

The Next Generation of Cryptanalytic Hardware

The N David ercon ext lulton Generation <0x3 30th, ω ω tanalytic Hardware as com> ′egas, NV

FPGAs (Field Programmable Gate Arrays) allow custom silicon to be implemented easily. The result is a chip that can be built specifically for cracking passwords. This presentation focuses on uncovering some of the underlying basics behind gate logic and shows how it can be used for performing extremely efficient cracking on FPGAs that runs hundreds of times faster than a PC.

David Hulton <dhulton@picocomputing.com>

Founder, Dachb0den Labs Chairman, ToorCon Information Security Conference Embedded Systems Engineer, Pico Computing, Inc.

Disclaimer

David Hulton <0x3133 The Next Generation etcon 13 -July 30th, of ହ ryptanalytic Hardware õ mail.com> as. Vegas, NV

- Educational purposes only
- Full disclosure
- I'm not a hardware guy

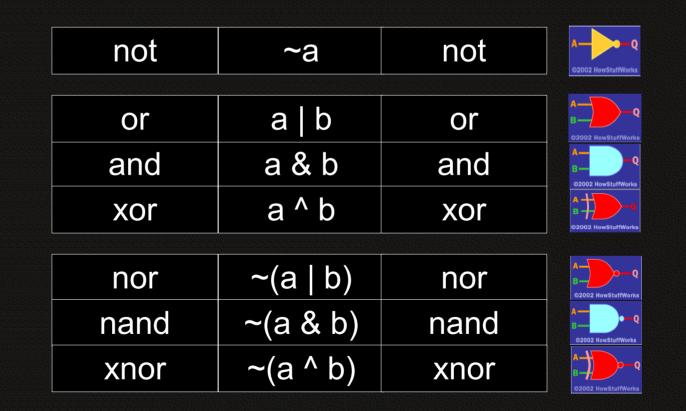
Goals

The Next Generation
David Hulton <0x313 Defcon 13 -Hulton <0x31337@gmail.com> July 30th, of 20 ryptanalytic Hardware as. Vegas, NV

- This talk will cover:
 - Introduction to FPGAs
 - What is an FPGA?
 - Gate Logic
 - Optimizations
 - Pipelines
 - Parallelism
 - Cryptography
 - History
 - PicoCrack
 - Conclusion

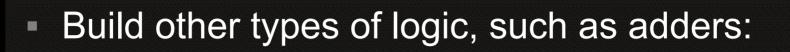
Introduction to FPGAs

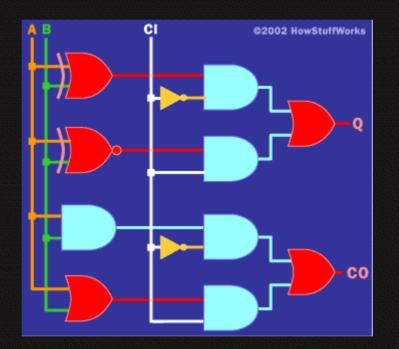
Field Programmable Gate Array


- Lets you prototype IC's
- Code translates directly into circuit logic

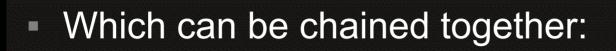
David he ercon Next Generation Hulton 13 <0x3133 30th, of qVl tanalytic Hardware าลไ as l.com> /egas, NV

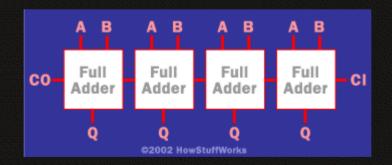
What is Gate Logic?


