
BVDoor v1.0 Wide Beta
Copyright (C) BV Compuworks Group 1995-1996

Release Date: Dec 19, 1996

Wide BETA License Agreement

THIS IS A LEGAL AGREEMENT TO WHICH YOU ARE CONSENTING TO BE BOUND
BY. IF YOU CANNOT AGREE TO ALL TERMS OF THIS AGREEMENT, ERASE ALL
SOURCES OF DATA PERTAINING TO THIS SOFTWARE. BY NOT ERASING THE DATA,
AND CONTINUING TO USE THE SOFTWARE BEYOND THE EVALUATION PERIOD,
YOU AGREE TO ALL TERMS SET WITHIN.

1. B.V. Compuworks Group ("BVCom") grants to you a non-exclusive, non-sublicensable,
license to use version 1.0 wide beta of the B.V.Door (the "Software"), for evaluation and trial
purposes only of no greater than 30 days.

2. Any and all contents, accessed through the Software, are the properties belonging to the
applicable content owner; and may be protected by applicable copyright laws. This License
gives/grants you no rights to such content.

3. All titles, ownership rights and intellectual property rights, to the Software, shall remain in
BVCom and/or its suppliers and distributers. By consenting to this licensing agreement, you
acknowledge that the Software, in source code form, remains a confidential trade secret of
BVCom and/or its suppliers and distributers. You also agree not to modify the Software or
attempt to alter, change, decipher, decompile, disassemble, hack or reverse engineer the
Software, except to the extent applicable laws specifically prohibit such a restriction.

4. BVCom may terminate this license, at any time, by delivering notice to you and you may
likewise terminate this license, at any time, by simply destroying and/or erasing all copies of the
Software and corresponding documentation.

5. BVCOM MAKES NO REPRESENTATIONS ABOUT THE SUITABILITY OF THE
SOFTWARE, ALL ACCOMPANYING MATERIALS, AND ANY CONTENT OR
INFORMATION MADE ACCESSIBLE BY THE SOFTWARE, FOR ANY PURPOSE. THE
SOFTWARE IS PROVIDED "AS IS" AND UNDER NO CIRCUMSTANCES, LEGAL
THEORY, TORT, CONTRACT OR OTHERWISE, SHALL BVCOM AND/OR SUPPLIERS
AND DISTRIBUTERS BE ACCOUNTABLE AND/OR LIABLE TO YOU OR ANY OTHER
PERSON FOR AN DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES OF ANY KIND. THE SOFTWARE COMES WITHOUT EXPRESS OR IMPLIED
WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT.

[BVDoor v1.0 Users Manual]

6. For further assistance pertaining to the Software and/or documentation please send all
inquiries to the Program Manager
or the programmer:

 Greg Varga, Co-Owner/Program Manager
 B.V. Compuworks
 18130 60th Street
 Cloverdale, B.C. (Canada)
 V3S 1V6
 (604) 576-2219
 E-Mail Address: xomorph@skybus.com
 Fidonet Address: Greg Varga or Allan Rafuse @

Conceptual Realities BBS (1:153/9118)

Registration Information

Currently there are two registration packages that are available for BVDoor v1.0. The first
package is the basic package which is the required by everyone which is $30.00 Canadian; it will
be raised fairly soon to $50.00 in upcoming versions. The second package is a for commercial
programs. This package is needed if you are going to release your programs under a business
name or as a commercial program; excluding Shareware, Freeware, Crippleware programs. The
fee for commercial registration is $50.00 Canadian for EACH program that is to be released.
This will be raised soon to $80.00 in upcoming versions. See REGISTER.DOC for the
registration form. The basic package is good for 2 major releases of BVDoor and is good for all
minor versions which will basically be bug fixes, optimization, ect. A major upgrade is
comprised of addition of many new functions, a bunch of minor upgrades, or adding addition
BBS packages support, ect. Upgrading the basic package to a new major version costs $15.00 no
matter what the last version is.

[BVDoor v1.0 Users Manual]

TABLE OF CONTENTS

 1.... About BVDoor
 1.... Authors Notes
 1.... Getting Help/New Versions
 2.... Chapter I - Getting Started
 2......... Part I - The USES Statement
 2......... Part II - Trapping Exit Codes
 4......... Part III - Trapping Special Keys
 6......... Part IV - Getting User Information
 7......... Part V - The Status Bar
 8.... Chapter II - Global Variables
 22.... Chapter III - Procedures and Functions
 47.... BVDoors' CONST Section

 47.... BVDoors' TYPE Section

About BVDoor

BVDoor is a pascal unit for OS/2 that allows programmers to easily create their own door
programs. BVDoor makes it easy because the programmer does not have to worry about the
comport or user information; BVDoor does it all for you. If you need to change some of the
users information, you can do that too. BVDoor was created to encourage programmers to create
OS/2 executable online door programs. To make it easy for an already made program to be
ported to OS/2, BVDoor was cloned to a well used door unit; JPDoor. BVDoor follows JPDoor
as closely as possible. Currently BVDoor has been only with RA 2.xx, Ezycom 1.20 and
AdeptXBBS v1.07f. QBBS 2.75+ structures are included, but are only still only in theory
because I can't find a copy. Maximus, SuperBBS and PCBoard support will be coming in the
near future. Along with Maximus will come Squish message base support.

Authors Notes:

Hope this makes programming a lot easier! If you encounter any errors then send us a message
telling us EXACTLY what happened. Please send a copy of your finished program to
xomorph@skybus.com so what people are doing with BVDoor.

Getting Help/New Versions

You can get help from the authors of BVDoor at the following places:

Snail Mail:
Greg Varga, Co-Owner/Program Manager

 B.V. Compuworks Group
 18130 60th Street
 Cloverdale, B.C. (Canada)
 V3S 1V6
 (604) 576-2219

E-Mail Address: xomorph@skybus.com
Fidonet Address: Greg Varga at 1:153/9118 or

 Allan Rafuse at 1:153/9118

New versions can be downloaded from the following places:
FREQ: "BVDOOR" from 1:153/9118
FTP SITES: hobbes.nmsu.edu

 ftp.cdrom.com
 oak.oakland.edu

Web Sites: Virtual Pascal Homepage at:
http://www.fprint.co.uk/vpascal

[Page 1]

Chapter I - Getting Started

This chapter will help you get started and familiarized with BVDoor if you are new to
programming, BVDoor, or JPDoor. First off, open up a new file to start your program in. The
first thing you'll learn how to do get your program off and running. Just follow the examples and
include whatever you like. Your program should look like the following:

PROGRAM progname;

BEGIN
END.

Part I - The USES statement

This follows the commands of JPDoor very closly, but in BVDoor, all you need in the uses
statement is USES DOS, CRT, bvdoor2; All the variables and calls are located in this unit so
you don't have to worry about anything.

Part II - Trapping Exit Codes

BVDoor also allows you to trap halt codes and runtime errors if you use the far call procedure
TRAPEXIT.PAS. This procedure checks how the program is exiting. If a runtime error
occurred, then it is reported into a logfile in the directory where your program resides with the
name 'bvlogname' + node number + '.ERR'. If you left the variables at their defaults a logfile of
this name would be BVDOR001.ERR. If a halt code was used, then this procedure will call a
procedure called TERMINATE passing the haltcode to it. Here is an example of a terminate
procedure.
You can include this following segment into your program to make it easier for you.

PROCEDURE terminate(haltcode : BYTE);
 BEGIN
 WRITELN('- ', productname, ' Terminating - ');
 WRITE('Exit Type: ');
 CASE haltcode OF
 0 : WRITELN('Normal');

 1 :
 BEGIN
 WRITELN('Carrier Lost');
 {Do what you want in here}
 END;

[Page 1]

 2 :
 BEGIN
 WRITELN('Timelimit Exceeded');
 {Do what you want in here}
 END;

 3 :
 BEGIN
 WRITELN('Inactivity Timeout');
 {Do what you want in here}
 END;
 4 :
 BEGIN
 IF doorsys THEN
 WRITELN('Can not find ', ckpath(exitinfopath), 'Door.Sys')
 ELSE IF sessioninfo THEN
 WRITELN('Can not find ', ckpath(exitinfopath),
 'Session.Info')
 ELSE
 WRITELN('Can not find ', ckpath(exitinfopath), 'Dorinfo', getnode,
'.Def');
 END;
 5 :
 BEGIN
 WRITELN('Can not find ', ckpath(exitinfopath),
 'Exitinfo.BBS');
 END;
 6 : BEGIN
 WRITELN('Change Directory Error');
 {Should close all files}
 END;
 8 : BEGIN
 WRITELN('RAXIT Semaphore File Found');
 END;
 END;
 END;

Once you have the above copied into your program add the following right after it: {$I trapexit}
Now in the main body of the program add the following line: doorexit := trapexit;
Once you have done those three things, your program will be able to trap exit codes. Your
program should look like this:

PROGRAM progname;

USES DOS, CRT, bvdoor2;

PROCEDURE terminate(haltcode : BYTE);
 BEGIN
 ...
 ...

[Page 2]

 END;

{$I trapexit}

[Page 3]

(* Main Program *)
BEGIN
 doorexit := trapexit;
 getdorinfo('1', 'C:\BBS');
END.

Now if the program was ran, it would look for the Dorinfo1.Def file in 'C:\BBS'. If it couldn't
find the Dorinfo1.Def file then a haltcode of 4 would be called. If it couldn't find the
Exitinfo.BBS file, then a haltcode of 5 would be called. If everything went ok, then the program
would terminate normally with a haltcode of 0.

Part III - Trapping 'Special' Keys

BVDoor allows you to define up to 20 key sequences for both the sysop keyboard and the remote
keyboard. This allows you to call a procedure if a certain key is pressed. For example, if ALT-C
was pressed on the sysop keyboard, a chat procedure could be called. Another example is, the
user could press ALT-T to display how much time they have left. Lets trap call a chatting
procedure when ALT-C is pressed on the sysop keyboard. To trap the ALT-C key stroke, add the
following into your main program:

 sysopkey[1] := #0 + #46;
 sysopproc[1] := chatproc;
 sysopkeys := TRUE;

Now create a procedure called chatproc.

PROCEDURE chatproc;
 BEGIN
 sysopkeyson := FALSE; { Turn of key trapping for now }
 chatting; { Call your chat procedure }
 sysopkeyson := TRUE; { Turn key trapping back on }
 END;

When the sysop presses ALT-C the chatproc will be called. The sysopkey trapping is turned off
so you can't keep calling the chatproc from within the chatproc. Don't forget to turn it back on if
you want to continue trapping keys after the chatting procedure is done. ALT-C is known as an
extended key because it sends a null character (ASCII #0), then a second extended key. Included
is a program called KEYFIND.EXE which tells you the extended codes of keys you typed.

