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Introduction
 Computer attacks that exploit software flaws

 Buffer overflow: heap/stack/format string
      Most common; building blocks for worm attacks
 Syntax loopholes: SQL injection, Directory traversal
 Race conditions: mostly local attacks

 Other attacks
 Social engineering
 Password cracking
 Denial of service
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Control- Hijacking Attacks
 Network applications whose control gets hijacked because of 

software bugs: Most worms, including MSBlast, exploit such 
vulnerabilities

 Three-step recipe:
 Insert malicious code into the attacked application 

Sneaking weapons into a plane
 Trick the attacked application to transfer control to the inserted 

code
Taking over the victim plane

 Execute damaging system calls as the owner of the attacked 
application process

Hit a target with the plane
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Stack Overflow Attack

 main() {

     input();

}

 input() {

      int  i = 0;;

      int userID[5];

      

      while ((scanf(“%d”, &(userID[I]))) != EOF)

           i ++;

 }

STACK  LAYOUT
           128 Return address of input()  100

FP  124 Previous FP

           120 Local variable i

           116 userID[4]

           112 userID[3]

           108 userID[2]                            INT 80

           104 userID[1]                         

SP  100 userID[0]          
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Palladium (since 1999…)
 Array bound checking: Preventing code insertion through 

buffer overflow
 Integrity check for control-sensitive data structure: 

Preventing unauthorized control transfer through over-writing 
return address, function pointer, and GOT

 System call policy check: Preventing attackers from issuing 
damaging system calls 

 Repairable file service:Quickly putting a compromised system 
back to normal order after detecting an intrusion
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Array Bound Checking
 Prevent unauthorized modification of sensitive data structures 

(e.g., return address or bank account) through buffer 
overflowing  The cleanest solution

 Check each pointer reference with respect to the limit of its 
associated object
 Figure out which is the associated object (shadow variable 

approach)
 Perform the limit check (major overhead)

 Current software-based array bound checking methods: 3-30 
times slowdown
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Segmentation Hardware
  X86 architecture’s virtual memory hardware supports 

both segmentation and paging

Virtual Address = Segment Selector + Offset

Linear Address

Physical Address

segmentation

 paging

 base + offset <= limit
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Checking Array bound using 
Segmentation Hardware 

(CASH)
 Exploiting segment limit check hardware to perform 

array bound checking for free
 Each array or buffer is treated as a separate segment 

and referenced accordingly

                                                                           offset = &(B[M]) – B_Segment_Base;

         for (i = M; i < N; I++) {                            GS = B_Segment_Selector;

               B[i] = 5;                                               for (i = M; i < N; i++) {

         }                                                                       GS:offset = 5;

                                                                                  offset += 4;

                                                                            }
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SVDPACK 1.82% 120.00%

Volume Rendering 3.26% 126.38%

2D FFT 3.95% 72.19%

Gaussian Elimination 1.61% 92.40%

Matrix Multiply 1.47% 143.77%

Edge Detection 2.23% 83.77%

Performance  Overhead

CASH BCC
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Return Address Defense 
(RAD)

 To prevent the return address from being modified, 
keep a redundant copy of the return address when 
calling a procedure, and make sure that it has not 
been modified at procedure return

 Include the bookkeeping and checking code in the 
function prologue and epilogue, respectively 
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Binary RAD Prototype
 Aims to protect Windows Portable Executable (PE) 

binaries
 Implementing a fully operational disassembler for 

X86 architecture
 Inserting RAD code at function prolog and epilog 

without disturbing existing code
 Transparent initialization of RAR
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Performance Overhead

Program Overhead

BIND 1.05%

DHCP Server 1.23%

PowerPoint 3.44%

Outlook Express 1.29%
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Repairable File Service (RFS)
 There is no such thing as unbreakable computer systems, e.g., 

insider job and social engineering
 A significant percentage of financial loss of computer security 

breaches is productivity loss due to unavailability of 
information and personnel

 Instead of aiming at 100% penetration proof, shift the 
battleground to fast recovery from intrusion: reliability vs. 
availability  MTTF/(MTTF+MTTR)

 Key problem: Accurately identify the damaged file blocks 
and restore them quickly
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RFS Architecture

Transparent to protected network file server

NFS
Client

NFS
Client

NFS
Client

RFS Protected
NFS Server

Mirroring
NFS 

Server
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Fundamental Issues
 Keeping the before image of all updates so that every update 

is undoable: transparent file server update logging
 Tracking inter-process dependencies for selective undo
 Contamination analysis based on inter-process dependencies 

and ID of the first detected intruder process, P
 All updates made by P and its children
 All updates by processes that read in contaminated  blocks after 

