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Abstract

We evaluate the anonymity provided by two popular email mix im-
plementations, Mixmaster and Reliable, and compare their effectiveness
through the use of simulations which model the algorithms used by these
mixing applications. In order to draw accurate conclusions about the op-
eration of these mixes, we use as our input to these simulations actual
traffic data obtained from a public anonymous remailer (mix node). We
determine that assumptions made in previous literature about the distri-
bution of mix input traffic are incorrect, and our analysis of the input
traffic shows that it follows no known distribution. We establish for the
first time that a lower bound exists on the anonymity of Mixmaster, and
discover that under certain circumstances the algorithm used by Reliable
provides no anonymity. We find that the upper bound on anonymity pro-
vided by Mixmaster is slightly higher than that provided by Reliable. We
identify flaws in the software code in Reliable that further compromise its
ability to provide anonymity, and review key areas which are necessary
for the security of a mix in addition to a sound algorithm. Our analysis
can be used to evaluate under which circumstances the two mixing al-
gorithms should be utilized to best achieve anonymity and satisfy their
purpose. Our work can also be used as a framework for establishing a
security review process for mix node deployments.

1 Introduction

The Internet was initially perceived as a rather anonymous environment. Nowa-
days, we know that it can be a powerful surveillance tool: anyone willing to listen
to the communication links can spy on Internet users, and search engines and
data mining techniques are becoming increasingly powerful.

Privacy does not only mean confidentiality of the information; it also means
not revealing information about who is communicating with whom. Anonymous
remailers (also called mizes) allow their users to send emails without disclosing
the identity of the recipient to a third party. They also allow the sender of a
message to stay anonymous to the recipient.

The objective of this work is to have quantitative results on the anonymity
actually provided by two mix software implementations in wide deployment, in
order to test the actual anonymity provided to the users of the remailer service,
and to compare the two different designs. We evaluate anonymity in a single-
node context. In order to assess the anonymity provided by the entire remailer



network, additional considerations are necessary. As individual nodes are the
basic component to the network of mixes, we aim to provide information to be
considered when choosing this component. We have used as input real-life data
gathered from a popular remailer, and simulated the behaviour of the mix.

2 Mixes

Mixes are the essential building block to provide anonymous email services. A
mix is a router that hides the relationship between incoming and outgoing mes-
sages. The mix changes the appearance and the flow of the messages. In order
to change the appearance of the messages the mix uses some techniques, such
as padding and encryption, thus providing bitwise unlinkability between inputs
and outputs. Techniques like reordering and delaying messages, and generating
dummy traffic are used to modify the flow of messages. This modification of
the traffic flow is needed to prevent timing attacks that could disclose the rela-
tionship between an input and an output messages by looking at the time the
message arrived to and left from the mix.

The idea of mixes was introduced by Chaum [Cha81]. This first design was
a threshold mix, a mix that collects a certain number of messages and then
flushes them. Since then, variants on this first design have been proposed in the
literature. In this paper, we focus on two practical mix designs that have been
implemented and are part of the Mixmaster remailer network[Cot95], which has
been providing anonymous email services since 1995.

The first design is called “Mixmaster” (as the remailer network) because
it is descended from the original software program designed by Cottrell [Cot,
MCPS03]. The second design, called “Reliable”, uses a different reordering
strategy. [RPr99] The details of the two remailers are explained in the following
sections. We compare version 3.0 of the Mixmaster software and version 1.0.5
of Reliable.

2.1 Mixmaster

Mixmaster! is a pool mix. Pool mixes process the messages in batches. They
collect messages for some time, place them in the pool (memory of the mix), and
select some of them for flushing in random order when the flushing condition is
fulfilled. Mixmaster is a timed mix which has a timeout of 15 minutes. During
this period of time, it collects messages that are placed in the pool of the mix.
When the timeout expires, the mix takes a number of messages from the pool
that are forwarded to their next destination, which may be another mix or a
final recipient. The algorithm that determines the number s of messages that

I Mixmaster version 3.0, as well as Reliable, also optionally support the older “Cypherpunk”
remailer message format. For the purposes of this paper, we are assuming that the remailers
are being operated without this support. As anonymity sets for the two protocols generally do
not overlap, this does not impact our results. The Cypherpunk remailer protocol is known to
contain numerous flaws, and should not be used if strong anonymity is required[Cot, DDMO03].