Lets trap CTRL-T on the users keyboard for some more practice. Add the following into your
main program:
 userkey[1] := #47;
 userproc[1] := timeleft;
 userkeyson := TRUE;

Now create a 'timeleft' procedure.

[Page 4]

PROCEDURE timeleft;
 BEGIN
 userkeyson := FALSE;
 crlf;
 display(0, 7, 0, 'Time left: ' + itoa(timeremaining));
 userkeyson := TRUE;
 END;

Below is what you should have so far:

PROGRAM progname;

USES DOS, CRT, bvdoor2;

PROCEDURE terminate(haltcode : BYTE);
 BEGIN
 ...
 ...
 END;

PROCEDURE chatproc;
 BEGIN
 ...
 ...
 END;

PROCEDURE timeleft;
 BEGIN
 ...
 ...
 END;

{$I trapexit}

(* Main Program *)
BEGIN
 doorexit := trapexit;
 sysopkey[1] := #0 + #46;
 sysopproc[1] := chatproc;
 sysopkeys := TRUE;
 userkey[1] := #47;
 userproc[1] := timeleft;
 userkeyson := TRUE; getdorinfo('1', 'C:\BBS');
END.

[Page 5]

Part IV - Getting the Users Information

Now to get the users information, you'll have to know the current node number and path to the
BBS dropfile. This can be accomplished in many ways. The most common way is through
passed parameters. Just assume for now that the program is on node 1 and in the path to the BBS
drop files is 'C:\BBS'. Now in the program put the following line:

getdorinfo('1', 'C:\BBS');

Now if the user loads the program from node 1 and the Dorinfo1.Def file and the Exitinfo.BBS
file are in the 'C:\BBS' path, then the user information will be loaded in. If your door doesn't
need to load in the ExitInfo.BBS file, then set the ckexitinfo variable to false:
 ckexitinfo := FALSE.
This will tell BVDoor that you don't want to read in the Exitinfo.BBS file. If BVDoor is reading
in a Dorinfox.Def dropfile and it can't find the ExitInfo.BBS file and the 'ckexitinfo' variable is
TRUE, then a haltcode of 5 will be called. Set the 'ckexitinfo' variable to false if your reading in
a Dorinfox.Def file and you don't need it any information from it.

By default, 'getdorinfo' always reads a Dorinfo1.Def file no matter what the node number is. If
you want 'getdorinfo' to read a Dorinfo2.Def file or Dorinfo3.Def and so on, set the following
variable to false:
 forcenode := FALSE;
This tells BVDoor to readin a Dorinfox.Def file instead of always wanting to readin the
Dorinfo1.Def file.
To tell 'getdorinfo' to read a Door.Sys dropfile, set the 'doorsys' variable to true before calling
getdorinfo:
 doorsys := TRUE;
To tell 'getdorinfo' to read a Session.Info dropfile set the 'sessioninfo' variable to true before
calling getdorinfo:
 sessioninfo := TRUE;

BVDoor works with an RA 2.xx ExitInfo.BBS structure. Therefore all other structures are
translated into the RA 2.xx structure for your use and then converted back to their original
structure. This is only done if the ExitInfo.BBS file is read in.
The main program of your program should look similar to:

(* Main Program *)
BEGIN
 doorexit := trapexit;
 sysopkey[1] := #0 + #46;
 sysopproc[1] := chatproc;
 sysopkeys := TRUE;
 userkey[1] := #47;
 userproc[1] := timeleft;
 userkeyson := TRUE;
 ckexitinfo := FALSE; { Uncomment if you don't want to read

the ExitInfo.BBS File }

[Page 6]

 doorsys := TRUE; { Uncomment if you want to read a Door.Sys dropfile. }
 sessioninfo := TRUE; { Uncomment if you want to read a Session.Info dropfile. }
 getdorinfo('1', 'C:\BBS');
END.

Part V - The Status Bar

By default BVDoors 2-line status bar is off. If you would like the 2 line status bar on the sysop
screen on, set the 'statusline' variable to true;
 statusline := TRUE;
If the statusline is on, then it contains some of the users information like, their name, timeleft,
current time, node number and other things. BVDoor has 9 different bars containing different
lines of information. To toggle the bars, press the function keys F1-F9. F10 will turn the
statusline off. To turn this it back on, just hit any of the 9 function keys. You can also customize
the status bars by putting your information into the following variables where [x] is the function
key number:
 statuslinea[x]
 statuslineb[x]
'statuslinea' is the top line, 'statuslineb' is the bottom line and both are STRING[79].

The following codes are converted on the statusline:

Code Value
~A [ANSI] [ASCII] or [MONO]
~B Baud Rate
~C Current Time
~R Time Remaining
~S Security Level
~W Snoop Mode: ON or OFF

Unlike JPDoor, BVDoor doesn't have a maximum amount of characters for each code. BVDoor
was made so you can format the text how ever you want.

Here are the defaults for BVDoors' statlinex[1]:

 statlinea[1] := ' ' + ljust(username + ' of ' + user.city + ' at ' + baudstring + '
BPS', 68) + 'Line [' + itoa(atoi(node)) + ']';
 statlineb[1] := ' ' + ljust('Security: ~S', 15) + ljust('Time: ~R Mins', 25) +
ljust('~A', 7) + rjust(productname, 20);

[Page 7]

BVDoor v1.0
Chapter II - Global Variables

[Page 8]

BVDoor Unit Variables
──────────────────────

BVDoor has some global unit variables which you can use in your program. Most of
these are variables are initialized upon program startup but are actually filled in with the user
information when 'GETDORINFO' is called.

activecount BYTE Keeps track of keyboard activity.
This is decremented every minute.
Once'activecount' reaches 0 a beep
sounds on the users terminal.
Once 'activecount' reaches 0, the
program terminates with a halt code
of 3.

adept175 BOOLEAN True if an AdeptXBBS Session.Info
drop file was read in.

aflag,
bflag,
cflag,
dflag STRING[8] Holds the users flag setting. The

flags are read from the
ExitInfo.BBS file. If it's not

read, then they will hold 8 spaces.
If the Exitinfo file was read then
it will be in the format of:
'XX-XX--X'

ansi BYTE Is set to 1 if the user has ansi
turned on. If the user's ansi is
turned off, then it is set to 0.
This can also hold 5 if the user
has Mono-Graphics.

baudstring STRING[35] This is the users baud rate and
comport settings. Some packages
add a '-R' after the baud rate
indicating an Error-Correcting
Connection.

buffers BOOLEAN Initially set to FALSE; this
variable determines whether or not
output buffering will be used.
BVDoor does not use this. It is
only here for JPDoor compatibility.

bvlogname STRING[5] These are used to name the file
bvlogext STRING[3] of the error.log.

[Page 9]

bvidlehook PROCEDURE This is a kind of a special
procedure. It is called every time
BVDoor is in idle. It give up
timeslices for multitasking
systems. If you don't want your
door to give up timeslices then

[Page 10]

set bvidlehook := NIL; You could
also call your own timeslicing
routines if you wish by assigning
bvidlehook := your_procedure. For
more information on this, see the
'everyminutehook' variable.

bv_debug BOOLEAN Initially set to FALSE. If this is
set to TRUE, then BVDoor writes
its' activity to a file called in
the same directory as your door
program with the name of
DEBUGnnn.Log, where nnn is the node
number. You can allow your users
to turn this on by setting the
environment variable in the batch
file by: SET BV_DEBUG=ON. You
could also add a command line
parameter such as /D or /DEBUG that
also turns this on.

checkactivity BOOLEAN If this is TRUE, then keyboard
activity will be monitored. You
might set this to FALSE if your
program spends time doing something
else and isn't calling BVDoor
routines. Then your user won't be
thrown off for keyboard inactivity.

ckexitinfo BOOLEAN If set to FALSE, then BVDoor won't
look for a ExitInfo.BBS file. This
is for someone who does not require
it in their program or for

 compatibility for other BBS's.

ckmsgs BOOLEAN When set to TRUE, BVDoor will check
for online messages every minute.
If a message is found, then the
variable 'msgwaiting' is set to
TRUE.

clubchar CHAR Holds the character that BVDoor
draws in the DRAWCARD procedure.
It defaults to ASCII #5 which is
the club character.

counter INTEGER Used for anything you want. Enjoy.

c_back BYTE This holds the current background
color. Color codes are defined in

[Page 11]

the DISPLAY procedure.

c_blink BYTE This variable contains the selected
state of the blinking attribute.
A 0 means no blinking and anything
else means blinking is in effect.

[Page 12]

c_fore BYTE This holds the current foreground
attribute. Color codes are defined
in the DISPLAY procedure.

date STRING[20] This holds the date of when your
program was loaded.

doorexit PROCEDURE This is a null procedure when
BVDoor is initialized. This
procedure is called when your
program exits. If you want to trap
halt codes or do anything else
EVERY time the program exists, then
assign doorexit to your exit
procedure. See Trapping Halt Codes.

doorsys BOOLEAN This tells GETDORINFO to read in a
Door.Sys file rather than the

 standard DORINFOx.DEF file if it's
set to TRUE. This must be set to
TRUE before a call to GETDORINFO.
The following variables are filled

 in with Door.Sys:
username

 userfirst
userlast
portnum
baudstring
timeremaining
ansi

The following are not filled in and
are still at their defaults:

systemname := 'BBS';
sysopfirst := 'SYSOP';
sysoplast := 'NAME';
sysopname := 'SYSOP NAME';
usercitystate := 'Unknown';
usersecurity := 0;

You can change any of these if you
want after you call GETDORINFO.

dosver STRING[30] This strings contains the DOS/OS2
version. It will be either:
'DOS vX.X' or 'OS/2 X.X'.

dv BOOLEAN Is TRUE if desqview is detected.

dvver STRING[30] This is blank unless desqview was
detected. It holds the desqview
version and window number.

