Sketchtools: Prototyping Physical Interaction
Matt Cottam

Tellart and Rhode Island School of Design
27 Sims Avenue, Providence, R1 02909 USA
matt@tellart.com

Abstract

Industrial designers working in traditional media have the luxury of sketching, playing, and experimenting with their
materials before constructing a finished product. Designers working with electronics and computers are relatively
impoverished. To “sketch” with electronics or computers would typically require extensive training in engineering
and ready access to inexpensive parts—requirements that most designers can’t easily meet. This deficiency—this
inability to work closely with materials before building with them—hampers designers’ efforts to make products
sensitive to human use. This paper describes an attempt to address this problem in a human-computer interaction
(HCI) design studio at a major design school. The course itself was an exercise in design: it worked within severe
constraints to address a human need. We describe our attempt to shape the course to meet students’ most pressing
needs; our students’ attempts to work within the constraints of the course; and the outcomes of the course for
students and faculty. The paper suggests that the course offers one way to experiment with HCI concepts, produce
innovative solutions to design problems, and—crucially—humanize new technologies and the design process.

1 Problem Statement

How can industrial design (ID) students in a human-computer interface design studio course use electronics and
computers with the same speed, fluidity, and fearlessness afforded by less expensive and more flexible materials?
How can the studio encourage students to be sensitive to human need—and to the complicated material and
programmatic elements of their media? How can the studio create an environment in which students can use
computer hardware and software as sketch materials? How can industrial designers extend their knowledge of
engineering without encroaching on the work of engineers? How can an HCI studio balance an exploration of
technology with a commitment to human-centered design? How can the course itself be approached as a design
problem?

2 Background

2.1 Team Members

Matt Cottam, Nicholas Scappaticci, Brian Hinch, The Department of Industrial Design (ID) and The Digital Media
Graduate Program (DM) at Rhode Island School of Design (RISD), RISD ID and DM Students

2.2 Project Dates and Duration

Courses: RISD ID: HCI Studio, 2001-2003 Fall Semesters; RISD DM: The Experimental Physical Interface, 2004
Spring Semester; RISD ID Simulation Studio: Combat Medic Training Simulator (COMETS) (with the Simulation
Group at the Center for Integration of Medicine and Innovative Technology (CIMIT), Massachusetts General
Hospital, Summer, Fall, and Spring Semesters 2004-2005; Umea Institute of Design (Umea, Sweden): Tangible
Interface Design, Winter 2005; RISD ID and DM: Microsoft Research: Design Expo Studio, Spring Semester 2005.

3 History and Context

The model for this studio curriculum was developed and tested in American and Swedish graduate and
undergraduate departments of industrial design and digital media. Tellart, a design consultancy owned and operated
by the faculty of this course, developed and donated many of the ideas and tools involved with the course.

4 Challenge

In the development of this studio course, the department, faculty, and students worked within numerous political,
economic, intellectual, and technological constraints. These included:
* students with varying experience in digital technologies;
* the cost and complexity of electronics as raw materials for rapid and fluid design concept sketching;
* the learning curve involved with computer programming for the ID student developing HCI
concepts;
* departmental budgets for computer hardware and software tools and materials;
* institutional control over computer labs, servers, software purchases, and installations;
* the environmental impact of sketching with plastic and silicon-based materials (sketch models are
often modified and discarded as design concepts develop).
The challenge of the course was to work within these constraints and still humanize the educational experience, the
design process, and the technologies used in the course.

5 Solution

5.1 Process

When we first contemplated the course, we started with what seemed a simple question: How can an ID student
sketch efficiently and effectively for HCI concepts using computer hardware and software? Because we have taught
the course several times, revising it each time, the shape and nature of the course have changed significantly. Still,
we always worked within the rough parameters of the standard design workshop: class time was spent on
demonstrations by faculty, field trips, guest lectures, discussions and critiques of exercises, short assignments, and a
final project. Our task was to humanize the process—to turn our students’ attention toward human need, and to
allow them to experiment with their materials in a way that enhanced their understanding of HCI issues. In this
section we’ll describe the process of refining the conceptual design of the course; in the following section we’ll
describe in detail the ways in which we adapted our use of technology in the studio to meet students’ needs.

In the first iteration of the course, we asked students to work in teams of three on a broad conceptual problem:
Design a human-computer interaction about an unmediated human experience in nature. This approach—team-based
and abstract—was designed to ease students into the course material, to encourage collaboration, and to prompt
playful, creative experimentation.