The basic building blocks of any computing system

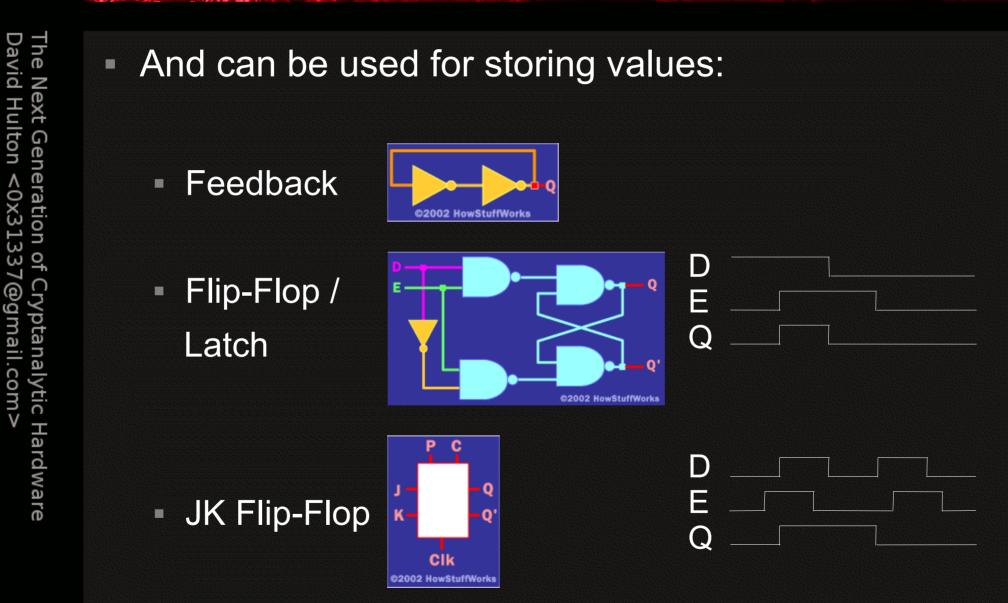


What is Gate Logic?


David Hulton The Next Generation Defcon 13 -July 30th, 2005 <0x3133 of ହ ryptanalytic Hardware ğ mail.com> -as Vegas, NV



What is Gate Logic?

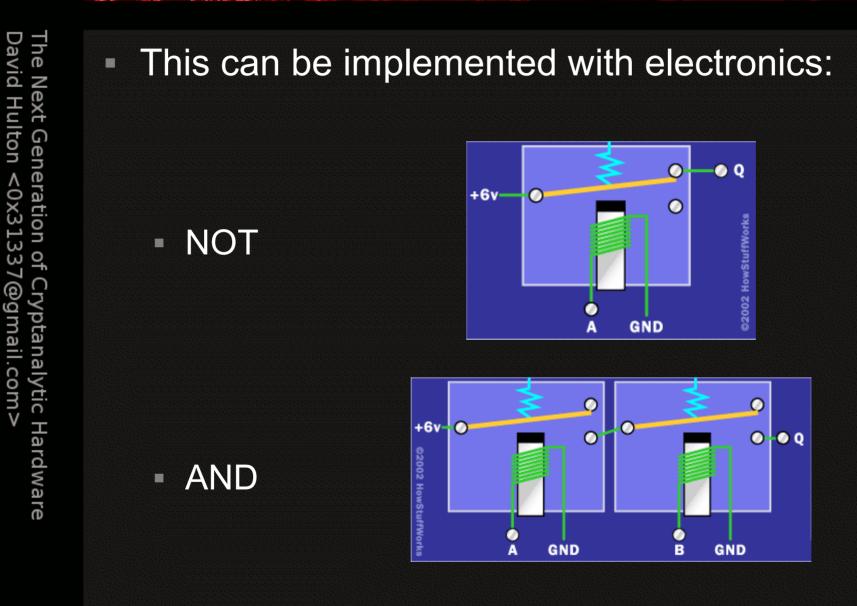

Defcon 13 -

July 30th, 20

as.

Vegas, NV

What is Gate Logic?



Defcon 13 - July 30th, 2005

-as

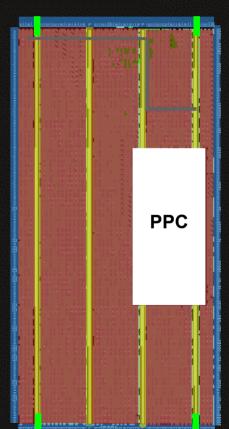
Vegas, NV

What is Gate Logic?

What is an FPGA?

David The Ν ext ulton G eneration <0x3 30th ω tanalytic Hardware a as com> regas, NV

- An FPGA is an array of configurable gates
 - Gates can be connected together arbitrarily
 - States can be configured
 - Common components are provided
 - Any type of logic can be created



What is an FPGA?

egas, NV tic Hardware V

Configurable Logic Blocks (CLBs)

- Registers (flip flops) for fast data storage
- Logic Routing
- Input/Output Blocks (IOBs)
 - Basic pin logic (flip flops, muxs, etc)
- Block Ram
 - Internal memory for data storage
- Digial Clock Managers (DCMs)
 - Clock distribution
- Programmable Routing Matrix
 - Intelligently connects all components together

FPGA Pros / Cons

David The ercon Ζ ext 13 ulton G eneration <0x3 30th, ω 9 ω σ tanalytic Hardware a as .com> 'egas, NV

Pros

- Common Hardware Benefits
 - Massively parallel
 - Pipelineable
- Reprogrammable
 - Self-reconfiguration
- Cons
 - Size constraints / limitations
 - More difficult to code & debug

Introduction to FPGAs

Davi The Ν е nera ۸ 0 on tanalytic Hardware S .com> regas, NV

- Common Applications
 - Encryption / decryption
 - AI / Neural networks
 - Digital signal processing (DSP)
 - Software radio
 - Image processing
 - Communications protocol decoding
 - Matlab / Simulink code acceleration
 - Etc.