P’s birth time



04/18/21 Black Hat USA 2004

RFS Prototype
 Implemented on Red Hat 7.1
 Works for both NFSv2 and NFSv3
 A client-side system call logger whose resulting log 

is tamper proof
 A wire-speed NFS request/response interceptor that 

deals with network/protocol errors
 A repair engine that performs contamination analysis 

and selective undo
 Undo operations are themselves undoable
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Performance Results
 Client-side logging overhead is 5.4%
 Additional latency introduced by interceptor is 

between 0.2 to 1.5 msec
 When the write ratio is below 30%, there is no 

throughput difference between NFS and NFS/RFS
 Logging storage requirement: 709MBytes/day for a 

250-user NFS server in a CS department  a 100-
Gbyte disk can support a detection window of 8 
weeks 



04/18/21 Black Hat USA 2004

Program semantics-Aware 
Intrusion Detection (PAID)

 As a last line of defense, prevent intruders from 
causing damages even when they successfully take 
control of a target victim application

 Key observation: Most damages can only be done 
through system calls, including denial of service 
attacks

 Idea: prohibit hijacked applications from making 
arbitrary system calls
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System Call Policy/Model
 Manual specification: error-prone, labor intensive, non-

scalable
 Machine learning: error-prone, training efforts required
 Our approach: Use compiler to extract the sites and ordering 

of system calls from the source code of any given application 
automatically

 Only host-based intrusion detection systems that guarantees 
zero false positives and very-close-to-zero false negatives

 System call policy is extracted automatically and accurately
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PAID Architecture

ApplicationApplication

Compiler

System Call
    Policy

System Call
    Pattern

Legitimacy 
    Check

User

Kernel

Compile Time
Extraction Run Time Checking
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The Mimicry Attack
 Hijack the control of a victim application by over-

writing some control-sensitive data structure, such as 
return address

 Issue a legitimate sequence of system calls after the 
hijack point to fool the IDS until reaching a desired 
system call, e.g., exec()

 None of existing commercial or research host-based 
IDS can handle mimicry attacks
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Mimicry Attack Details
 To mount a mimicry attack, attacker needs to 

 Issue each intermediate system call without being 
detected 

    Nearly all syscalls can be turned into no-ops
    For example  (void) getpid()  or  open(NULL,0)
 Grab the control back during the emulation process
   Set up the stack so that the injected code can take 

control after each system call invocation
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Countermeasures
 Checking system call argument values whenever 

possible
 Checking the return address chain on the stack to 

verify the call chain 
 Minimize ambiguities in the system call model

 If (a>1) { open(..)} else {open(..); write(..)}
 Multiple calls to a function that contains a system call
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Example 
Entry(main)

call(foo)

return(foo)

call(foo)

return(foo)

Exit()

Exit(main)

Entry(foo)

sys_foo

sys_foo 

Exit(foo)

main()
{

foo();
foo();
exit();

}

foo()
{

for(….){
sys_foo();

     sys_foo();
}

}
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System Call Policy Extraction
 From a given program, build a system call graph 

from its function call graph (FCG) and per-function 
reduced control flow graph (RCFG)

 For each system call, extract its memory location, 
and derive the following system call set

 Each system call site is in-lined with the actual code 
sequence of entering the kernel (e.g.,  INT 80), and 
thus can be uniquely identified
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Dynamic Branch Targets
 Not all branch targets are known at compile time: 

function pointers and indirect jumps
 Insert a notify system call to tell the kernel the target 

address of these indirect branch instructions 
 The kernel moves the current cursor of the system 

call graph to the designated target accordingly 
 Notification system call is itself protected
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Asynchronous Control 
Transfer

 Setjmp/Longjmp
 At the time of setjmp(), store the current cursor
 At the time of longjmp(), restore the current cursor

 Signal handler
 When signal is delivered, store the current cursor
 After signal handler is done, restore the current cursor

 Dynamically linked library
 Load the library’s system call graph at run time
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From NFA to DFA
 Use graph in-lining to disambiguate the return address for a 

function with multiple call sites
 Every recursive call chain is in-lined and turned into self-

recursive call
 Use system call stub in-lining to disambiguate two system 

calls that are identical and that are at two arms of a 
conditional branch
 Does not completely solve the problem: F1 system_call()
 Difficult to implement because some glibc functions are written 

in assembly
 Adding extra notify() for further disambiguation
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PAID Example 
Entry(main)

sys_foo_call_site_1

sys_foo_call_site_2

sys_foo_call_site_1

sys_foo_call_site_2

exit_call_site_1

Exit(main)

main()
{

foo();
foo();
exit();