What happened? The students struggled to balance what seemed to be competing needs: to work in conceptual terms
and to design useful, human-centered products. Students were eager to make finished products—and voluntarily
spent a good deal of money on materials with which to make them. (This proved to be doubly frustrating. Because
they worked in teams, no one member could claim the final product.) But the problem we had given them was vague
enough that they weren’t able to make use of their existing knowledge or to explore more advanced ideas about
human need, use value, and the manufacturing process. The nature of the assignment also came to frustrate the
professors: our evaluations were necessarily more subjective than we had hoped. Finally, because students couldn’t
customize or miniaturize many of the electronics and hardware components, they designed installation-size projects
(10°x10°x10’)—an approach that absorbed too much studio space and forced them to begin the labor of production
too early, cutting short their time for experimenting. We had, in fact, encouraged them to use installations; we
thought that form would expand the range of input possibilities.

In the second iteration of the course, we asked students to work on a more concrete problem, and we did away with
mandatory group work for the final project. Our assignment was: Design models and documentation for an
interactive product that will serve a human need. We asked for looks-like and works-like models and Web-based
documentation, and this proved to be a major advancement. Rather than trying to miniaturize electronics and code
and build finished prototypes, students spent more time on research and experimentation. They focused on the scope
of human factors, the capabilities of their technologies, and the challenge of communicating their concepts in a
compelling, efficient form. The students seemed relieved not to have to worry about group dynamics. One
significant problem: Because their solutions were so diverse, they couldn’t take full advantage of our critiques; the
projects didn’t lend themselves to comparison.

Figure 1. Students acting out interaction scenarios with a “works-like” model

In the third iteration of the course, we asked students to design an interactive digital product for use by a human in
an extreme environment—an even more specific task that led to more focused discussions and a concentrated use of
materials. It also forced students to consider more carefully than before two key issues: human use and
environmental conditions. Students also took advantage of inexpensive new computer input/output technologies,
including software developed by our firm, Tellart, and hardware developed by Making Things. Now their material
palette became expansive: they could work with analog sensory data input and analog voltage output. Rather than
using switches to control content, they could use continuous analog sensing (sensors that track motion, touch, etc.).
And with analog voltage output, they could control any electrical appliance —not simply audio and video content.
We also encouraged them to consider networked products—products that can communicate with each other, and
stable input controls that manage the content of Web pages and electrical appliances in various locations.

The course in its current form is the result of a series of conceptual, pedagogical, and technological refinements,
each related to the other. A conceptual adjustment was necessarily a pedagogical adjustment, which was necessarily
a technological adjustment. In a way, this may be one of the course’s significant lessons: no idea, no action, no
material exists in isolation. To conceive of a project, to study it, to work with its materials —these activities are parts
of a whole.

5.2 Solution Details

In this section, we describe our use of technology in the course. As we suggested above, every technological
refinement affected the conceptual design of the course, our pedagogical approach to the course, and our students’
outcomes.

The first iteration of the studio experience began with an act of destruction: students took apart discarded off-the-
shelf computer hardware—keyboards, mice, game controllers. This was also an act of creation: the electronic
components became raw material for sketch-modeling.

Why use salvaged hardware? First, it allows greater freedom to experiment. The parts have been donated or found in
the garbage; students are relieved of the stress of working with expensive materials. Second, it makes smart use of
environmental and financial resources. Plastic and silicon parts are given at least one additional use and then
recycled; and already limited course budgets and lab fees can be put toward field trips, books, and other materials.
Third, it’s an exceptionally flexible learning tool. An extracted keyboard controller can be quickly and easily
modified to respond to an array of inexpensive industrial sensors and switches, as well as custom concept switches
created by students. Simple input hardware—keyboards and mice—don’t require special software drivers or
computer ports, and they work with most computers and operating systems. Using standard hookup wire and simple
soldering tools, students can incorporate controllers, sensors, and switches into models built in wood, metal, plastic,
glass, textile, and other workshops. The models can then be connected to computer hardware via USB and can serve
as multi-sensory input devices for Digital Signal Processing (DSP) and other software applications.

We also relied on software sketching materials. Students used Macromedia Flash MX2004 and ActionScript to
capture data from input devices (keypresses and cursor coordinates), script for DSP, and author audio and visual
interface and content elements. Flash files (SWFs) can be published on the Web and can link to other Web sites and
datasources while receiving user input from an experimental physical interface; Flash can also be used to publish
Web-based design documentation. Flash is commonly installed as core software at art and design schools; it has a
vast user base and is the subject of a number of instructional books and Web sites. ActionScript is an accessible,
multi-purpose, and powerful object-oriented scripting language—ideal for experimentation.