Introduction to FPGAs

David The Ν ext ulto eneration <0x3 ω tanalytic Hardware ิด as .com> ′egas, NV

- Common Applications
 - Encryption / decryption
 - AI / Neural networks
 - Digital signal processing (DSP)
 - Software radio
 - Image processing
 - Communications protocol decoding
 - Matlab / Simulink code acceleration
 - Etc.

Types of FPGAs

David The ercon Ν ext ulton G eneration <0x3 30th ω tanalytic Hardware a as .com> /egas, NV

Antifuse

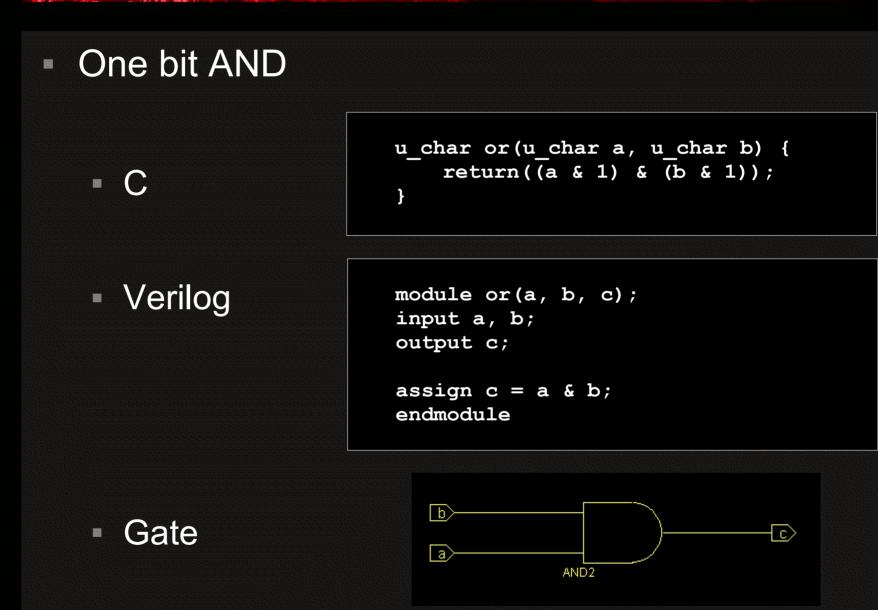
- Programmable only once
- Flash
 - Programmable many times
- SRAM
 - Programmable dynamically
 - Most common technology
 - Requires a loader (doesn't keep state after poweroff)

Types of FPGAs

Xilinx

- Virtex-4
- Optional PowerPC Processor
- Altera
 - Stratix-II

Verilog


- Hardware Description Language
- Simple C-like Syntax
- Like Go Easy to learn, difficult to master

The Next Generation of Cryptanalytic H David Hulton <0x31337@gmail.com> Defcon 13 - July 30th, 2005 - Las Vegas

ryptanalytic Hardware

.as Vegas, NV

Verilog

The Next Generation of Cryptanalytic Hardware David Hulton <0x31337@gmail.com> Defcon 13 - July 30th, 2005 - Las Vegas, NV

8 bit AND			
■ C	<pre>u_char or(u_char a, u_char b) { return(a & b); }</pre>		
Verilog	<pre>module or(a, b, c); input [7:0] a, b; output [7:0] c; assign c = a & b; endmodule</pre>		
Gate	b(7:0) a(7:0) AND2		

Verilog

The Next Generation of Cryptanalytic Hardware David Hulton <0x31337@gmail.com> Defcon 13 - July 30th, 2005 - Las Vegas, NV

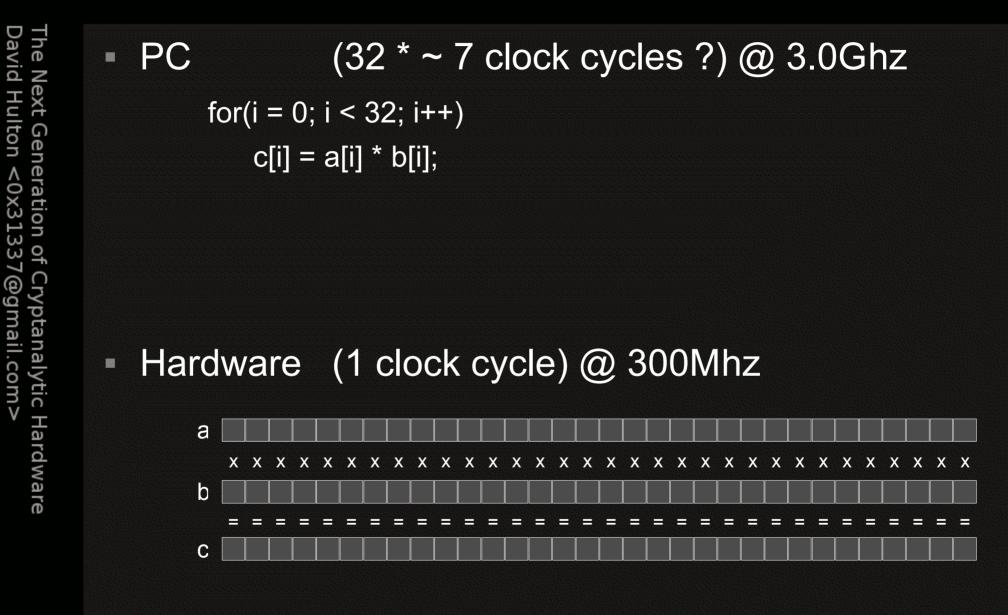
8 bit Flip-Flop	
 C 	<pre>u_char or(u_char a) { u_char t = a; return(t); }</pre>
Verilog	<pre>module or(clk, a, c); input clk; input [7:0] a; output [7:0] c; reg [7:0] c; always @(posedge clk) c <= a; endmodule</pre>
 Gate 	

