
FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

NNAAMMEE

ftnchek − Fortran program checker

SSYYNNOOPPSSIISS

ftnchek [−array=num] [−[no]calltree] [−columns=num] [−common=num] [−[no]declare]

[−[no]division] [−[no]extern] [−[no]f77] [−[no]help] [−[no]hollerith]

[−include=str] [−[no]library] [−[no]linebreak] [−[no]list] [−[no]novice]

[−output=str] [−[no]portability] [−[no]pretty] [−[no]project] [−[no]pure]

[−[no]sixchar] [−[no]symtab] [−[no]truncation] [−usage=num]

[−[no]verbose] [files ...]

IINNTTRROODDUUCCTTIIOONN

Ftnchek (short for Fortran checker) is designed to detect certain errors in a Fortran program that a com-

piler usually does not. Ftnchek is not primarily intended to detect syntax errors. Its purpose is to assist the

user in finding semantic errors. Semantic errors are legal in the Fortran language but are wasteful or may

cause incorrect operation. For example, variables which are never used may indicate some omission in the

program; uninitialized variables contain garbage which may cause incorrect results to be calculated; and

variables which are not declared may not have the intended type. Ftnchek is intended to assist users in the

debugging of their Fortran program. It is not intended to catch all syntax errors. This is the function of the

compiler. Prior to using Ftnchek, the user should verify that the program compiles correctly.

This document first summarizes how to invoke Ftnchek. That section should be read before beginning to

use Ftnchek. Later sections describe Ftnchek’s options in more detail, give an example of its use, and

explain how to interpret the output. The final sections mention the limitations and known bugs in Ftnchek.

IINNVVOOKKIINNGG FFTTNNCCHHEEKK

Ftnchek is invoked through a command of the form:

$ ftnchek [-option -option ...] filename [filename ...]

The brackets indicate something which is optional. The brackets themselves are not actually typed. Here

options are command-line switches or settings, which control the operation of the program and the amount

of information that will be printed out. If no option is specified, the default action is to print error mes-

sages, warnings, and informational messages, but not the program listing or symbol tables.

Each option begins with the ’−’ character. (On VAX/VMS or MS-DOS systems you may use either ’/’ or

’−’.) The options are described at greater length in the next section.

Ftnchek options fall into two categories: switches, which are either true or false, and settings, which have a

numeric or string value. The name of a switch is prefixed by ’no’ to turn it off: e.g. −nopure would turn

off the warnings about impure functions. The ’no’ prefix can also be used with numeric settings, having the

effect of turning off the corresponding warnings. Only the first 3 characters of an option name (not count-

ing the ’−’) need be provided.

The switches which Ftnchek currently recognizes are:

−calltree

Print tree of subprogram call hierarchy. Default = no.

−declare

Print a list of all identifiers whose datatype is not explicitly declared. Default = no.

−division

Warn wherever division is done (except division by a constant). Default = no.

−extern Warn if external subprograms which are invoked are never defined. Default = yes.

−f77 Warn about extensions to the Fortran 77 standard. Default = no.

−help Print command summary. Default = no.

Page 1 January 16, 1993

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

−hollerith

Warn about hollerith constants under −port option. Default = yes.

−library

Begin library mode: do not warn if subprograms in file are defined but never used. Default = no.

−linebreak

Treat linebreaks in continued statements as space. Default = yes.

−list Print source listing of program. Default = no.

−novice Give warnings suitable for novice users.

−portability

Warn about non-portable usages. Default = no.

−pretty Give certain messages related to appearance of source code. Default = yes.

−project

Create project file (see explanation below). Default = no.

−pure Assume functions have no side effects. Default = yes.

−sixchar

List any variable names which clash at 6 characters length. Default = no.

−symtab

Print out symbol table. Default = no.

−truncation

Check for possible truncation errors. Default = yes.

−verbose

Produce full amount of output. Default = yes.

There are six settings:

−array=n

Set level of strictness in checking array arguments of subprograms. Min is 0 (least checking).

Max is 3 (most checking). Default = 3.

−columns=n

Set maximum line length to n columns. (Beyond this is ignored.) Max is 132. Default = 72.

−common=n

Set level of strictness in checking COMMON blocks. Min is 0 (no checking). Max is 3 (must be

identical). Default = 3.

−include=path

Define a directory to search for include files. Cumulative.

−output=filename

Send output to the given file. Default is to send output to the screen. (Default filename extension

is . lis).

−usage=n

Control warnings about unused variables, etc. Min is 0 (no checking). Default = 3 (most check-

ing).

When more than one option is used, they should be separated by a blank space, except on systems such as

VMS where options begin with slash (/). No blank spaces may be placed around the equals sign (=) in a

setting. Ftnchek "?" will produce a list of all options and settings.

When giving a name of an input file, the extension is optional. If no extension is given, Ftnchek will first

look for a project file with extension . prj, and will use that if it exists. If not, then Ftnchek will look for a

January 16, 1993 Page 2

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

Fortran source file with the extension . for for VMS systems, . f for Unix systems. More than one file name

can be given to Ftnchek, and it will process the modules in all files as if they were in a single file.

If no filename is given, Ftnchek will read input from the standard input.

FFTTNNCCHHEEKK OOPPTTIIOONNSS

This section provides a more detailed discussion of Ftnchek command-line options. Options and filenames

may be interspersed on a command line. Each option remains in effect from the point it is encountered

until it is overridden by a later option. Thus for example, the listing may be suppressed for some files and

not for others.

The option names in the following list are in alphabetical order.

−array=num

Controls warnings about mismatches between actual and dummy subprogram array arguments.

(An actual argument is an argument passed to the subprogram by the caller; a dummy argument is

an argument received by the subprogram.) Default = 3. The warnings which can be turned off are

for constructions that might legitimately be used by a knowledgeable programmer, but that often

indicate programming errors.

The meanings of the setting values are as follows:

0: only the warnings noted below.

1: give warnings if the arguments differ in their number of dimensions, or if the actual argument

is an array element while the dummy argument is a whole array.

2: give warnings if the arguments are both arrays, but differ in size.

3: give both types of warnings.

Note: no warning is ever given if the actual argument is an array element while the dummy argu-

ment is a scalar variable, and a warning is always given regardless of this setting if the actual

argument is an array while the dummy argument is a scalar variable, or if the actual argument is a

scalar variable or expression while the dummy argument is an array. Variable-dimensioned arrays

match any array size.

