
The Next Generation of Cryptanalytic
Hardware

FPGAs (Field Programmable Gate Arrays) allow custom silicon to be
implemented easily. The result is a chip that can be built specifically
for cracking passwords. This presentation focuses on uncovering
some of the underlying basics behind gate logic and shows how it can
be used for performing extremely efficient cracking on FPGAs that
runs hundreds of times faster than a PC.

David Hulton <dhulton@picocomputing.com>

Founder, Dachb0den Labs
Chairman, ToorCon Information Security Conference
Embedded Systems Engineer, Pico Computing, Inc.

Disclaimer

 Educational purposes only
 Full disclosure
 I'm not a hardware guy

Goals

 This talk will cover:
 Introduction to FPGAs

 What is an FPGA?
 Gate Logic

 Optimizations
 Pipelines
 Parallelism

 Cryptography
 History
 PicoCrack

 Conclusion

Introduction to FPGAs

 Field Programmable Gate Array
 Lets you prototype IC's
 Code translates directly into circuit logic

What is Gate Logic?

 The basic building blocks of any computing
system

not

and
or

nor
nand

xor

xnor

~a

a & b
a | b

~(a | b)
~(a & b)

a ^ b

~(a ^ b)

not

and
or

nor
nand

xor

xnor

What is Gate Logic?

 Build other types of logic, such as adders:

What is Gate Logic?

 Which can be chained together:

What is Gate Logic?

 And can be used for storing values:

 Feedback

 Flip-Flop /
 Latch

 JK Flip-Flop

D
E
Q

D
E
Q

What is Gate Logic?

 This can be implemented with electronics:

 NOT

 AND

What is an FPGA?

 An FPGA is an array of configurable gates
 Gates can be connected together arbitrarily
 States can be configured
 Common components are provided
 Any type of logic can be created

What is an FPGA?

 Configurable Logic Blocks (CLBs)
 Registers (flip flops) for fast data storage
 Logic Routing

 Input/Output Blocks (IOBs)
 Basic pin logic (flip flops, muxs, etc)

 Block Ram
 Internal memory for data storage

 Digial Clock Managers (DCMs)
 Clock distribution

 Programmable Routing Matrix
 Intelligently connects all components together

PPC

FPGA Pros / Cons

 Pros
 Common Hardware Benefits

 Massively parallel
 Pipelineable

 Reprogrammable
 Self-reconfiguration

 Cons
 Size constraints / limitations
 More difficult to code & debug

Introduction to FPGAs

 Common Applications
 Encryption / decryption
 AI / Neural networks
 Digital signal processing (DSP)
 Software radio
 Image processing
 Communications protocol decoding
 Matlab / Simulink code acceleration
 Etc.

Introduction to FPGAs

 Common Applications
 Encryption / decryption
 AI / Neural networks
 Digital signal processing (DSP)
 Software radio
 Image processing
 Communications protocol decoding
 Matlab / Simulink code acceleration
 Etc.

Types of FPGAs

 Antifuse
 Programmable only once

 Flash
 Programmable many times

 SRAM
 Programmable dynamically
 Most common technology
 Requires a loader (doesn't keep state after power-

off)

Types of FPGAs

 Xilinx
 Virtex-4
 Optional PowerPC Processor

 Altera
 Stratix-II

Verilog

 Hardware Description Language
 Simple C-like Syntax
 Like Go - Easy to learn, difficult to master

Verilog

 One bit AND

 C

 Verilog

 Gate

u_char or(u_char a, u_char b) {
return((a & 1) & (b & 1));

}

module or(a, b, c);
input a, b;
output c;
assign c = a & b;
endmodule

Verilog

 8 bit AND

 C

 Verilog

 Gate

u_char or(u_char a, u_char b) {
return(a & b);

}

module or(a, b, c);
input [7:0] a, b;
output [7:0] c;
assign c = a & b;
endmodule

Verilog

 8 bit Flip-Flop

 C

 Verilog

 Gate

u_char or(u_char a) {
u_char t = a;
return(t);