[Page 13]

'DESQview X.X [Window X]'

everyminutehook
PROCEDURE This procedure gets called every

minute. This is a null procedure
when the program starts up. This

[Page 14]

allows you to assign it a procedure
to call to do you own maintenance
every one minute. For example
you could make your computer beep
everyone minute. Example; define
a procedure:
{#F+} {MUST be a Far Call Proc}
PROCEDURE dobeep;

BEGIN
WRITE(#7);

END;
Now in your main program type the
following:
everyminutehook := dobeep;

Now every minute when BVDoor does
it's own internal maintenance, you
can do any cleanup you want.

everyfivesecondhook
PROCEDURE Same as 'everyminutehook' except

that this is called every 5
seconds.

exepath STRING[79] This holds the full drive and path
of where your program is running.
This is useful for if your program
is not run in it's directory and
you need to access some of it's own
files. This allows you to run your
door from any directory you want
like a BBS drop path directory and
your program can still find it's
data files.

exitconverted BOOLEAN If the ExitInfo.BBS file was
converted to a RA 2.xx format
during a call to GETDORINFO, then
this will be TRUE, otherwise it
will be FALSE. DO NOT MODIFY THIS
YOURSELF AS IT WILL SCREW UP THE
DROPFILES!!!

exitinfo exitinforecord This holds the ExitInfo.BBS file
data. If the ExitInfo.BBS was
converted to an RA 2.xx format then
some of the fields will be blank.

exitinfobbsname STRING Contains the full path and file
name of the ExitInfo.BBS file.

[Page 15]

It is initialized when GETDORINFO
is called and if CKEXITINFO is
TRUE.

exitinfopath STRING Contains only the path to the
ExitInfo.BBS File. It is '' until

GETDORINFO is called. It is set to

[Page 16]

the directory that is passed to
GETDORINFO. Use this whenever you
want to find the dropfiles.

extendedchars BOOLEAN Defaults to FALSE. If you want
users to be able to input extended
characters in input routines, then
set this to true. When it's FALSE,
it helps act as a safeguard against
line noise.

forcenode BOOLEAN Forces GETDORINFO to read only a
DORINFO1.Def, no matter what node
is passed to it. It defaults to
TRUE so if you want to read a
DORINFO2.DEF set this to FALSE.

fossilhot BOOLEAN If this is set to TRUE, then the
fossil driver will be de-
initialized upon program exiting.
BVDoor does not use this. It is
only here for compatibility with
JPDoor.

fossilinstalled BOOLEAN Is TRUE if a fossil driver was
detected during a call to
'initfossil'. Returns true in
'local' mode. BVDoor does not use
this. It is only here for
compatibility with JPDoor.

fossilrev INTEGER Contains the fossil revision
level.

fourdos STRING[30] Defaults to ''. If 4Dos is
detected, then this will contain:
'4DOS X.X [Shell X]'

funckey BOOLEAN Returns TRUE if the last key
pressed was an extended character
in any of the keyboard input
commands or if an extended hotkey
was pressed.

hdr msghdrrecord This variable is of type
'msghdrrecord' and is only used by
BVDoor in the 'postmsg' function.

[Page 17]

hmboverride BOOLEAN If your door doesn't use the
ExitInfo.BBS fill and you want to
use the postmsg function, then
you must set this to TRUE.

hotkey CHAR If you do not tell BVDoor to kill

[Page 18]

the hotkey after it is pressed,
then this is the variable that it
will be stored in.

hotkeyon BOOLEAN Set to FALSE on program startup.
This is set during calls to
'hotkeys_on' and 'hotkeys_off'.
See section on Hotkeys.

hotkeypressed BOOLEAN Set to FALSE on program startup.
If hotkeys is TRUE and a valid
hotkey is pressed, then this will
be TRUE. See section on Hotkeys.

hr,mn,sec,dum LONGINT Used internally for the time
routines.

ignorecarrier BOOLEAN Defaults to FALSE. If this is TRUE,
then any call to 'carrier'

will return TRUE.

inactiveval BYTE This is the amount of time allowed
before the program is terminated
due to inactivity. This defaults
to 2. If you set it to anything
else, set it higher than 1 because
BVDoor sends a beep and message to
the user when 'activecount' gets to
1.

inusefile STRING[79] This variable is used in the
'gameinuse' function. See
gameinuse for more information.

killhotkey BOOLEAN Toggled TRUE/FALSE by
'sethotkeys_on' procedure by the
variable passed to which is either
kill or nokill. If a hotkey is
pressed and 'kill' is set, then you
can not find out which key was hit.
If you wish to know what key was
pressed then call 'sethotkeys_on'
with the 'nokill' parameter. See
'sethotkeys_on' for more information.

lastactivity INTEGER This is the time that the last key
was entered. This is minutes since
midnight.

[Page 19]

local BOOLEAN Initially set to FALSE. It is set
to TRUE if the user has logged on
locally. Initialized by the
GETDORINFO procedure.

[Page 20]

localkey BOOLEAN This is TRUE if the lastkey pressed
was from the local keyboard. You
may want to use this somewhere like
to write a splitscreen sysop chat
program.

msgbuff ARRAY[0..100]
OF STRING[80] This is the array which holds the

message text for the 'postmsg'
function. msgbuff[0] is reserved
for internal use.

msgtome STRING[45] This holds the fullpath and
filename for an online message to
the current node. This is only
used with RA/QBBS and
if 'multinode' is TRUE. IE:
'C:\RA\SEM\NODE1.RA'.

msgwaiting BOOLEAN If 'multinode' is TRUE and the
current node has a message waiting
for them, then this is TRUE,
otherwise it returns FALSE. This
is updated every 20 seconds when
BVDoor checks for an online
message.

multinode BOOLEAN Default is FALSE. If it is left
at FALSE, then ALL of the multinode
functions are disabled. They will
just exit with nothing happening.
If you don't need to use any of the
multinode functions, then turn this
off to speed your program up just
that much more.

nocomcts BOOLEAN Set this to TRUE if you wish to
ignore the CTS signal for any
reason.

node STRING[3] Node defaults to '1'. This is used
to specify which line number is in
use.

nwver STRING[30] Defaults to ''. If BVDoor detects
Novell Network upon program
startup, then this will be the
following: 'Novell Netware Shell
vX.X'. If Novell Netware is
detected, then file shareing will

[Page 21]

be used regardless of 'share'.

os2 BOOLEAN If OS/2 is detected on program
startup, then this is set to TRUE
and the version number is stored in
'dosver'. See 'dosver'.

[Page 22]

portnum BYTE This is the comport in use. If the
user is local, the the portnum will
be 0. If the user is connected to
a pipe, then the pipename is stored
in the variable 'pipename'.

pipename STRING Holds the name of the currently
connected pipe.

portstat ARRAY
[0..maxport]
OF WORD Contains the last status word from

the last call to the comport/pipe.

productname STRING[20] Defaults to 'BVDoor Program'. This
can be used to display the name of
your program and is display on the
statusbar by default.

qbbs275 BOOLEAN If 'ckexitinfo' is TRUE, then this
will be TRUE if the ExitInfo.BBS
drop file is in QBBS v2.75 format.
BVDoor then uses this to know what
structure to use for multinode
functions. The drop file is then
converted to a RA 2.xx format while
it is read in and then written back
to this format upon exit.

qbbs276 BOOLEAN See the variable 'qbbs275'.

qbbs280 BOOLEAN See the variable 'qbbs275'.

ra110 BOOLEAN If 'ckexitinfo' is TRUE then this
will be TRUE if the ExitInfo.BBS
drop file is in RA v1.10 format.
BVDoor then uses this to know what
structures to use for multinode
functions. The drop file is then
converted to a RA 2.xx format while
it is read in and then written back
to this format up exit.

ra200 BOOLEAN IF 'ckexitinfo' is TRUE then this
will be TRUE if the ExitInfo.BBS
drop file is in RA 2.xx format.
BVDoor then uses this to know what
structures to use for multinode
functions. No conversion is done.

[Page 23]

rip BOOLEAN IF RA 2.xx ExitInfo.BBS says that
the user has rip, then this is set
to TRUE.

super117 BOOLEAN See the variable 'qbbs275'.

[Page 24]

range charset Used internally to hold which
hotkeys can be pressed. You set
this variable like this:
range := ['A', 'B', 'C'];

raxit BOOLEAN If this is TRUE, then BVDoor will
check the 'semaphorepath' directory
for a 'RAXIT'nodenum'.eee. The
'nodenum' is the node number and
the 'eee' is the error level to
exit RA with, NOT THE DOOR! See
the procedure 'chkraxit' for more
information.

regs REGISTERS This is used when calling
interrupts and is simply the
REGISTERS type defined in the DOS
unit. Not implemented by BVDoor.

scrap_entry STRING[35] Used by the 'getline' function.
This holds the previously wrapped
string of text. See the procedure
'getline' for more information.

scrlen BYTE Defaults to 24. This is the users
screen length and is Initialized
when the ExitInfo.BBS file is read.
If the ExitInfo.BBS file is not
read in or any other weird numbers
are read in, then it will stay at
the default of 24.

semaforepath STRING If RemoteAccess is used then set
this to Remote Access's semaphore
path so that it can find the
online messages. If it isn't set
to RA's semaphore path, then you
won't receive any online messages.

sessioninfo BOOLEAN Defaults to FALSE. Set this to
true if you want to read in a
Session.Info dropfile.

showwindow BOOLEAN Defaults TRUE. If this is set to
FALSE, then the blowup window at
the start of program execution will
not be shown for the 2 second
period.

[Page 25]

snoop BOOLEAN If this is set to FALSE then all
output to the local screen is
suspended. Not used if the user is
logged on locally.

[Page 26]

sofar STRING This is a temporary variable used by
the getline' routines. If

you press a key to chat with the
user, then all his text will be out
of wack. You can this redisplay
this variable and pass it back to
the getline routine that you
called after you are done chatting.

statlinea ARRAY[1..9]
OF statstr This is the array that holds the

text for the top line of the status
bar. Use this if you wish to
modify any of the status bars.

statlineb ARRAY[1..9]
OF statstr This is the array that holds the

text for the bottom line of the
status bar. Use this if you wish
to modify any of the status bars.

statusbar BYTE This is used to tell which status
bar to display. Defaults to 1. If
it was set to 6, then statlinea[6]
and statlineb[6] would be displayed
on the bottom of the screen if the
'statuslineon' variable is TRUE.

statuslineon BOOLEAN Defaults to FALSE. If this is set
to TRUE, then a two line status bar
is drawn on the bottom of the
screen.

storedpassword STRING[15] Since RA stores it's password in a
CRC, the password is not saved
anywhere for you to use. This is
for compatability with QBBS which
still saves it's password in text
format. If qbbs275, qbbs276 or
qbbs280 is TRUE, then the users
password is stored here so you can
change it if you want.

sysopfirst STRING[35] This is initialized during the call
to 'getdorinfo' and reading of the
'DorinfoX.Def' file. If you read
the 'Door.Sys' file then this stays
at it's default: 'Sysop'.