Figure 2. Modifying a keyboard controller (wired and wireless)

These were the tools we relied on in our original version of the course: sketch-modeling with discarded hardware,
and software sketching with Flash. We chose them because they were accessible, easy to use, and environmentally
sound—and because they allowed students to work directly with the media, forcing them to be sensitive to its
possible use. These tools were helpful but limited. We could build multi-sensory physical input devices that would
control content on a screen, in speakers, and on the Web—but the Flash Player limited the ways in which data could
be received from and sent to hardware. Also, a modified keyboard allowed us only binary input (“A” key is “down,”
or “A” key is “up”). We wanted our students to have more: more technological options, more possibilities as
designers and thinkers.

system Flash movie
keyboard % playing on
events workstation

Keyboard controller I %
t Y

@ animation
sensors @3

o

video

Figure 3. Hardware and software system using a modified keyboard controller

We started testing popular software solutions. Cycling 74’s Max/MSP allowed for greater flexibility in input and
output data channels, and connected easily with popular analog and digital (A/D) converters (Teleo, iCube, etc.). But
in the end, we stayed with Flash. It’s highly accessible to designers (Max—and especially MSP—was originally
intended for computer music applications). It has a free and ubiquitous player and an internationally standardized
object-oriented scripting language—a subset of ECMAScript (ISO/IEC 16262) and a good starting point for students
eager to learn other programming and scripting languages. It can be used for drawing, typesetting, animating,
controlling audio and video playback and effects, streaming audio, video, and vector graphics. It facilitates easy
Web publishing; is easily integrated with Web applications; comes with a built-in XML object and socket; features
pre-built components that allow for rapid prototyping; and, last but not least, it was already installed on our students’
laptops.

There was one major problem: How could we connect Flash with popular A/D converters? We worked with the staff
of our consulting firm to explore solutions. Our first attempt was an elaborate system involving analog sensors;
Teleo Analog In; Power and USB modules; a computer with Linux, Apache, JRUN and a Java-based XML server
(FLOSC) installed; a Max Patch; and a Flash SWF that could send and receive XML and had some graphical
buttons and sliders. Incredibly, it worked. At least it allowed us to control an animation on a Web site from an
analog bend sensor, and to control an electrical motor by dragging a slider in the Flash movie. But it was an overly
complex and inefficient composition of hardware and software elements.

Our next stage of development was to try and streamline the signal flow between analog sensors (bend, touch, heat,
motion, proximity, etc.) and a Flash Movie, and between a Flash Movie and electrical devices (motors, lights,
thermostats, heating elements, etc.). Our design consultancy built a platform-independent application in Java, called
NADA, to allow more direct communication between A/D converters and Flash. This software is currently being
used in the our courses, as well as at several schools internationally.

NADA Flash movie
XML Socket on any
Server workstation

electrical animation data
appliances @
switches sound |/
sensors

video

Figure 4. Hardware and software system using analog and digital converters

6 Results

Since the course was first offered, in 2001, we have seen a material change in its fortunes—and our own. The course
has been over-enrolled; the waiting list exceeds three times the classroom capacity. Past students enroll in courses
with the same faculty. A short video has been published about the course methodology. Other departments at RISD
have agreed to partner with the industrial design department to offer a similar course. We have been invited to
lecture at other institutions about the topics covered in the course. And Tellart has received contracts to apply the
course’s methods and tools to projects for clients.

None of these were explicit goals of the course; we didn’t design the course in order to achieve them. But together
they suggest that the course offers a meaningful, practical approach to HCI issues in a design studio—and beyond.

The goals of the course were to allow students to sketch in an unwieldy medium—the better to design solutions to
specific human needs. In other words, we wanted to humanize the studio, the student, the technology, and the design
process. In truth, our success is not easily measured. We can point to our students’ projects, many of which showed
a remarkable awareness of human use and environmental impact, or demonstrated exceptional skill in handling
materials or developing concepts. And we can point to our course materials, which (we hope) became more helpful
with each new session. But we would expect to have some talented students; and we would expect to provide every
student with the most useful supporting materials.

Perhaps the best way to measure the outcome of the course is to talk in broad strokes about what we saw in the
studio.

