
bzip2 and libbzip2

a program and library for data ompression

opyright (C) 1996-2000 Julian Seward

version 1.0 of 21 Marh 2000

Julian Seward

1

This program, bzip2, and assoiated library libbzip2, are Copyright (C) 1996-2000 Julian

R Seward. All rights reserved.

Redistribution and use in soure and binary forms, with or without modi�ation, are per-

mitted provided that the following onditions are met:

� Redistributions of soure ode must retain the above opyright notie, this list of on-

ditions and the following dislaimer.

� The origin of this software must not be misrepresented; you must not laim that you

wrote the original software. If you use this software in a produt, an aknowledgment

in the produt doumentation would be appreiated but is not required.

� Altered soure versions must be plainly marked as suh, and must not be misrepresented

as being the original software.

� The name of the author may not be used to endorse or promote produts derived from

this software without spei� prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR \AS IS" AND ANY EXPRESS

OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-

POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-

QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-

BILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Julian Seward, Cambridge, UK.

jseward�am.org

http://soureware.ygnus.om/bzip2

http://www.aheprof.org

http://www.muraroa.demon.o.uk

bzip2/libbzip2 version 1.0 of 21 Marh 2000.

PATENTS: To the best of my knowledge, bzip2 does not use any patented algorithms.

However, I do not have the resoures available to arry out a full patent searh. Therefore

I annot give any guarantee of the above statement.

Chapter 1: Introdution 2

1 Introdution

bzip2 ompresses �les using the Burrows-Wheeler blok-sorting text ompression algorithm,

and Hu�man oding. Compression is generally onsiderably better than that ahieved by

more onventional LZ77/LZ78-based ompressors, and approahes the performane of the

PPM family of statistial ompressors.

bzip2 is built on top of libbzip2, a exible library for handling ompressed data in the

bzip2 format. This manual desribes both how to use the program and how to work with

the library interfae. Most of the manual is devoted to this library, not the program, whih

is good news if your interest is only in the program.

Chapter 2 desribes how to use bzip2; this is the only part you need to read if you just want

to know how to operate the program. Chapter 3 desribes the programming interfaes in

detail, and Chapter 4 reords some misellaneous notes whih I thought ought to be reorded

somewhere.

Chapter 2: How to use bzip2 3

2 How to use bzip2

This hapter ontains a opy of the bzip2 man page, and nothing else.

NAME

bzip2, bunzip2 - a blok-sorting �le ompressor, v1.0

bzat - deompresses �les to stdout

bzip2reover - reovers data from damaged bzip2 �les

SYNOPSIS

bzip2 [-dfkqstvzVL123456789 ℄ [�lenames ... ℄

bunzip2 [-fkvsVL ℄ [�lenames ... ℄

bzat [-s ℄ [�lenames ... ℄

bzip2reover �lename

DESCRIPTION

bzip2 ompresses �les using the Burrows-Wheeler blok sorting text ompres-

sion algorithm, and Hu�man oding. Compression is generally onsiderably

better than that ahieved by more onventional LZ77/LZ78-based ompressors,

and approahes the performane of the PPM family of statistial ompressors.

The ommand-line options are deliberately very similar to those of GNU gzip,

but they are not idential.

bzip2 expets a list of �le names to aompany the ommand-line ags. Eah

�le is replaed by a ompressed version of itself, with the name original_

name.bz2. Eah ompressed �le has the same modi�ation date, permissions,

and, when possible, ownership as the orresponding original, so that these prop-

erties an be orretly restored at deompression time. File name handling is

naive in the sense that there is no mehanism for preserving original �le names,

permissions, ownerships or dates in �lesystems whih lak these onepts, or

have serious �le name length restritions, suh as MS-DOS.

bzip2 and bunzip2 will by default not overwrite existing �les. If you want this

to happen, speify the -f ag.

If no �le names are spei�ed, bzip2 ompresses from standard input to stan-

dard output. In this ase, bzip2 will deline to write ompressed output to a

terminal, as this would be entirely inomprehensible and therefore pointless.

bunzip2 (or bzip2 -d) deompresses all spei�ed �les. Files whih were not

reated by bzip2 will be deteted and ignored, and a warning issued. bzip2

attempts to guess the �lename for the deompressed �le from that of the om-

pressed �le as follows:

filename.bz2 beomes filename

filename.bz beomes filename

Chapter 2: How to use bzip2 4

filename.tbz2 beomes filename.tar

filename.tbz beomes filename.tar

anyothername beomes anyothername.out

If the �le does not end in one of the reognised endings, .bz2, .bz, .tbz2 or

.tbz, bzip2 omplains that it annot guess the name of the original �le, and

uses the original name with .out appended.

As with ompression, supplying no �lenames auses deompression from stan-

dard input to standard output.

bunzip2 will orretly deompress a �le whih is the onatenation of two or

more ompressed �les. The result is the onatenation of the orresponding

unompressed �les. Integrity testing (-t) of onatenated ompressed �les is

also supported.

You an also ompress or deompress �les to the standard output by giving

the - ag. Multiple �les may be ompressed and deompressed like this. The

resulting outputs are fed sequentially to stdout. Compression of multiple �les

in this manner generates a stream ontaining multiple ompressed �le represen-

tations. Suh a stream an be deompressed orretly only by bzip2 version

0.9.0 or later. Earlier versions of bzip2 will stop after deompressing the �rst

�le in the stream.

bzat (or bzip2 -d) deompresses all spei�ed �les to the standard output.

bzip2 will read arguments from the environment variables BZIP2 and BZIP, in

that order, and will proess them before any arguments read from the ommand

line. This gives a onvenient way to supply default arguments.

Compression is always performed, even if the ompressed �le is slightly larger

than the original. Files of less than about one hundred bytes tend to get larger,

sine the ompression mehanism has a onstant overhead in the region of 50

bytes. Random data (inluding the output of most �le ompressors) is oded

at about 8.05 bits per byte, giving an expansion of around 0.5%.

As a self-hek for your protetion, bzip2 uses 32-bit CRCs to make sure that

the deompressed version of a �le is idential to the original. This guards

against orruption of the ompressed data, and against undeteted bugs in

bzip2 (hopefully very unlikely). The hanes of data orruption going unde-

teted is mirosopi, about one hane in four billion for eah �le proessed.

Be aware, though, that the hek ours upon deompression, so it an only

tell you that something is wrong. It an't help you reover the original unom-

pressed data. You an use bzip2reover to try to reover data from damaged

�les.

Return values: 0 for a normal exit, 1 for environmental problems (�le not found,

invalid ags, I/O errors, &), 2 to indiate a orrupt ompressed �le, 3 for an

internal onsisteny error (eg, bug) whih aused bzip2 to pani.

OPTIONS

Chapter 2: How to use bzip2 5

- --stdout

Compress or deompress to standard output.

-d --deompress

Fore deompression. bzip2, bunzip2 and bzat are really the

same program, and the deision about what ations to take is done

on the basis of whih name is used. This ag overrides that meh-

anism, and fores bzip2 to deompress.

-z --ompress

The omplement to -d: fores ompression, regardless of the in-

vokation name.

-t --testChek integrity of the spei�ed �le(s), but don't deompress them.

This really performs a trial deompression and throws away the

result.

-f --fore

Fore overwrite of output �les. Normally, bzip2 will not overwrite

existing output �les. Also fores bzip2 to break hard links to �les,

whih it otherwise wouldn't do.

-k --keepKeep (don't delete) input �les during ompression or deompression.

-s --small

Redue memory usage, for ompression, deompression and testing.

Files are deompressed and tested using a modi�ed algorithm whih

only requires 2.5 bytes per blok byte. This means any �le an be

deompressed in 2300k of memory, albeit at about half the normal

speed.

During ompression, -s selets a blok size of 200k, whih lim-

its memory use to around the same �gure, at the expense of your

ompression ratio. In short, if your mahine is low on memory (8

megabytes or less), use -s for everything. See MEMORY MAN-

AGEMENT below.

-q --quiet

Suppress non-essential warning messages. Messages pertaining to

I/O errors and other ritial events will not be suppressed.

-v --verbose

Verbose mode { show the ompression ratio for eah �le proessed.

Further -v's inrease the verbosity level, spewing out lots of infor-

mation whih is primarily of interest for diagnosti purposes.

-L --liense -V --version

Display the software version, liense terms and onditions.

-1 to -9 Set the blok size to 100 k, 200 k .. 900 k when ompressing. Has

no e�et when deompressing. See MEMORY MANAGEMENT

below.

-- Treats all subsequent arguments as �le names, even if they start with

a dash. This is so you an handle �les with names beginning with

a dash, for example: bzip2 -- -myfilename.

Chapter 2: How to use bzip2 6

--repetitive-fast

--repetitive-best

These ags are redundant in versions 0.9.5 and above. They pro-

vided some oarse ontrol over the behaviour of the sorting algo-

rithm in earlier versions, whih was sometimes useful. 0.9.5 and

above have an improved algorithm whih renders these ags irrel-

evant.

MEMORY MANAGEMENT

bzip2 ompresses large �les in bloks. The blok size a�ets both the ompres-

sion ratio ahieved, and the amount of memory needed for ompression and

deompression. The ags -1 through -9 speify the blok size to be 100,000

bytes through 900,000 bytes (the default) respetively. At deompression time,

the blok size used for ompression is read from the header of the ompressed

�le, and bunzip2 then alloates itself just enough memory to deompress the

�le. Sine blok sizes are stored in ompressed �les, it follows that the ags -1

to -9 are irrelevant to and so ignored during deompression.