−calltree

Causes Ftnchek to print out the call structure of the complete program in the form of a tree. The

tree is printed out starting from the main program, which is listed on the first line at the left mar-

gin. Then on the following lines, each routine called by the main program is listed, indented a few

spaces, followed by the subtree starting at that routine. Default = no.

If a routine is called by more than one other routine, its call subtree is printed only the first time it

is encountered. Later calls give only the routine name and the notice "(see above)".

Note that the call tree will be incomplete if any of the input files are project files that were created

in −library mode. See the discussion of project files below.

Technical points: Each list of routines called by a given routine is printed in alphabetical order. If

no main program is found, a report to that effect is printed out, and no call tree is printed. If mul-

tiple main programs are found, the call tree of each is printed separately.

Now that Ftnchek recognizes the call tree structure of a program, its checking behavior is some-

what altered from previous versions, which checked the calls of every routine by every other rou-

tine, regardless of whether those routines could ever actually be invoked at run time. Now, if a

file is read with the −library flag in effect, the calls made by a routine in that file will be checked

only if the calling routine is in the main program’s call tree. Likewise, COMMON declarations in a

library file will only be checked if the routine is in the call tree. If the −library flag is not set,

Page 3 January 16, 1993

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

Ftnchek will check all inter-module calls and all common declarations, as it did formerly. (If

there is no main program anywhere in the set of files that Ftnchek has read, so that there is no call

tree, then library routines will be checked if they are called by any routine in the complete set of

files.)

−columns=n

Set maximum statement length to n columns. (Beyond this is ignored.) This setting is provided to

allow checking of programs which may violate the Fortran standard limit of 72 columns for the

length of a statement. According to the standard, all characters past column 72 are ignored. If

this setting is used when the −f77 option is in effect, a warning will be given for any overlength

lines that are processed. Max is 132. Default = 72.

−common=n

This setting varies the strictness of checking of COMMON blocks. Default = 3.

The different levels are:

0: no checking.

1: in each declaration of a given COMMON block, corresponding memory locations must agree

in data type.

2: also warn if different declarations of the same block are not equal in total length.

3: corresponding variables in each declaration of a block must agree in data type and (if arrays)

in size and number of dimensions.

−declare

If this flag is set, all identifiers whose datatype is not declared in each module will be listed. This

flag is useful for helping to find misspelled variable names, etc. The same listing will be given if

the module contains an IMPLICIT NONE statement. Default = no.

−division

This switch is provided to help users spot potential division by zero problems. If this switch is

selected, every division except by a constant will be flagged. (It is assumed that the user is intelli-

gent enough not to divide by a constant which is equal to zero!) Default = no.

−extern Causes Ftnchek to report whether any subprograms invoked by the program are never defined, or

are multiply defined. Ordinarily, if Ftnchek is being run on a complete program, each subpro-

gram other than the intrinsic functions should be defined once and only once somewhere. Turn

off this switch if you just want to check a subset of files which form part of a larger complete pro-

gram, or to check all at once a number of unrelated files which might each contain an unnamed

main program. Subprogram arguments will still be checked for correctness. Default = yes.

−f77 Use this flag to catch language extensions which violate the Fortran 77 standard. Such extensions

may cause your program not to be portable. Examples include the use of underscores in variable

names; variable names longer than six characters; statement lines longer than 72 characters; and

nonstandard statements such as the DO ... ENDDO structure. Ftnchek does not report on the use

of lowercase letters. Default=no.

−help This command is identical in function to the "?" argument, and is provided simply as a conveni-

ence for those systems in which the question mark has special meaning to the command inter-

preter. Default = no.

January 16, 1993 Page 4

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

−hollerith

Hollerith constants (other than within format specifications) are a source of possible portability

problems, so when the −portability flag is set, warnings about them will be produced. If your

program uses many hollerith constants, these warnings can obscure other more serious warnings.

So you can set this flag to "no" to suppress the warnings about holleriths. This flag has no effect

when the −portability flag is turned off. Default = yes.

−include=path

Specifies a directory to be searched for files specified by INCLUDE statements. Unlike other

command-line options, this setting is cumulative; that is, if it is given more than once on the com-

mand line, all the directories so specified are placed on a list that will be searched in the same

order as they are given. The order in which Ftnchek searches for a file to be included is: the

current directory; the directory specified by environment variable FTNCHEK_INCLUDE if any;

the directories specified by any −include options; the directory specified by environment variable

INCLUDE; and finally in a standard systemwide directory (/usr/include for Unix,

SYS$LIBRARY for VMS, and \include for MSDOS).

−library

This switch is used when a number of subprograms are contained in a file, but not all of them are

used by the application. Normally, Ftnchek warns you if any subprograms are defined but never

used. This switch will suppress these warnings. Default = no.

−linebreak

Normally, when scanning a statement which is continued onto the next line, Ftnchek treats the

end of the line as a space. This behavior is the same as for Pascal and C, and also corresponds to

how humans normally would read and write programs. However, occasionally one would like to

use Ftnchek to check a program in which identifiers and keywords are split across lines, for

instance programs which are produced using a preprocessor. Choosing the option −nolinebreak

will cause Ftnchek to skip over the end of line and also any leading space on the continuation line

(from the continuation mark up to the first nonspace character). Default = yes, i.e. treat linebreaks

as space. Default = no.

Note that in nolinebreak mode, if token pairs requiring intervening space (for instance, GOTO

100) are separated only by a linebreak, they will be rejoined.

Also, tokens requiring more than one character of lookahead for the resolution of ambiguities

must not be split across lines. In particular, a complex constant may not be split across a line.

−list Specifies that a listing of the Fortran program is to be printed out with line numbers. If Ftnchek

detects an error, the error message follows the program line with a caret (^) specifying the loca-

tion of the error. If no source listing was requested, Ftnchek will still print out any line contain-

ing an error, to aid the user in determining where the error occurred. Default = no.

−novice This flag is intended to provide additional helpful output for beginners. At this time, the only

extra message it provides is a comment that any function that is used but not defined anywhere

might be an array which the user forgot to declare in a DIMENSION statement (since the syntax

of an array reference is the same as that of a function reference). Default = yes.

In earlier versions of Ftnchek , this option could take on various numerical values, as a way of

controlling various classes of warnings. These warnings are now controlled individually by their

own flags. Novice level 1 is now handled by the −array flag; level 2 has been eliminated; level 3

is equivalent now to setting −novice to yes; level 4 is handled by the −impure flag.