Defcon 13 -

July 30th,

20

as


Vegas, NV

Hulton <0x3133

ඹ

ã

mail.com>

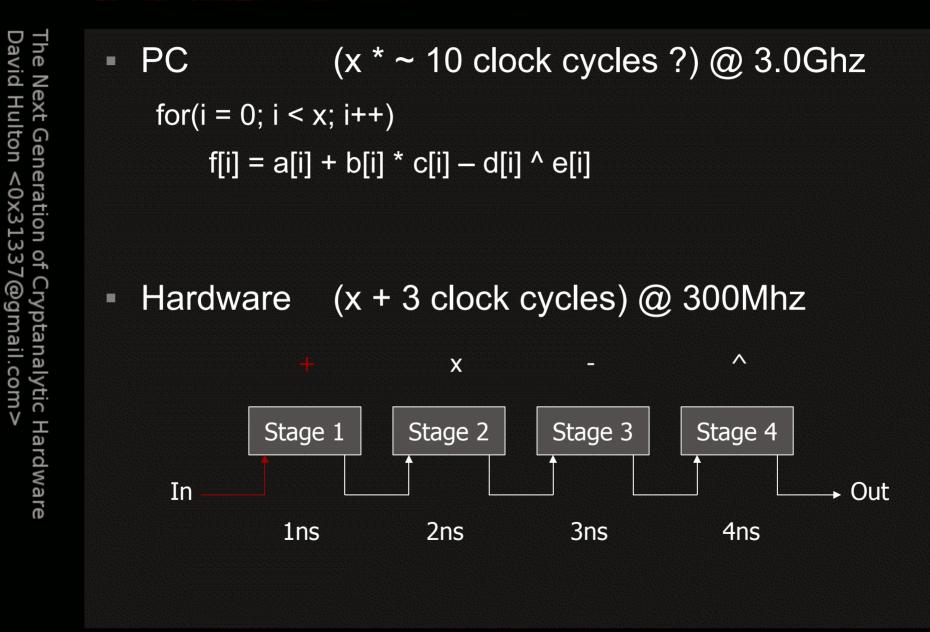
Copyright Pico Computing & Dachb0den Labs 2005

Massively Parallel Example

David he Defcon 13 -Ν lext lulton Generation July 30th, <0x313 q ω dگل mail tanalytic Hardware as. .com> Vegas, NV

PC

- Speed scales with # of instructions & clock speed
- Hardware
 - Speed scales with FPGA's:
 - Size
 - Clock Speed


