
AFC_WhitePaper

AFC_WhitePaper ii

COLLABORATORS

TITLE :

AFC_WhitePaper

ACTION NAME DATE SIGNATURE

WRITTEN BY February 14, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AFC_WhitePaper iii

Contents

1 AFC_WhitePaper 1

1.1 Amiga Foundation Classes . 1

1.2 What are the Amiga Foundation Classes . 2

1.3 What are the Amiga Foundation Classes for . 2

1.4 Who will use the Amiga Foundation Classes . 3

1.5 Future of the Amiga Foundation Classes . 3

1.6 Interfacing with new Amiga OS Compatibles . 3

1.7 How to write a Class for the Amiga Foundation Classes . 4

1.8 Class name . 4

1.9 Methods’ names . 4

1.10 Object Inheritance . 5

1.11 Object Initialization and Object Destruction . 5

1.12 Libraries and lowest OS version . 6

1.13 Tags . 6

1.14 Definition of error codes . 6

1.15 When to report an error code . 6

1.16 How to report an error code . 7

1.17 Classification of error codes . 7

1.18 Porting features . 7

1.19 Porting limits . 7

1.20 Compiled Classes . 8

1.21 Classes’ source code . 8

1.22 Availability . 8

1.23 Info and WEB sites . 9

AFC_WhitePaper 1 / 9

Chapter 1

AFC_WhitePaper

1.1 Amiga Foundation Classes

Amiga Foundation Classes

A FreeWare and Public Domain library of Object Classes devoted to the
software development on the Amiga and on future Amiga compatible machines.

! Note: new / modified lines are signed with a "!" as the first char of the
! line.

1. Index

2.0 - Introduction

2.1 - What are the Amiga Foundation Classes

2.2 - What are the Amiga Foundation Classes for
!
2.3 - Who will use the Amiga Foundation Classes

2.4 - Future of the Amiga Foundation Classes

2.5 - Interfacing with new Amiga OS Compatibles
3.0 - Implementation

3.1 - How to write a Class for the Amiga Foundation Classes
!
3.1.1 - Class name

!
3.1.2 - Methods’ names

!
3.1.3 - Object Inheritance

!
3.1.4 - Object Initialization and Object Destruction

3.1.5 - Libraries and lowest OS version

3.1.6 - Tags

AFC_WhitePaper 2 / 9

3.2 - Definition of error codes

3.2.1 - When to report an error code
!
3.2.2 - How to report an error code

3.2.3 - Classification of error codes
4.0 - Porting of Classes

4.1 - Porting features

4.2 - Porting limits
5.0 - Distribution

5.1 - Compiled Classes

5.2 - Classes’ source code
!
5.3 - Availability

!
5.4 - Info and WEB sites

1.2 What are the Amiga Foundation Classes

2.1 - What are the Amiga Foundation Classes

"Amiga Foundation Classes" (AFC from now on) is the name of a library of
Object Classes designed to manage the several features of Amiga. Each
Class will constitute an interface between the programmer and a particular
aspect of the Amiga Operating System, trying to make the design and the
coding of a program for the Amiga OS computers easier. The AFC have been
also designed to assure a quicker porting of the Amiga programs on the
future Amiga-Compatible Operating Systems. See

section 2.4
for more info.

1.3 What are the Amiga Foundation Classes for

2.2 - What are the Amiga Foundation Classes for

We have designed the AFC for different reasons: first of all the necessity
of fully exploiting the object oriented programming (OOP), that allows to
"recycle" code using it in other Classes or in other programs. The
recompilation of the AFC on future computers with an Amiga-Compatible OS
will allow a quicker porting of software products. See

section 2.4
for more

info.

AFC_WhitePaper 3 / 9

1.4 Who will use the Amiga Foundation Classes

2.3 - Who will use the Amiga Foundation Classes

The AFC will be available to all programmers using a language supporting
the OOP. The AFC can be used freely in FreeWare, ShareWare, PD or
Commercial programs without paying any royalty.

! If you use the AFC, please, quote somewhere in the "About..." requester
! and also in the documentation that your program uses the Amiga Foundation
! Classes and provide also the official URL:
!
! http://www.intercom.it/~fsoft/afc.html
!
! Note that you are just _invited_ to do so, no obbligation is given in
! any way.

1.5 Future of the Amiga Foundation Classes

2.4 - Future of the Amiga Foundation Classes

The AFC have been designed to warrant a reliable base of Objects to be used
in the future Amiga-Compatible machines: by recompiling the AFC source
code will be possible to obtain an excellent library of Classes with which
one can easily build applications for the new computers. The advantage of
using Classes of objects over the Operating System calls is due to the fact
that such Classes work as an "interface" between the OS and the programmer:
people that programmed on the Amiga using the AFC will bring their code on
the new machines by simply recompiling the sources and using the AFC
version implemented on the new computer on which they are working. Thank
to the AFC, programmers will save a lot of time (otherwise spent in
learning the new OS) and will keep on using the same Classes with the same
sintax and the same behaviour. This implies, at least in our intentions,
that the software will be developed better and in a shorter time. The risk
that every new Operating System has to face, when it first comes to life,
is the lack of professional software. Thank to the AFC it will be possible
to provide in brief time professional products for these new OS.