Page 5 January 16, 1993

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

−output=filename

This setting is provided for convenience on systems which do not allow easy redirection of output

from programs. When this setting is given, the output which normally appears on the screen will

be sent instead to the named file. Note, however, that operational errors of Ftnchek itself (e.g. out

of space or cannot open file) will still be sent to the screen. The extension for the filename is

optional, and if no extension is given, the extension . lis will be used.

−portability

Ftnchek will give warnings for a variety of non-portable usages. These include the use of tabs

except in comments or inside strings, the use of hollerith constants, and the equivalencing of vari-

ables of different data types. This option does not produce warnings for violations of the Fortran

77 standard, which may also cause portability problems. To catch those, use the −f77 option.

Default = no.

−pretty Controls certain messages related to the appearance of the source code. These warn about things

that might in some cases be deceptive to the reader. At present, the only warning that is controlled

by this flag refers to comments that are interspersed among the continuation lines of a statement.

Default = yes.

−project

Ftnchek will create a project file from each source file that is input while this flag is in effect. The

project file will be given the same name as the input file, but with the extension . f or . for replaced

by . prj. (If input is from standard input, the project file is named ftnchek. prj.) Default = no.

A project file contains a summary of information from the source file, for use in checking agree-

ment among FUNCTION, SUBROUTINE, and COMMON block usages in other files. It allows

incremental checking, which saves time whenever you have a large set of files containing shared

subroutines, most of which seldom change. You can run Ftnchek once on each file with the

−project flag set, creating the project files. Usually you would also set the −library and −noex-

tern flags at this time, to suppress messages relating to consistency with other files. Only error

messages pertaining to each file by itself will be printed at this time. Thereafter, run Ftnchek

without these flags on all the project files together, to check consistency among the different files.

All messages internal to the individual files will now be omitted. Only when a file is altered will a

new project file need to be made for it.

Project files contain only information needed for checking agreement between files. This means

that a project file is of no use if all modules of the complete program are contained in a single file.

Ordinarily, project files should be created with the −library flag in effect. In this mode, the infor-

mation saved in the project file consists of all subprogram declarations, all subprogram invoca-

tions not resolved by declarations in the same file, and one instance of each COMMON block

declaration. This is the minimum amount of information needed to check agreement between

files. Of course, this means that the calling hierarchy among routines defined within the file is

lost. Normally the loss of this information is unimportant. If you wish to retain this information

for some reason, you can create the project file with the −library flag turned off. In this mode,

Ftnchek saves, besides the information listed above, one invocation of each subprogram by any

other subprogram in the same file, and all common block declarations. This means that the project

file will be larger than necessary, and that when it is read in, Ftnchek may repeat some inter-

module checks that it already did when the project file was created.

Because of the loss of information entailed by creating a project file with the −library flag in

effect, whenever that project file is read in later, it will be treated as a library file regardless of the

current setting of the −library flag. On the other hand, a project file created with library mode

turned off can be read in later in either mode.

January 16, 1993 Page 6

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

Naturally, when the −project flag is set, Ftnchek will not read project files as input.

Here is an example of how to use the Unix make utility to automatically create a new project file

each time the corresponding source file is altered, and to check the set of files for consistency.

The example assumes that a macro OBJS has been defined which lists all the names of object

files to be linked together to form the complete executable program.

tell make what a project file suffix is

.SUFFIXES: .prj

tell make how to create a .prj file from a .f file

.f.prj:

ftnchek -project -noextern -library $<

set up macro PRJS containing project filenames

PRJS= $(OBJS:.o=.prj)

"make check" will check everything that has been changed.

check: $(PRJS)

ftnchek $(PRJS)

−pure Assume functions are "pure", i.e., they will not have side effects by modifying their arguments or

variables in a common block. When this flag is in effect, Ftnchek will base its determination of

set and used status of the actual arguments on the assumption that arguments passed to a function

are not altered. It will also issue a warning if a function is found to modify any of its arguments or

any common variables. Default=yes.

When this flag is turned off, actual arguments passed to functions will be handled the same way as

actual arguments passed to subroutines. This means that Ftnchek will assume that arguments

may be modified by the functions. No warnings will be given if a function is found to have side

effects. Because stricter checking is possible if functions are assumed to be pure, you should turn

this flag off only if your program actually uses functions with side effects.

−sixchar

One of the goals of the Ftnchek program is to help users to write portable Fortran programs. One

potential source of nonportability is the use of variable names that are longer than six characters.

Some compilers just ignore the extra characters. This behavior could potentially lead to two dif-

ferent variables being considered as the same. For instance, variables named AVERAGECOST

and AVERAGEPRICE are the same in the first six characters. If you wish to catch such possible

conflicts, use this flag. Default = no.

−symtab

A symbol table will be printed out for each module, listing all identifiers mentioned in the module.

This table gives the name of each variable, its datatype, and the number of dimensions for arrays.

An asterisk (*) indicates that the variable has been implicitly typed, rather than being named in an

explicit type declaration statement. The table also lists all subprograms invoked by the module,

all COMMON blocks declared, etc. Default = no.

−truncation

Warn about possible truncation (or roundoff) errors. Most of these are related to integer arith-

metic. The warnings enabled when this flag is in effect are: conversion of a complex or double

Page 7 January 16, 1993

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

precision value to single precision; conversion of any real type to integer; use of the result of

integer division where a real result seems intended (namely as an exponent, or if the quotient is

later converted to real); division in an integer constant expression that yields a result of zero;

exponentiation of an integer by a negative integer (which yields zero unless the base integer is 1 in

magnitude); and use of a non-integer array subscript, DO index or DO loop bounds. Default=yes.

Note: warnings about truncating type conversions are given only when the conversion is done

automatically, i.e. by an assignment statement. If intrinsic functions such as INT are used to

perform the conversion, no warning is given.

−usage=n

Warn about unused or possible uninitialized variables. Default=3.

The meanings of the setting values are as follows:

0: no warnings.

1: warn if variables are (or may be) used before they are set.

2: warn if variables are declared or set but never used.

3: give both types of warnings.

Sometimes Ftnchek makes a mistake about these warnings. Usually it errs on the side of giving a

warning where no problem exists, but in rare cases it may fail to warn where the problem does

exist. See the section on bugs for examples. If variables are equivalenced, the rule used by

Ftnchek is that a reference to any variable implies the same reference to all variables it is

equivalenced to. For arrays, the rule is that a reference to any array element is treated as a refer-

ence to all elements of the array.