We saw students sketch with actual hardware and software—a process that allowed them to develop a vocabulary
that bridged the gap between designers and computer engineers. We exposed them to specific technologies at
specific times, with the aim of easing them into the science of their work. We developed demonstrations and
exercises and assignments—using computer hardware and software—that followed a studio practice and a design
process that they were already familiar with. We worked with each new technology ourselves, and we changed it to
adapt to the needs of each new class of students. We made the engineering side of HCI design seem familiar,
personal, possible.

We saw students design more robust products—because they understood their media at a deeper, more detailed
level. They went beyond the color and shape of a plastic housing; they examined hardware components and software
logic—enough to understand the qualities and capabilities of digital technologies. The most obviously useful
outcome of this process was that they could design more sensitively shaped housings and human interfaces. They
knew which questions to ask. Will the product require a lot of electrical power? Will it be heavy, or could it be light
enough to be handheld? Will it cost a million dollars to make something that could reasonably be sold for one
dollar? Will it require hard wiring to a wall outlet or to Ethernet? If it’s wireless, what other components will be
required? All of these questions affect the form and use of a product. If students have a solid understanding of them
and the vocabulary that comes with them, they can more effectively communicate with engineers and develop more
useful and robust products. Form really can follow function.

Finally, we saw students—equipped with a basic understanding of computer programming—research and design
with a sensitivity to both sides of human-computer interaction: cognitive and computational. They learned basic
principles like conditional logic: if this button is pressed, then turn on this light bulb; if this button is pressed in
combination with another button, then play this video and turn on the light bulb. And that knowledge allowed them
to design interactive scenes: when I input this information to the computer, it will interpret that information in this
way and output this (these) response(s). Students wrote—as text narratives, not code—and physically acted out such
scenes in class, a process that allowed them to develop concepts and make further discoveries though working and
playing with coding sketch models.

Students, in the end, saw the design process more clearly. The course removed several layers of abstraction between
process and product—between designing an interactive product and seeing it manifested as an object in a human
environment. And it removed several dense layers of engineering study—technical knowledge that often prevents
students from seeing clearly to the human experience of the product. Students explored the cognitive, social,
technological, and economic factors involved in designing digital products. They did it through experience; they did
it with a sound introduction to engineering and programming; and they did it, always, with an awareness of human
need.

Tellart, through it's Sketchtools Division (sketchtools.com), now offers NADA software and physical interface
design workshops to schools and professionals. Our goal is to continue bridging design and engineering disciplines,
and providing students and professionals with new means for thinking (sketching), designing and engaging their
audiences with articulate and meaningful forms.

7 Acknowledgements

Special thanks to: Krzysztof Lenk who inspired me to teach; Mischa Schaub of Hyperwerk for first inspiring this
work; Andreas Krach for helping me hack my first keyboard; RISD for encouraging and supporting this course
development; Tellart for allowing us to do what we love at work; Nick Scappaticci—my trusty Tellart co-founder;
Brian Hinch for leading the development of NADA and making the diagrams for this paper; Jasper Speicher for all
the electronics lessons and teaching collaboration; Ryan Scott Bardsley for believing in the potential in bridging
design and engineering and leading the COMETS project with RISD; Rob Morris for his editorial help in making
this paper make sense; and all of our students for all of their bravery, work, and inspiration.

References
McCullough, M. (1996). Abstracting Craft: The Practiced Digital Hand, Reprint Edition. Cambridge: MIT Press.

Cooper, A. (1999). The Inmates Are Running the Asylum: Why High Tech Products Drive Us Crazy and How to
Restore the Sanity, 1** Edition. Indianapolis: SAMS.

Laurel, B. (1990). The Art of Human-Computer Interface Design. Reading: Addison-Wesley Publishing Company.

Tilley, A.R., Henry Dreyfuss Associates (2001). The Measure of Man and Woman: Human Factors in Design.
Indianapolis: John Wiley & Sons.

Sketchtools (NADA). http://www.sketchtools.com

Tellart. http://www.tellart.com

Rhode Island School of Design. http://www.risd.edu

Macromedia Flash MX2004 and ActionScript. http://www.macromedia.com
Making Things (Teleo). http://www.makingthings.com

Cycling 74. http://www.cycling74.com

Infusion Systems. http://www.infusionsystems.com

Open Sound Control (OSC). http://www.cnmat.berkeley.edu/OpenSoundControl
FLOSC. http://www.benchun.net/flosc
Umea Institute of Design. http://www.dh.umu.se

Simulation Group, Center for Integration of Medicine and Innovative Technology, Massachusetts General Hospital.
http://www.medicalsim.org