Defcon 13 - July 30th, 2005

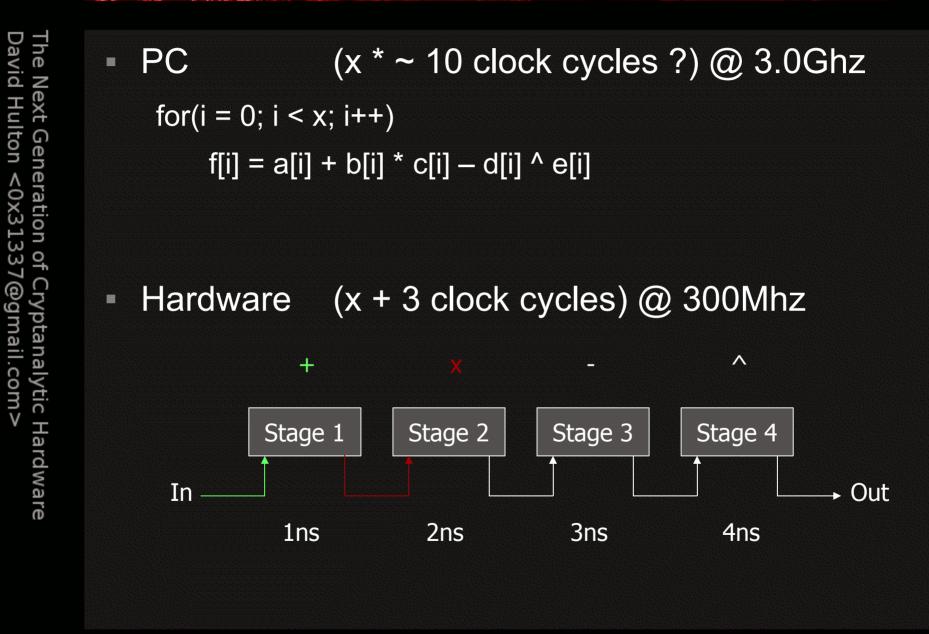
mail.com>

-as

Vegas, NV

Pipeline Example

Copyright Pico Computing & Dachb0den Labs 2005

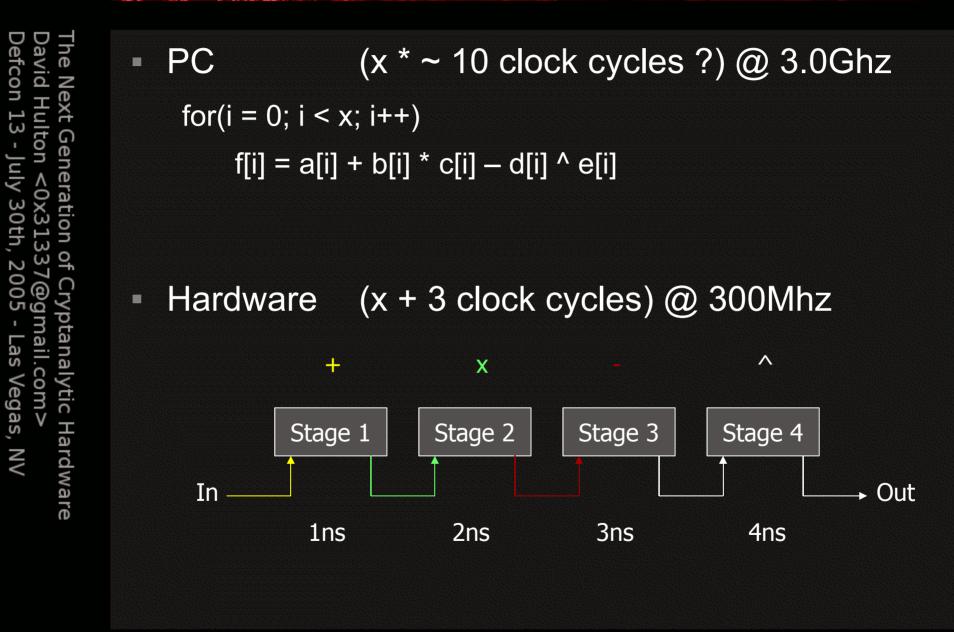

Defcon 13 - July 30th, 2005

mail.com>

-as

Vegas, NV

Pipeline Example



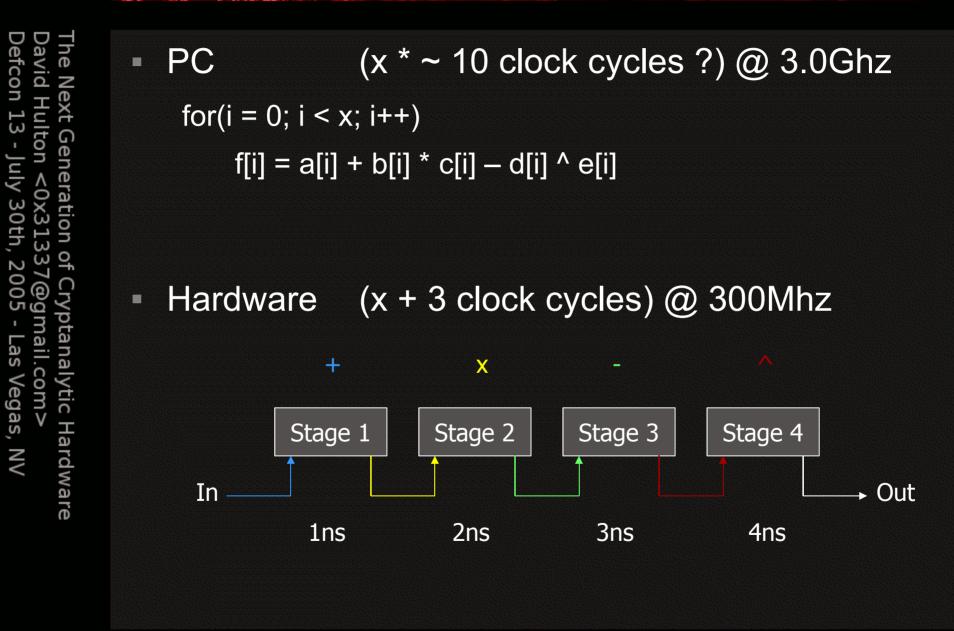
mail.com>

-as

Vegas, NV

Pipeline Example

Copyright Pico Computing & Dachb0den Labs 2005

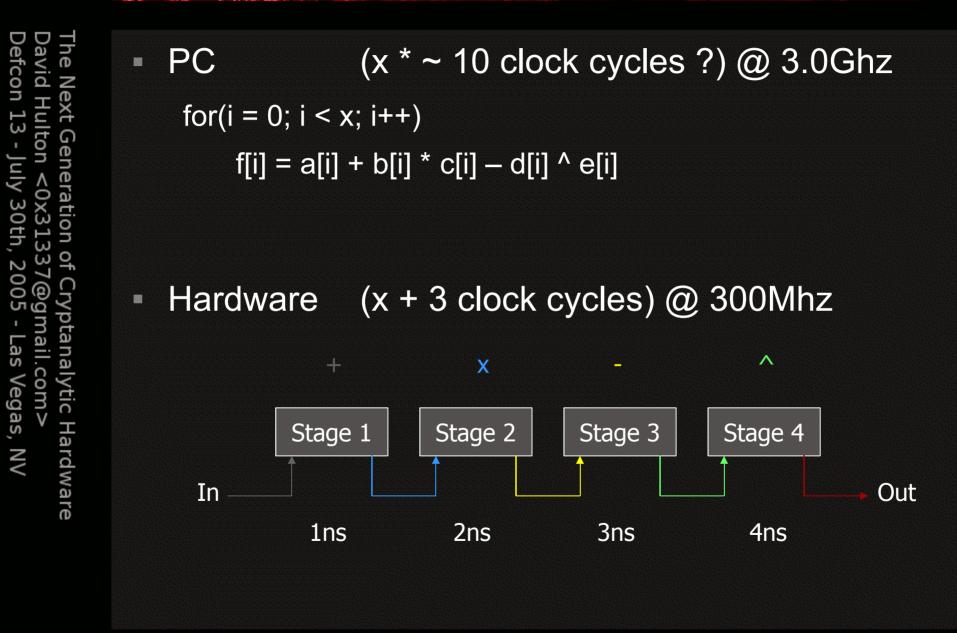


mail.com>

-as

Vegas, NV

Pipeline Example



Copyright Pico Computing & Dachb0den Labs 2005