Figure 1: Mixmaster in the GMM

are sent in a round (one cycle of the mix) is a function of the number n of
messages in the pool:

if (n<45) s=0;
else if (0.35%n < 45) s=n-45;
else s=0.65%n;

Mixmaster is represented in the generalised mix model proposed by Diaz and
Serjantov [DS03b] as shown in figure 1. In this model, the mix is represented at
the time of flushing. The function P(n) represents the probability of a message
of being flushed by the mix, as a function of the number n of messages in the
pool. Note that P(n) = s/n.

2.2 Reliable

Reliable is based on the Stop-and-Go (SG Miz) mix proposed by Kesdogan et
al. in [KEB98]. In SG mixes (also called continuous mizes), the users generate
a random delay from an exponential distribution. The mix holds the message
for the specified delay and then forwards it. The messages are reordered by the
randomness of the delay distribution. This mix sends messages continuously:
every time a message has been kept for the delay time it is sent by the mix.

Reliable interoperates with Mixmaster on the protocol level by using the
Mixmaster message format for packet transfer. Reliable uses a variant of the
S-G Mix design. In Reliable, the delay may be chosen by the user from an
exponential distribution of mean one hour. If the user does not provide any delay
to the mix, then the mix itself picks a delay from a uniform distribution, being
the maximum and minimum of the uniform one and four hours, respectively.
Note that these parameters of the delay distributions are configurable, and
therefore many remailer operators may set them lower in order to provide a
faster service.

2.3 Dummy traffic

A dummy message is a fake message introduced in the mix network in order to
make it more difficult for an attacker to deploy attacks that can compromise



the anonymity of a message. The dummy message is normally produced by the
mixes, and they select as destination another mix instead of a real recipient.
Dummies are indistinguishable from real messages as they travel in the mix
network. As they are introduced to prevent traffic analysis, the dummy policy
should maximize the number of possible destinations for the messages flushed
by the mix. Dummy traffic has an impact when analyzing the mix network as a
whole. We have made measurements that show that the impact of dummies on
the anonymity provided by a single mix is very small. In order to make the fair
comparison of Mixmaster and Reliable easier, we have not taken into account
the dummy policies of these two mixes in the results presented in this paper.

Dummy policy of Mixmaster FEvery time a message is received by Mixmas-
ter, an algorithm runs to generate d; dummies that are inserted in the pool of
the mix. The number d; of dummies generated follow a geometrical distribution
whose parameter has the default value of 1/10. Moreover, every time Mixmaster
flushes messages, it generated a number dy of dummies that are sent along with
the messages. The number dy of dummies follows a geometrical distribution
whose parameter has the default value 1/30.

Dummy policy of Reliable Reliable’s default dummy policy consists in
generation 25 dummies every 6 hours. The time these dummies are kept in the
mix is generated from a uniform distribution whose minimum value is 0 and
maximum is 6 hours.

3 Anonymity metrics

In this section we introduce the anonymity metrics for mixes. We remark on
the particularities of some mix designs (binomial mixes and threshold mixes).
Also, we present the attack model which we have considered.

Anonymity was defined by Pfitzmann and Kéhntopp [PK00] as “the state of
being not identifiable within a set of subjects, the anonymity set”.

The use of the information theoretical concept of entropy as a metric for
anonymity was simultaneously proposed by Serjantov and Danezis in [SD02]
and by Diaz et al. in [DSCP02]. The difference between the two models for
measuring anonymity is that in [DSCP02] the entropy is normalized with respect
to the number of users. In this paper we will use the non-normalized flavour of
the metric.