Compression and deompression requirements, in bytes, an be estimated as:

Compression: 400k + (8 x blok size)

Deompression: 100k + (4 x blok size), or

100k + (2.5 x blok size)

Larger blok sizes give rapidly diminishing marginal returns. Most of the om-

pression omes from the �rst two or three hundred k of blok size, a fat worth

bearing in mind when using bzip2 on small mahines. It is also important to

appreiate that the deompression memory requirement is set at ompression

time by the hoie of blok size.

For �les ompressed with the default 900k blok size, bunzip2 will require

about 3700 kbytes to deompress. To support deompression of any �le on a 4

megabyte mahine, bunzip2 has an option to deompress using approximately

half this amount of memory, about 2300 kbytes. Deompression speed is also

halved, so you should use this option only where neessary. The relevant ag

is -s.

In general, try and use the largest blok size memory onstraints allow, sine

that maximises the ompression ahieved. Compression and deompression

speed are virtually una�eted by blok size.

Another signi�ant point applies to �les whih �t in a single blok { that means

most �les you'd enounter using a large blok size. The amount of real memory

touhed is proportional to the size of the �le, sine the �le is smaller than a

blok. For example, ompressing a �le 20,000 bytes long with the ag -9 will

ause the ompressor to alloate around 7600k of memory, but only touh 400k

+ 20000 * 8 = 560 kbytes of it. Similarly, the deompressor will alloate 3700k

but only touh 100k + 20000 * 4 = 180 kbytes.

Here is a table whih summarises the maximum memory usage for di�erent

blok sizes. Also reorded is the total ompressed size for 14 �les of the Calgary

Chapter 2: How to use bzip2 7

Text Compression Corpus totalling 3,141,622 bytes. This olumn gives some

feel for how ompression varies with blok size. These �gures tend to understate

the advantage of larger blok sizes for larger �les, sine the Corpus is dominated

by smaller �les.

Compress Deompress Deompress Corpus

Flag usage usage -s usage Size

-1 1200k 500k 350k 914704

-2 2000k 900k 600k 877703

-3 2800k 1300k 850k 860338

-4 3600k 1700k 1100k 846899

-5 4400k 2100k 1350k 845160

-6 5200k 2500k 1600k 838626

-7 6100k 2900k 1850k 834096

-8 6800k 3300k 2100k 828642

-9 7600k 3700k 2350k 828642

RECOVERING DATA FROM DAMAGED FILES

bzip2 ompresses �les in bloks, usually 900kbytes long. Eah blok is handled

independently. If a media or transmission error auses a multi-blok .bz2 �le

to beome damaged, it may be possible to reover data from the undamaged

bloks in the �le.

The ompressed representation of eah blok is delimited by a 48-bit pattern,

whih makes it possible to �nd the blok boundaries with reasonable ertainty.

Eah blok also arries its own 32-bit CRC, so damaged bloks an be distin-

guished from undamaged ones.

bzip2reover is a simple program whose purpose is to searh for bloks in

.bz2 �les, and write eah blok out into its own .bz2 �le. You an then use

bzip2 -t to test the integrity of the resulting �les, and deompress those whih

are undamaged.

bzip2reover takes a single argument, the name of the damaged �le, and

writes a number of �les re0001file.bz2, re0002file.bz2, et, ontaining

the extrated bloks. The output �lenames are designed so that the use of

wildards in subsequent proessing { for example, bzip2 -d re*file.bz2 >

reovered_data { lists the �les in the orret order.

bzip2reover should be of most use dealing with large .bz2 �les, as these

will ontain many bloks. It is learly futile to use it on damaged single-blok

�les, sine a damaged blok annot be reovered. If you wish to minimise any

potential data loss through media or transmission errors, you might onsider

ompressing with a smaller blok size.

PERFORMANCE NOTES

The sorting phase of ompression gathers together similar strings in the �le.

Beause of this, �les ontaining very long runs of repeated symbols, like

"aabaabaabaab ..." (repeated several hundred times) may ompress more

Chapter 2: How to use bzip2 8

slowly than normal. Versions 0.9.5 and above fare muh better than previous

versions in this respet. The ratio between worst-ase and average-ase om-

pression time is in the region of 10:1. For previous versions, this �gure was

more like 100:1. You an use the -vvvv option to monitor progress in great

detail, if you want.

Deompression speed is una�eted by these phenomena.

bzip2 usually alloates several megabytes of memory to operate in, and then

harges all over it in a fairly random fashion. This means that performane,

both for ompressing and deompressing, is largely determined by the speed at

whih your mahine an servie ahe misses. Beause of this, small hanges

to the ode to redue the miss rate have been observed to give disproportion-

ately large performane improvements. I imagine bzip2 will perform best on

mahines with very large ahes.

CAVEATS

I/O error messages are not as helpful as they ould be. bzip2 tries hard to

detet I/O errors and exit leanly, but the details of what the problem is some-

times seem rather misleading.

This manual page pertains to version 1.0 of bzip2. Compressed data reated

by this version is entirely forwards and bakwards ompatible with the previous

publi releases, versions 0.1pl2, 0.9.0 and 0.9.5, but with the following exeption:

0.9.0 and above an orretly deompress multiple onatenated ompressed

�les. 0.1pl2 annot do this; it will stop after deompressing just the �rst �le in

the stream.

bzip2reover uses 32-bit integers to represent bit positions in ompressed �les,

so it annot handle ompressed �les more than 512 megabytes long. This ould

easily be �xed.

AUTHOR

Julian Seward, jseward�am.org.

The ideas embodied in bzip2 are due to (at least) the following people: Mihael

Burrows and David Wheeler (for the blok sorting transformation), David

Wheeler (again, for the Hu�man oder), Peter Fenwik (for the strutured

oding model in the original bzip, and many re�nements), and Alistair Mo�at,

Radford Neal and Ian Witten (for the arithmeti oder in the original bzip).

I am muh indebted for their help, support and advie. See the manual in

the soure distribution for pointers to soures of doumentation. Christian von

Roques enouraged me to look for faster sorting algorithms, so as to speed up

ompression. Bela Lubkin enouraged me to improve the worst-ase ompres-

sion performane. Many people sent pathes, helped with portability problems,

lent mahines, gave advie and were generally helpful.

Chapter 3: Programming with libbzip2 9

3 Programming with libbzip2

This hapter desribes the programming interfae to libbzip2.

For general bakground information, partiularly about memory use and performane as-

pets, you'd be well advised to read Chapter 2 as well.

3.1 Top-level struture

libbzip2 is a exible library for ompressing and deompressing data in the bzip2 data

format. Although pakaged as a single entity, it helps to regard the library as three separate

parts: the low level interfae, and the high level interfae, and some utility funtions.

The struture of libbzip2's interfaes is similar to that of Jean-loup Gailly's and Mark

Adler's exellent zlib library.

All externally visible symbols have names beginning BZ2_. This is new in version 1.0. The

intention is to minimise pollution of the namespaes of library lients.

3.1.1 Low-level summary

This interfae provides servies for ompressing and deompressing data in memory. There's

no provision for dealing with �les, streams or any other I/O mehanisms, just straight

memory-to-memory work. In fat, this part of the library an be ompiled without inlusion

of stdio.h, whih may be helpful for embedded appliations.

The low-level part of the library has no global variables and is therefore thread-safe.

Six routines make up the low level interfae: BZ2_bzCompressInit, BZ2_bzCompress, and

BZ2_bzCompressEnd for ompression, and a orresponding trio BZ2_bzDeompressInit,

BZ2_bzDeompress and BZ2_bzDeompressEnd for deompression. The *Init funtions

alloate memory for ompression/deompression and do other initialisations, whilst the

*End funtions lose down operations and release memory.

The real work is done by BZ2_bzCompress and BZ2_bzDeompress. These ompress and

deompress data from a user-supplied input bu�er to a user-supplied output bu�er. These

bu�ers an be any size; arbitrary quantities of data are handled by making repeated alls

to these funtions. This is a exible mehanism allowing a onsumer-pull style of ativity,

or produer-push, or a mixture of both.

3.1.2 High-level summary

This interfae provides some handy wrappers around the low-level interfae to failitate

reading and writing bzip2 format �les (.bz2 �les). The routines provide hooks to failitate

reading �les in whih the bzip2 data stream is embedded within some larger-sale �le

struture, or where there are multiple bzip2 data streams onatenated end-to-end.

For reading �les, BZ2_bzReadOpen, BZ2_bzRead, BZ2_bzReadClose and

BZ2_bzReadGetUnused are supplied. For writing �les, BZ2_bzWriteOpen, BZ2_bzWrite and

BZ2_bzWriteFinish are available.

Chapter 3: Programming with libbzip2 10

As with the low-level library, no global variables are used so the library is per se thread-safe.

However, if I/O errors our whilst reading or writing the underlying ompressed �les, you

may have to onsult errno to determine the ause of the error. In that ase, you'd need a

C library whih orretly supports errno in a multithreaded environment.

To make the library a little simpler and more portable, BZ2_bzReadOpen and BZ2_

bzWriteOpen require you to pass them �le handles (FILE*s) whih have previously been

opened for reading or writing respetively. That avoids portability problems assoiated

with �le operations and �le attributes, whilst not being muh of an imposition on the

programmer.

3.1.3 Utility funtions summary

For very simple needs, BZ2_bzBuffToBuffCompress and BZ2_bzBuffToBuffDeompress

are provided. These ompress data in memory from one bu�er to another bu�er in a single

funtion all. You should assess whether these funtions ful�ll your memory-to-memory

ompression/deompression requirements before investing e�ort in understanding the more

general but more omplex low-level interfae.