}

foo()
{

for(….){

sys_foo();
     

sys_foo();
}

}

foo()
{ for(….){

    { int ret;
       __asm__ (“movl sys_foo_n, %eax\
n”

                             “int $0x80\n”
                             “sys_foo_call_site_1:\n”
                             “movl %eax, ret\n”

          ….);
    }

         { int ret;
       __asm__ (“movl sys_foo_n, %eax\
n”

                             “int $0x80\n”
                             “sys_foo_call_site_2:\n”
                             “movl %eax, ret\n”

          ….);
    }
}

}
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PAID Checks 
 Ordering 
 Site
 Insertion of random notify() at load time

 Different for different instance
 Stack return address check

 Ensure they are in the text area
 Checking performed in the kernel

In most cases, only two comparisons are needed
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Ordering Check Only
main

Buffer Overflow

setreuid read open stat write

setreuid

read

open

stat

write Compromise
d

Call chain
Call 
sequence
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Ordering and Site Check

main

Buffer Overflow

setreuid read open stat write

Compromise
d

Call chain
Call 
sequenceint 0x80
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Ordering, Site and Stack Check (1)

main

Buffer Overflow

setreuid read open stat write

Call chain
Call 
sequenceint 0x80
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Ordering, Site and Stack Check (2)

main

Buffer Overflow

exec

Call chain
Call 
sequenceint 0x80

Stack check passes
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Random Insertion of Notify Calls

Call 
sequenceint 0x80main

Buffer Overflow

exec

Call chain

notify

notify

Attac
k 
failed
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Alternative Approach
 Check the return address chain on the stack every time a 

system call is made
 Every system call instance can be uniquely identified by a 

function call chain and the return address for the INT 80 
instruction

 Main F1 F2  F4  system_call_1 vs. 
    Main F3 F5  F4  system_call_1

 Need to check the legitimacy of transitioning from one 
system call to another

 No graph or function in-lining is necessary
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System Call Argument Check
 Start from each “file name” system call argument, e.g., 

open() and exec(),  and compute a backward slice,
 Perform symbolic constant propagation through the slice, 

and the result could be 
 A constant: static constant
 A program segment that depends on initialization-

time inputs only: dynamic constant
 A program segment that depends on run-time inputs: 

dynamic variables
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Dynamic Variables
 Derive partial constraints, e.g., prefix or suffix, 

“/home/httpd/html”
 Enforce the system call argument computation path 

by inserting null system calls between where 
dynamic inputs are entered and where the 
corresponding system call arguments are used
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Vulnerabilities

Buffer Overflow
Buffer Overflow

exec

execnotify

notify

Call chain
Call 
sequenceint 0x80

Desired system call follows
Immediately

Argument
replacement
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Prototype Implementation
 GCC 3.1 and Gnu ld 2.11.94, Red Hat Linux 7.2
 Compiles GLIBC successfully
 Compiles several production-mode network server 

applications successfully, including Apache-1.3.20, 
Qpopper-4.0, Sendmail-8.11.3, Wuftpd-2.6.0, etc.
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Throughput Overhead

Apache

Qpopper

Sendmail

Wuftpd

PAID PAID/stack PAID/random PAID/stack
   random

4.89% 5.39% 6.48% 7.09%

5.38% 5.52% 6.03% 6.22%

6.81% 7.73% 9.36% 10.44%

2.23% 2.69% 3.60% 4.38%
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Conclusion
 Paid is the most efficient, comprehensive and accurate host-

based intrusion prevention (HIPS) system on Linux
 Automatically generates per-application system call policy
 System call policy is in the form of deterministic finite automata 

to eliminate ambiguities
 Extensive system call argument checks
 Can handle function pointers and asynchronous control transfers
 Guarantee no false positives
 Very small false negatives
 Can block most mimicry attacks
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Future Work
 Support for threads
 Integrate it with SELinux
 Derive a binary PAID version for Windows platform
 Further reduce the latency/throughput overhead
 Reduce the percentage of “dynamic variable” 

category of system call arguments
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For more information

Project Page: http://www.ecsl.cs.sunysb.edu/PAID

Thank You!
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