[Page 27]

[Page 28]

sysopkey ARRAY
[1..maxkeys]
OF STRING[2] This variable holds the local sysop

keys. If one of these keys is
pressed during a call to one of the
keyboard functions then it's
corresponding 'sysopproc' will be
called. See 'Sysop and Userkeys'.

sysopkeyson BOOLEAN Must be set to TRUE if you want to
be able to trap the sysopkeys. It
defaults to FALSE.

sysoplast STRING[35] See 'sysopfirst'. This defaults to
'Name'.

sysopname STRING[35] This is the sysops full name.
sysopfirst + ' ' + sysoplast. If
these variables are at their
defaults, then 'sysopname' would
be: 'Sysop Name'.

sysopproc ARRAY
[1..maxkeys]
OF PROCEDURE This variable stores the list of

sysop far call procedures. If
sysopkey[2] was pressed then
sysopproc[2] is called. See
'Sysop and Userkeys'.

systemname STRING[40] This is the name of the BBS that
is read from the 'DorinfoX.Def'
file when 'getdorinfo' is called.

thisnode STRING[3] Defaults to '001'. It is used to
display the default status bar.
It is up to you to change this as
all it is here for is for display
on the statusbar.

time STRING[10] This is the time that your program
was loaded up.

timeremaining INTEGER This is the users time left in
minutes. If you need to know the
seconds then see the
'get_time_left' procedure. DO NOT
CHANGE THIS YOURSELF. If you do,

[Page 29]

it will just go back to what it was
before. If you wish to alter the
users time, see the procedures on
'Time Limit Routines'

[Page 30]

twominutewarning
PROCEDURE This procedure is called when the

use has two minutes left. Use this
to do whatever you want when this
occurs. See 'everyminutehook' for
more information on how to use
this.

txtiobuffer ARRAY
[1..4096] OF
CHAR This is a buffer used for textfile

reading. You can use this for your
own use if you need to.

usehandle BOOLEAN Defaults to FALSE. If this is
TRUE, then handles/aliases will be
shown in the 'useron/useronnode'
procedures.

uselock BOOLEAN If share is detected, then this
will be set to TRUE and file
locking will be used. If this is
FALSE then all file locking
routines will just exit. This is
initialized on startup.

usercitystate STRING Initialized when the 'DorinfoX.Def'
file is readin when 'getdorinfo' is
called.

usefirst STRING[35] See 'sysopname'. Defaults to
'User'.

userhungup BOOLEAN Defaults to FALSE. If TRUE, then
If your door is running on a QBBS
v2.76+ and your using the
ExitInfo.BBS file then the QBBS
field is updated on exit. You must
set this automatically.

userkey ARRAY
[1..maxkey]
OF STRING[2] This array stores the keys that the

user can press to activate a
certain procedure. See 'Sysop and
Userkeys' for more information.

[Page 31]

userlanguage BYTE If using RemoteAccess, then this is
the users language number.

userlast STRING[35] See 'sysoplast'. Defaults to
'Name'.

[Page 32]

username STRING[35] See 'sysopname'. Defaults to
'User Name'.

userproc ARRAY
[1..maxkey]
OF PROCEDURE This variable stores the list of

far call procedure that corresponds
to userkey. See 'Sysop and
Userkeys' for more information.

usersecurity WORD This is initialized from the
'getdorinfo' procedure.

winver STRING[30] If Windows is detected on startup,
then this contains the version and
mode windows is running in.
'Windows 3.xx Std. Mode' or
'Windows 3.xx Enhanced Mode'.

[Page 33]

BVDoor v1.0
Chapter III - Procedure and Function Calls

[Page 34]

Screen Display Routines
────────────────────────

───
──────────
CLEARSCREEN

 PROCEDURE clearscreen;

This clears the remote and local screen. Use this command instead of CLRSCR because
CLRSCR will not clear the remote screen and it will not scroll the local correctly if the statusbar
is on.

Example:
 BEGIN
 getdorinfo('1', 'C:\Ra');
 clearscreen;
 END;
───
─────────
CRLF

 PROCEDURE crlf;

Writes a carriage return and line feed to the remote and local screen. Can be very useful after a
call to SDISPLAY.

Example:
 BEGIN
 getdorinfo('1', 'C:\Ra');
 crlf;
 END;
───
─────────
CLRLN

 PROCEDURE clrln;

Clears the current line and moves the cursor to the beginning of the line.

Example:
 BEGIN

getdorinfo('1', 'C:\Ra'); sdisplay(0, 7, 0,
'Once you hit any key, this line text will disappear!');

 clrln;
 END;
───
─────────

[Page 35]

[Page 36]

DISPLAY

 PROCEDURE display(bg, fg, blink : BYTE; s : STRING);

Writes 's' to the local and remote screens with a cr/lf. Equivalent to the WRITELN command.
Again do not use the WRITELN command as it will not scroll the local screen correctly and will
not write 's' to the remote screen. 'bg' is the background color 's' will be displayed on. 'fg' is the
foreground. 's' will
blink on the screens if 0 is not passed to it.
Valid 'bg' colors are:

0 : black 4: red
1 : blue 5: magenta
2 : green 6: brown
3 : cyan 7: grey

Valid 'bg' colors are:
0 : black 8 : dark grey
1 : blue 9 : light blue
2 : green 10 : light green
3 : cyan 11 : light cyan
4 : red 12 : light red
5 : magenta 13 : light magenta
6 : brown 14 : yellow
7 : grey 15 : white

Example:
 display(1, 10, 0, 'Hello World');
The above would display 'Hello World' on a blue background in light green text.

 display(0, 14, 1, 'Your ansi mode is: ' + itoa(ansi))
The above would display 'Your ansi mode is: 1' in flashing yellow.

See Also: SDISPLAY, CHAROUT, ITOA, WTOB, WTOH
───
─────────
DISPLAYLOC

 PROCEDURE displayloc(bg, fg, blink : BYTE; s : STRING);

Writes 's' to the local screen ONLY without a cr/lf. Equivalent to the WRITE command. Do not
use the WRITE command as it will not scroll the local screen correctly. 'bg' is the background
color 's' will be displayed on. 'fg' is the foreground. 's' will blink on the screens if 0 is not passed
to it.

Example:
 displayloc(1, 10, 0, 'Hello World');
Would display 'Hello World' on a blue background in green text on the sysop's screen only!

 displayloc(0, 14, 1, 'Your ansi mode is: ' + itoa(ansi))
Would display 'Your ansi mode is: 1' in flashing yellow on the sysop's screen only!

[Page 37]

See Also: DISPLAY, SDISPLAY, CHAROUT, ITOA, WTOB, WTOH
───
─────────

[Page 38]

DRAWCARD

 PROCEDURE drawcard(cardnum : STR2; suit : cardsuit; row, col,
 cardcolor : BYTE; edge : BOOLEAN);

Draws ANSI graphic playing cards within your door. Each card is 3 rows high by 5 columns
wide. Black cards are displayed black on grey, red cards are displayed red on grey.
'cardcolor'allows you to draw different colors of blank cars. If 'cardcolor' is 0, then it will default
to 7. This procedure will exit if the variable 'ansi' is set to 0. The parameters for drawcard are:

 'cardnum' is '1' through '10','J','Q','K','A' OR 'B' for a blank card.
 'cardsuit' is C, D, H or S (for the clubs, diamonds, hearts spades).
 'row' is the row where the card is to be drawn.
 'col' is the column where the card is to be drawn.
 'cardcolor' the background color of the blank cards.
 'edge' if true, a border will be drawn around the card.

Example:
 BEGIN
 getdorinfo('1', 'C:\Ra');
 sdisplay(0, 7, 0, 'Hit a key;the line text will disappear!');
 IF ansi = 0 THEN
 BEGIN
 display(0, 10, 0, 'Sorry, but you need ansi graphics'

+ 'for this game.');
 sdisplay(0, 14, 0, '**Pause**');
 HALT(0);
 END;
 clearscreen;
 drawcard('A', S, 2, 2, 7, TRUE);
 END;

This example checks to see if the user has ansi graphics. If
not, then the door kicks the user out. If the user is capable of ansi graphics, then an ace of spades
is drawn on line 2, col 2 with a border.
───
─────────
GAMESCREEN

 PROCEDURE gamescreen(filename : STRING);

GAMESCREEN is a faster method of displaying an ANSI graphic screen (such as a full screen
game board, etc.) than SHOWFILE. SHOWFILE works the same but is a bit slower since it
checks for sysop/hot keys and a few other routines. GAMESCREEN does not check for
ANYTHING. The screen is cleared before the file is shown and page pausing is NOT in effect.
If 'filename' does not exist then the procedure just exists. If 'bvdebug' is true and 'filename'
doesn't exist, then an error message will be written to the debug log file.

See Also: ASC, SHOWFILE
───

[Page 39]

─────────

[Page 40]

SDISPLAY

 PROCEDURE sdisplay(bg, fg, blink : BYTE; s : STRING);

Writes 's' to the local and remote screens WITHOUT a cr/lf. Equivalent to the WRITE command.
Again do not use the WRITE command as it will not scroll the local screen correctly. 'bg' is the
background color 's' will be displayed on. 'fg' is the foreground. 's' will blink on the screens if 0
is not passed to it.

See Also: DISPLAY, CHAROUT, ITOA, WTOB, WTOH
───
─────────
SETCOLOR

 PROCEDURE setcolor(bg, fg, blink : BYTE);

Sets the current color for outputing text. This procedure is called by internal functions (ie
DISPLAY, SDISPLAY), but you may need to use it some of the other functions like:
CHAROUT, BACKSPACE. 'bg' is the background color, 'fg' is the foreground color of the text
and if blink is not 0, the text will blink.

See Also: DISPLAY
───
─────────
SETGRAPHICS

 FUNCTION setgraphics : CHAR;

This function looks at the users ansi setting 'ansi' and returns:
 'A' ... if 'ansi' is 0 (Ascii)
 'C' ... if 'ansi' is 1 (Ansi color)
 'M' ... if 'ansi' is 5 (Monochrome Graphics)

Example:
 BEGIN
 getdorinfo('1', '');
 IF setgraphics = 'A' THEN
 BEGIN
 display(0, 1, 0, 'Sorry, but you need ansi graphics to' + ' play this game');
 HALT(0);
 END;
 END.
───
─────────
SHOWFILE

 PROCEDURE showfile(initcolor, ptype, pcolor : BYTE;
 filename, path : STRING);

Displays an ansi/ascii/text file to the local and remote screen. If the filename has no extension,
[Page 41]

then 'ansi' variable and use either 'ANS', 'ASC'. If the 'ansi' is 1 or 5 then it will use
filename.ANS. If this file doesn't exist it will display filename.ASC. Showfile exits if the file
cannot be found and will log it using bv_log.