The anonymity provided by a mix can be computed for the incoming or for
the outgoing messages. We call this sender anonymity and recipient anonymity.

Sender anonymity. In order to compute the sender anonymity, we want to
know the effective size of the anonymity set of senders for a message output by
the mix. Therefore, we compute the entropy of the probability distribution that
relates an outgoing message of the mix (the one for which we want to know the
anonymity set size) with all the possible inputs.



Recipient anonymity. If we want to compute the effective recipient anonymity
set size of an incoming message that goes through the mix, we have to compute
the entropy of the probability distribution that relates the chosen input with all
possible outputs.

Note that in these two cases, the metric computes the anonymity of a partic-
ular input or output message, it does not give a general value for a mix design
and it is dependent on the traffic pattern. The advantage of this property is
that mixes may offer information about the current anonymity they are provid-
ing. The disadvantage is that it becomes very difficult to compare theoretically
different mix designs. Nevertheless, it is possible to measure on real systems
(or simulations) the anonymity obtained for a large number of messages and
provide comparative statistics, as we do in this paper.

In order to measure Mixmaster’s sender and recipient anonymity, we have
applied the formulas provided by Diaz and Preneel in [DP04]. The anonymity of
Reliable has been measured using the formulas presented in Appendix A. Note
that we could not apply the method used by Kesdogan [KEB98] because we
did not make any assumption on the distribution of the mix’s incoming traffic
(Kesdogan assumes incoming Poisson traffic).

3.1 Attack model

The anonymity metric computes the uncertainty about the sender or the re-
cipient of a message, given that some information is available. In our case, we
assume that the mix is observed by a passive attacker, who can see the incoming
and outgoing messages of the mix. The attacker knows all internal parameters of
the mix so he can effectively compute the anonymity set size for every incoming
and outgoing message.

4 Simulators

We have implemented Java simulators for Reliable and Mixmaster. We have
fed the simulated mixes with real input, obtained by logging a timestamp every
time a message arrived to a working Mixmaster node (note that the information
we logged does not threaten the anonymity of the users of the mix). We have
used four months of incoming traffic (July-November 2003) in order to obtain
the results presented in Section 5.

In order to make a fair comparison, we have set the mean of the exponential
delay of Reliable (default 1 hour) to be the same as provided by Mixmaster for
the given four months of input (43 minutes). We have assumed users choose
their delays from an exponential distribution. The mix-chosen uniform delay
option has not been taken into account, due to the unfeasibility of implementing
algorithms that compute the anonymity for such a delay distribution without
making assumptions on the traffic pattern, as explained in Appendix A. More-
over, the choice of a uniform delay for the messages is completely non-standard.



The simulators log the delay and the anonymity for every message. Mixes
are empty at the beginning of the simulation. The first message that is taken
into account for the results is the one that arrives when the first input has been
flushed with 99% probability. All messages flushed after the last arrival to the
mix are also discarded for the results. This is done in order to eliminate the
transitory initial and final phases.

5 Results

In this section we present and analyze the results we have obtained with the
simulations.

5.1 Analysis of the input traffic

It is a common assumption in the literature that the arrivals to a mix node
follow a Poisson process. We have analyzed the input traffic, and found that it
does not follow a Poisson distribution, nor any other known distribution.

A Poisson process is modeled by a single parameter \ representing the ex-
pected amount of arrivals per (fixed) time interval. If the arrivals to a mix
are assumed to follow a Poisson process with an average of \ arrivals per time
interval At and we denote the number of arrivals in such a time interval by X,
then X is Poisson distributed with parameter A\: X ~ Poiss(\). Important to
note is that \ is time-independent.

In our statistical analysis we first assumed that the process of arrivals is a
Poisson process and we estimated the parameter A\. The latter was done by
taking the maximum likelihood estimate given the number of arrivals per time
interval At = 15 minutes (N = 11800). We also constructed a 95% confidence
interval for this estimate. Then we performed a goodness-of-fit test: can we
reject the hypothesis

Hy : the number of arrivals per time interval ~ Poiss()) ,

where \ varies over the constructed confidence interval. The goodness-of-fit test
we used is the well-known Chi-square test. Using a significance level of 0.01,
the null hypothesis gets rejected!

