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Disclaimer

 Educational purposes only
 Full disclosure
 I'm not a hardware guy



Goals

 This talk will cover:
 Introduction to FPGAs

 What is an FPGA?
 Gate Logic

 Optimizations
 Pipelines
 Parallelism

 Cryptography
 History
 PicoCrack

 Conclusion



Introduction to FPGAs

 Field Programmable Gate Array
 Lets you prototype IC's
 Code translates directly into circuit logic



What is Gate Logic?

 The basic building blocks of any computing 
system
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What is Gate Logic?

 Build other types of logic, such as adders:



What is Gate Logic?

 Which can be chained together:



What is Gate Logic?

 And can be used for storing values:

 Feedback

 Flip-Flop /
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 JK Flip-Flop
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What is Gate Logic?

 This can be implemented with electronics:

 NOT

 AND



What is an FPGA?

 An FPGA is an array of configurable gates
 Gates can be connected together arbitrarily
 States can be configured
 Common components are provided
 Any type of logic can be created



What is an FPGA?

 Configurable Logic Blocks (CLBs)
 Registers (flip flops) for fast data storage
 Logic Routing

 Input/Output Blocks (IOBs)
 Basic pin logic (flip flops, muxs, etc)

 Block Ram
 Internal memory for data storage

 Digial Clock Managers (DCMs)
 Clock distribution

 Programmable Routing Matrix
 Intelligently connects all components together

PPC



FPGA Pros / Cons

 Pros
 Common Hardware Benefits

 Massively parallel
 Pipelineable

 Reprogrammable
 Self-reconfiguration

 Cons
 Size constraints / limitations
 More difficult to code & debug



Introduction to FPGAs

 Common Applications
 Encryption / decryption
 AI / Neural networks
 Digital signal processing (DSP)
 Software radio
 Image processing
 Communications protocol decoding
 Matlab / Simulink code acceleration
 Etc.
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Types of FPGAs

 Antifuse
 Programmable only once

 Flash
 Programmable many times

 SRAM
 Programmable dynamically
 Most common technology
 Requires a loader (doesn't keep state after power-

off)



Types of FPGAs

 Xilinx
 Virtex-4
 Optional PowerPC Processor

 Altera
 Stratix-II



Verilog

 Hardware Description Language
 Simple C-like Syntax
 Like Go - Easy to learn, difficult to master



Verilog

 One bit AND

 C

 Verilog

 Gate

u_char or(u_char a, u_char b) {
return((a & 1) & (b & 1));

}

module or(a, b, c);
input a, b;
output c;
assign c = a & b;
endmodule



Verilog

 8 bit AND

 C

 Verilog

 Gate

u_char or(u_char a, u_char b) {
return(a & b);

}

module or(a, b, c);
input [7:0] a, b;
output [7:0] c;
assign c = a & b;
endmodule



Verilog

 8 bit Flip-Flop

 C

 Verilog

 Gate

u_char or(u_char a) {
u_char t = a;
return(t);

}

module or(clk, a, c);
input clk;
input [7:0] a;
output [7:0] c;
reg [7:0] c;
always @(posedge clk) c <= a;
endmodule



Massively Parallel Example

 PC (32 * ~ 7 clock cycles ?) @ 3.0Ghz
for(i = 0; i < 32; i++)

c[i] = a[i] * b[i];

 Hardware (1 clock cycle) @ 300Mhz

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
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Massively Parallel Example

 PC
 Speed scales with # of instructions & clock speed

 Hardware
 Speed scales with FPGA's:

 Size
 Clock Speed



Pipeline Example

 PC (x * ~ 10 clock cycles ?) @ 3.0Ghz
for(i = 0; i < x; i++)

f[i] = a[i] + b[i] * c[i] – d[i] ^ e[i]

 Hardware (x + 3 clock cycles) @ 300Mhz

Stage 1 Stage 2 Stage 3 Stage 4

In Out

+ x - ^

1ns 2ns 3ns 4ns
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Pipeline Example

 PC
 Speed scales with # of instructions & clock speed

 Hardware
 Speed scales with FPGA's:

 Size
 Clock speed
 Slowest operation in the pipeline



Self-Reconfiguration Example

 PC
data = MultiplyArrays(a, b);
RC4(key, data, len);
m = MD5(data, len);

 Hardware

MultiplyArrays.bit

MD5.bit
RC4.bit

Control Logic
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History of FPGAs and Cryptography