}

module or(clk, a, c);
input clk;
input [7:0] a;
output [7:0] c;
reg [7:0] c;
always @(posedge clk) c <= a;
endmodule

Massively Parallel Example

 PC (32 * ~ 7 clock cycles ?) @ 3.0Ghz
for(i = 0; i < 32; i++)

c[i] = a[i] * b[i];

 Hardware (1 clock cycle) @ 300Mhz

x x

= =

a

b

c

Massively Parallel Example

 PC
 Speed scales with # of instructions & clock speed

 Hardware
 Speed scales with FPGA's:

 Size
 Clock Speed

Pipeline Example

 PC (x * ~ 10 clock cycles ?) @ 3.0Ghz
for(i = 0; i < x; i++)

f[i] = a[i] + b[i] * c[i] – d[i] ^ e[i]

 Hardware (x + 3 clock cycles) @ 300Mhz

Stage 1 Stage 2 Stage 3 Stage 4

In Out

+ x - ^

1ns 2ns 3ns 4ns

Pipeline Example

 PC (x * ~ 10 clock cycles ?) @ 3.0Ghz
for(i = 0; i < x; i++)

f[i] = a[i] + b[i] * c[i] – d[i] ^ e[i]

 Hardware (x + 3 clock cycles) @ 300Mhz

Stage 1 Stage 2 Stage 3 Stage 4

In Out

+ x - ^

1ns 2ns 3ns 4ns

Pipeline Example

 PC (x * ~ 10 clock cycles ?) @ 3.0Ghz
for(i = 0; i < x; i++)

f[i] = a[i] + b[i] * c[i] – d[i] ^ e[i]

 Hardware (x + 3 clock cycles) @ 300Mhz

Stage 1 Stage 2 Stage 3 Stage 4

In Out

+ x - ^

1ns 2ns 3ns 4ns

Pipeline Example

 PC (x * ~ 10 clock cycles ?) @ 3.0Ghz
for(i = 0; i < x; i++)

f[i] = a[i] + b[i] * c[i] – d[i] ^ e[i]

 Hardware (x + 3 clock cycles) @ 300Mhz

Stage 1 Stage 2 Stage 3 Stage 4

In Out

+ x - ^

1ns 2ns 3ns 4ns

Pipeline Example

 PC (x * ~ 10 clock cycles ?) @ 3.0Ghz
for(i = 0; i < x; i++)

f[i] = a[i] + b[i] * c[i] – d[i] ^ e[i]

 Hardware (x + 3 clock cycles) @ 300Mhz

Stage 1 Stage 2 Stage 3 Stage 4

In Out

+ x - ^

1ns 2ns 3ns 4ns

Pipeline Example

 PC
 Speed scales with # of instructions & clock speed

 Hardware
 Speed scales with FPGA's:

 Size
 Clock speed
 Slowest operation in the pipeline

Self-Reconfiguration Example

 PC
data = MultiplyArrays(a, b);
RC4(key, data, len);
m = MD5(data, len);

 Hardware

MultiplyArrays.bit

MD5.bit
RC4.bit

Control Logic

Self-Reconfiguration Example

 PC
data = MultiplyArrays(a, b);
RC4(key, data, len);
m = MD5(data, len);

 Hardware

MultiplyArrays.bit

MD5.bit
RC4.bit

Control Logic

Self-Reconfiguration Example

 PC
data = MultiplyArrays(a, b);
RC4(key, data, len);
m = MD5(data, len);

 Hardware

MultiplyArrays.bit

MD5.bit
RC4.bit

Control Logic

History of FPGAs and Cryptography

 Minimal Key Lengths for Symmetric Ciphers
 Ronald L. Rivest (R in RSA)
 Bruce Schneier (Blowfish, Twofish, etc)
 Tsutomu Shimomura (Mitnick)
 A bunch of other ad hoc cypherpunks

History of FPGAs and Cryptography

Intelligence Agency

Big Company

Corporate Department

Small Company

Pedestrian Hacker

7013 hrs0.7 secFPGA$10M

6019 days24 secFPGA$300K

7512 sec0.0002 secASIC$300M

6 min0.005 secASIC

3 hrs0.18 secASIC

55556 days12 minFPGA$10K

5038 years5 hoursFPGA$400
45infeasible1 weekComputersTiny

Recom56-bits40-bitsToolBudget

History of FPGAs and Cryptography

 40-bit SSL is crackable by almost anyone
 56-bit DES is crackable by companies
 Scared yet?