In the right part of figure 2 we show the number of messages arrived to
the mix per hour. The left part (below) of figure 2 shows the evolution of the
arrivals per day. We can observe that the traffic arrived to the mix during the
first month is much heavier than in the following three months. This shows that
the input traffic pattern that gets to a mix node is highly impredictable.

Figure 3 shows the frequency in hours and in days of receiving a certain
number of arrivals. We can see that in most of the hours the mix receives less
than 20 messages.
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Figure 4: Recipient (left) and sender (right) anonymity for Mixmaster

5.2 Analysis of Mixmaster

We have simulated a Mixmaster node as explained in Section 4. Mixmaster is
a pool mix and processes messages in batches. The recipient anonymity of all
inputs of a round is the same. Equivalently, all outputs of a round have the
same sender anonymity value. In this section we show the results obtained in
our simulation.

In figure 4 we draw a point per round?, located in the space defined by the
delay (amount of time the message spends on the mix), arrivals (number of
inputs received by the mix together with the message) and recipient anonymity
of the message. Figure 4 shows the same for sender anonymity.

The first conclusion we come to when observing the figures is that there is a
lower bound to the anonymity of Mixmaster. It is worth noting that, so far, we
do not know any theoretical analysis of pool mixes able to predict the anonymity
it provides, and prior to this analysis there were no figures on the anonymity
that Mixmaster was actually providing. With this simulation, we can clearly
see that Mixmaster guarantees a minimum sender and recipient anonymity of
about 7. This means that the sender (recipient) of a message gets a minimum
anonymity equivalent to perfect indistinguishability among 27 = 128 senders
(recipients).

We can see that the minimum anonymity is provided when the traffic (ar-
rivals) is low. As the traffic increases, anonymity increases, getting maxi-
mum values of about 10 (i.e., equivalent to perfect indistinguishability among
210 = 1024) senders or recipients. We also observe that the delay of the mes-
sages doesn’t take hight values, unless the traffic load getting to the mix is very
low.

In order to study the behaviour of the mix under different traffic loads, we
have plotted values of delay and anonymity obtained in the simulation for the

2In pool mixes all messages of the same incoming round have the same recipient anonymity,
and all the messages of the same outgoing round have the same sender anonymity



Mixmaster: Delay values for rounds with low, medium and high traffic
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Figure 5: Delay values for Mixmaster

rounds with few arrivals (low traffic), intermediate number of arrivals (medium
traffic) and many arrivals (high traffic).

We have selected the low, medium and high traffic taking into account the
data statistics of the arrival process:

Low traffic: all rounds where the number of arrivals was between the first
and third quantile; hence 50 percent of the rounds are denoted as normal
traffic.

Medium traffic: all rounds where the number of arrivals was greater than the
third quantile but lower than the outlier bound.

High traffic: all rounds with outlier values for the incoming messages.

In figure 5 we show the minutes of delay of every message. We can see
that the delay only takes high values when the traffic is low. The fact that
some messages appear as having a delay close to zero in the low traffic figure
is due to the fact that we have more samples, so there are messages that arrive
just before the flushing and are forwarded immediately. In figure 6 we show
the recipient anonymity of every message (the sender anonymity presents very
similar characteristics). We can see that as the traffic increases, the anonymity
provided to the messages takes higher values.

5.3 Analysis of Reliable

The theoretical method proposed in [KEB98] that gives a probabilistic pre-
diction on the anonymity provided by Reliable is based on the assumption of
Poisson traffic. As we have seen, this assumption is definitely not correct for
mix traffic.

We have simulated a Reliable mix as explained in Section 4. Reliable is
a continuous (stop-and-go) mix. Reliable treats every message independently:
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Figure 7: Correlation Delay-Anonymity for Reliable

when it gets a message it delays it a pre-determined amount of time (picked
from an exponential distribution) and then forwards it. We represent a star,
7 per message.