 Minimal Key Lengths for Symmetric Ciphers
 Ronald L. Rivest (R in RSA)
 Bruce Schneier (Blowfish, Twofish, etc)
 Tsutomu Shimomura (Mitnick)
 A bunch of other ad hoc cypherpunks



History of FPGAs and Cryptography

Intelligence Agency

Big Company

Corporate Department

Small Company

Pedestrian Hacker

7013 hrs0.7 secFPGA$10M

6019 days24 secFPGA$300K

7512 sec0.0002 secASIC$300M

6 min0.005 secASIC

3 hrs0.18 secASIC

55556 days12 minFPGA$10K

5038 years5 hoursFPGA$400
45infeasible1 weekComputersTiny

Recom56-bits40-bitsToolBudget



History of FPGAs and Cryptography

 40-bit SSL is crackable by almost anyone
 56-bit DES is crackable by companies
 Scared yet?

This paper was published in 1996



History of FPGAs and Cryptography

 1998
 The Electronic Frontier Foundation (EFF)
 Cracked DES in < 3 days
 Searched ~9,000,000,000 keys/second
 Cost < $250,000

 2001
 Richard Clayton & Mike Bond (University of 

Cambridge)
 Cracked DES on IBM ATMs
 Able to export all the DES and 3DES keys in ~ 20 

minutes
 Cost < $1,000 using an FPGA evaluation board



History of FPGAs and Cryptography

 2004
 Philip Leong, Chinese University of Hong Kong
 IDEA

 50Mb/sec on a P4 vs. 5,247Mb/sec on Pilchard
 RC4

 Cracked RC4 keys 58x faster than a P4
 Parallelized 96 times on a FPGA
 Cracks 40-bit keys in 50 hours
 Cost < $1,000 using a RAM FPGA (Pilchard)



PicoCrack

 Currently Supports
 Unix DES
 Windows Lanman
 Windows NTLM (full-support coming soon)



Lanman Hashes

 Lanman
 14-Character Passwords
 Case insensitive (converted to upper case)
 Split into 2 7-byte keys
 Used as key to encrypt static values with DES

MYLAMEP ASSWORD

DES DES

Hash[0-7] Hash[8-15]



PicoCrack

 Hardware Design
 Pipeline design
 Internal cracking engine

 passwords = lmcrack(hashes, options);
 Interface over PCMCIA
 Can specify cracking options

 Bits to search
 e.g. Search 55-bits (instead of 56)

 Offset to start search
 e.g. First card gets offset 0, second card gets offset 2**55

 Typeable/printable characters
 Alpha-numeric
 Allows for basic distributed cracking & resume functionality



PicoCrack

 Software Design
 GUI and Console Interfaces
 WxWidgets

 Windows
 Linux (coming soon)
 MacOS X (coming soon)

 Supports cracking multiple keys at a time
 Can automatically load required FPGA image
 Supports multiple card clusters



Password File Cracker

Hashes/Options

Cracker()

Crypt()

Generate Key Hash Match?

Password

Y
N



Lanman Cracking

 PC (3.0Ghz P4 \w rainbowcrack)
 ~ 2,000,000 c/s

 Hardware (Low end FPGA \w PicoCrack)
 100Mhz = 100,000,000 c/s
 When timing is optimized it should run at 200Mhz

12 M100 M3.4 D48-characters
43 S5.7 M4.7 H32-characters

90 M12 H25 D64-characters
8 E-12E-12P4Type



Pico E-12

 Pico E-12
 Compact Flash Type-II Form Factor
 Virtex-4 (LX25 or FX12)

 1 Million Gates (~25,000 CLBs)
 Optional 450 MHz PowerPC Processor

 128 MB PC-133 RAM
 64 MB Flash ROM
 Gigabit Ethernet
 JTAG Debugging Port



PicoCrack Demonstration

Demonstration



Feedback?

 What do you think?
 Possible Applications?
 Questions?



Conclusions / Shameful Plugs

 ToorCon 7
 End of September, 2005
 San Diego, CA USA
 http://www.toorcon.org



Questions ? Suggestions ?

 David Hulton
 0x31337@gmail.com
 h1kari@dachb0den.com

 OpenCores
 http://www.opencores.org

 Xilinx
 ISE Foundation (Free 60-day trial)

 Pico Computing, Inc.
 http://www.picocomputing.com