This paper was published in 1996

History of FPGAs and Cryptography

 1998
 The Electronic Frontier Foundation (EFF)
 Cracked DES in < 3 days
 Searched ~9,000,000,000 keys/second
 Cost < $250,000

 2001
 Richard Clayton & Mike Bond (University of

Cambridge)
 Cracked DES on IBM ATMs
 Able to export all the DES and 3DES keys in ~ 20

minutes
 Cost < $1,000 using an FPGA evaluation board

History of FPGAs and Cryptography

 2004
 Philip Leong, Chinese University of Hong Kong
 IDEA

 50Mb/sec on a P4 vs. 5,247Mb/sec on Pilchard
 RC4

 Cracked RC4 keys 58x faster than a P4
 Parallelized 96 times on a FPGA
 Cracks 40-bit keys in 50 hours
 Cost < $1,000 using a RAM FPGA (Pilchard)

PicoCrack

 Currently Supports
 Unix DES
 Windows Lanman
 Windows NTLM (full-support coming soon)

Lanman Hashes

 Lanman
 14-Character Passwords
 Case insensitive (converted to upper case)
 Split into 2 7-byte keys
 Used as key to encrypt static values with DES

MYLAMEP ASSWORD

DES DES

Hash[0-7] Hash[8-15]

PicoCrack

 Hardware Design
 Pipeline design
 Internal cracking engine

 passwords = lmcrack(hashes, options);
 Interface over PCMCIA
 Can specify cracking options

 Bits to search
 e.g. Search 55-bits (instead of 56)

 Offset to start search
 e.g. First card gets offset 0, second card gets offset 2**55

 Typeable/printable characters
 Alpha-numeric
 Allows for basic distributed cracking & resume functionality

PicoCrack

 Software Design
 GUI and Console Interfaces
 WxWidgets

 Windows
 Linux (coming soon)
 MacOS X (coming soon)

 Supports cracking multiple keys at a time
 Can automatically load required FPGA image
 Supports multiple card clusters

Password File Cracker

Hashes/Options

Cracker()

Crypt()

Generate Key Hash Match?

Password

Y
N

Lanman Cracking

 PC (3.0Ghz P4 \w rainbowcrack)
 ~ 2,000,000 c/s

 Hardware (Low end FPGA \w PicoCrack)
 100Mhz = 100,000,000 c/s
 When timing is optimized it should run at 200Mhz

12 M100 M3.4 D48-characters
43 S5.7 M4.7 H32-characters

90 M12 H25 D64-characters
8 E-12E-12P4Type

Pico E-12

 Pico E-12
 Compact Flash Type-II Form Factor
 Virtex-4 (LX25 or FX12)

 1 Million Gates (~25,000 CLBs)
 Optional 450 MHz PowerPC Processor

 128 MB PC-133 RAM
 64 MB Flash ROM
 Gigabit Ethernet
 JTAG Debugging Port

PicoCrack Demonstration

Demonstration

Feedback?

 What do you think?
 Possible Applications?
 Questions?

Conclusions / Shameful Plugs

 ToorCon 7
 End of September, 2005
 San Diego, CA USA
 http://www.toorcon.org

Questions ? Suggestions ?

 David Hulton
 0x31337@gmail.com
 h1kari@dachb0den.com

 OpenCores
 http://www.opencores.org

 Xilinx
 ISE Foundation (Free 60-day trial)

 Pico Computing, Inc.
 http://www.picocomputing.com