In figure 7 we present the sender and recipient anonymity provided by Re-
liable for the real stream of inputs we have considered. We can see that the
anonymity takes minimum values close to zero, which means that some of the
messages can be trivially traced by a passive attacker. The maximum values
of Reliable’s anonymity for this input are lower than Mixmaster’s maximums.
Figure 8 shows the correlation of sender and recipient anonymity. These values
are highly correlated (as in the case of Mixmaster). We can clearly see that
some of the messages get nearly no anonymity.

Reciient Arrimiy per messge

Figure 8: Correlation Sender-Recipient Anonymity for Reliable
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5.4 Mixmaster vs. Reliable

As we have shown in the previous two sections, Mixmaster and Reliable have
very different behaviours for the same traffic stream. Note that we have modified
the default (1 hour) mean delay of Reliable in order to make a fair comparison
between the two mixes (so the average delay of all messages is the same for the
two mixes).

Mixmaster priorizes the anonymity over the delay, and it provides a mini-
mum recipient (sender) anonymity of around 7, equivalent to perfect indistin-
guisability among 27 = 128 input (output) messages. When the traffic load
decreases, Mixmaster provides a larger latency in order to keep the anonymity
in high levels.

Reliable delays messages according to an exponential distribution, regardless
of the traffic load. This has an effect in the anonymity, that will only have high
values when there is a high traffic load. When the traffic load decreases, the
anonymity provided by Reliable goes down to very low values. In some cases of
very low load, Reliable does not provide anonymity at all.

Our conclusion is that a continuous mix like Reliable is not appropriate to
provide anonymous services for applications that do not have real-time require-
ments (like email). A pool mix like Mixmaster should be used instead.

Continuous mixes like Reliable may be useful for real-time applications with
tight delay constraints (like web browsing). Nevertheless, in order to provide
acceptable levels of anonymity, the traffic load should be kept high.

6 Other factors which influence anonymity

We have evaluated the anonymity strength of the mixing algorithms imple-
mented in Mixmaster and Reliable. Additional factors have a direct impact on
the anonymity provided by the system. Concerns such as the security of the
underlying operating system, host server integrity, proper implementation of
the cryptographic functions provided by the remailer software, and likelihood of
administration mistakes all contribute to the overall anonymity these software
packages can provide. We assume that no active attacks against the software
occurred during the development or compilation process, though additional con-
cerns are present in that area [Tho84].

This paper does not aim to be an in-depth analysis of the full spectrum of
host-attacks against remailer nodes, Nevertheless, it is important to mention
some significant differences between Reliable and Mixmaster which may affect
their ability to provide adequate anonymity for their users.

6.1 Host server integrity

The security of an operating mix is dependent on the security of the underlying
host server. Many factors can impact the underlying system’s security. Some
considerations include shared access to the system by untrusted users, access
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to key material on disk or in memory, and the ability to insert shims to attack
dynamically loaded libraries called by the remailer software.
Reliable is limited to operation on the Windows platform. Mixmaster is
portable, and has been known to run on a wide variety of operating systems.?
Host server security is ultimately the responsibility of the remailer operator.

6.2 UI Issues

In privacy application client, an intuitive user interface is essential in order to
ensure that the software is used consistently and correctly [Sas02]. A greater
level of skill can safely be assumed when designing privacy software which is
intended to be operated as a service, however. Most anonymity systems, in-
cluding mix-net implementations, do imply a significant degree of complexity.
Due to the fact that the operation of a public Internet service involves the cor-
rect configuration and maintenance of the host server, this necessary complexity
is acceptable as long as the operator’s skill level is sufficient. The level of skill
required to properly install, configure, and operate a mix-net node should not
exceed that required to properly install, configure, and operate the server itself.

The software packages we evaluated differed with regard to their interface
complexity in a number of areas.