Yoshioka Tsuneo (QWF00133�niftyserve.or.jp / tsuneo-y�is.aist-nara.a.jp) has

ontributed some funtions to give better zlib ompatibility. These funtions are BZ2_

bzopen, BZ2_bzread, BZ2_bzwrite, BZ2_bzflush, BZ2_bzlose, BZ2_bzerror and BZ2_

bzlibVersion. You may �nd these funtions more onvenient for simple �le reading and

writing, than those in the high-level interfae. These funtions are not (yet) oÆially part

of the library, and are minimally doumented here. If they break, you get to keep all the

piees. I hope to doument them properly when time permits.

Yoshioka also ontributed modi�ations to allow the library to be built as a Windows DLL.

3.2 Error handling

The library is designed to reover leanly in all situations, inluding the worst-ase situation

of deompressing random data. I'm not 100% sure that it an always do this, so you might

want to add a signal handler to ath segmentation violations during deompression if you

are feeling espeially paranoid. I would be interested in hearing more about the robustness

of the library to orrupted ompressed data.

Version 1.0 is muh more robust in this respet than 0.9.0 or 0.9.5. Investigations with

Cheker (a tool for deteting problems with memory management, similar to Purify) indiate

that, at least for the few �les I tested, all single-bit errors in the deompressed data are

aught properly, with no segmentation faults, no reads of uninitialised data and no out of

range reads or writes. So it's ertainly muh improved, although I wouldn't laim it to be

totally bombproof.

The �le bzlib.h ontains all de�nitions needed to use the library. In partiular, you should

de�nitely not inlude bzlib_private.h.

In bzlib.h, the various return values are de�ned. The following list is not intended as

an exhaustive desription of the irumstanes in whih a given value may be returned {

those desriptions are given later. Rather, it is intended to onvey the rough meaning of

Chapter 3: Programming with libbzip2 11

eah return value. The �rst �ve ations are normal and not intended to denote an error

situation.

BZ_OK The requested ation was ompleted suessfully.

BZ_RUN_OK

BZ_FLUSH_OK

BZ_FINISH_OK

In BZ2_bzCompress, the requested ush/�nish/nothing-speial ation was om-

pleted suessfully.

BZ_STREAM_END

Compression of data was ompleted, or the logial stream end was deteted

during deompression.

The following return values indiate an error of some kind.

BZ_CONFIG_ERROR

Indiates that the library has been improperly ompiled on your platform

{ a major on�guration error. Spei�ally, it means that sizeof(har),

sizeof(short) and sizeof(int) are not 1, 2 and 4 respetively, as they

should be. Note that the library should still work properly on 64-bit platforms

whih follow the LP64 programming model { that is, where sizeof(long) and

sizeof(void*) are 8. Under LP64, sizeof(int) is still 4, so libbzip2, whih

doesn't use the long type, is OK.

BZ_SEQUENCE_ERROR

When using the library, it is important to all the funtions in the orret

sequene and with data strutures (bu�ers et) in the orret states. libbzip2

heks as muh as it an to ensure this is happening, and returns BZ_SEQUENCE_

ERROR if not. Code whih omplies preisely with the funtion semantis, as

detailed below, should never reeive this value; suh an event denotes buggy

ode whih you should investigate.

BZ_PARAM_ERROR

Returned when a parameter to a funtion all is out of range or otherwise

manifestly inorret. As with BZ_SEQUENCE_ERROR, this denotes a bug in the

lient ode. The distintion between BZ_PARAM_ERROR and BZ_SEQUENCE_ERROR

is a bit hazy, but still worth making.

BZ_MEM_ERROR

Returned when a request to alloate memory failed. Note that the quantity of

memory needed to deompress a stream annot be determined until the stream's

header has been read. So BZ2_bzDeompress and BZ2_bzRead may return BZ_

MEM_ERROR even though some of the ompressed data has been read. The same

is not true for ompression; one BZ2_bzCompressInit or BZ2_bzWriteOpen

have suessfully ompleted, BZ_MEM_ERROR annot our.

BZ_DATA_ERROR

Returned when a data integrity error is deteted during deompression. Most

importantly, this means when stored and omputed CRCs for the data do not

Chapter 3: Programming with libbzip2 12

math. This value is also returned upon detetion of any other anomaly in the

ompressed data.

BZ_DATA_ERROR_MAGIC

As a speial ase of BZ_DATA_ERROR, it is sometimes useful to know when the

ompressed stream does not start with the orret magi bytes ('B' 'Z' 'h').

BZ_IO_ERROR

Returned by BZ2_bzRead and BZ2_bzWrite when there is an error reading or

writing in the ompressed �le, and by BZ2_bzReadOpen and BZ2_bzWriteOpen

for attempts to use a �le for whih the error indiator (viz, ferror(f)) is set.

On reeipt of BZ_IO_ERROR, the aller should onsult errno and/or perror to

aquire operating-system spei� information about the problem.

BZ_UNEXPECTED_EOF

Returned by BZ2_bzRead when the ompressed �le �nishes before the logial

end of stream is deteted.

BZ_OUTBUFF_FULL

Returned by BZ2_bzBuffToBuffCompress and BZ2_bzBuffToBuffDeompress

to indiate that the output data will not �t into the output bu�er provided.

3.3 Low-level interfae

3.3.1 BZ2_bzCompressInit

typedef

strut {

har *next_in;

unsigned int avail_in;

unsigned int total_in_lo32;

unsigned int total_in_hi32;

har *next_out;

unsigned int avail_out;

unsigned int total_out_lo32;

unsigned int total_out_hi32;

void *state;

void *(*bzallo)(void *,int,int);

void (*bzfree)(void *,void *);

void *opaque;

}

bz_stream;

int BZ2_bzCompressInit (bz_stream *strm,

int blokSize100k,

int verbosity,

int workFator);

Chapter 3: Programming with libbzip2 13

Prepares for ompression. The bz_stream struture holds all data pertaining to the om-

pression ativity. A bz_stream struture should be alloated and initialised prior to the

all. The �elds of bz_stream omprise the entirety of the user-visible data. state is a

pointer to the private data strutures required for ompression.

Custom memory alloators are supported, via �elds bzallo, bzfree, and opaque. The

value opaque is passed to as the �rst argument to all alls to bzallo and bzfree, but is

otherwise ignored by the library. The all bzallo (opaque, n, m) is expeted to return

a pointer p to n * m bytes of memory, and bzfree (opaque, p) should free that memory.

If you don't want to use a ustom memory alloator, set bzallo, bzfree and opaque to

NULL, and the library will then use the standard mallo/free routines.

Before alling BZ2_bzCompressInit, �elds bzallo, bzfree and opaque should be �lled

appropriately, as just desribed. Upon return, the internal state will have been alloated

and initialised, and total_in_lo32, total_in_hi32, total_out_lo32 and total_out_

hi32 will have been set to zero. These four �elds are used by the library to inform the

aller of the total amount of data passed into and out of the library, respetively. You

should not try to hange them. As of version 1.0, 64-bit ounts are maintained, even on

32-bit platforms, using the _hi32 �elds to store the upper 32 bits of the ount. So, for

example, the total amount of data in is (total_in_hi32 << 32) + total_in_lo32.

Parameter blokSize100k spei�es the blok size to be used for ompression. It should be

a value between 1 and 9 inlusive, and the atual blok size used is 100000 x this �gure. 9

gives the best ompression but takes most memory.

Parameter verbosity should be set to a number between 0 and 4 inlusive. 0 is silent, and

greater numbers give inreasingly verbose monitoring/debugging output. If the library has

been ompiled with -DBZ_NO_STDIO, no suh output will appear for any verbosity setting.

Parameter workFator ontrols how the ompression phase behaves when presented with

worst ase, highly repetitive, input data. If ompression runs into diÆulties aused by

repetitive data, the library swithes from the standard sorting algorithm to a fallbak al-

gorithm. The fallbak is slower than the standard algorithm by perhaps a fator of three,

but always behaves reasonably, no matter how bad the input.

Lower values of workFator redue the amount of e�ort the standard algorithm will expend

before resorting to the fallbak. You should set this parameter arefully; too low, and many

inputs will be handled by the fallbak algorithm and so ompress rather slowly, too high,

and your average-to-worst ase ompression times an beome very large. The default value

of 30 gives reasonable behaviour over a wide range of irumstanes.

Allowable values range from 0 to 250 inlusive. 0 is a speial ase, equivalent to using the

default value of 30.

Note that the ompressed output generated is the same regardless of whether or not the

fallbak algorithm is used.

Be aware also that this parameter may disappear entirely in future versions of the library. In

priniple it should be possible to devise a good way to automatially hoose whih algorithm

to use. Suh a mehanism would render the parameter obsolete.

Chapter 3: Programming with libbzip2 14

Possible return values:

BZ_CONFIG_ERROR

if the library has been mis-ompiled

BZ_PARAM_ERROR

if strm is NULL

or blokSize < 1 or blokSize > 9

or verbosity < 0 or verbosity > 4

or workFator < 0 or workFator > 250

BZ_MEM_ERROR

if not enough memory is available

BZ_OK

otherwise

Allowable next ations:

BZ2_bzCompress

if BZ_OK is returned

no spei� ation needed in ase of error

3.3.2 BZ2_bzCompress

int BZ2_bzCompress (bz_stream *strm, int ation);

Provides more input and/or output bu�er spae for the library. The aller maintains input

and output bu�ers, and alls BZ2_bzCompress to transfer data between them.

Before eah all to BZ2_bzCompress, next_in should point at the data to be ompressed,

and avail_in should indiate how many bytes the library may read. BZ2_bzCompress

updates next_in, avail_in and total_in to reet the number of bytes it has read.

Similarly, next_out should point to a bu�er in whih the ompressed data is to be plaed,

with avail_out indiating how muh output spae is available. BZ2_bzCompress updates

next_out, avail_out and total_out to reet the number of bytes output.