1.6 Interfacing with new Amiga OS Compatibles

2.5 - Interfacing with new Amiga OS Compatibles

It’s our intention to freely supply developers of Amiga-Compatible OS with
the source code of the AFC, be they Phase5, VisCorp, Be Inc., AROS, p-OS,
PIOS, etc. Indeed, we are persuaded that the future of a new machine,
possibly not depending on Microsoft, is to be found in the possibility of
having in a short time software products of a professional quality. Thus
the AFC sources will be provided to every OS developer that will ask for
them. Then the particular implementation will be examined by the
supervisors of AFC that will give their approval and allow the
distribution. See section 5.0 for more infos.

AFC_WhitePaper 4 / 9

1.7 How to write a Class for the Amiga Foundation Classes

3.1 - How to write a Class for the Amiga Foundation Classes

Class Name

Methods’ Names

Object Inheritance

Object Initialization and Destruction

Libraries And lowest OS Versions

Tags

1.8 Class name

3.1.1 - Class name

- The Class must have a unique and understandable name.
- The class name must be lowercase.
- The class name must be in English.
- The class name must NOT be the name of an Amiga system structure.

! Please, note that the "_obj" naming convention has been discarted.
! Use just unique names that don’t collide against Amiga system structures
! names

- If in doubt, you can always add to the name of the class the suffix
"_obj".

1.9 Methods’ names

3.1.2 - Methods’ names

- The name of a method must be as shortest and clear as possible. E.g.,
in a class designed to manage a list of nodes the method that adds a
node must NOT be called "addnode", but simply "add".

! - The name of a method must start in lowercase.

! From V1.50 of AFC white paper, you can create names with UPPERCASE chars
! to easy method naming:
!
! ie. "addviewtocopperlist" now can become:
! "addViewToCopperList" or similar.
!
! please, note that the first chars *MUST* be lowercase anyway.
!
! This way of naming is more close to Sun’s Java language, another

AFC_WhitePaper 5 / 9

! place where we are planning to port AFC to.

- The name of a method must be in English.

1.10 Object Inheritance

3.1.3 - Object Inheritance

The Object Inheritance tipical of the OOP must be used as little as you
can. This because the Object Inheritance is implemented differently in the
various languages. The AFC sources must be understandable to allow for an
easier porting and readability. Thus it is FORBIDDEN the use of particular
syntax rules characteristic of a particular language. E.g., are not
allowed structures of the "friend" type or the Multiple Inheritance of the
C++ language.

! It’s advisable to substitute the Object Inheritance with the creation of a
! copy of the Class to be "reused" in the new Class. E.g., if you have to
! inherit the Class "bitmapper" in the Class "picture" (notice the name
! lowercase and in English) it’s advisable to copy the "bitmapper" Class in
! the "picture" Class.

1.11 Object Initialization and Object Destruction

3.1.4 - Object Initialization and Object Destruction

The initialization and destruction of a Class must be always performed by
means of two particular Methods: the Initialization method and the
Destruction one.

The Initialization method must have the same name as the Class. E.g., the
Initialization method of the "picture" Class must be called "picture()"
(with parameters between the brackets, if needed).

The Destruction method of a class must be named "end()" and must NOT
require any parameter.

! In the C++ version of AFC classes the destruction method can also
! be called with the standard C++ notation of the "~" char.
! So the Destruction method of the "picture" class in the example
! could also be: ~picture() with NO parameters, anyway.

These two methods must be called EXPLICITLY by the program that exploits
the Class: you must not rely only on the Initialization and Destruction
routines contained in the language you use.

! If a Class uses another one, then it has to call in its own Initialization
! method the Initialization method of the other Class. E.g., the "picture"
! Class that contains the "bitmapper" Class has to call, within the
! "picture()" method, the "bitmapper" method associated with the
! "bitmapper" Class.

AFC_WhitePaper 6 / 9

1.12 Libraries and lowest OS version

3.1.5 - Libraries and lowest OS version

Classes have to rely almost exclusively on the standard AmigaOS libraries.

E.g., a "picture" Class that uses the "iff.library" won’t be included in
AFC because you can load an image also using the "iffparse.library" and
then write the ByteRun-decoding routine.

Besides, the use of third party libraries damages the AFC, because these
libraries might not be implemented on new Operating Systems.

The lowest OS version supported by AFC is 2.04. We can also take into
account the compatibility with OS1.3, but it’s not a fundamental feature.

If a Class requires a newer OS version to work correctly, then this must be
documented.