Vegas, NV

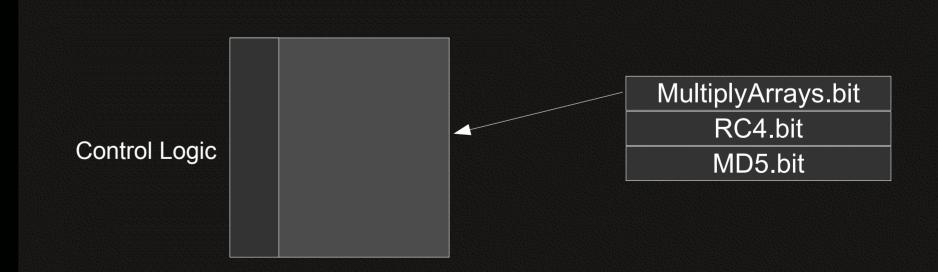
Pipeline Example

Pipeline Example

David he etcon 13 -Ν ext ulton G eneration July 30th, <0x3 σ tanalytic Hardware a as com> Vegas, NV

PC

- Speed scales with # of instructions & clock speed
- Hardware
 - Speed scales with FPGA's:
 - Size
 - Clock speed
 - Slowest operation in the pipeline

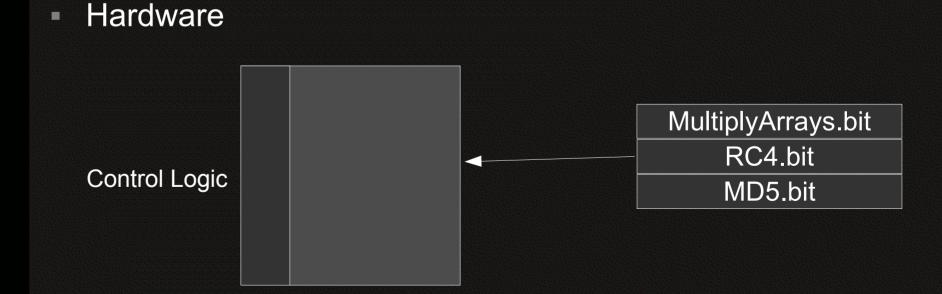


Self-Reconfiguration Example

The Next Generation David Hulton <0x313 efcon 13 -Hulton July 30th, <0x3133 9 ര ryp ã mail tanalytic Hardware as. .com> Vegas, NV