You may provide and remove as little or as muh data as you like on eah all of BZ2_

bzCompress. In the limit, it is aeptable to supply and remove data one byte at a time,

although this would be terribly ineÆient. You should always ensure that at least one byte

of output spae is available at eah all.

A seond purpose of BZ2_bzCompress is to request a hange of mode of the ompressed

stream.

Coneptually, a ompressed stream an be in one of four states: IDLE, RUNNING, FLUSH-

ING and FINISHING. Before initialisation (BZ2_bzCompressInit) and after termination

(BZ2_bzCompressEnd), a stream is regarded as IDLE.

Upon initialisation (BZ2_bzCompressInit), the stream is plaed in the RUNNING state.

Subsequent alls to BZ2_bzCompress should pass BZ_RUN as the requested ation; other

ations are illegal and will result in BZ_SEQUENCE_ERROR.

At some point, the alling program will have provided all the input data it wants to. It

will then want to �nish up { in e�et, asking the library to proess any data it might have

bu�ered internally. In this state, BZ2_bzCompress will no longer attempt to read data from

Chapter 3: Programming with libbzip2 15

next_in, but it will want to write data to next_out. Beause the output bu�er supplied

by the user an be arbitrarily small, the �nishing-up operation annot neessarily be done

with a single all of BZ2_bzCompress.

Instead, the alling program passes BZ_FINISH as an ation to BZ2_bzCompress. This

hanges the stream's state to FINISHING. Any remaining input (ie, next_in[0 .. avail_

in-1℄) is ompressed and transferred to the output bu�er. To do this, BZ2_bzCompress

must be alled repeatedly until all the output has been onsumed. At that point, BZ2_

bzCompress returns BZ_STREAM_END, and the stream's state is set bak to IDLE. BZ2_

bzCompressEnd should then be alled.

Just to make sure the alling program does not heat, the library makes a note of avail_in

at the time of the �rst all to BZ2_bzCompress whih has BZ_FINISH as an ation (ie, at the

time the program has announed its intention to not supply any more input). By omparing

this value with that of avail_in over subsequent alls to BZ2_bzCompress, the library an

detet any attempts to slip in more data to ompress. Any alls for whih this is deteted

will return BZ_SEQUENCE_ERROR. This indiates a programming mistake whih should be

orreted.

Instead of asking to �nish, the alling program may ask BZ2_bzCompress to take all the

remaining input, ompress it and terminate the urrent (Burrows-Wheeler) ompression

blok. This ould be useful for error ontrol purposes. The mehanism is analogous to that

for �nishing: all BZ2_bzCompress with an ation of BZ_FLUSH, remove output data, and

persist with the BZ_FLUSH ation until the value BZ_RUN is returned. As with �nishing,

BZ2_bzCompress detets any attempt to provide more input data one the ush has begun.

One the ush is omplete, the stream returns to the normal RUNNING state.

This all sounds pretty omplex, but isn't really. Here's a table whih shows whih ations

are allowable in eah state, what ation will be taken, what the next state is, and what the

non-error return values are. Note that you an't expliitly ask what state the stream is in,

but nor do you need to { it an be inferred from the values returned by BZ2_bzCompress.

IDLE/any

Illegal. IDLE state only exists after BZ2_bzCompressEnd or

before BZ2_bzCompressInit.

Return value = BZ_SEQUENCE_ERROR

RUNNING/BZ_RUN

Compress from next_in to next_out as muh as possible.

Next state = RUNNING

Return value = BZ_RUN_OK

RUNNING/BZ_FLUSH

Remember urrent value of next_in. Compress from next_in

to next_out as muh as possible, but do not aept any more input.

Next state = FLUSHING

Return value = BZ_FLUSH_OK

RUNNING/BZ_FINISH

Remember urrent value of next_in. Compress from next_in

Chapter 3: Programming with libbzip2 16

to next_out as muh as possible, but do not aept any more input.

Next state = FINISHING

Return value = BZ_FINISH_OK

FLUSHING/BZ_FLUSH

Compress from next_in to next_out as muh as possible,

but do not aept any more input.

If all the existing input has been used up and all ompressed

output has been removed

Next state = RUNNING; Return value = BZ_RUN_OK

else

Next state = FLUSHING; Return value = BZ_FLUSH_OK

FLUSHING/other

Illegal.

Return value = BZ_SEQUENCE_ERROR

FINISHING/BZ_FINISH

Compress from next_in to next_out as muh as possible,

but to not aept any more input.

If all the existing input has been used up and all ompressed

output has been removed

Next state = IDLE; Return value = BZ_STREAM_END

else

Next state = FINISHING; Return value = BZ_FINISHING

FINISHING/other

Illegal.

Return value = BZ_SEQUENCE_ERROR

That still looks ompliated? Well, fair enough. The usual sequene of alls for ompressing

a load of data is:

� Get started with BZ2_bzCompressInit.

� Shovel data in and shlurp out its ompressed form using zero or more alls of BZ2_

bzCompress with ation = BZ_RUN.

� Finish up. Repeatedly all BZ2_bzCompress with ation = BZ_FINISH, opying out the

ompressed output, until BZ_STREAM_END is returned.

� Close up and go home. Call BZ2_bzCompressEnd.

If the data you want to ompress �ts into your input bu�er all at one, you an skip the alls

of BZ2_bzCompress (..., BZ_RUN) and just do the BZ2_bzCompress (..., BZ_FINISH

) alls.

All required memory is alloated by BZ2_bzCompressInit. The ompression library an

aept any data at all (obviously). So you shouldn't get any error return values from the

BZ2_bzCompress alls. If you do, they will be BZ_SEQUENCE_ERROR, and indiate a bug in

your programming.

Trivial other possible return values:

Chapter 3: Programming with libbzip2 17

BZ_PARAM_ERROR

if strm is NULL, or strm->s is NULL

3.3.3 BZ2_bzCompressEnd

int BZ2_bzCompressEnd (bz_stream *strm);

Releases all memory assoiated with a ompression stream.

Possible return values:

BZ_PARAM_ERROR if strm is NULL or strm->s is NULL

BZ_OK otherwise

3.3.4 BZ2_bzDeompressInit

int BZ2_bzDeompressInit (bz_stream *strm, int verbosity, int small);

Prepares for deompression. As with BZ2_bzCompressInit, a bz_stream reord should be

alloated and initialised before the all. Fields bzallo, bzfree and opaque should be set if

a ustom memory alloator is required, or made NULL for the normal mallo/free routines.

Upon return, the internal state will have been initialised, and total_in and total_out will

be zero.

For the meaning of parameter verbosity, see BZ2_bzCompressInit.

If small is nonzero, the library will use an alternative deompression algorithm whih uses

less memory but at the ost of deompressing more slowly (roughly speaking, half the speed,

but the maximum memory requirement drops to around 2300k). See Chapter 2 for more

information on memory management.

Note that the amount of memory needed to deompress a stream annot be determined

until the stream's header has been read, so even if BZ2_bzDeompressInit sueeds, a

subsequent BZ2_bzDeompress ould fail with BZ_MEM_ERROR.

Possible return values:

BZ_CONFIG_ERROR

if the library has been mis-ompiled

BZ_PARAM_ERROR

if (small != 0 && small != 1)

or (verbosity < 0 || verbosity > 4)

BZ_MEM_ERROR

if insuÆient memory is available

Allowable next ations:

BZ2_bzDeompress

if BZ_OK was returned

no spei� ation required in ase of error

3.3.5 BZ2_bzDeompress

int BZ2_bzDeompress (bz_stream *strm);

Chapter 3: Programming with libbzip2 18

Provides more input and/out output bu�er spae for the library. The aller maintains input

and output bu�ers, and uses BZ2_bzDeompress to transfer data between them.

Before eah all to BZ2_bzDeompress, next_in should point at the ompressed data, and

avail_in should indiate how many bytes the library may read. BZ2_bzDeompress up-

dates next_in, avail_in and total_in to reet the number of bytes it has read.

Similarly, next_out should point to a bu�er in whih the unompressed output is to be

plaed, with avail_out indiating how muh output spae is available. BZ2_bzCompress

updates next_out, avail_out and total_out to reet the number of bytes output.

You may provide and remove as little or as muh data as you like on eah all of BZ2_

bzDeompress. In the limit, it is aeptable to supply and remove data one byte at a time,

although this would be terribly ineÆient. You should always ensure that at least one byte

of output spae is available at eah all.

Use of BZ2_bzDeompress is simpler than BZ2_bzCompress.

You should provide input and remove output as desribed above, and repeatedly all BZ2_

bzDeompress until BZ_STREAM_END is returned. Appearane of BZ_STREAM_END denotes

that BZ2_bzDeompress has deteted the logial end of the ompressed stream. BZ2_

bzDeompress will not produe BZ_STREAM_END until all output data has been plaed into

the output bu�er, so one BZ_STREAM_END appears, you are guaranteed to have available

all the deompressed output, and BZ2_bzDeompressEnd an safely be alled.

If ase of an error return value, you should all BZ2_bzDeompressEnd to lean up and

release memory.

Possible return values:

BZ_PARAM_ERROR

if strm is NULL or strm->s is NULL

or strm->avail_out < 1

BZ_DATA_ERROR

if a data integrity error is deteted in the ompressed stream

BZ_DATA_ERROR_MAGIC

if the ompressed stream doesn't begin with the right magi bytes

BZ_MEM_ERROR

if there wasn't enough memory available

BZ_STREAM_END

if the logial end of the data stream was deteted and all

output in has been onsumed, eg s->avail_out > 0

BZ_OK

otherwise

Allowable next ations:

BZ2_bzDeompress

if BZ_OK was returned

BZ2_bzDeompressEnd

otherwise

Chapter 3: Programming with libbzip2 19

3.3.6 BZ2_bzDeompressEnd

int BZ2_bzDeompressEnd (bz_stream *strm);

Releases all memory assoiated with a deompression stream.