−verbose

This option is on by default. Turning it off reduces the amount of output relating to normal opera-

tion, so that error messages are more apparent. This option is provided for the convenience of

users who are checking large suites of files. The eliminated output includes the names of project

files, and the message reporting that no syntax errors were found. (Some of this output is turned

back on by the −list and −symtab options.) Default = yes.

CCHHAANNGGIINNGG TTHHEE DDEEFFAAUULLTTSS

Ftnchek includes a mechanism for changing the default values of all options by defining environment vari-

ables. When Ftnchek starts up, it looks in its environment for any variables whose names are composed

by prefixing the string FTNCHEK_ onto the uppercased version of the option name. If such a variable is

found, its value is used to specify the default for the corresponding switch or setting. In the case of settings

(for example, the novice level) the value of the environment variable is read as the default setting value. In

the case of switches, the default switch will be taken as true or yes unless the environment variable has the

value 0 or NO. Of course, command-line options will override these defaults the same way as they over-

ride the built-in defaults.

Note that the environment variable name must be constructed with the full-length option name, which must

be in uppercase. For example, to make Ftnchek print a source listing by default, set the environment vari-

able FTNCHEK_LIST to 1 or YES or anything other than 0 or NO. The names FTNCHEK_LIS (not

the full option name) or ftnchek_list (lower case) would not be recognized.

Here are some examples of how to set environment variables on various systems. For simplicity, all the

examples set the default −list switch to −YES

1. Unix, Bourne shell: $ FTNCHEK_LIST=YES

$ export FTNCHEK_LIST

January 16, 1993 Page 8

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

2. Unix, C shell: % setenv FTNCHEK_LIST YES

3. VAX/VMS: $ DEFINE FTNCHEK_LIST YES

4. MSDOS: $ SET FTNCHEK_LIST=YES

AANN EEXXAAMMPPLLEE

The following simple Fortran program illustrates the messages given by Ftnchek. The program is intended

to accept an array of test scores and then compute the average for the series.

C AUTHORS: MIKE MYERS AND LUCIA SPAGNUOLO

C DATE: MAY 8, 1989

C Variables:

C SCORE -> an array of test scores

C SUM -> sum of the test scores

C COUNT -> counter of scores read in

C I -> loop counter

REAL FUNCTION COMPAV(SCORE,COUNT)

INTEGER SUM,COUNT,J,SCORE(5)

DO 30 I = 1,COUNT

SUM = SUM + SCORE(I)

30 CONTINUE

COMPAV = SUM/COUNT

END

PROGRAM AVENUM

C

C MAIN PROGRAM

C

C AUTHOR: LOIS BIGBIE

C DATE: MAY 15, 1990

C

C Variables:

C MAXNOS -> maximum number of input values

C NUMS -> an array of numbers

C COUNT -> exact number of input values

C AVG -> average returned by COMPAV

C I -> loop counter

C

PARAMETER(MAXNOS=5)

INTEGER I, COUNT

REAL NUMS(MAXNOS), AVG

COUNT = 0

DO 80 I = 1,MAXNOS

READ (5,*,END=100) NUMS(I)

COUNT = COUNT + 1

80 CONTINUE

100 AVG = COMPAV(NUMS, COUNT)

Page 9 January 16, 1993

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

END

The compiler gives no error messages when this program is compiled. Yet here is what happens when it is

run:

$ run average

70

90

85

<EOF>

$

What happened? Why didn’t the program do anything? The following is the output from Ftnchek when it

is used to debug the above program:

$ ftnchek -list -symtab average

FTNCHEK Version 2.6 December 1992

File average.f:

1 C AUTHORS: MIKE MYERS AND LUCIA SPAGNUOLO

2 C DATE: MAY 8, 1989

3

4 C Variables:

5 C SCORE -> an array of test scores

6 C SUM -> sum of the test scores

7 C COUNT -> counter of scores read in

8 C I -> loop counter

9

10 REAL FUNCTION COMPAV(SCORE,COUNT)

11 INTEGER SUM,COUNT,J,SCORE(5)

12

13 DO 30 I = 1,COUNT

14 SUM = SUM + SCORE(I)

15 30 CONTINUE

16 COMPAV = SUM/COUNT

^

Warning near line 16 col 20: integer quotient expr converted to real

17 END

18

Module COMPAV: func: real

Variables:

Name Type Dims Name Type Dims Name Type Dims Name Type Dims

COMPAV real COUNT intg I intg* J intg

SCORE intg 1 SUM intg

* Variable not declared. Type has been implicitly defined.

January 16, 1993 Page 10

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

Variables declared but never referenced in module COMPAV:

J

Variables may be used before set in module COMPAV:

SUM

19

20 PROGRAM AVENUM

21 C

22 C MAIN PROGRAM

23 C

24 C AUTHOR: LOIS BIGBIE

25 C DATE: MAY 15, 1990

26 C

27 C Variables:

28 C MAXNOS -> maximum number of input values

29 C NUMS -> an array of numbers

30 C COUNT -> exact number of input values

31 C AVG -> average returned by COMPAV

32 C I -> loop counter

33 C

34

35 PARAMETER(MAXNOS=5)

36 INTEGER I, COUNT

37 REAL NUMS(MAXNOS), AVG

38 COUNT = 0

39 DO 80 I = 1,MAXNOS

40 READ (5,*,END=100) NUMS(I)

41 COUNT = COUNT + 1

42 80 CONTINUE

43 100 AVG = COMPAV(NUMS, COUNT)

44 END

Module AVENUM: prog

External subprograms referenced:

COMPAV: real*

Variables:

Name Type Dims Name Type Dims Name Type Dims Name Type Dims

AVG real COUNT intg I intg MAXNOS intg*

NUMS real 1

* Variable not declared. Type has been implicitly defined.

Variables set but never used in module AVENUM:

AVG

Page 11 January 16, 1993

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

0 syntax errors detected in file average.f

1 warning issued in file average.f

Subprogram COMPAV: argument data type mismatch

at position 1:

Dummy type intg in module COMPAV line 10 file average.f

Actual type real in module AVENUM line 43 file average.f

According to Ftnchek, the program contains variables which may be used before they are assigned an ini-

tial value, and variables which are not needed. Ftnchek also warns the user that an integer quotient has

been converted to a real. This may assist the user in catching an unintended roundoff error. Since the

−symtab flag was given, Ftnchek prints out a table containing identifiers from the local module and their

corresponding datatype and number of dimensions. Finally, Ftnchek warns that the function is not used

with the proper type of arguments.