PC data = MultiplyArrays(a, b); RC4(key, data, len); m = MD5(data, len);

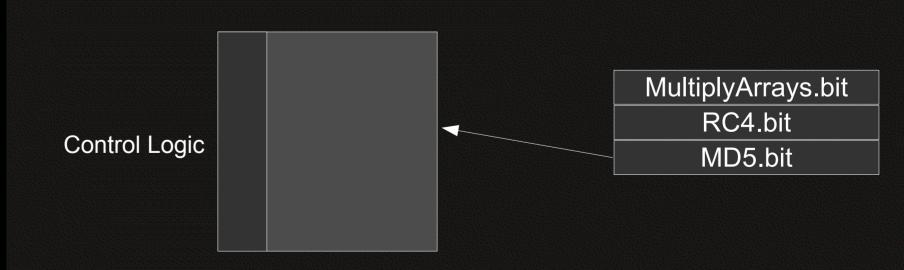
Hardware



Self-Reconfiguration Example

The Next Generation David Hulton <0x313 efcon 13 -Hulton July 30th, <0x3133 of @ ryp ğ mail tanalytic Hardware as. l.com> Vegas, NV

PC data = MultiplyArrays(a, b); RC4(key, data, len); m = MD5(data, len);



Self-Reconfiguration Example

The Next Generation David Hulton <0x313 efcon 13 -Hulton July 30th, <0x3133 9 ଢ ryp ã mail tanalytic Hardware as. .com> Vegas, NV

PC data = MultiplyArrays(a, b); RC4(key, data, len); m = MD5(data, len); Hardware

David The Ν ext ulto G eneration <0x3 ω tanalytic Hardware a S com> egas, NV

- Minimal Key Lengths for Symmetric Ciphers
 - Ronald L. Rivest (R in RSA)
 - Bruce Schneier (Blowfish, Twofish, etc)
 - Tsutomu Shimomura (Mitnick)
 - A bunch of other ad hoc cypherpunks

David Hulton <0x31337@gmail.com> Defcon 13 - July 30th, 2005 - Las Vega: The Next Generation of Cryptanalytic Hardware ₋as Vegas, NV

Budget	Tool	40-bits	56-bits	Recom
Pedestrian	Hacker			
Tiny	Computers	1 week	infeasible	45
\$400	FPGA	5 hours	38 years	50
Small Com	oany			
\$10K	FPGA	12 min	556 days	55
Corporate I	Department			
\$300K	FPGA	24 sec	19 days	60
	ASIC	0.18 sec	3 hrs	
Big Compa				
\$10M	FPGA	0.7 sec	13 hrs	70
	ASIC	0.005 sec	6 min	
Intelligence	Agency			
\$300M	ASIC	0.0002 sec	12 sec	75

- 40-bit SSL is crackable by almost anyone
- 56-bit DES is crackable by companies
- Scared yet?

This paper was published in 1996

Copyright Pico Computing & Dachb0den Labs 2005

The Dav

e

ne

៍ ត

na

lytic Hardware

com>

egas, NV

History of FPGAs and Cryptography

1998

- The Electronic Frontier Foundation (EFF)
- Cracked DES in < 3 days</p>
- Searched ~9,000,000,000 keys/second
- Cost < \$250,000</p>

2001

- Richard Clayton & Mike Bond (University of Cambridge)
- Cracked DES on IBM ATMs
- Able to export all the DES and 3DES keys in ~ 20 minutes
- Cost < \$1,000 using an FPGA evaluation board</p>

Da The Ν to е е a 0 La na S com lytic Hardware 'egas, NV

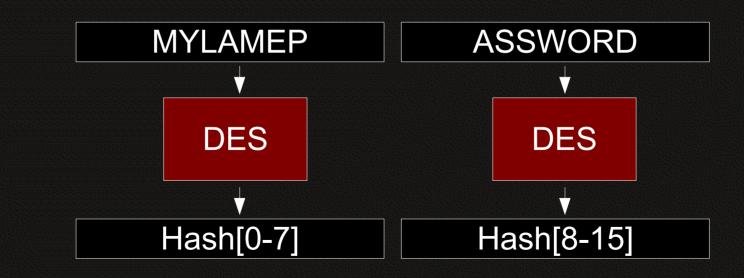
2004

- Philip Leong, Chinese University of Hong Kong
- IDEA
 - 50Mb/sec on a P4 vs. 5,247Mb/sec on Pilchard
- RC4
 - Cracked RC4 keys 58x faster than a P4
 - Parallelized 96 times on a FPGA
 - Cracks 40-bit keys in 50 hours
 - Cost < \$1,000 using a RAM FPGA (Pilchard)

PicoCrack

David The Next Generation efcon 13 -Hulton <0x3133 July 30th, of ହ ryp õ mail.com> tanalytic Hardware as. Vegas, NV