Possible return values:

BZ_PARAM_ERROR

if strm is NULL or strm->s is NULL

BZ_OK

otherwise

Allowable next ations:

None.

3.4 High-level interfae

This interfae provides funtions for reading and writing bzip2 format �les. First, some

general points.

� All of the funtions take an int* �rst argument, bzerror. After eah all, bzerror

should be onsulted �rst to determine the outome of the all. If bzerror is BZ_OK, the

all ompleted suessfully, and only then should the return value of the funtion (if

any) be onsulted. If bzerror is BZ_IO_ERROR, there was an error reading/writing the

underlying ompressed �le, and you should then onsult errno/perror to determine

the ause of the diÆulty. bzerror may also be set to various other values; preise

details are given on a per-funtion basis below.

� If bzerror indiates an error (ie, anything exept BZ_OK and BZ_STREAM_END), you

should immediately all BZ2_bzReadClose (or BZ2_bzWriteClose, depending on

whether you are attempting to read or to write) to free up all resoures assoi-

ated with the stream. One an error has been indiated, behaviour of all alls exept

BZ2_bzReadClose (BZ2_bzWriteClose) is unde�ned. The impliation is that (1)

bzerror should be heked after eah all, and (2) if bzerror indiates an error,

BZ2_bzReadClose (BZ2_bzWriteClose) should then be alled to lean up.

� The FILE* arguments passed to BZ2_bzReadOpen/BZ2_bzWriteOpen should be set to

binary mode. Most Unix systems will do this by default, but other platforms, inluding

Windows and Ma, will not. If you omit this, you may enounter problems when moving

ode to new platforms.

� Memory alloation requests are handled by mallo/free. At present there is no faility

for user-de�ned memory alloators in the �le I/O funtions (ould easily be added,

though).

3.4.1 BZ2_bzReadOpen

typedef void BZFILE;

BZFILE *BZ2_bzReadOpen (int *bzerror, FILE *f,

int small, int verbosity,

Chapter 3: Programming with libbzip2 20

void *unused, int nUnused);

Prepare to read ompressed data from �le handle f. f should refer to a �le whih has been

opened for reading, and for whih the error indiator (ferror(f))is not set. If small is 1,

the library will try to deompress using less memory, at the expense of speed.

For reasons explained below, BZ2_bzRead will deompress the nUnused bytes starting at

unused, before starting to read from the �le f. At most BZ_MAX_UNUSED bytes may be

supplied like this. If this faility is not required, you should pass NULL and 0 for unused

and nUnused respetively.

For the meaning of parameters small and verbosity, see BZ2_bzDeompressInit.

The amount of memory needed to deompress a �le annot be determined until the �le's

header has been read. So it is possible that BZ2_bzReadOpen returns BZ_OK but a subsequent

all of BZ2_bzRead will return BZ_MEM_ERROR.

Possible assignments to bzerror:

BZ_CONFIG_ERROR

if the library has been mis-ompiled

BZ_PARAM_ERROR

if f is NULL

or small is neither 0 nor 1

or (unused == NULL && nUnused != 0)

or (unused != NULL && !(0 <= nUnused <= BZ_MAX_UNUSED))

BZ_IO_ERROR

if ferror(f) is nonzero

BZ_MEM_ERROR

if insuÆient memory is available

BZ_OK

otherwise.

Possible return values:

Pointer to an abstrat BZFILE

if bzerror is BZ_OK

NULL

otherwise

Allowable next ations:

BZ2_bzRead

if bzerror is BZ_OK

BZ2_bzClose

otherwise

3.4.2 BZ2_bzRead

int BZ2_bzRead (int *bzerror, BZFILE *b, void *buf, int len);

Reads up to len (unompressed) bytes from the ompressed �le b into the bu�er buf. If

the read was suessful, bzerror is set to BZ_OK and the number of bytes read is returned.

Chapter 3: Programming with libbzip2 21

If the logial end-of-stream was deteted, bzerror will be set to BZ_STREAM_END, and the

number of bytes read is returned. All other bzerror values denote an error.

BZ2_bzRead will supply len bytes, unless the logial stream end is deteted or an error

ours. Beause of this, it is possible to detet the stream end by observing when the

number of bytes returned is less than the number requested. Nevertheless, this is regarded

as inadvisable; you should instead hek bzerror after every all and wath out for BZ_

STREAM_END.

Internally, BZ2_bzRead opies data from the ompressed �le in hunks of size BZ_MAX_

UNUSED bytes before deompressing it. If the �le ontains more bytes than stritly needed

to reah the logial end-of-stream, BZ2_bzRead will almost ertainly read some of the

trailing data before signalling BZ_SEQUENCE_END. To ollet the read but unused data

one BZ_SEQUENCE_END has appeared, all BZ2_bzReadGetUnused immediately before BZ2_

bzReadClose.

Possible assignments to bzerror:

BZ_PARAM_ERROR

if b is NULL or buf is NULL or len < 0

BZ_SEQUENCE_ERROR

if b was opened with BZ2_bzWriteOpen

BZ_IO_ERROR

if there is an error reading from the ompressed �le

BZ_UNEXPECTED_EOF

if the ompressed �le ended before the logial end-of-stream was deteted

BZ_DATA_ERROR

if a data integrity error was deteted in the ompressed stream

BZ_DATA_ERROR_MAGIC

if the stream does not begin with the requisite header bytes (ie, is not

a bzip2 data �le). This is really a speial ase of BZ_DATA_ERROR.

BZ_MEM_ERROR

if insuÆient memory was available

BZ_STREAM_END

if the logial end of stream was deteted.

BZ_OK

otherwise.

Possible return values:

number of bytes read

if bzerror is BZ_OK or BZ_STREAM_END

unde�ned

otherwise

Allowable next ations:

ollet data from buf, then BZ2_bzRead or BZ2_bzReadClose

if bzerror is BZ_OK

ollet data from buf, then BZ2_bzReadClose or BZ2_bzReadGetUnused

if bzerror is BZ_SEQUENCE_END

BZ2_bzReadClose

otherwise

Chapter 3: Programming with libbzip2 22

3.4.3 BZ2_bzReadGetUnused

void BZ2_bzReadGetUnused (int* bzerror, BZFILE *b,

void** unused, int* nUnused);

Returns data whih was read from the ompressed �le but was not needed to get to the

logial end-of-stream. *unused is set to the address of the data, and *nUnused to the

number of bytes. *nUnused will be set to a value between 0 and BZ_MAX_UNUSED inlusive.

This funtion may only be alled one BZ2_bzRead has signalled BZ_STREAM_END but before

BZ2_bzReadClose.

Possible assignments to bzerror:

BZ_PARAM_ERROR

if b is NULL

or unused is NULL or nUnused is NULL

BZ_SEQUENCE_ERROR

if BZ_STREAM_END has not been signalled

or if b was opened with BZ2_bzWriteOpen

BZ_OK

otherwise

Allowable next ations:

BZ2_bzReadClose

3.4.4 BZ2_bzReadClose

void BZ2_bzReadClose (int *bzerror, BZFILE *b);

Releases all memory pertaining to the ompressed �le b. BZ2_bzReadClose does not all

flose on the underlying �le handle, so you should do that yourself if appropriate. BZ2_

bzReadClose should be alled to lean up after all error situations.

Possible assignments to bzerror:

BZ_SEQUENCE_ERROR

if b was opened with BZ2_bzOpenWrite

BZ_OK

otherwise

Allowable next ations:

none

3.4.5 BZ2_bzWriteOpen

BZFILE *BZ2_bzWriteOpen (int *bzerror, FILE *f,

int blokSize100k, int verbosity,

int workFator);

Prepare to write ompressed data to �le handle f. f should refer to a �le whih has been

opened for writing, and for whih the error indiator (ferror(f))is not set.

Chapter 3: Programming with libbzip2 23

For the meaning of parameters blokSize100k, verbosity and workFator, see

BZ2_bzCompressInit.

All required memory is alloated at this stage, so if the all ompletes suessfully, BZ_MEM_

ERROR annot be signalled by a subsequent all to BZ2_bzWrite.

Possible assignments to bzerror:

BZ_CONFIG_ERROR

if the library has been mis-ompiled

BZ_PARAM_ERROR

if f is NULL

or blokSize100k < 1 or blokSize100k > 9

BZ_IO_ERROR

if ferror(f) is nonzero

BZ_MEM_ERROR

if insuÆient memory is available

BZ_OK

otherwise

Possible return values:

Pointer to an abstrat BZFILE

if bzerror is BZ_OK

NULL

otherwise

Allowable next ations:

BZ2_bzWrite

if bzerror is BZ_OK

(you ould go diretly to BZ2_bzWriteClose, but this would be pretty pointless)

BZ2_bzWriteClose

otherwise

3.4.6 BZ2_bzWrite

void BZ2_bzWrite (int *bzerror, BZFILE *b, void *buf, int len);

Absorbs len bytes from the bu�er buf, eventually to be ompressed and written to the �le.

Possible assignments to bzerror:

BZ_PARAM_ERROR

if b is NULL or buf is NULL or len < 0

BZ_SEQUENCE_ERROR

if b was opened with BZ2_bzReadOpen

BZ_IO_ERROR

if there is an error writing the ompressed �le.

BZ_OK

otherwise

3.4.7 BZ2_bzWriteClose

Chapter 3: Programming with libbzip2 24

void BZ2_bzWriteClose (int *bzerror, BZFILE* f,

int abandon,

unsigned int* nbytes_in,

unsigned int* nbytes_out);

void BZ2_bzWriteClose64 (int *bzerror, BZFILE* f,

int abandon,

unsigned int* nbytes_in_lo32,

unsigned int* nbytes_in_hi32,

unsigned int* nbytes_out_lo32,

unsigned int* nbytes_out_hi32);

Compresses and ushes to the ompressed �le all data so far supplied by BZ2_bzWrite.