With Ftnchek’s help, we can debug the program. We can see that there were the following errors:

1. SUM and COUNT should have been converted to real before doing the division.

2. SUM should have been initialized to 0 before entering the loop.

3. AVG was never printed out after being calculated.

4. NUMS should have been declared INTEGER instead of REAL.

We also see that I, not J, should have been declared INTEGER in function COMPAV. Also, MAXNOS

was not declared as INTEGER, nor COMPAV as REAL, in program AVENUM. These are not errors, but

they may indicate carelessness. As it happened, the default type of these variables coincided with the

intended type.

Here is the corrected program, and its output when run:

C AUTHORS: MIKE MYERS AND LUCIA SPAGNUOLO

C DATE: MAY 8, 1989

C

C Variables:

C SCORE -> an array of test scores

C SUM -> sum of the test scores

C COUNT -> counter of scores read in

C I -> loop counter

C

REAL FUNCTION COMPAV(SCORE,COUNT)

INTEGER SUM,COUNT,I,SCORE(5)

C

SUM = 0

DO 30 I = 1,COUNT

SUM = SUM + SCORE(I)

30 CONTINUE

COMPAV = FLOAT(SUM)/FLOAT(COUNT)

END

C

C

PROGRAM AVENUM

C

C MAIN PROGRAM

C

C AUTHOR: LOIS BIGBIE

January 16, 1993 Page 12

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

C DATE: MAY 15, 1990

C

C Variables:

C MAXNOS -> maximum number of input values

C NUMS -> an array of numbers

C COUNT -> exact number of input values

C AVG -> average returned by COMPAV

C I -> loop counter

C

C

INTEGER MAXNOS

PARAMETER(MAXNOS=5)

INTEGER I, NUMS(MAXNOS), COUNT

REAL AVG,COMPAV

COUNT = 0

DO 80 I = 1,MAXNOS

READ (5,*,END=100) NUMS(I)

COUNT = COUNT + 1

80 CONTINUE

100 AVG = COMPAV(NUMS, COUNT)

WRITE(6,*) ’AVERAGE =’,AVG

END

$ run average

70

90

85

<EOF>

AVERAGE = 81.66666

$

With Ftnchek’s help, our program is a success!

IINNTTEERRPPRREETTIINNGG TTHHEE OOUUTTPPUUTT

Ftnchek will print out four main types of messages. They are portability warnings, other warnings, infor-

mational messages, and syntax errors. Portability warnings specify nonstandard usages that may not be

accepted by other compilers. Other warning messages report potential errors that are not normally flagged

by a compiler. Informational messages consist of warnings which may assist the user in the debugging of

their Fortran program.

Syntax errors are violations of the Fortran language. The user should have already eliminated any that are

flagged by the Fortran compiler.

Ftnchek does not detect all syntax errors. Generally, Ftnchek only does as much local syntactic error

checking as is necessary in order for it to work properly.

If Ftnchek gives you a syntax error message when the compiler does not, it may be because your program

contains an extension to standard Fortran which is accepted by the compiler but not by Ftnchek. On a

VAX/VMS system, you can use the compiler option /STANDARD to cause the compiler to accept only

standard Fortran. On most Unix or Unix-like systems, this can be accomplished by setting the flag −ansi.

Most error messages are self-explanatory. Those which need a brief explanation are listed below. Please

note that any error messages which begin with "oops" refer to technical conditions and indicate bugs in

Ftnchek or that its resources have been exceeded.

Page 13 January 16, 1993

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

The following messages warn about possible portability problems, including common but nonstandard

usages:

Nonstandard format item

Ftnchek will flag nonstandard items in a FORMAT statement which may not be compatible with

other systems. Controlled by −f77 option.

Characters past 72 columns

A statement has been read which has nonblank characters past column 72. Standard Fortran

ignores all text in those columns, but many compilers do not. Thus the program may be treated

differently by different compilers. Controlled by −f77 option and −columns setting.

Warning: file contains tabs. May not be portable.

Ftnchek expands tabs to be equivalent to spaces up to the next column which is a multiple of 8.

Some compilers treat tabs differently, and also it is possible that files sent by electronic mail will

have the tabs converted to blanks in some way. Therefore files containing tabs may not be com-

piled correctly after being transferred. Ftnchek does not give this message if tabs only occur

within comments or strings. Controlled by −portability option.

Nonstandard type usage in expression

The program contains an operation such as a logical operation between integers, which is not stan-

dard, and may not be acceptable to some compilers.

Common block has mixed character and non-character variables

The ANSI standard requires that if any variable in a COMMON block is of type CHARACTER,

then all other variables in the same COMMON block must also be of type CHARACTER. Con-

trolled by −portability option.

Common block has long data type following short data type

Some compilers require that if a COMMON block contains mixed data types, all long types

(namely DOUBLE PRECISION and COMPLEX) must precede all short types (namely

INTEGER, REAL, etc.) Controlled by −portability option.

Unknown intrinsic function

This message warns the user that a name declared in an INTRINSIC statement is unknown to

Ftnchek. Probably it is a nonstandard intrinsic function, and so the program will not be portable.

The function will be treated by Ftnchek as a user-defined function. This warning is not controlled

by the −portability option, since it affects Ftnchek’s analysis of the program.

Identifiers which are not unique in first six chars

Warns that two identifiers which are longer than 6 characters do not differ in first 6 characters.

This is for portability: they may not be considered distinct by some compilers. Controlled by

−sixchar option.

The following messages warn of possible errors (bugs) that could cause incorrect operation of the program:

Integer quotient expr converted to real

The quotient of two integers results in an integer type result, in which the fractional part is

dropped. If such an integer expression involving division is later converted to a real datatype, it

January 16, 1993 Page 14

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

may be that a real type division had been intended. Controlled by −truncation option.

Integer quotient expr used in exponent

Similarly, if the quotient of two integers is used as an exponent, it is quite likely that a real type

division was intended. Controlled by −truncation option.

Real truncated to intg

Ftnchek has detected an assignment statement which has a real expression on the right, but an

integer variable on the left. The fractional part of the real value will be lost. If you explicitly con-

vert the real expression to integer using the INT or NINT intrinsic function, no warning will be

printed. A similar message is printed if a double precision expression is assigned to a single preci-

sion variable, etc. Controlled by −truncation option.

Subscript is not integer

Since array subscripts are normally integer quantities, the use of a non-integer expression here

may signal an error. Controlled by −truncation option.

Non-integer DO loop bounds

This warning is only given when the DO index and bounds are non-integer. Use of non-integer

quantities in a DO statement may cause unexpected errors, or different results on different

machines, due to roundoff effects. Controlled by −truncation option.