1.13 Tags

3.1.6 - Tags

When possible the behaviour of the Class must be changed using tags, a
characteristic of the AmigaOS. The standard methods involving tags must be
called:

- "setattrs(tags)" to set the tags.
- "getattr(tag)" to get a single return value (with the corresponding

tag as parameter).
- "getattrs(tags)" if you want to receive different values with the same

call.

1.14 Definition of error codes

3.2 - Definition of error codes

When to report an error code

How to report an error code

Classification of error codes

1.15 When to report an error code

3.2.1 - When to report an error code

The AFC must promptly react at all possible errors: they must be "idiot

AFC_WhitePaper 7 / 9

proof". If the user makes a mistake in calling a method, or he calls it
before having initialized the Class, and so on, the Class must be able to
trap and report the error (possibly trying to continue). Thus it’s
important to classify and report to the user the largest number of errors,
trying to be understandable (when possible) to make the debug session
easier.

1.16 How to report an error code

3.2.2 - How to report an error code

! To report an error it’s preferable to use the (software) "Exceptions", when
! they are supported by the language; if they are not supported it’s
! the called methdo can return the value of the exception as the return code.
! Anyway, it is _your_ task to provide a simple and good way to let the user
! handle exceptions and errors.

1.17 Classification of error codes

3.2.3 - Classification of error codes

The error code of a Class is contained in a 32Bit variable (long). The
High word (2 bytes) contains the "identification number" of the Class:
this identification number is unique and it’s assigned by AFC to the Class
when it is first created. This value must be stored in the source code of
the Class in a constant named as the Class itself (written UPPERCASE) with
the "_BASE" suffix. E.g., the picture Class has the identification value
named "PICTURE_BASE". The Low word (2 bytes) contains the error code: in
each Class it starts from $0000 and goes up to $FFFF (supposing that a
Class can return 65535 different error messages!). The $0000 error it’s
always "No Memory". The table that associates to every error code its
description must be included in the documentation.

1.18 Porting features

4.1 - Porting features

The AFC can (and must) be ported on the largest number of languages as
possible. The porting must take into account all the characteristics
listed in sections 2 and 3. It’s forbidden to modify a Class during the
porting, but the Class has to be "adapted" if some operations are not
translatable into the language used (e.g., returning multiple values with a
single method call).

1.19 Porting limits

AFC_WhitePaper 8 / 9

4.2 - Porting limits

A Class ported by a programmer CANNOT be distributed before approval by the
AFC supervisors. This to assure the correct working of the Class after the
porting. We of AFC won’t exclude any language, but the programmers that
won’t accept these conditions won’t receive any other Class to convert and
their Classes will be marked on the AFC WEB pages as "Not Supported".

1.20 Compiled Classes

5.1 - Compiled Classes

The compiled classes (e.g., the ".obj" files of C++ or the ".m" files of
AmigaE) may be freely distributed and have to be inserted in a directory
called "AFC" (obviously).

In the ".lha" archive must be present, together with the compiled code, the
documentation in AmigaGuide format and some example sources.

1.21 Classes’ source code

5.2 - Classes’ source code

The source of the Classes is NOT public domain an so it’s NOT distributed
along with the compiled code. Nevertheless, it will be always available to
programmers that ask us to do the porting of a particular Class. The
supervisors of AFC will always have all the sources and are free to decide
whether to give the source of the required Class to a particular programmer
or not.

1.22 Availability

5.3 - Availability

The compiled versions of AFC can be found at these sites:

FTP:
ftp.intercom.it/pub/afc - Official site of Amiga Foundation Classes

! HTTP:
! www.intercom.it/~fsoft/afc.html - Official WEB site of AFC

! The E version of the AFC classes will be also shipped with the language itself.
! But some of them will result to be unuseful without the registered version of
! the compiler. :-)

AFC_WhitePaper 9 / 9

1.23 Info and WEB sites

5.4 - Info and WEB sites

If you want more infos (or upgrades) you can connect to:

http://www.intercom.it/~fsoft/afc.html

the official page of AFC.

Or you can subscribe to the mailing list by sending a message to:

afc-list@intercom.it

with (in the SUBJECT): subscribe

	AFC_WhitePaper
	Amiga Foundation Classes
	What are the Amiga Foundation Classes
	What are the Amiga Foundation Classes for
	Who will use the Amiga Foundation Classes
	Future of the Amiga Foundation Classes
	Interfacing with new Amiga OS Compatibles
	How to write a Class for the Amiga Foundation Classes
	Class name
	Methods' names
	Object Inheritance
	Object Initialization and Object Destruction
	Libraries and lowest OS version
	Tags
	Definition of error codes
	When to report an error code
	How to report an error code
	Classification of error codes
	Porting features
	Porting limits
	Compiled Classes
	Classes' source code
	Availability
	Info and WEB sites