The logial end-of-stream markers are also written, so subsequent alls to BZ2_bzWrite are

illegal. All memory assoiated with the ompressed �le b is released. fflush is alled on

the ompressed �le, but it is not flose'd.

If BZ2_bzWriteClose is alled to lean up after an error, the only ation is to release the

memory. The library reords the error odes issued by previous alls, so this situation will

be deteted automatially. There is no attempt to omplete the ompression operation, nor

to fflush the ompressed �le. You an fore this behaviour to happen even in the ase of

no error, by passing a nonzero value to abandon.

If nbytes_in is non-null, *nbytes_in will be set to be the total volume of unompressed

data handled. Similarly, nbytes_out will be set to the total volume of ompressed data

written. For ompatibility with older versions of the library, BZ2_bzWriteClose only yields

the lower 32 bits of these ounts. Use BZ2_bzWriteClose64 if you want the full 64 bit

ounts. These two funtions are otherwise absolutely idential.

Possible assignments to bzerror:

BZ_SEQUENCE_ERROR

if b was opened with BZ2_bzReadOpen

BZ_IO_ERROR

if there is an error writing the ompressed �le

BZ_OK

otherwise

3.4.8 Handling embedded ompressed data streams

The high-level library failitates use of bzip2 data streams whih form some part of a

surrounding, larger data stream.

� For writing, the library takes an open �le handle, writes ompressed data to it, fflushes

it but does not flose it. The alling appliation an write its own data before and

after the ompressed data stream, using that same �le handle.

� Reading is more omplex, and the failities are not as general as they ould be sine

generality is hard to reonile with eÆieny. BZ2_bzRead reads from the ompressed

�le in bloks of size BZ_MAX_UNUSED bytes, and in doing so probably will overshoot

the logial end of ompressed stream. To reover this data one deompression has

Chapter 3: Programming with libbzip2 25

ended, all BZ2_bzReadGetUnused after the last all of BZ2_bzRead (the one returning

BZ_STREAM_END) but before alling BZ2_bzReadClose.

This mehanism makes it easy to deompress multiple bzip2 streams plaed end-to-

end. As the end of one stream, when BZ2_bzRead returns BZ_STREAM_END, all BZ2_

bzReadGetUnused to ollet the unused data (opy it into your own bu�er somewhere).

That data forms the start of the next ompressed stream. To start unompressing that next

stream, all BZ2_bzReadOpen again, feeding in the unused data via the unused/nUnused

parameters. Keep doing this until BZ_STREAM_END return oinides with the physial end

of �le (feof(f)). In this situation BZ2_bzReadGetUnused will of ourse return no data.

This should give some feel for how the high-level interfae an be used. If you require extra

exibility, you'll have to bite the bullet and get to grips with the low-level interfae.

3.4.9 Standard �le-reading/writing ode

Here's how you'd write data to a ompressed �le:

FILE* f;

BZFILE* b;

int nBuf;

har buf[/* whatever size you like */ ℄;

int bzerror;

int nWritten;

f = fopen ("myfile.bz2", "w");

if (!f) {

/* handle error */

}

b = BZ2_bzWriteOpen (&bzerror, f, 9);

if (bzerror != BZ_OK) {

BZ2_bzWriteClose (b);

/* handle error */

}

while (/* ondition */) {

/* get data to write into buf, and set nBuf appropriately */

nWritten = BZ2_bzWrite (&bzerror, b, buf, nBuf);

if (bzerror == BZ_IO_ERROR) {

BZ2_bzWriteClose (&bzerror, b);

/* handle error */

}

}

BZ2_bzWriteClose (&bzerror, b);

if (bzerror == BZ_IO_ERROR) {

/* handle error */

}

Chapter 3: Programming with libbzip2 26

And to read from a ompressed �le:

FILE* f;

BZFILE* b;

int nBuf;

har buf[/* whatever size you like */ ℄;

int bzerror;

int nWritten;

f = fopen ("myfile.bz2", "r");

if (!f) {

/* handle error */

}

b = BZ2_bzReadOpen (&bzerror, f, 0, NULL, 0);

if (bzerror != BZ_OK) {

BZ2_bzReadClose (&bzerror, b);

/* handle error */

}

bzerror = BZ_OK;

while (bzerror == BZ_OK && /* arbitrary other onditions */) {

nBuf = BZ2_bzRead (&bzerror, b, buf, /* size of buf */);

if (bzerror == BZ_OK) {

/* do something with buf[0 .. nBuf-1℄ */

}

}

if (bzerror != BZ_STREAM_END) {

BZ2_bzReadClose (&bzerror, b);

/* handle error */

} else {

BZ2_bzReadClose (&bzerror);

}

3.5 Utility funtions

3.5.1 BZ2_bzBuffToBuffCompress

int BZ2_bzBuffToBuffCompress(har* dest,

unsigned int* destLen,

har* soure,

unsigned int soureLen,

int blokSize100k,

int verbosity,

int workFator);

Attempts to ompress the data in soure[0 .. soureLen-1℄ into the destination bu�er,

dest[0 .. *destLen-1℄. If the destination bu�er is big enough, *destLen is set to the size

of the ompressed data, and BZ_OK is returned. If the ompressed data won't �t, *destLen

is unhanged, and BZ_OUTBUFF_FULL is returned.

Chapter 3: Programming with libbzip2 27

Compression in this manner is a one-shot event, done with a single all to this funtion. The

resulting ompressed data is a omplete bzip2 format data stream. There is no mehanism

for making additional alls to provide extra input data. If you want that kind of mehanism,

use the low-level interfae.

For the meaning of parameters blokSize100k, verbosity and workFator,

see BZ2_bzCompressInit.

To guarantee that the ompressed data will �t in its bu�er, alloate an output bu�er of size

1% larger than the unompressed data, plus six hundred extra bytes.

BZ2_bzBuffToBuffDeompress will not write data at or beyond dest[*destLen℄, even in

ase of bu�er overow.

Possible return values:

BZ_CONFIG_ERROR

if the library has been mis-ompiled

BZ_PARAM_ERROR

if dest is NULL or destLen is NULL

or blokSize100k < 1 or blokSize100k > 9

or verbosity < 0 or verbosity > 4

or workFator < 0 or workFator > 250

BZ_MEM_ERROR

if insuÆient memory is available

BZ_OUTBUFF_FULL

if the size of the ompressed data exeeds *destLen

BZ_OK

otherwise

3.5.2 BZ2_bzBuffToBuffDeompress

int BZ2_bzBuffToBuffDeompress (har* dest,

unsigned int* destLen,

har* soure,

unsigned int soureLen,

int small,

int verbosity);

Attempts to deompress the data in soure[0 .. soureLen-1℄ into the destination bu�er,

dest[0 .. *destLen-1℄. If the destination bu�er is big enough, *destLen is set to the size

of the unompressed data, and BZ_OK is returned. If the ompressed data won't �t, *destLen

is unhanged, and BZ_OUTBUFF_FULL is returned.

soure is assumed to hold a omplete bzip2 format data stream.

BZ2_bzBuffToBuffDeompress tries to deompress the entirety of the stream into the out-

put bu�er.

For the meaning of parameters small and verbosity, see BZ2_bzDeompressInit.

Beause the ompression ratio of the ompressed data annot be known in advane, there

is no easy way to guarantee that the output bu�er will be big enough. You may of ourse

Chapter 3: Programming with libbzip2 28

make arrangements in your ode to reord the size of the unompressed data, but suh a

mehanism is beyond the sope of this library.

BZ2_bzBuffToBuffDeompress will not write data at or beyond dest[*destLen℄, even in

ase of bu�er overow.

Possible return values:

BZ_CONFIG_ERROR

if the library has been mis-ompiled

BZ_PARAM_ERROR

if dest is NULL or destLen is NULL

or small != 0 && small != 1

or verbosity < 0 or verbosity > 4

BZ_MEM_ERROR

if insuÆient memory is available

BZ_OUTBUFF_FULL

if the size of the ompressed data exeeds *destLen

BZ_DATA_ERROR

if a data integrity error was deteted in the ompressed data

BZ_DATA_ERROR_MAGIC

if the ompressed data doesn't begin with the right magi bytes

BZ_UNEXPECTED_EOF

if the ompressed data ends unexpetedly

BZ_OK

otherwise

3.6 zlib ompatibility funtions

Yoshioka Tsuneo has ontributed some funtions to give better zlib ompatibility. These

funtions are BZ2_bzopen, BZ2_bzread, BZ2_bzwrite, BZ2_bzflush, BZ2_bzlose, BZ2_

bzerror and BZ2_bzlibVersion. These funtions are not (yet) oÆially part of the library.

If they break, you get to keep all the piees. Nevertheless, I think they work ok.

typedef void BZFILE;

onst har * BZ2_bzlibVersion (void);

Returns a string indiating the library version.

BZFILE * BZ2_bzopen (onst har *path, onst har *mode);

BZFILE * BZ2_bzdopen (int fd, onst har *mode);

Opens a .bz2 �le for reading or writing, using either its name or a pre-existing �le desriptor.

Analogous to fopen and fdopen.

int BZ2_bzread (BZFILE* b, void* buf, int len);

int BZ2_bzwrite (BZFILE* b, void* buf, int len);

Reads/writes data from/to a previously opened BZFILE. Analogous to fread and fwrite.

int BZ2_bzflush (BZFILE* b);

void BZ2_bzlose (BZFILE* b);

Chapter 3: Programming with libbzip2 29

Flushes/loses a BZFILE. BZ2_bzflush doesn't atually do anything. Analogous to fflush

and flose.

onst har * BZ2_bzerror (BZFILE *b, int *errnum)

Returns a string desribing the more reent error status of b, and also sets *errnum to its

numerial value.