[Page 42]

SHOWFILE parameters:
 'initcolor' is the initial drawing color if it is not an ansi file.
 'ptype' is the prompt type Either 1, 2, 3, 4.
 'pcolor' is the foreground color the prompt will be displayed in.
 'filename' is the file to be displayed.
 'path' is the path where 'filename' exists.

Page pausing with
Type 1 = '==PAUSE=='
Type 2 = 'More (Y/n)'
Type 3 = 'More (Y/n/=)'
Type 4 = 'Hit [Enter] to continue'

Example:

showfile(0, 0, 0, 'Welcome.Ans', 'C:\Ra\TxtFiles');
The above would display the welcome file in the RA textfile directory without any pausing and
would start drawing with the current foreground color.

 showfile(0, 2, 14, 'Welcome.Ans', 'C:\Ra\TxtFiles');
The above would display the welcome file in the RA textfile directory with the prompt type 2
(More (Y/n)) at every 'scrlen' with the color yellow.
───
─────────

Keyboard Input Routines
────────────────────────

───
─────────
ASK_YN

 FUNCTION ask_yn(prompt : STRING; fg : BYTE) : CHAR;

Displays 'prompt' to the screen and adds '(Y/N): ' to the end of 'prompt' and waits for a user to
press 'Y' or 'N'.

Example:

 REPEAT
 ch := ask_yn('Keep answering this question?', 14);
 UNTIL (ch = 'N');
───
─────────
CHARIN

 FUNCTION charin : CHAR;

[Page 43]

Returns the next character in the input queue. If the input queue is empty, then a null character
will be returned (#0).

See Also: GETCHAR
───
─────────

[Page 44]

GETCHAR

 FUNCTION getchar : CHAR;

Returns the next character in the input queue. If the input queue is empty, then GETCHAR will
wait until a character is read in.

See Also: CHARIN
───
─────────
CHAROUT

 PROCEDURE charout(ch : CHAR);

Sends a character to the output buffer. It does not display it to the local screen.

See Also: CHARIN
───
─────────
GETBIRTHDATE

 FUNCTION getbirhdate : STRING;

Gets a valid birthday from the remote/local user. It will be returned in the format of 'MM-DD-
YY'.
───
─────────
GETINTEGER

 FUNCTION getinteger(VAR int : LONGINT; min, max : LONGINT;
 usebefore : BOOLEAN);

Inputs a number from user and waits for them to press enter. The number inputed will be inputed
only between 'min' and 'max'. If 'usebefore' is true, then GETINTEGER will display:

'New Info (0-10): 20'

Example:
 BEGIN
 int := 5;
 display(0, 7, 0, 'Enter a number 1-10: ');
 getinteger(int, 1, 10, FALSE);
 END
The above would only accept a number between 1 and 10.

 BEGIN
 int := 5;
 display(0, 7, 0, 'Enter a number 1-10: ');
 getinteger(int, 1, 10, TRUE);
 END

[Page 45]

The above would look like the first example but the screen displays would look like this. 5 is the
default because that is what 'int' was set to.
 'Enter a number 1-10:'
 'New Info (1-10): 5'
───
─────────

[Page 46]

GETLINE

 FUNCTION getline(len, tablen, color : BYTE);

Gets a line of input from the user with word wrapping. If the user hits the tab key, it is expanded
to 'tablen'. Word wrapping occurs at 'len' and the text inputed is displayed in color 'color'. The
variable 'scrap_entry' must be initialized before a call to GETLINE. 'scrap_entry' is the
previously wrapped string from GETLINE and is displayed before input is accepted in the
GETLINE function.

Example:
 display(0, 7, 0, 'Type in 5 lines:');
 scrap_entry := '';
 FOR counter := 1 TO 5 DO
 msg[counter] := getline(75, 4, 10);
 FOR counter := 1 TO 5 DO
 display(0, 12, 0, msg[counter]);
───
─────────
GETPHONE

 FUNCTION getphone(style : BYTE) : STRING;

Inputs a USA or free-style format phone number including area code. This function
automatically formats the user input field depending on the 'style' used. Valid 'style's are:

 0 : USA Format (Area Code) Prefix-Suffix. The formatted result returned is: ###-###-####
 1 : Free-Style - Stores input number as entered by the user.
 Allows input of up to 18 characters including digits and dashes ('-').
───
─────────
INREADY

 FUNCTION inready : BOOLEAN;

Returns true if a key is in the input buffer. Otherwise false is returned.
───
─────────
PROMPT

 FUNCTION prompt(fore : BYTE; ptype : BYTE);

Displays one of the following prompt strings in color 'fore'.
 'ptype' is one of the following:

Type 1 = '==PAUSE=='
Type 2 = 'More (Y/n)'
Type 3 = 'More (Y/n/=)'
Type 4 = 'Hit [Enter] to continue'

[Page 47]

───
─────────

[Page 48]

SETHOTKEYS_OFF;

 PROCEDURE sethotkeys_off;

Turns off hotkey usage. The following variables are initiailized upon a call to
SETHOTKEYS_OFF.

 hotkeyon := FALSE;
 hotkeypressed := FALSE;
 range := [#0];

See Also: SETHOTKEYS_ON
───
─────────
SETHOTKEYS_ON;

 PROCEDURE sethotkeys_on(killkey : killer ; range : charset);

'range' is a set of characters which are valid hot-keys. These should be specified in upper case
format. If any of the specified characters are pressed, all display output is stopped (nothing is
echoed to the either the local or remote screens), and the 'hotkeypressed' variable is set to TRUE.
Once this call is made, the 'hotkeyon' variable is also set to TRUE. If 'kill' is specified in killkey,
then the hot-key pressed is killed from
memory. That is to say that it is not "remembered". If 'nokill' was specified, the Hot-Key is
"remembered" and will be automatically returned to the next call to GETCHAR. This is
intended for uses such as breaking out of a text file display.

Example:
 BEGIN
 sethotkeys_on(kill, ['A', 'S']);
 showfile(7, 0, 0, 'Disclamr', 'C:\Ra\TxtFile);
 sethotkeys_off;
 END;
The above example would display a BBS disclaimer and set the hotkeys to 'A'bort and 'S'top. If
the user pressed those keys during the display of the text file it would exit the showfile procedure
and continue in the calling part of the program.
───
─────────

[Page 49]

String Function/Procedures
───────────────────────────

───
─────────
BACKSPACE

 PROCEDURE backspace(ch : CHAR);

Writes a destructive backspace to the output buffer leaving 'ch' behind. If you would want to
remove a character from the screen and leave nothing behind, you would pass a null character to
'ch' or a ' '. The current screen colors are used to display 'ch'.

Example:
 sdisplay(0, 7, 0, 'Now you see this');
 getchar;
 FOR counter ;= 1 TO LENGTH('this') DO
 backspace(' ');
 sdisplay(0, 7, 0, 'something different!');
───
─────────
CENTER

 FUNCTION center(s : STRING; len : WORD) : STRING;

Centers 's' in the middle of 'len'. 's' is padded with ' ' to the beginning of it. No padding is done
to the end of 's'.

See Also: CENTERFILL
───
─────────
CENTERFILL

 FUNCTION centerfill(s : STRING; len : WORD) : STRING;

Centers 's' in the middle of 'len' which will normally be the users screen width. 's' is padded with
' ' to the beginning of it. Padding is done to the end of 's' with ' ' to make it a length of 'len'. This
function is perfect for making a title bar.

Example:
 clearscreen;
 display(1, 14, 0, centerfill('Welcome to BVDoor', 79));
This example would clear the screen and display 'Welcome to BVDoor' in the middle of the
screen on a blue background along the whole line.
───
─────────
CHANGECASE

 FUNCTION changecase(s : STRING) : STRING;

[Page 50]

Returns a string in upper case.

See Also: FORMATSTR
───
─────────

[Page 51]

CKPATH

 FUNCTION ck_path(path : STRING) : STRING;

Checks to see if a pathname ends with a trailing backslash. If no backslash is present it is added,
otherwise the path remains unchanged. This does not check to see if the path exists like
FIXPATH does.

See Also: EXISTPATH, FIXPATH
───
─────────
COMMASTR

 FUNCTION commastr(int : LONGINT) : STRING;

Adds commas into a number to make it more readable.

Example:
 display(0, 7, 0, 'Did you know that ' + commastr(987654321) +
 ' is a large number');
 Output would look like:
 Did you know that 987,654,321 is a large number
───
─────────
CURSORPOS

 PROCEDURE cursorpos(y, x : BYTE);

Moves the cursor position to row y, column x. Exists if the y is less than 0 or greater than 25 or
if x is less than 0 or is greater than 80.
───
─────────
DATESTR

 FUNCTION datestr : STRING;

Returns the current date as MM-DD-YY.

Example:
 display(0,15,0,'The Current Date Is ' + datestr);
───
─────────
FIXPATH

 FUNCTION fixpath(path : STRING) : STRING;

Calls the CKPATH function and then checks to see if the path exists. If the path does not exist a
haltcode of 6 is returned.
───
─────────

[Page 52]

[Page 53]

FORMATSTR

 FUNCTION formatstr(s : STRING) : STRING;

Shifts all the first letters of a word to uppercase and the rest of the word to lowercase.

Example:
 s := formatstr('tHis iS aN eXamPLE);
The result would be:
 'This Is An Example'
───
─────────
GETWORDS

 FUNCTION getwords(numwords : INTEGER; s : STRING) : STRING;

Returns the first 'numwords' from 's'. Words must be separated by spaces. If the number of
words is less than 'numwords' then the whole string is returned untouched.

Example:
 s := 'This contains only a couple words'
 s2 := getwords(3, s);

The result of 's2' would be:
 'This contains only'
───
─────────
LJUST

 FUNCTION ljust(s : STRING; wide : BYTE) : STRING;

Left justifies 's' to a length of 'wide'. Padding is done with adding ' ' to the end of 's' to make it
'wide' long.

Example:
 s := 'Hello';
 display(0, 7, 0, ljust(s, 10));

Output would be:
 'Hello '

See Also: RJUST
───
─────────
LASTPOS

 FUNCTION lastpos(sub : STRING; s : STRING) : STRING;

Exaclty the same as the POS command, but returns the position of the last found substring 'sub'
in the string 's'.