- Currently Supports
 - Unix DES
 - Windows Lanman
 - Windows NTLM (full-support coming soon)



Lanman Hashes

David The ercon Ν ext ulton G eneration <0x3 30th tanalytic Hardware as com> 'egas, NV

Lanman

- 14-Character Passwords
- Case insensitive (converted to upper case)
- Split into 2 7-byte keys
- Used as key to encrypt static values with DES

PicoCrack

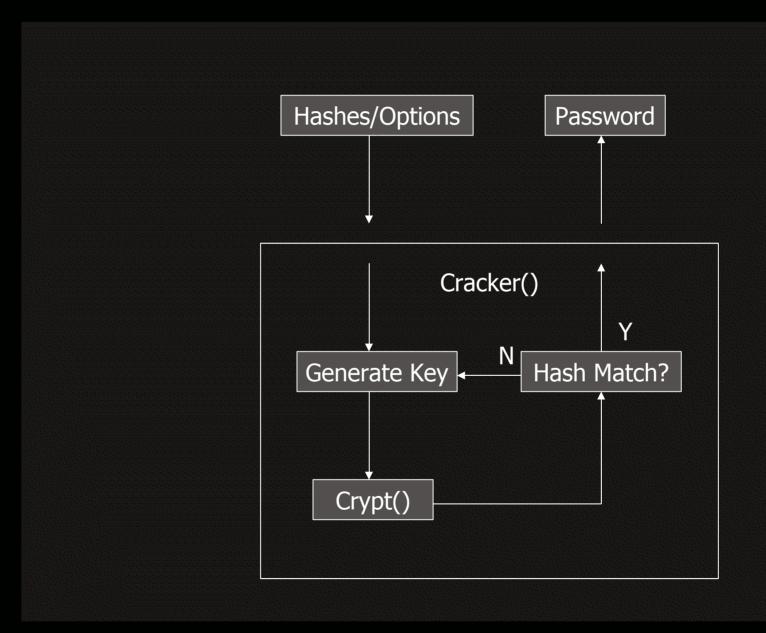
Da е ra na lytic Hardware mo egas, NV

Hardware Design

- Pipeline design
- Internal cracking engine
 - passwords = Imcrack(hashes, options);
- Interface over PCMCIA
- Can specify cracking options
 - Bits to search
 - e.g. Search 55-bits (instead of 56)
 - Offset to start search
 - e.g. First card gets offset 0, second card gets offset 2**55
 - Typeable/printable characters
 - Alpha-numeric
 - Allows for basic distributed cracking & resume functionality

PicoCrack

David The ercon Ν ext ulton G eneration <0x3 30th ω tanalytic Hardware a as .com> 'egas, NV


Software Design

- GUI and Console Interfaces
- WxWidgets
 - Windows
 - Linux (coming soon)
 - MacOS X (coming soon)
- Supports cracking multiple keys at a time
- Can automatically load required FPGA image
- Supports multiple card clusters

Password File Cracker

The Dav

e

nera

na

lytic Hardware

egas, NV

0

Lanman Cracking

- PC (3.0Ghz P4 \w rainbowcrack)
 - ~ 2,000,000 c/s
- Hardware (Low end FPGA \w PicoCrack)
 - 100Mhz = 100,000,000 c/s
 - When timing is optimized it should run at 200Mhz

Туре	P4	E-12	8 E-12
	25 D	12 H	90 M
	3.4 D	100 M	12 M
	4.7 H	5.7 M	43 S

Pico E-12

David The ercon Ν ext ulton eneration <0x3 30th ω tanalytic Hardware as .com> /egas, NV

Pico E-12

- Compact Flash Type-II Form Factor
- Virtex-4 (LX25 or FX12)
 - 1 Million Gates (~25,000 CLBs)
 - Optional 450 MHz PowerPC Processor
- 128 MB PC-133 RAM
- 64 MB Flash ROM
- Gigabit Ethernet
- JTAG Debugging Port

PicoCrack Demonstration

Demonstration

Copyright Pico Computing & Dachb0den Labs 2005

Feedback?

- What do you think?
- Possible Applications?
- Questions?

Conclusions / Shameful Plugs

David Hulton <0x31337@gmail.com> The Next Generation of efcon 13 -July 30th, 0 ryptanalytic Hardware as. Vegas, NV

- ToorCon 7
 - End of September, 2005
 - San Diego, CA USA
 - http://www.toorcon.org

Questions ? Suggestions ?

David The etcon Ζ Hulton ext G eneration July <0x31337@g 30th, of ryp mail.com> tanalytic Hardware as Vegas, NV

David Hulton

- 0x31337@gmail.com
- h1kari@dachb0den.com
- OpenCores
 - http://www.opencores.org
 - Xilinx

- ISE Foundation (Free 60-day trial)
- Pico Computing, Inc.
 - http://www.picocomputing.com