In general, Reliable has a greater "ease of use” factor with respect to its
interface. Mixmaster automates many important tasks, such as adaptive dummy
generation, key rotation and key expiration announcement, and integrates more
easily with the host MTA 4. Reliable’s installation process is easier, but its build
process requires the use of third-party commercial applications and assumes
experience with Windows development, so most users will install a pre-compiled
binary. Compilation of Mixmaster is performed through a simple shell script.

At first glance, it appears that Reliable will be easier for hobbyists to op-
erate than Mixmaster. However, Mixmaster’s difficulty does not rise above the
difficulty of maintaining a secure Internet-connected server, and thus has little
effect on the overall security of a mix node deployment. Hobbyists unable to
maintain Mixmaster are equally unlikely to be able to secure their host server.

6.3 Programming language

While the most critical factor in the creation of secure code is the manner in
which it is written, some languages lend themselves to greater risk of exploitable
mistakes. An inexperienced or unskilled programmer will always be able to
make an application insecure. The choice of programming language merely
sets the bar for the required level of experience and ability necessary to develop
applications in that language safely. Thus, when evaluating the likelihood of the

3There have been instances of remailers based on the Mixmaster 3.0 codebase operating
on SunOS§, Solaris, SunOS, AIX, Irix, BeOS, MacOS X, Windows NT (natively and through
the use of Cygwin), Windows 2000 (natively and through the use of Cygwin), Windows XP
(through the use of Cygwin), FreeBSD, NetBSD, OpenBSD, and multiple versions of Linux.
4Mail Transport Agent, e.g. sendmail or postfix
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existence of exploitable code in an application, it is worthwhile to consider the
programming language used to create that application. Since neither Mixmaster
nor Reliable were written by seasoned software developers, we assume a level of
experience which would allow for simplistic security mistakes.?

6.4 Included libraries

In addition to the standard POSIX libraries provided by the compilation OS,
Mixmaster 3.0, the version of Mixmaster evaluated in this paper, requires that
the zlib [DG96] and OpenSSL [CEHL)] libraries be included. Optionally, Mix-
master also links against pcre [Haz] an ncurses [BHRPD)].

Reliable requires many native Windows system calls as well as the third-
party application, Mixmaster 2.0.4.

6.5 Cryptographic functions

Both Mixmaster and Reliable avoid direct implementation of cryptographic al-
gorithms when possible. Mixmaster 3.0 relies strictly on OpenSSL for these
cryptographic functions. Any attackable flaws in the cryptographic library used
to build Mixmaster which affect the security if the algorithms® used by Mix-
master may be a an attack against Mixmaster as well.

Reliable abstracts the cryptographic operations one step further. To support
the Mixmaster message format, Reliable acts as a wrapper around the DOS
version of Mixmaster 2.0.4. Thus, any attack against the Mixmaster message
format due to implementation flaws in Mixmaster 2.0 will work against Reliable
as well. Mixmaster 2.0.4 relies on the cryptographic library OpenSSL or its
predecessor SSLeay for the MD5, EDE-3DES, and RSA routines.”

6.6 Entropy sources

The quality of the entropy source plays an extremely important role in both the
pool mix and S-G mix schemes. In pool mix systems, the mixing in the pool must
be cryptographically random in order to mix the traffic in a non-deterministic
way. The timestamps used to determine how long a message should be held by
an S-G mix implementation must also be from a strong entropy source for the

5The bulk of the code for Mixmaster 3.0 was written by Ulf Moller as his first major software
development project while completing his undergraduate computer science degree [MOZ] He
has since gained respect as a skilled cryptographic software developer for his open source
and proprietary development projects. Reliable was authored under a pseudonym, and we
can only speculate about the level of experience of its author. (There has been no known
communication with the author of Reliable since February, 2000).

It is understood that flaws in the cryptographic algorithms will affect the security of
software which relies upon those algorithms. However, since most attacks on cryptographic
applications are due to flaws in the implementation, care must be taken when evaluating the
shared cryptographic libraries.