[Page 54]

Example:
 s := 'Hello hi, no hi, no Hello, hi? Huh??');
 display(0, 7, 0, 'Last pos of HI is:', itoa(lastpos('hi', s)));

Output would be:
 'The last pos of HI is: 28'
───
─────────

[Page 55]

LEFTS

 FUNCTION lefts(s : STRING; charstokeep : INTEGER) : STRING;

Returns the first 'charstokeep' from string 's'.

Example:
 display(0, 7, 0, lefts('Welcome to BVDoor', 6));

Output would be:
 'Welcom'

See Also: RIGHTS
───
─────────
LTRIM

 FUNCTION ltrim(s : STRING) : STRING;

Removes the leading ' ' from 's';

Example:
 display(0, 7, 0, ltrim(' Hello '));

 Output would be:
 'Hello '

See Also: RTRIM
───
─────────
LOWCASE

 FUNCTION lowcase(ch : CHAR) : CHAR;

Converts a character to lower case. Does the oppostite of the UPCASE command.

See Also: CHANGECASE
───
─────────
MKSTRING

 FUNCTION mkstring(long : INTEGER; ch : CHAR) : STRING;

Makes a string of 'ch' of length 'long'. Used for drawing underlines and other things.

Example:
 display(0, 7, 0, mkstring(10, -));

 Output would be:
 '----------'

[Page 56]

───
─────────
MORE

 PROCEDURE more(prompt : STRING; fg : BYTE);

Displays 'prompt' to the screen jusing a foreground color of 'fg'. This procedure also waits for a
key to be pressed.
───
─────────

[Page 57]

RIGHTS

 FUNCTION rights(s : STRING; charstokeep : INTEGER) : STRING;

Returns the first 'charstokeep' from string the end of 's'.

Example:
 s:= 'Welcome to BVDoor';
 display(0, 7, 0, rights(s, 5));

 Output would be:
 'VDoor'

See Also: LEFTS
───
─────────
RTRIM

 FUNCTION rtrim(s : STRING) : STRING;

Removes the trailing ' ' from 's';

Example:
 s := ' Hello '
 display(0, 7, 0, rtrim(s));

 Output would be:
 ' Hello'

See Also: LTRIM
───
─────────
TIMESTR

 FUNCTION timestr : STRING;

Returns the current time as HH:MM:SS in 24 hour format.

Example:
 display(0, 15, 0, 'The Current Time Is ' + timestr);
───
─────────

Number/String Conversions
──────────────────────────

───
─────────

[Page 58]

ATOI

 FUNCTION atoi(s : STRING) : INTEGER;

Converts a string into an integer.
───
─────────

[Page 59]

BTOA

 FUNCTION btoa(bool : BOOLEAN) : STRING;

Returns 'TRUE' or 'FALSE' as a string depending on the state of the boolean passed to it.

Example:
 VAR
 bool : BOOLEAN;
 BEGIN
 display(0, 7, 0, 'bool is true' + btoa(bool));
 END;
───
─────────
ITOA

 FUNCTION itoa(int : INTEGER) : STRING;

Converts an integer to a string. Very convienent to use with the display commands.

Example:
 display(0, 7, 0, 'Your ansi setting is: ' + itoa(ansi));
───
─────────
WTOA

 FUNCTION wtoa(num : INTEGER) : STRING;

Converts a variable of type WORD into a string.

See Also: ITOA
───
─────────
WTOH

 FUNCTION wtoh(num : WORD) : STRING;

Converts a number into it's hex form.

Example:
 display(0, 7, 0, 'Hex of 45 is: ' + wtoh(45));
 The above would display: 'Hex of 45 is: 002D'
───
─────────

File Routines
──────────────

───
[Page 60]

─────────
EXIST

 FUNCTION exist(filename : STRING) : BOOLEAN;

Returns true if a file on harddrive exists. Pathnames included with a filename are valid.

See Also: CKPATH, FIXPATH
───
─────────

[Page 61]

EXISTPATH

 FUNCTION existpath(d : STRING) : BOOLEAN;

Tests to see if a fixed path exists. If the path doesn't exist, a return code of FALSE is returned,
otherwise TRUE is returned.
───
─────────
DELETEFILE

 PROCEDURE deletefile(s : STRING);

Deletes a specified file. If the file does not exist, no error is returned.
───
─────────
SIZEFILE

 FUNCTION sizefile(s : STRING) : LONGINT;

Returns the total size of the file in bytes. If the file does not exist, a filesize of 0 is returned.
Remember, that files can exist with only 0 bytes so you may want to use the EXIST command on
it first.

See Also: EXIST
───
─────────

Device (Modem/Pipe..) Routines
───────────────────────────────

───
─────────
CARRIER

 FUNCTION carrier : BOOLEAN;

Checks to see if there is a carrier. This function always returns true if LOCAL is set to TRUE or
if the variable IGNORECARRIER is TRUE.

See Also: IGNORECARRIER, LOCAL
───
─────────
FLUSHCOMMBUFFER

 PROCEDURE flushcommbuffer;

This flushes out the input buffer so it is empty. You may want to use this before input routines so
the user can not type ahead.

[Page 62]

───
─────────
OUTPUTBUFEMPTY

 FUNCTION outputbufempty : BOOLEAN;

This checks to see if there is anything in the output buffer. If there is then this function will
return FALSE, otherwise it will return TRUE.
───
─────────

[Page 63]

Time Limit Routines
────────────────────

───
─────────
GET_TIME_LEFT

 PROCEDURE get_time_left(VAR min, sec);

This returns how much time left the user has in minutes and seconds.
───
─────────
DECREASETIME

 PROCEDURE decreasetime;

Decreases the variable 'timeremaining' by 1 and checks to see if it is 0. If 'timeremaining' is 0
then CHKCONNECT will catch this and terminate the program with a HALT(2).
CHKCONNECT is called from inside this procedure.
───
─────────
INCREASETIME

 PROCEDURE increasetime;

Increases the variable 'timeremaining' by 1 and calls CHKCONNECT.
───
─────────

Multi-Node Routines
────────────────────

───
─────────
CHKMSG

 FUNCTION chkmsg : BOOLEAN;

If CKMSGS, MULTINODE, and either QBBS275, QBBS276, RA110, or RA200 is TRUE then
BVDoor calls this function once a minute. If a message is waiting for the node that your door is
running from, the variable 'MSGWAITING' is set to TRUE. If you are running Remote Access,
you must have the 'SEMAPHOREPATH' variable set to RA's semaphore path or the current
directory is scanned and you won't be able to retrieve online messages.
───
─────────
GETMSG

[Page 64]

 PROCEDURE getmsg;

If an online message is waiting for the current node, then the message will be displayed.

See Also: CHKMSG, WAITINGMSG
───
─────────

[Page 65]

GAMEINUSE

 FUNCTION gameinuse : BOOLEAN;

This function checks to see if 'INUSEFILE' isn't blank. If 'INUSEFILE' is blank this function
exists with FALSE. If 'INUSEFILE' isn't blank and EXIST(inusefile) returns FALSE, then a
filename of 'INUSEFILE' is created and the function returns FALSE. If 'INUSEFILE' isn't blank
and EXIST(inusefile) returns TRUE, then it means that someone else is using the door. BVDoor
then displays a message to the user saying that the door is in use and returns TRUE.

Example:
 BEGIN
 inusefile := 'C:\Onlines\MyDoor\Inuse.Flg';
 IF gameinuse THEN
 HALT(0);
 END

If gameinuse returns TRUE, the program will continue. If it returns false, then the following
message will be displayed:

productname ' is being use by another line.' Please try again later...'
Hit ENTER to continue

See Also: GAMENOTINUSE
───
─────────
GAMENOTINUSE

 PROCEDURE gamenotinuse;

If 'inusefile' isn't blank and EXIST(inusefile) is true, then 'inusefile' will be deleted and other
users will be able to load up the door. YOU MUST call this procedure if you call GAMEINUSE,
otherwise nobody will be able to load up the door until 'inusefile' is deleted!
───
─────────
MAXNODES

 FUNCTION maxnodes : BYTE;

This function scans the UserOn.BBS file in the 'exitinfopath' and returns the maximum amount
of nodes your BBS has.
───
─────────
USERONNODE

 FUNCTION useronnode(nodenum : BYTE) : namestr;

This function scans the UserOn.BBS file in the 'exitinfopath' and returns the name of the user on
node 'nodenum'. If no one is on the node, then the function will return ''.
───

[Page 66]

─────────

[Page 67]

WHOSON

 PROCEDURE whoson;

If MULTINODE, CKEXITINFO and either of RA200, RA110, QBBS275, QBBS276, QBBS280
are true, then this procedure will display a Remote Access style of the who's online screen.
───
─────────

User Record Routines
─────────────────────
NOTE ** The EXITINFO.BBS File MUST be read in for these to work UNLESS the
'SESSION.INFO' file was read in **

───
─────────
FLIPFLAG

 PROCEDURE flipflag(flag : flagset);

Toggles the flag passed to the procedure and updates the exitinfo.bbs file.

Example:
 BEGIN
 ...
 flipflag(A1);
 END;
If the users A1 flag was off before the call, it would then be on after the call to flipflag.
───
─────────
SETFLAG

 PROCEDURE setflag(flag : flagset; stat : on_off);

Changes the state of 'flag' to the passed variable 'stat' which will be 'ison' or 'isoff'. This updates
the exitinfo.bbs file.

See Also: FLIPFLAG
───
─────────
SETSECURITY

 PROCEDURE setsecurity(sec : WORD);

Changes the users security level in the exitinfo.bbs file to 'sec'.
───
─────────

[Page 68]

SETSUBDATE

 PROCEDURE setsubdate(sub : ra_date);

Sets the users subscription date in the exitinfo.bbs file to 'sub'.
───
─────────

[Page 69]

RA Specific Routines
─────────────────────

───
─────────
CHKRAXIT

 FUNCTION chkraxit : BOOLEAN;

Checks to see if the sysop has forced the node down with the semaphore file
RAXIT'nodenum'.???. If the file exists, then CHKRAXIT returns TRUE.
───
─────────
POSTMSG

 PROCEDURE postmsg(long : BYTE; msgpath : STRING);

This function exists if both of the variables RA200 AND RA110 are FALSE. This function
writes a message in the RA message base. The actual message text is you want to write is stored
in the varible MSGBUFF which is a global array (msgbuff : ARRAY[1.100] OF STRING[80]).