3.7 Using the library in a stdio-free environment

3.7.1 Getting rid of stdio

In a deeply embedded appliation, you might want to use just the memory-to-memory

funtions. You an do this onveniently by ompiling the library with preproessor symbol

BZ_NO_STDIO de�ned. Doing this gives you a library ontaining only the following eight

funtions:

BZ2_bzCompressInit, BZ2_bzCompress, BZ2_bzCompressEnd

BZ2_bzDeompressInit, BZ2_bzDeompress, BZ2_bzDeompressEnd

BZ2_bzBuffToBuffCompress, BZ2_bzBuffToBuffDeompress

When ompiled like this, all funtions will ignore verbosity settings.

3.7.2 Critial error handling

libbzip2 ontains a number of internal assertion heks whih should, needless to say, never

be ativated. Nevertheless, if an assertion should fail, behaviour depends on whether or not

the library was ompiled with BZ_NO_STDIO set.

For a normal ompile, an assertion failure yields the message

bzip2/libbzip2: internal error number N.

This is a bug in bzip2/libbzip2, 1.0 of 21-Mar-2000.

Please report it to me at: jseward�am.org. If this happened

when you were using some program whih uses libbzip2 as a

omponent, you should also report this bug to the author(s)

of that program. Please make an effort to report this bug;

timely and aurate bug reports eventually lead to higher

quality software. Thanks. Julian Seward, 21 Marh 2000.

where N is some error ode number. exit(3) is then alled.

For a stdio-free library, assertion failures result in a all to a funtion delared as:

extern void bz_internal_error (int errode);

The relevant ode is passed as a parameter. You should supply suh a funtion.

In either ase, one an assertion failure has ourred, any bz_stream reords involved an

be regarded as invalid. You should not attempt to resume normal operation with them.

Chapter 3: Programming with libbzip2 30

You may, of ourse, hange ritial error handling to suit your needs. As I said above, ritial

errors indiate bugs in the library and should not our. All "normal" error situations are

indiated via error return odes from funtions, and an be reovered from.

3.8 Making a Windows DLL

Everything related to Windows has been ontributed by Yoshioka Tsuneo

(QWF00133�niftyserve.or.jp / tsuneo-y�is.aist-nara.a.jp), so you should send

your queries to him (but perhaps C: me, jseward�am.org).

My vague understanding of what to do is: using Visual C++ 5.0, open the projet �le

libbz2.dsp, and build. That's all.

If you an't open the projet �le for some reason, make a new one, naming these �les:

bloksort., bzlib., ompress., rtable., deompress., huffman.,

randtable. and libbz2.def. You will also need to name the header �les bzlib.h and

bzlib_private.h.

If you don't use VC++, you may need to de�ne the proproessor symbol _WIN32.

Finally, dlltest. is a sample program using the DLL. It has a projet �le, dlltest.dsp.

If you just want a make�le for Visual C, have a look at makefile.ms.

Be aware that if you ompile bzip2 itself on Win32, you must set BZ_UNIX to 0 and BZ_

LCCWIN32 to 1, in the �le bzip2., before ompiling. Otherwise the resulting binary won't

work orretly.

I haven't tried any of this stu� myself, but it all looks plausible.

Chapter 4: Misellanea 31

4 Misellanea

These are just some random thoughts of mine. Your mileage may vary.

4.1 Limitations of the ompressed �le format

bzip2-1.0, 0.9.5 and 0.9.0 use exatly the same �le format as the previous version,

bzip2-0.1. This deision was made in the interests of stability. Creating yet another

inompatible ompressed �le format would reate further onfusion and disruption for users.

Nevertheless, this is not a painless deision. Development work sine the release of bzip2-

0.1 in August 1997 has shown omplexities in the �le format whih slow down deompression

and, in retrospet, are unneessary. These are:

� The run-length enoder, whih is the �rst of the ompression transformations, is entirely

irrelevant. The original purpose was to protet the sorting algorithm from the very

worst ase input: a string of repeated symbols. But algorithm steps Q6a and Q6b

in the original Burrows-Wheeler tehnial report (SRC-124) show how repeats an be

handled without diÆulty in blok sorting.

� The randomisation mehanism doesn't really need to be there. Udi Manber and Gene

Myers published a suÆx array onstrution algorithm a few years bak, whih an be

employed to sort any blok, no matter how repetitive, in O(N log N) time. Subsequent

work by Kunihiko Sadakane has produed a derivative O(N (log N)^2) algorithm whih

usually outperforms the Manber-Myers algorithm.

I ould have hanged to Sadakane's algorithm, but I �nd it to be slower than bzip2's

existing algorithm for most inputs, and the randomisation mehanism protets ade-

quately against bad ases. I didn't think it was a good tradeo� to make. Partly this

is due to the fat that I was not ooded with email omplaints about bzip2-0.1's

performane on repetitive data, so perhaps it isn't a problem for real inputs.

Probably the best long-term solution, and the one I have inorporated into 0.9.5 and

above, is to use the existing sorting algorithm initially, and fall bak to a O(N (log

N)^2) algorithm if the standard algorithm gets into diÆulties.

� The ompressed �le format was never designed to be handled by a library, and I have

had to jump though some hoops to produe an eÆient implementation of deompres-

sion. It's a bit hairy. Try passing deompress. through the C preproessor and you'll

see what I mean. Muh of this omplexity ould have been avoided if the ompressed

size of eah blok of data was reorded in the data stream.

� An Adler-32 heksum, rather than a CRC32 heksum, would be faster to ompute.

It would be fair to say that the bzip2 format was frozen before I properly and fully under-

stood the performane onsequenes of doing so.

Improvements whih I was able to inorporate into 0.9.0, despite using the same �le format,

are:

� Single array implementation of the inverse BWT. This signi�antly speeds up deom-

pression, presumably beause it redues the number of ahe misses.

Chapter 4: Misellanea 32

� Faster inverse MTF transform for large MTF values. The new implementation is based

on the notion of sliding bloks of values.

� bzip2-0.9.0 now reads and writes �les with fread and fwrite; version 0.1 used put

and get. Duh! Well, you live and learn.

Further ahead, it would be nie to be able to do random aess into �les. This will require

some areful design of ompressed �le formats.

4.2 Portability issues

After some onsideration, I have deided not to use GNU autoonf to on�gure 0.9.5 or

1.0.

autoonf, admirable and wonderful though it is, mainly assists with portability problems

between Unix-like platforms. But bzip2 doesn't have muh in the way of portability prob-

lems on Unix; most of the diÆulties appear when porting to the Ma, or to Mirosoft's

operating systems. autoonf doesn't help in those ases, and brings in a whole load of new

omplexity.

Most people should be able to ompile the library and program under Unix straight out-of-

the-box, so to speak, espeially if you have a version of GNU C available.

There are a ouple of __inline__ diretives in the ode. GNU C (g) should be able to

handle them. If you're not using GNU C, your C ompiler shouldn't see them at all. If your

ompiler does, for some reason, see them and doesn't like them, just #define __inline__

to be /* */. One easy way to do this is to ompile with the ag -D__inline__=, whih

should be understood by most Unix ompilers.

If you still have diÆulties, try ompiling with the maro BZ_STRICT_ANSI de�ned. This

should enable you to build the library in a stritly ANSI ompliant environment. Building

the program itself like this is dangerous and not supported, sine you remove bzip2's heks

against ompressing diretories, symboli links, devies, and other not-really-a-�le entities.

This ould ause �lesystem orruption!

One other thing: if you reate a bzip2 binary for publi distribution, please try and link it

statially (g -s). This avoids all sorts of library-version issues that others may enounter

later on.

If you build bzip2 on Win32, you must set BZ_UNIX to 0 and BZ_LCCWIN32 to 1, in the �le

bzip2., before ompiling. Otherwise the resulting binary won't work orretly.

4.3 Reporting bugs

I tried pretty hard to make sure bzip2 is bug free, both by design and by testing. Hopefully

you'll never need to read this setion for real.

Nevertheless, if bzip2 dies with a segmentation fault, a bus error or an internal assertion

failure, it will ask you to email me a bug report. Experiene with version 0.1 shows that

almost all these problems an be traed to either ompiler bugs or hardware problems.

� Reompile the program with no optimisation, and see if it works. And/or try a di�erent

Chapter 4: Misellanea 33

ompiler. I heard all sorts of stories about various avours of GNU C (and other

ompilers) generating bad ode for bzip2, and I've run aross two suh examples myself.

2.7.X versions of GNU C are known to generate bad ode from time to time, at high

optimisation levels. If you get problems, try using the ags -O2 -fomit-frame-pointer

-fno-strength-redue. You should spei�ally not use -funroll-loops.

You may notie that the Make�le runs six tests as part of the build proess. If the

program passes all of these, it's a pretty good (but not 100%) indiation that the

ompiler has done its job orretly.

� If bzip2 rashes randomly, and the rashes are not repeatable, you may have a aky

memory subsystem. bzip2 really hammers your memory hierarhy, and if it's a bit

marginal, you may get these problems. Ditto if your disk or I/O subsystem is slowly

failing. Yup, this really does happen.

Try using a di�erent mahine of the same type, and see if you an repeat the problem.

� This isn't really a bug, but ... If bzip2 tells you your �le is orrupted on deompression,

and you obtained the �le via FTP, there is a possibility that you forgot to tell FTP to

do a binary mode transfer. That absolutely will ause the �le to be non-deompressible.

You'll have to transfer it again.