DO index is not integer

This warning is only given when the DO bounds are integer, but the DO index is not. It may indi-

cate a failure to declare the index to be an integer. Controlled by −truncation option.

Possible division by zero

This message is printed out wherever division is done (except division by a constant). Use it to

help locate a runtime division by zero problem. Controlled by −division option.

NAME not set when RETURN encountered

The way that functions in Fortran return a value is by assigning the value to the name of the func-

tion. This message indicates that the function was not assigned a value before the point where a

RETURN statement was found. Therefore it is possible that the function could return an undefined

value.

Variables used before set

This message indicates that an identifier is used to compute a value prior to its initialization. Such

usage may lead to an incorrect value being computed, since its initial value is not controlled.

Given for −usage setting 1 or 3.

Variables may be used before set

Similar to used before set except that Ftnchek is not able to determine its status with certainty.

Ftnchek assumes a variable may be used before set if the first usage of the variable occurs prior in

the program text to its assignment. Given for −usage setting 1 or 3.

Subprogram NAME: varying length argument lists:

An inconsistency has been found between the number of dummy arguments (parameters) a sub-

program has and the number of actual arguments given it in an invocation. Ftnchek keeps track of

Page 15 January 16, 1993

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

all invocations of subprograms (CALL statements and expressions using functions) and compares

them with the definitions of the subprograms elsewhere in the source code. The Fortran compiler

normally does not catch this type of error.

Subprogram NAME: argument data type mismatch at position n

The subprogram’s n-th actual argument (in the CALL or the usage of a function) differs in data-

type from the n-th dummy argument (in the SUBROUTINE or FUNCTION declaration). For

instance, if the user defines a subprogram by

SUBROUTINE SUBA(X)

REAL X

and elsewhere invokes SUBA by

CALL SUBA(2)

Ftnchek will detect the error. The reason here is that the number 2 is integer, not real. The user

should have said

CALL SUBA(2.0)

When checking an argument which is a subprogram, Ftnchek must be able to determine whether

it is a function or a subroutine. The rules used by Ftnchek to do this are as follows: If the subpro-

gram, besides being passed as an actual argument, is also invoked directly elsewhere in the same

module, then its type is determined by that usage. If not, then if the name of the subprogram does

not appear in an explicit type declaration, it is assumed to be a subroutine; if it is explicitly typed it

is taken as a function. Therefore, subroutines passed as actual arguments need only be declared

by an EXTERNAL statement in the calling module, whereas functions must also be explicitly

typed in order to avoid generating this error message.

Subprogram invoked inconsistently

Here the mismatch is between the datatype of the subprogram itself as used and as defined. For

instance, if the user declares

INTEGER FUNCTION COUNT(A)

and invokes COUNT in another module as

N = COUNT(A)

without declaring its datatype, it will default to real type, based on the first letter of its name. The

calling module should have included the declaration

INTEGER COUNT

Subprogram NAME: argument usage mismatch

Ftnchek detects a possible conflict between the way a subprogram uses an argument and the way

January 16, 1993 Page 16

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

in which the argument is supplied to the subprogram. The conflict can be one of two types, as out-

lined below.

Dummy arg is modified, Actual arg is const or expr

A dummy argument is an argument as named in a SUBROUTINE or FUNCTION statement and

used within the subprogram. An actual argument is an argument as passed to a subroutine or

function by the caller. Ftnchek is saying that a dummy argument is modified by the subprogram,

i.e. its value will be changed in the calling module. The corresponding actual argument should not

be a constant or expression, but rather a variable or array element which can be legitimately

assigned to. Given for −usage setting 1 or 3.

Dummy arg used before set, Actual arg not set

Here a dummy argument may be used in the subprogram before having a value assigned to it by

the subprogram. The corresponding actual argument should have a value assigned to it by the

caller prior to invoking the subprogram. Given for −usage setting 1 or 3.

Common block NAME: varying length

A COMMON block declared in different subprograms has different numbers of variables in it in

different declarations. This is not necessarily an error, but it may indicate that a variable is miss-

ing from the list. Note that according to the Fortran 77 standard, it is an error for named common

blocks (but not blank common) to differ in length in declarations in different modules. Given for

−common setting 2 or 3.

Common block NAME: data type mismatch at position n

The n-th variable in the COMMON block differs in data type in two different declarations of the

COMMON block. By default (common strictness level 3), Ftnchek is very picky about COMMON

blocks: the variables listed in them must match exactly by data type and array dimensions. That

is, the legal pair of declarations in different modules:

COMMON /COM1/ A,B

and

COMMON /COM1/ A(2)

will cause Ftnchek to give warnings at strictness level 3. These two declarations are legal in For-

tran since they both declare two real variables. At strictness level 1 or 2, no warning would be

given in this example, but the warning would be given if there were a data type mismatch, for

instance, if B were declared INTEGER. Controlled by −common setting.

The following messages refer to local syntax errors:

Syntax error

This means that the parser, which analyzes the Fortran program into expressions, statements, etc.,

has been unable to find a valid interpretation for some portion of a statement in the program. If

the compiler does not report a syntax error at the same place, the most common explanations are:

(1) use of a reserved word as an array or character variable (see Table 2 in the section entitled

"Limitations and Extensions"), or (2) use of an extension to ANSI standard Fortran that is not

recognized by Ftnchek.

Page 17 January 16, 1993

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

NOTE: This message means that the affected statement is not interpreted. Therefore, it is possible

that Ftnchek’s subsequent processing will be in error, if it depends on any matters affected by this

statement (type declarations, etc.).

No path to this statement

Ftnchek will detect statements which are ignored or by-passed because there is no foreseeable

route to the statement. For example, an unnumbered statement (a statement without a statement

label), occurring immediately after a GOTO statement, cannot possibly be executed.

Statement out of order.

Ftnchek will detect statements that are out of the sequence specified for ANSI standard Fortran-

77. Table 1 illustrates the allowed sequence of statements in the Fortran language. Statements

which are out of order are nonetheless interpreted by Ftnchek, to prevent "cascades" of error mes-

sages.

--

| | implicit
| parameter |---------------------
| | other specification

format |---------------|---------------------
and | | statement-function
entry | data |---------------------

| | executable
--

Table 1

The following messages are informational messages, which probably do not indicate bugs, but may indi-

cate carelessness or oversights during modification of a program.