Fill 'msgbuff' with the message starting with msgbuff[1] as msgbuff[0] is used internally to add a
product ID kludge line in the message. You MUST make sure to add a character 13 (Carriage
Return) to the end of each line, include blank lines. The passed variable of 'long' is the number
of lines long your message is. If the last line of your message is msgbuff[6] then pass 6 to the
postmsg call. 'msgpath' is the path to the RA message base. If successful, postmsg will return a
0, if not, -100

'postmsg' will determine the correct message number for the system, but you are required to fill
out the remaining part of the structure.

 msghdrrecord = RECORD
 destnet,
 destnode,
 orignet,
 orignode : WORD;
 destzone,
 origzone : BYTE;
 cost : WORD;
 msgattr,
 netattr,
 board : BYTE;
 posttime : ra_time;
 postdate : ra_date;
 whoto,
 whofrom : namestr;
 subject : String[72];
 END;
The global variable that is assigned to this record is:
 hdr : msghdrrecord;

[Page 70]

[Page 71]

Example:

PROCEDURE post_sysop_msg;
 BEGIN
 clearscreen;
 Display(0,15,0,'Writing a Message to the Sysop!');
 WITH hdr DO
 BEGIN
 whoto := formatstr('Sysop');
 whofrom := username;
 subject := 'BBS Door';
 board := 1; (* Sysop Area *)
 postdate := datestr;
 posttime := timestr;
 destnet := 0;
 destnode := 0;
 orignet := 0;
 orignode := 0;
 destzone := 0;
 origzone := 0;
 cost := 0;
 msgattr := msg_local;
 netattr := 0;
 END;
 msgbuff[1] := 'Dear Sysop Person'#13;
 msgbuff[2] := '' + #13;
 msgbuff[3] := ' I was just writing you a message to see how'

+ ' it works'#13;
 msgbuff[4] := ' when you write it from inside a BVDoor' + ' + '
program'#13;
 msgbuff[5] := ' It isn't hard at all. :)'#13;
 msgbuff[6] := ''#13
 msgbuff[7] := ' Regards'+ #13;
 msgbuff[8] := ' ' + username + #13;
 crlf;
 display(0, 14, 0,'Posting message');
 postmsg(8, 'C:\Ra\MsgBase');
 END;
───
─────────
TIMETOEVENT

 FUNCTION timetoevent : INTEGER;

This returns how many minutes until the next system event. This procedure reads in the
events.ra file in the 'exitinfopath' directory and then calculates how many minutes there are until
the next event. If the the event data file can't be found, then this function returns a -1.
───
─────────

[Page 72]

[Page 73]

DOCONVERT

 PROCEDURE doconvert;

This is the procedure that reads in the ExitInfo.BBS files. This procedure checks to see what
format of ExitInfo.BBS and converts it to the RA 2.xx format if it is not already. If the
ExitInfo.BBS file was converted, then the variable 'exitconverted% is set to TRUE. Upon exit of
the program, the files are rewritten back into the original form with any updated information
from you door program. The following variables are set when this procedure is called from
GETDORINFO:
 ra200, ra110, qbbs275, qbbs276, qbbs280, adept175.

See Also: GETDORINFO
───
─────────
GETDORINFO

 PROCEDURE getdorinfo(nodenum : STRING; exitpath : STRING);

This is probably the most important procedure in the whole package. This procedure reads in the
drop files and initializes all the system and user variables. If 'forcenode' is true (which is
default), then GETDORINFO will read in the 'DORINFO1.DEF' only; no acceptions. If you set
the variable 'forcenode' to false, then GETDORINFO will read in the 'DORINFOx.DEF where 'x'
is the nodenum passed. If a 'DORINFO' file is read in, then the ExitInfo.BBS file is
automatically read in unless the variable 'ckexitinfo' is false. IF 'ckexitinfo' is true, the
'DORINFO' file was readin and the ExitInfo.BBS was not found, then a haltcode of 5 is called.
If you wish to read in a Door.Sys file, then set the variable 'doorsys' to TRUE BEFORE you call
GETDORINFO. If you wish to read in a 'Session.Info' file (AdeptXBBS) then set the variable
'sessioninfo' to TRUE BEFORE you call GETDORINFO. If you read in the 'Door.Sys' file,
ckexitinfo is true and the ExitInfo.BBS file is not found, then no error is created as some BBS
packages only create a Door.Sys file. If the ExitInfo.BBS file is found then you just have more
information you can change. No harm done!

Example:
 BEGIN
 node := '000005';
 getdorinfo(node, 'C:\Ra');
 END.
The above is a standard call to GETDORINFO. It will only read in Dorinfo1.Def as 'forcenode'
is TRUE by default.

Example:
 BEGIN
 forcenode := FALSE;
 node := '000005';
 getdorinfo(node, 'C:\Ra');
 END.
The above is a standard call to GETDORINFO. It will read in Dorinfo5.Def because 'forcenode'
is false.

[Page 74]

 VAR
 node : STRING;
 BEGIN
 node := '1';
 doorsys := TRUE;
 getdorinfo(node, 'C:\Ra\Node1');
 END.
The above reads in the 'Door.Sys' file from the '\Ra\Node1' path because the variable 'doorsys' is
set to TRUE.

 VAR
 node : STRING;
 BEGIN
 sessioninfo := TRUE;
 node := '000001';
 getdorinfo(node, 'C:\Ra');
 END.

The above reads in the 'Session.Info' drop file.
───
─────────
BV_LOG

 PROCEDURE bv_log(debug_txt : STRING);

This procedure writes 'debug_txt' into a file named: DEBUG'thisnode'.LOG if the variable
'bvdebug' is TRUE. If 'bvdebug' is false, then the procedure exits and nothing is written into the
logfile.
───
─────────
GETNODE

 FUNCTION getnode : BYTE;

This function takes a look at the variable 'thisnode' and returns it back as a BYTE.

Example:
 BEGIN
 FOR counter := 1 TO getnode DO
 display(0, 14, 0, 'User on node ' + itoa(counter) + ':' +
 useronnode(counter));
 END.
───
─────────
SHOW_STATUS

 PROCEDURE show_status;

If the variable 'statuslineon' is true, then the status line will be forced to redraw itself.
───

[Page 75]

─────────

[Page 76]

DESQVIEW_ACTIVE

 PROCEDURE destview_active;

This function takes a look at the operating system and updates the following variables on it's
findings:
 os2
 dosver
 dv
 dvver
 fourdos
 nwver
 winver
───
─────────

Only For Compatablity
──────────────────────

───
─────────
The following routines are not implemented because of porting problems. If you really need one
of these routines implemented, then please contact us at BV Compuworks Group.

FUNCTION unlock(VAR df : FILE; startblock,
lenblock : LONGINT) : WORD;

FUNCTION lock(VAR df : FILE; startblock,
lenblock : LONGINT) : WORD;

PROCEDURE set_retries(lockretries, delay : INTEGER);
FUNCTION setfossil : BOOLEAN;
FUNCTION setflaguser(path : pathstr;

user : namestr; onoff : on_off) : BYTE;
PROCEDURE showfilesbbs(VAR lncount : INTEGER; n, pause,

fc,sc,dc, ec, mc,bc : BYTE;
fpath, fn : STRING;
VAR cont: BOOLEAN;
oneline : BOOLEAN);

FUNCTION share : BOOLEAN;
PROCEDURE deposittime(path, name : STRING; depnum : INTEGER);
PROCEDURE clearregs;
───
─────────

[Page 77]

BVDoor CONST Section:
maxport = 255; { Max Com Ports Supported }
bvdversion = '1.0'; { BVDoor Version }
compiled = 'Compiled on thisday';

{ Date BVDoor was compiled }
beta = FALSE; { True in Beta versions }
ansicls = #27 + '[40m' + #27 + '[2J';

 { Ansi Codes to clear screen }
maxkeys = 20; { Max User keys supported }
lockmde = 64 + 2;

{ File Locking opens files as }
{ Shared/Read/Write }

softcr = #141; { Use this in messages for CR }
cr = #13; { Carriage Return }

(* The Following are Used in PostMsg attributes *)
msg_delete = 1; { (Attr AND 1) = msg deleted }
msg_out_net = 2; { (Attr AND 2) = netmail to be scanned out}
msg_net = 4; { (Attr AND 4) = Netmail Message }
msg_private = 8; { (Attr AND 8) = Private Message }
msg_received = 16; { (Attr AND 16) = Message Received}
msg_out_echo = 32; { (Attr AND 32) = Echomail to be scanned out }
msg_local = 64; { (Attr AND 64) = ALWAYS SET msg typed locally}

BVDoor TYPE Section:

pathstr = STRING[79];
statstr = STRING[79];
str18 = STRING[18];
str5 = STRING[5];
str2 = STRING[2];
str1 = STRING[1];
namestr = STRING[35];
charset = SET OF CHAR;
flagset = (A0, A1, A2, A3, A4, A5, A6, A7, A8,

B1, B2, B3, B4, B5, B6, B7, B8,
C1, C2, C3, C4, C5, C6, C7, C8,
D1, D2, D3, D4, D5, D6, D7, D8);

on_off = (null, ison, off);
killer = (kill, nokill);
cardsuit = (C,D,H,S);

asktype = (yes, no, ask, only);
videotype = (auto, short, long);
msgkindstype = (both, private, public, ronly);

msgtxt = RECORD
line : STRING[255];

 END;

msgtoidx = RECORD
[Page 78]

user : STRING[35];
 END;

msgtype = (localmail, netmail, echomail);
orphantype = (ignore, create, ra_kill);
flagtype = ARRAY[1..4] OF BYTE;
ra_time = STRING[8];

[Page 79]

ra_date = STRING[8];
longdate = STRING[9];
netaddress = RECORD

zone,
net,
node,
point : WORD;

 END;

languagerecord = RECORD
name : STRING[20];
attribute : BYTE;
defname,
menupath,
textpath,
quespath : STRING[60];
freespace : ARRAY[1..200] OF BYTE;

 END;

msginforecord = RECORD
lowmsg,
highmsg,
totalmsgs : WORD;
totalonboard : ARRAY[1..200] OF WORD;

 END;

msgidxrecord = RECORD
msgnum : INTEGER;
board : BYTE;

 END;

msgtoidxrecord = STRING[35];

msghdrrecord = RECORD
msgnum : INTEGER;
prevreply,
nextreply,
timesread : WORD;
startblock : WORD;
numblocks,
destnet,
destnode,
orignet,
orignode : WORD;
destzone,
origzone : BYTE;
cost : WORD;
msgattr,
netattr,

[Page 80]

board : BYTE;
posttime : ra_time;
postdate : ra_date;
whoto,
whofrom : msgtoidxrecord;
subject : STRING[72];

 END;

[Page 81]

msgtxtrecord = STRING[255];