"Prior to the expiration of the RSA patent, versions of Mixmaster 2.0 offered support for
the RSAREF and BSAFE libraries as well. Use of these versions of Mixmaster is largely
abandoned.
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same reasons. In addition, the Mixmaster message format specifies the use of
random data for its message and header padding.

All software is dependent on its underlying operating system for a good
source of entropy. Cryptographic quality entropy is a scarce resource on most
systems®, and therefore the entropy sources provided by most modern operat-
ing systems actually provide PRNG output which has been seeded with truly-
random data.

Mixmaster uses OpenSSL’s rand_ functions?. Reliable uses the standard
Windows system call, Rnd(), when obtaining entropy, with the exception of
message and header padding (which is done by the supporting Mixmaster 2.0.4
binary). The Rnd() function is not a cryptographically strong source of entropy.
Rnd() starts with a seed value and generates numbers which fall within a finite
range. Previous work has demonstrated that systems which use a known seed
to a deterministic PRNG are trivially attackable [GW96, Cor]. While its use of
Rnd() to determine the latency for a message injected into the mix is the most
devastating, Reliable uses Rnd() for many other critical purposes as well.

6.7 Network timing attacks

Packet counting, deduction of pool variables by timing observation. Affects
pool-mixes more than s-g mixes, possibly aids attacker in some non-host based
active attacks such as (n — 1) attacks. The anonymity strength of a remailer
should not require pool values to be hidden, and countermeasures to this class
of active attacks should be taken. [DS03a]

7 Conclusions and future work

In this paper we have analyzed the traffic pattern of a real traffic stream going
through a working mix node and found that the traffic is not Poisson, as it is
commonly assumed in the literature. The traffic pattern is highly impredictable.
Therefore, no assumptions on the traffic should be made when designing a mix.

We measure the anonymity of the pool mix scheme used in Mixmaster by
applying a metric previously proposed in the literature. We provide our own
metric for evaluating the anonymity of the S-G mix variant used in Reliable
which does not assume a Poisson traffic pattern.

Our comparison of the two predominant mixing applications shows that
Mixmaster provides superior anonymity, and is better suited for the anonymiza-
tion of email messages than Reliable. Mixmaster provides a minimum level of
anonymity at all times; Reliable does not. Reliable’s anonymity drops to nearly
zero if the traffic is very low. In high-traffic situations, Mixmaster provides a
higher maximum of anonymity than Reliable for the same stream of input: 10.5

8Systems which employ the use of noisy diodes, or other plentiful sources of entropy have
less of a concern for entropy pool exhaustion.

90penSSL relies on its internal PRNG seeded with various system sources to provide
cryptographically strong entropy.
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of Mixmaster versus 10 of Reliable. We have shown that Mixmaster provides
higher average anonymity than Reliable for the same input and same average
delay. Due to its nature as a pool mix, Mixmaster provides higher delays than
Reliable in low traffic conditions. Comparatively, due to the nature of S-G
Mixes, Reliable’s delay is not dependent on the traffic.

In addition, we have identified a number of key points of attack and weakness
in mix software to which anonymity software designers need to pay particular
attention. In addition to the areas of theoretical weakness which we have iden-
tified, we discovered a fatal flaw in the use of randomness in Reliable, which
diminishes its ability to provide anonymity, independent of our findings with
regard to the S-G mix protocol.

We can conclude from our analysis of the mixing algorithms used by these
mix implementations that S-G mixes are not suitable for use with systems that
may have occurrences of low traffic on the network. While S-G mixes are an
appropriate solution to low-latency applications such as web mixing, pool mixes
should be used for higher latency systems with fluctuating traffic loads.
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A Method to compute the anonymity of Reli-
able

To formalize the behaviour of the mixes, we define:
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e X, : an incoming message arriving at time s;
e Y, : an outgoing message leaving at time ¢;
e D : the amount of time a message has been delayed.

We know that the mixes delay the messages exponentially and we have set the
mean to 43 minutes: D ~ exp(1/43):

pdf: f(d) = %36_%(1 foralld >0 ;
= 0 elsewhere ;

«df: F(d) = P(D<d)=1-—¢5% foralld>0;
=0 elsewhere .