Continuation follows comment or blank line

Ftnchek issues this warning message to alert the user that a continuation of a statement is inter-

spersed with comments, making it easy to overlook. Controlled by −pretty option.

Declared but never referenced

Detects any identifiers that were declared in your program but were never used, either to be

assigned a value or to have their value accessed. Variables in COMMON are excluded. Given for

−usage setting 2 or 3.

Variables set but never used

Ftnchek will notify the user when a variable has been assigned a value, but the variable is not oth-

erwise used in the program. Usually this results from an oversight. Given for −usage setting 2 or

3.

Type has been implicitly defined

Ftnchek will flag all identifiers that are not explicitly typed and will show the datatype that was

assigned through implicit typing. This provides support for users who wish to declare all variables

January 16, 1993 Page 18

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

as is required in Pascal or some other languages. This message is printed only when the −symtab

option is in effect. Alternatively, use the −declare flag if you want to get a list of all undeclared

variables.

Possibly it is an array which was not declared

This message refers to a function invocation or to an argument type mismatch, for which the pos-

sibility exists that what appears to be a function is actually meant to be an array. If the program-

mer forgot to dimension an array, references to the array will be interpreted as function invoca-

tions. This message will be suppressed if the name in question appears in an EXTERNAL or

INTRINSIC statement. Controlled by the −novice option.

LLIIMMIITTAATTIIOONNSS AANNDD EEXXTTEENNSSIIOONNSS

Ftnchek accepts ANSI standard Fortran-77 programs with the following exceptions:

Restrictions:

Ftnchek is sensitive to blank spaces. This encourages the user to use good programming style.

The rules are similar to Pascal or C where a blank space is required between identifiers or key-

words and not allowed inside identifiers or keywords. Any keywords which occur in pairs may be

written as either one or two words, e.g. ELSE IF or ELSEIF. Unlike Pascal and C, Ftnchek

allows blanks inside numeric constants, except within the exponent part of E and D form numbers.

Also, if the −nolinebreak option is selected, the end of line in continued statements is ignored.

Complex constants are subject to a special restriction: they may not be split across lines, even in

−nolinebreak mode.

The dummy arguments in statement functions are treated like ordinary variables of the program.

That is, their scope is the entire module, not just the statement function definition.

Some keywords and identifiers are partially reserved. See Table 2 for details.

The following keywords may be freely used as variables:

ASSIGN BLOCK BLOCKDATA BYTE

CALL CHARACTER COMMON COMPLEX

CONTINUE DIMENSION DO DOUBLE

DOUBLEPRECISION ELSE END ENDDO

ENDIF ENTRY EXTERNAL FILE

FUNCTION GO IMPLICIT INCLUDE

INTEGER INTRINSIC LOGICAL NAMELIST

PAUSE PRECISION PROGRAM REAL

SAVE STOP SUBROUTINE THEN

TO

The following keywords may be used in scalar contexts only, for example, not as arrays or as

character variables used in substring expressions.

ACCEPT BACKSPACE CLOSE DATA

DOWHILE ELSEIF ENDFILE EQUIVALENCE

FORMAT GOTO IF INQUIRE

OPEN PARAMETER PRINT READ

RETURN REWIND TYPE WRITE

WHILE

Table 2

Page 19 January 16, 1993

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

Extensions:

Tabs are permitted, and translated into equivalent blanks which correspond to tab stops every 8

columns. The standard does not recognize tabs. Note that some compilers allow tabs, but treat

them differently.

Lower case characters are permitted, and are converted internally to uppercase except in strings.

The standard specifies upper case only, except in comments and strings.

Hollerith constants are permitted, in accordance with the ANSI Manual, appendix C. They should

not be used in expressions, or confused with datatype CHARACTER.

Statements may be longer than 72 columns provided that the setting −column was used to

increase the limit. According to the standard, all text from columns 73 through 80 is ignored, and

no line may be longer than 80 columns.

Variable names may be longer than six characters. The standard specifies six as the maximum.

Variable names may contain underscores, which are treated the same as alphabetic letters. The

VMS version of Ftnchek also allows dollar signs in variable names, but not as the initial charac-

ter.

The DO ... ENDDO control structure is permitted. The syntax which is recognized is according

to either of the following two forms:

DO [label [,]] var = expr , expr [, expr]

...

END DO

or

DO [label [,]] WHILE (expr)

...

END DO

where square brackets indicate optional elements.

The ACCEPT and TYPE statements (for terminal I/O) are permitted, with the same syntax as

PRINT.

Statements may have any number of continuation lines. The standard allows a maximum of 19.

Inline comments, beginning with an exclamation mark, are permitted.

NAMELIST I/O is supported. The syntax is the same as in VAX/VMS or IBM Fortran.

The IMPLICIT NONE statement is supported. The meaning of this statement is that all vari-

ables must have their data types explicitly declared. Rather than flag the occurrences of such vari-

ables with syntax error messages, Ftnchek waits till the end of the module, and then prints out a

list of all undeclared variables.

Data types INTEGER, REAL, COMPLEX, and LOGICAL are allowed to have an optional

length specification in type declarations. For instance, REAL*8 means an 8-byte floating point

data type. The REAL*8 datatype is interpreted by Ftnchek as equivalent to DOUBLE PRECI-

SION. Ftnchek ignores length specifications on all other types. The standard allows a length

specification only for CHARACTER data.

Ftnchek permits the INCLUDE statement, which causes inclusion of the text of the given file.

The syntax is

INCLUDE ’filename’

When compiled for VMS, Ftnchek will assume a default extension of . for if no filename exten-

sion is given. Also for compatibility with VMS, the VMS version allows the qualifier

[NO]LIST following the filename, to control the listing of the included file. There is no support

for including VMS text modules.

January 16, 1993 Page 20

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

At this time, diagnostic output relating to items contained in include files is minimal. Only infor-

mation about the location in the include file is given. There is no traceback giving the parent

file(s), although usually this can be inferred from the context.

NNEEWW FFEEAATTUURREESS

Here are the changes from Version 2.5 to Version 2.6:

1. The following bugs in Version 2.5 were fixed: Overflow of large integer parameter values. Inline

comment character mistaken in difficult contexts. Unnamed BLOCK DATA modules treated as main

programs. DATA implied-do statements sometimes parsed incorrectly. Size of variable-dimensioned

arrays sometimes calculated incorrectly. Documented bug number 1 in the previous documentation,

which caused a used-before-set warning if a function modifies an argument, has been fixed. The warn-

ing is now controlled by the −impure option.