(* RemoteAccess v1.1x UserOn.BBS *)
useron110record = RECORD

name : msgtoidxrecord;
handle : msgtoidxrecord;
line : BYTE;
baud : WORD;
city : STRING[25];
donotdisturb : BOOLEAN;
status : BYTE;
attribute : BYTE;

 END;

(* RemoteAccess 1.00 UserOn.BBS *)
useron100record = RECORD

name : msgtoidxrecord;
line : BYTE;
baud : WORD;
city : STRING[25];
donotdisturb : BOOLEAN;
status : BYTE;

 END;

(*
 Remote Access Status Byte -

0 : Browsing the BBS (In a Menu)
1 : Uploading/Downloading
2 : Reading/posting messages
3 : In a door/external program
4 : Answering questionnaire

*)

(* QBBS 2.75 UserOn.BBS *)
q_useronrecord = RECORD

name : STRING[35];
line : BYTE;
baud : WORD;
city : STRING[35];
donotdisturb : BOOLEAN;

 END;

(* Remote Access v1.10 LastCall.BBS *)
lastcall110 = RECORD

line : BYTE;
name : msgtoidxrecord;
handle : msgtoidxrecord;
city : STRING[25];
baud : WORD;

[Page 82]

times : LONGINT;
logon : STRING[5];
logoff : STRING[5];
attribute : BYTE; (* Byte 0 : Hidden *)

 END;

[Page 83]

(* RemoteAccess v1.00 /QBBS Lastcall.BBS *)
lastcallrecord = RECORD

line : BYTE;
name : msgtoidxrecord;
city : STRING[25];
baud : WORD;
times : LONGINT;
logon : STRING[5];
logoff : STRING[5];

 END;

combinedrecord = ARRAY[1..200] OF WORD;

usersidxrecord = RECORD
namecrc32,
handlecrc32 : LONGINT;

 END;

uline = RECORD
name : STRING[35];
handle : STRING[35];
line : INTEGER;
baud : WORD;
city : STRING[25];
calls : WORD;
doing : STRING[20];
hidden : BOOLEAN;
wantschat : BOOLEAN;
ranetmgr : BOOLEAN;
donotdisturb : BOOLEAN;
ready : BOOLEAN;
msgwaiting : BOOLEAN;

 END;

bytearray32 = ARRAY[1..32] OF BYTE;

[Page 84]

[Page 85]

useronrecord = RECORD
name,
handle : msgtoidxrecord;
line : BYTE;
baud : WORD;
city : STRING[25];
status,
attribute : BYTE;
statdesc : STRING[10];
freespace : ARRAY[1..98] OF BYTE;
nocalls : WORD;

 END;
(*

Status byte -
0 : Browsing (in a menu)
1 : Uploading/downloading
2 : Reading/posting messages
3 : In a door/external utility
4 : Chatting with sysop
5 : Answering questionnaire
6 : RTC
7 : New user logon

 255 : User-defined - display StatDesc

Attribute -
 Bit 0 : Hidden

1 : Wants chat
2 : Reserved for RANETMGR
3 : Do not disturb flag
6 : Ready (0=busy)

*)

(* RA 2.0x User Record *)
usersrecord = RECORD

name : msgtoidxrecord;
location : STRING[25];
organisation,
address1,
address2,
address3 : STRING[50];
handle : STRING[35];
comment : STRING[80];
passwordcrc : LONGINT;
dataphone,
voicephone : STRING[15];
lasttime : ra_time;
lastdate : ra_date;
attribute : BYTE;

(* Bit 0 : Deleted
1 : Clear screen

[Page 86]

2 : More prompt
3 : ANSI
4 : No-kill
5 : Xfer priority
6 : Full screen msg editor
7 : Quiet mode

*)

[Page 87]

attribute2 : BYTE;

(* Bit 0 : Hot-keys
1 : AVT/0
2 : Fullscreen msg viewer
3 : Hidden from userlist
4 : Page priority
5 : No echomail in mailbox scan
6 : Guest account
7 : Post bill enabled }

*)
flags : flagtype;
credit,
pending : LONGINT;
msgsposted,
security : WORD;
lastread,
nocalls,
uploads,
downloads,
uploadsk,
downloadsk,
todayk : LONGINT;
elapsed : INTEGER;
screenlength : WORD;
lastpwdchange : BYTE;
group : WORD;
combinedinfo : combinedrecord;
firstdate,
birthdate,
subdate : ra_date;
screenwidth,
language,
dateformat : BYTE;
forwardto : STRING[35];
msgarea,
filearea : WORD;
defaultprotocol: CHAR;
filegroup : WORD;
lastdobcheck : BYTE;
sex : BYTE;
xirecord : LONGINT;
msggroup : WORD;
freespace : ARRAY[1..48] OF BYTE;

 END;

usersxirecord = RECORD
freespace : ARRAY[1..200] OF BYTE;

 END;

[Page 88]

sysinforecord = RECORD
totalcalls : LONGINT;
lastcaller : msgtoidxrecord;
extraspace : ARRAY[1..128] OF BYTE;

 END;

[Page 89]

timelogrecord = RECORD
startdate : ra_date;
busyperhour : ARRAY[0..23] OF WORD;
busyperday : ARRAY[0..6] OF WORD;

 END;

eventrecord = RECORD
status : BYTE;(* 0=Deleted 1=Enabled 2=Disabled *)
starttime : ra_time;
errorLevel : BYTE;
days : BYTE;
forced : BOOLEAN;
lasttimerun : ra_date;

 END;

eventrecordarray = ARRAY[1..20] OF eventrecord;

messagerecord = RECORD
unused : ARRAY[1..4] OF BYTE;
name : STRING[40];
typ : msgtype;
msgkinds : msgkindstype;
attribute : BYTE;

(*
 Bit 0 : Enable EchoInfo

1 : Combined access
2 : File attaches
3 : Allow aliases
4 : Use SoftCRs as characters
5 : Force handle
6 : Allow deletes
7 : Is a JAM area

*)

dayskill, (* Kill older than 'x' days *)
recvkill : BYTE;

(*
Kill recv msgs, recv for more than 'x' days

*)
countkill : WORD;
readsecurity : WORD;
readflags,
readnotflags : flagtype;
writesecurity : WORD;
writeflags,
writenotflags : flagtype;
sysopsecurity : WORD;
sysopslags,
sysopnotflags : flagtype;
originline : STRING[60];

[Page 90]

akaaddress : BYTE;
age : BYTE;
jambase : STRING[60];
group : WORD;
altgroup : ARRAY[1..3] OF WORD;

[Page 91]

attribute2 : BYTE;
(*

 Bit 0 : Include in all groups
*)

freespace : ARRAY[1..9] OF BYTE;
 END;

exitinforecord = RECORD
baud : WORD;
sysinfo : sysinforecord;
timeloginfo : timelogrecord;
userinfo : usersrecord;
eventinfo : eventrecord;
netmailentered,
echomailentered : BOOLEAN;
logintime : ra_time;
logindate : ra_date;
timelimit : WORD;
loginsec : LONGINT;
userrecord : INTEGER;
readthru,
numberpages,
downloadlimit : WORD;
timeofcreation : ra_time;
logonpasswordcrc : LONGINT;
wantchat : BOOLEAN;
deductedtime : INTEGER;
menustack : ARRAY[1..50] OF STRING[8];
menustackpointer : BYTE;
userxiinfo : usersxirecord;
errorfreeconnect,
sysopnext : BOOLEAN;

(* These next fields hold
 data related to an
 EMSI session
*)

emsi_session : BOOLEAN;
emsi_crtdef,
emsi_protocols,
emsi_capabilities,
emsi_requests,
emsi_software : STRING[40];

hold_attr1,
hold_attr2,
hold_len : BYTE;
pagereason : STRING[80];
statusline : BYTE;
lastcostmenu : STRING[8];

[Page 92]

menucostpermin : WORD;
doesavt,
ripmode : BOOLEAN;
extraspace : ARRAY[1..86] OF BYTE;

 END;

[Page 93]

(* QBBS STRUCTURES *)

qbbs275_flagtype = ARRAY[1..4] OF BYTE;

qbbs275_userrecord = record
name : STRING[35];
city : STRING[25];
pwd : STRING[15];
dataphone,
homephone : STRING[12];
lasttime : STRING[5];
lastdate : STRING[8];
attrib : BYTE;
flags : qbbs275_flagtype;
credit,
pending,
timesposted,
highmsgread,
seclvl,
times,
ups,
downs,
upk,
downk,
todayk : WORD;
elapsed,
len : INTEGER;
combinedptr : WORD; (* Record number in COMBINED.BBS *)
aliasptr : WORD; (* Record number in ALIAS.BBS *)
birthday : LONGINT;

 END;

(* Attrib:
 Bit 0: Deleted
 Bit 1: Screen Clear Codes
 Bit 2: More Prompt
 Bit 3: ANSI
 Bit 4: No-Kill
 Bit 5: Ignore Download Hours
 Bit 6: ANSI Full Screen Editor
 Bit 7: Sex (0=male, 1=female)

*)

qbbs275_sysinforecord = RECORD
callcount : LONGINT;
lastcaller : STRING[35];
extraspace : ARRAY[1..128] OF BYTE;

 END;

qbbs275_timelogrecord = RECORD
[Page 94]

startdate : STRING[8];
busyperhour : ARRAY[0..23] OF INTEGER;
busyperday : ARRAY[0..6] OF INTEGER;

 END;

qbbs275_eventstat = (deleted, enabled, disabled);

[Page 95]

qbbs275_eventrecord = RECORD (* EVENTCFG.DAT *)
status : qbbs275_eventstat;
runtime : LONGINT;
errorlevel : BYTE;
days : BYTE;
forced : BOOLEAN;
lasttimerun : LONGINT;
spare : ARRAY[1..7] OF BYTE;

 END;

qbbs275_gosubdatatype = ARRAY[1..20] OF STRING[8];

qbbs275_exitinforecord = RECORD
baudrate : INTEGER;
sysinfo : qbbs275_sysinforecord;
timeloginfo : qbbs275_timelogrecord;
userinfo : qbbs275_userrecord;
eventinfo : qbbs275_eventrecord;
netmailentered: BOOLEAN;
echomailentered: BOOLEAN;
logintime : STRING[5];
logindate : STRING[8];
tmlimit : INTEGER;
loginsec : LONGINT;
credit : LONGINT;
userrecnum : INTEGER;
readthru : INTEGER;
pagetimes : INTEGER;
downlimit : INTEGER;
wantchat : BOOLEAN;
gosublevel : BYTE;
gosubdata : qbbs275_gosubdatatype;
menu : STRING[8];

 END;

[Page 96]

