2] SCSI command reference, for those who have Internet access: I found one

in the WWW at http://abekas.com:8080/SCSI2/

11