2. New features: Support for NAMELIST I/O. Directories to be searched for include files can be

specified. All keyword pairs are now accepted in both split or single-word form. PARAMETER

definitions may contain intrinsic functions. Cross-module checking within library files is now limited

to modules in the call tree. BYTE data type is accepted (treated as INTEGER). VMS and MS-DOS

versions no longer require command-line flags having the "/" prefix to be separated by space.

3. New command-line flags added and existing flags modified for better control of error and warning

reporting. Affected flags are: −array, −calltree, −help, −hollerith, −novice, −pretty, −pure, −trunc,

−usage, and the −no prefix to turn functions off. See documentation sections for full explanation of

these flags.

4. New warnings: if array subscript or DO index is non-integer; if constant value of 0 results from integer

division or exponentiation; and if data type of expression in logical or arithmetic IF statement is

improper. The warning of "variable declared but not used" is now suppressed when the declaration is

in an include file. A warning is now given under the −f77 option if the standard limit of 19 continua-

tion lines is exceeded.

Here are the changes from Version 2.4 to Version 2.5:

1. The name was changed from Forchek to Ftnchek, to avoid confusion with a similar program named

Forcheck , developed earlier at Leiden University.

2. Some bugs were fixed: Version 2.4 incorrectly processed DO index variable names beginning with D

or E. It did not support the +kP format descriptor. The VMS version failed to accept the NOSPAN-

BLOCKS, READONLY or SHARED keywords in OPEN statements. Also, a couple of error messages

were improved.

BBUUGGSS

Ftnchek still has much room for improvement. Your feedback is appreciated. We want to know about any

bugs you notice. Bugs include not only cases in which Ftnchek issues an error message where no error

exists, but also if Ftnchek fails to issue a warning when it ought to. Note, however, that Ftnchek is not

intended to catch all syntax errors. Also, it is not considered a bug for a variable to be reported as used

before set, if the reason is that the usage of the variable occurs prior in the text to where the variable is set.

For instance, this could occur when a GOTO causes execution to loop backward to some previously

skipped statements. Ftnchek does not analyze the program flow, but assumes that statements occurring

earlier in the text are executed before the following ones.

We especially want to know if Ftnchek crashes for any reason. It is not supposed to crash, even on pro-

grams with syntax errors. Suggestions are welcomed for additional features which you would find useful.

Tell us if any of Ftnchek’s messages are incomprehensible. Comments on the readability and accuracy of

this document are also welcome.

You may also suggest support for additional extensions to the Fortran language. These will be included

only if it is felt that the extensions are sufficiently widely accepted by compilers.

Page 21 January 16, 1993

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

If you find a bug in Ftnchek, first consult the list of known bugs below to see if it has already been

reported. Also check the section entitled "Limitations and Extensions" above for restrictions that could be

causing the problem. If you do not find the problem documented in either place, then send a report includ-

ing

1. The operating system and CPU type on which Ftnchek is running.

2. The version of Ftnchek.

3. A brief description of the bug.

4. If possible, a small sample program showing the bug.

The report should be sent to either of the following addresses:

MONIOT@FORDMULC.BITNET

moniot@mary.fordham.edu

Highest priority will be given to bugs which cause Ftnchek to crash. Bugs involving incorrect warnings or

error messages may take longer to fix.

Certain problems that arise when checking large programs can be fixed by increasing the sizes of the data

areas in Ftnchek problems are generally signaled by error messages beginning with "Oops".) The simplest

way to increase the table sizes is by recompiling Ftnchek with the LARGE_MACHINE macro name

defined. Consult the makefile for the method of doing this.

The following is a list of known bugs.

1. Bug: Used-before-set message is suppressed for any variable which is used as the loop index in an

implied-do loop, even if it was in fact used before being set in some earlier statement. For example,

consider J in the statement

WRITE(5,*) (A(J), J=1,10)

Here Ftnchek parses the I/O expression, A(J), where J is used, before it parses the implied loop

where J is set. Normally this would cause Ftnchek to report a spurious used-before-set warning for

J. Since this report is usually in error and occurs fairly commonly, Ftnchek suppresses the warning

for J altogether.

Prognosis: A future version of Ftnchek is planned which will handle implied-do loops correctly.

2. Bug: Variables used (not as arguments) in statement-function subprograms do not have their usage

status updated when the statement function is invoked.

Prognosis: To be fixed in a future version of Ftnchek.

3. Bug: Length declarations of character variables are not correctly handled in COMMON block checking.

Nonstandard length declarations of other data types, except REAL*8, are also not handled correctly.

Prognosis: We hope to fix this soon, possibly in the next release.

CCOONNCCLLUUSSIIOONN

Ftnchek was designed by Dr. Robert Moniot, professor at Fordham University, College at Lincoln Center.

During the academic year of 1988-1989, Michael Myers and Lucia Spagnuolo developed the program to

perform the variable usage checks. During the following year it was augmented by Lois Bigbie to check

subprogram arguments and COMMON block declarations. Brian Downing assisted with the implementation

January 16, 1993 Page 22

FFTTNNCCHHEEKK((11LL)) ((JJaannuuaarryy 11999933)) FFTTNNCCHHEEKK((11LL))

of the INCLUDE statement. Additional features will be added as time permits.

We would like to thank Markus Draxler of the University of Stuttgart, Greg Flint of Purdue University,

Phil Sterne of Lawrence Livermore National Laboratory, and Warren J. Wiscombe of NASA Goddard for

reporting some bugs in Versions 2.1 and 2.2. We also thank John Amor of the University of British

Columbia, Daniel P. Giesy of NASA Langley Research Center, Hugh Nicholas of the Pittsburgh Super-

computing Center, Dan Severance of Yale University, and Larry Weissman of the University of Washing-

ton for suggesting some improvements. Nelson H. F. Beebe of the University of Utah kindly helped with

the documentation, and pointed out several bugs in Version 2.3. Reg Clemens of the Air Force Phillips

Lab in Albuquerque and Fritz Keinert of Iowa State University helped debug Version 2.4. We also thank

Jack Dongarra for putting Ftnchek into the Netlib library of publicly available software.

For further information, you may contact Dr. Robert Moniot at either of the following network addresses:

MONIOT@FORDMULC.BITNET

moniot@mary.fordham.edu

This document is named ftnchek.man .

The Ftnchek program can be obtained by sending the message send ftnchek from fortran

to the Internet address: netlib@ornl.gov .

Installation requires a C compiler for your computer.

Page 23 January 16, 1993

hhhh hhhh