If you've inorporated libbzip2 into your own program and are getting problems, please,

please, please, hek that the parameters you are passing in alls to the library, are orret,

and in aordane with what the doumentation says is allowable. I have tried to make the

library robust against suh problems, but I'm sure I haven't sueeded.

Finally, if the above omments don't help, you'll have to send me a bug report. Now, it's

just amazing how many people will send me a bug report saying something like

bzip2 rashed with segmentation fault on my mahine

and absolutely nothing else. Needless to say, a suh a report is totally, utterly, ompletely

and omprehensively 100% useless; a waste of your time, my time, and net bandwidth.

With no details at all, there's no way I an possibly begin to �gure out what the problem

is.

The rules of the game are: fats, fats, fats. Don't omit them beause "oh, they won't be

relevant". At the bare minimum:

Mahine type. Operating system version.

Exat version of bzip2 (do bzip2 -V).

Exat version of the ompiler used.

Flags passed to the ompiler.

However, the most important single thing that will help me is the �le that you were trying

to ompress or deompress at the time the problem happened. Without that, my ability to

do anything more than speulate about the ause, is limited.

Please remember that I onnet to the Internet with a modem, so you should ontat me

before mailing me huge �les.

Chapter 4: Misellanea 34

4.4 Did you get the right pakage?

bzip2 is a resoure hog. It soaks up large amounts of CPU yles and memory. Also, it

gives very large latenies. In the worst ase, you an feed many megabytes of unompressed

data into the library before getting any ompressed output, so this probably rules out

appliations requiring interative behaviour.

These aren't faults of my implementation, I hope, but more an intrinsi property of the

Burrows-Wheeler transform (unfortunately). Maybe this isn't what you want.

If you want a ompressor and/or library whih is faster, uses less memory but gets pretty

good ompression, and has minimal lateny, onsider Jean-loup Gailly's and Mark Adler's

work, zlib-1.1.2 and gzip-1.2.4. Look for them at

http://www.drom.om/pub/infozip/zlib and http://www.gzip.org respetively.

For something faster and lighter still, you might try Markus F X J Oberhumer's LZO real-

time ompression/deompression library, at

http://wildsau.idv.uni-linz.a.at/mfx/lzo.html.

If you want to use the bzip2 algorithms to ompress small bloks of data, 64k bytes or

smaller, for example on an on-the-y disk ompressor, you'd be well advised not to use

this library. Instead, I've made a speial library tuned for that kind of use. It's part

of e2ompr-0.40, an on-the-y disk ompressor for the Linux ext2 �lesystem. Look at

http://www.netspae.net.au/~reiter/e2ompr.

4.5 Testing

A reord of the tests I've done.

First, some data sets:

� B: a diretory ontaining 6001 �les, one for every length in the range 0 to 6000 bytes.

The �les ontain random lowerase letters. 18.7 megabytes.

� H: my home diretory tree. Douments, soure ode, mail �les, ompressed data. H

ontains B, and also a diretory of �les designed as boundary ases for the sorting;

mostly very repetitive, nasty �les. 565 megabytes.

� A: diretory tree holding various appliations built from soure: egs, g-2.8.1,

KDE, GTK, Otave, et. 2200 megabytes.

The tests onduted are as follows. Eah test means ompressing (a opy of) eah �le in

the data set, deompressing it and omparing it against the original.

First, a bunh of tests with blok sizes and internal bu�er sizes set very small, to detet any

problems with the bloking and bu�ering mehanisms. This required modifying the soure

ode so as to try to break it.

1. Data set H, with bu�er size of 1 byte, and blok size of 23 bytes.

2. Data set B, bu�er sizes 1 byte, blok size 1 byte.

3. As (2) but small-mode deompression.

4. As (2) with blok size 2 bytes.

Chapter 4: Misellanea 35

5. As (2) with blok size 3 bytes.

6. As (2) with blok size 4 bytes.

7. As (2) with blok size 5 bytes.

8. As (2) with blok size 6 bytes and small-mode deompression.

9. H with bu�er size of 1 byte, but normal blok size (up to 900000 bytes).

Then some tests with unmodi�ed soure ode.

1. H, all settings normal.

2. As (1), with small-mode deompress.

3. H, ompress with ag -1.

4. H, ompress with ag -s, deompress with ag -s.

5. Forwards ompatibility: H, bzip2-0.1pl2 ompressing, bzip2-0.9.5 deompressing,

all settings normal.

6. Bakwards ompatibility: H, bzip2-0.9.5 ompressing, bzip2-0.1pl2 deompressing,

all settings normal.

7. Bigger tests: A, all settings normal.

8. As (7), using the fallbak (Sadakane-like) sorting algorithm.

9. As (8), ompress with ag -1, deompress with ag -s.

10. H, using the fallbak sorting algorithm.

11. Forwards ompatibility: A, bzip2-0.1pl2 ompressing, bzip2-0.9.5 deompressing,

all settings normal.

12. Bakwards ompatibility: A, bzip2-0.9.5 ompressing, bzip2-0.1pl2 deompressing,

all settings normal.

13. Mis test: about 400 megabytes of .tar �les with bzip2 ompiled with Cheker (a

memory aess error detetor, like Purify).

14. Mis tests to make sure it builds and runs ok on non-Linux/x86 platforms.

These tests were onduted on a 225 MHz IDT WinChip mahine, running Linux 2.0.36.

They represent nearly a week of ontinuous omputation. All tests ompleted suessfully.

4.6 Further reading

bzip2 is not researh work, in the sense that it doesn't present any new ideas. Rather, it's

an engineering exerise based on existing ideas.

Four douments desribe essentially all the ideas behind bzip2:

Mihael Burrows and D. J. Wheeler:

"A blok-sorting lossless data ompression algorithm"

10th May 1994.

Digital SRC Researh Report 124.

ftp://ftp.digital.om/pub/DEC/SRC/researh-reports/SRC-124.ps.gz

If you have trouble finding it, try searhing at the

New Zealand Digital Library, http://www.nzdl.org.

Chapter 4: Misellanea 36

Daniel S. Hirshberg and Debra A. LeLewer

"Effiient Deoding of Prefix Codes"

Communiations of the ACM, April 1990, Vol 33, Number 4.

You might be able to get an eletroni opy of this

from the ACM Digital Library.

David J. Wheeler

Program bred3. and aompanying doument bred3.ps.

This ontains the idea behind the multi-table Huffman

oding sheme.

ftp://ftp.l.am.a.uk/users/djw3/

Jon L. Bentley and Robert Sedgewik

"Fast Algorithms for Sorting and Searhing Strings"

Available from Sedgewik's web page,

www.s.prineton.edu/~rs

The following paper gives valuable additional insights into the algorithm, but is not imme-

diately the basis of any ode used in bzip2.

Peter Fenwik:

Blok Sorting Text Compression

Proeedings of the 19th Australasian Computer Siene Conferene,

Melbourne, Australia. Jan 31 - Feb 2, 1996.

ftp://ftp.s.aukland.a.nz/pub/peter-f/ACSC96paper.ps

Kunihiko Sadakane's sorting algorithm, mentioned above, is available from:

http://naomi.is.s.u-tokyo.a.jp/~sada/papers/Sada98b.ps.gz

The Manber-Myers suÆx array onstrution algorithm is desribed in a paper available

from:

http://www.s.arizona.edu/people/gene/PAPERS/suffix.ps

Finally, the following paper douments some reent investigations I made into the perfor-

mane of sorting algorithms:

Julian Seward:

On the Performane of BWT Sorting Algorithms

Proeedings of the IEEE Data Compression Conferene 2000

Snowbird, Utah. 28-30 Marh 2000.

i

Table of Contents

1 Introdution . 2

2 How to use bzip2 . 3

NAME . 3

SYNOPSIS . 3

DESCRIPTION . 3

OPTIONS . 4

MEMORY MANAGEMENT . 6

RECOVERING DATA FROM DAMAGED FILES

. 7

PERFORMANCE NOTES . 7

CAVEATS . 8

AUTHOR . 8

3 Programming with libbzip2 9

3.1 Top-level struture . 9

3.1.1 Low-level summary . 9

3.1.2 High-level summary . 9

3.1.3 Utility funtions summary . 10

3.2 Error handling . 10

3.3 Low-level interfae . 12

3.3.1 BZ2_bzCompressInit . 12

3.3.2 BZ2_bzCompress . 14

3.3.3 BZ2_bzCompressEnd . 17

3.3.4 BZ2_bzDeompressInit . 17

3.3.5 BZ2_bzDeompress . 17

3.3.6 BZ2_bzDeompressEnd . 19

3.4 High-level interfae . 19

3.4.1 BZ2_bzReadOpen . 19

3.4.2 BZ2_bzRead . 20

3.4.3 BZ2_bzReadGetUnused . 22

3.4.4 BZ2_bzReadClose . 22

3.4.5 BZ2_bzWriteOpen . 22

3.4.6 BZ2_bzWrite . 23

3.4.7 BZ2_bzWriteClose . 23

3.4.8 Handling embedded ompressed data streams 24

3.4.9 Standard �le-reading/writing ode 25

3.5 Utility funtions . 26

3.5.1 BZ2_bzBuffToBuffCompress 26

3.5.2 BZ2_bzBuffToBuffDeompress 27

3.6 zlib ompatibility funtions . 28

3.7 Using the library in a stdio-free environment 29

ii

3.7.1 Getting rid of stdio . 29

3.7.2 Critial error handling . 29

3.8 Making a Windows DLL . 30

4 Misellanea. 31

4.1 Limitations of the ompressed �le format 31

4.2 Portability issues . 32

4.3 Reporting bugs . 32

4.4 Did you get the right pakage? . 34

4.5 Testing . 34

4.6 Further reading . 35