All delay times are independent.

Crucial to note in this setup is that the sequence of outgoing messages is
not a Poisson process. This would only be true if all inputs would arrive at the
same time, hence belong to the mix when the delaying starts. But in our case,
messages arrive at distinct moments in time, each being delayed upon their ar-
rival times.

Mixes flush at fixed time moments which are observed by the attacker:
t € {outy, outy, ..., outps}.
He also observes the arrival times:
s € {iny, ing, ..., iny}.

If a message leaves the mix at time ¢, what are then the probabilities for the
arrival times? Suppose the departure time ¢ =out is fixed. We then look for the
probability that the message that left at time out is the same message as the
one that entered the mix at time s:

P(Yout = Xs) = P(D =out — s) .

We can hence rephrase the problem in terms of the delay: which values for
the delay times are the most probable? Clearly, negative delay is impossible
so only arrival times prior to out are probable. These arrival times form a
set {ini, ing, ..., ing} with ingy < out. The matching delay times are then
{ out-iny, out-ing,..., out-in; } to which we will refer to as {di,da,...,d}.
Note that di > da > ... > di. We are almost at the solution as the density
function of the delay times is known! Caution has to be taken however as the
exponential function is a continuous function which means that the probabil-
ity of the delay taking a single value is zero: P(D =d;) = ... = P(D =dj) = 0!
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Figure 9: An example of an exponential probability density function
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Figure 10: The matching exponential cumulative density function

How can we then calculate the probabilities of the delay times? To make
this clear, let us look at figure 9 and suppose that we only have three arrival
times prior to out. We have thus three possible delays dy > do > d3. Let us
now assume for simplicity reasons that d; = 3 hours, do = 2 hours and d3 = 1
hour. The variable delay is continuous and can theoretically take every value
in the interval [0,3]. However, we know that we only flush at three particular
times and that hence only three particular delays can occur. We can exploit
this knowledge in the following way:

P(D=d;) =~ P(da <D <dy)= yellow surface ;
P(D=ds) =~ P(ds <D <dy) = green surface ;
P(D=ds) =~ P(0<D<ds)= blue surface .

In this way one can clearly see that the biggest surface corresponds to the
most probable delay! This is straightforward for more than three delays. For
computation we make use of the cumulative distribution function (cdf) which is
graphed in figure 10. Cumulative probabilities are listed in tables and known in
statistical software. For reasons of simplicity we put the mean of the exponential
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to be 1 hour (easy parameterization):
P(D = dy) F(dy) — F(ds) = 0.9502 — 0.8647 = 0.0855 ;

P(D = dy) F(dy) — F(dy) = 0.8647 — 0.6321 = 0.2326 ;

Q

Q

In our little example, the message corresponds most likely with the one that
entered the mix 1 hour before out. You can also clearly see this on figure 9. In
practical applications however, many possible delays will occur so that visual
inspections will not be efficient and calculations have to made and compared.

A.1 Uniform Delays

Reliable allows for mix-chosen uniform delays if the users do not specify any
delay for their messages.

We have found a method to compute the anonymity provided by a mix that
delays inputs uniformly from a distribution Ula,b]. The method consists in
creating a tables with all inputs and outputs. Then we search for all possible
combinations input-output that are possible from an external observer’s point of
view (i.e., those that assign to every input that arrives at time T an output that
leaves between T'+ a and T 4 b). Let us call the total number of combinations
C.

Then, in order to compute the recipient (sender) anonymity of message m;,
we need to find the distribution of probabilities that link this input (output) to
all outputs (inputs).

If input m; appears matching output s; in P cases, then the probability
assigned to s; is P/C.

The probability of an input of matching an output is computed as possible
cases divided by total cases. ;From this distribution, the sender and recipient
anonymity can be computed for every message.

Unfortunately, due to the large amount of messages considered, the imple-
mentation of this algorithm in our case is not feasible.
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