
04/18/21 Black Hat USA 2004

Program semantics-Aware
Intrusion Detection

Prof. Tzi-cker Chiueh
Computer Science Department

Stony Brook University
chiueh@cs.sunysb.edu

04/18/21 Black Hat USA 2004

Introduction
 Computer attacks that exploit software flaws

 Buffer overflow: heap/stack/format string
 Most common; building blocks for worm attacks
 Syntax loopholes: SQL injection, Directory traversal
 Race conditions: mostly local attacks

 Other attacks
 Social engineering
 Password cracking
 Denial of service

04/18/21 Black Hat USA 2004

Control- Hijacking Attacks
 Network applications whose control gets hijacked because of

software bugs: Most worms, including MSBlast, exploit such
vulnerabilities

 Three-step recipe:
 Insert malicious code into the attacked application

Sneaking weapons into a plane
 Trick the attacked application to transfer control to the inserted

code
Taking over the victim plane

 Execute damaging system calls as the owner of the attacked
application process

Hit a target with the plane

04/18/21 Black Hat USA 2004

Stack Overflow Attack

 main() {

 input();

}

 input() {

 int i = 0;;

 int userID[5];

 while ((scanf(“%d”, &(userID[I]))) != EOF)

 i ++;

 }

STACK LAYOUT
 128 Return address of input() 100

FP  124 Previous FP

 120 Local variable i

 116 userID[4]

 112 userID[3]

 108 userID[2] INT 80

 104 userID[1]

SP  100 userID[0]

04/18/21 Black Hat USA 2004

Palladium (since 1999…)
 Array bound checking: Preventing code insertion through

buffer overflow
 Integrity check for control-sensitive data structure:

Preventing unauthorized control transfer through over-writing
return address, function pointer, and GOT

 System call policy check: Preventing attackers from issuing
damaging system calls

 Repairable file service:Quickly putting a compromised system
back to normal order after detecting an intrusion

04/18/21 Black Hat USA 2004

Array Bound Checking
 Prevent unauthorized modification of sensitive data structures

(e.g., return address or bank account) through buffer
overflowing  The cleanest solution

 Check each pointer reference with respect to the limit of its
associated object
 Figure out which is the associated object (shadow variable

approach)
 Perform the limit check (major overhead)

 Current software-based array bound checking methods: 3-30
times slowdown

04/18/21 Black Hat USA 2004

Segmentation Hardware
 X86 architecture’s virtual memory hardware supports

both segmentation and paging

Virtual Address = Segment Selector + Offset

Linear Address

Physical Address

segmentation

 paging

 base + offset <= limit

04/18/21 Black Hat USA 2004

Checking Array bound using
Segmentation Hardware

(CASH)
 Exploiting segment limit check hardware to perform

array bound checking for free
 Each array or buffer is treated as a separate segment

and referenced accordingly

 offset = &(B[M]) – B_Segment_Base;

 for (i = M; i < N; I++) { GS = B_Segment_Selector;

 B[i] = 5; for (i = M; i < N; i++) {

 } GS:offset = 5;

 offset += 4;

 }

04/18/21 Black Hat USA 2004

SVDPACK 1.82% 120.00%

Volume Rendering 3.26% 126.38%

2D FFT 3.95% 72.19%

Gaussian Elimination 1.61% 92.40%

Matrix Multiply 1.47% 143.77%

Edge Detection 2.23% 83.77%

Performance Overhead

CASH BCC

04/18/21 Black Hat USA 2004

Return Address Defense
(RAD)

 To prevent the return address from being modified,
keep a redundant copy of the return address when
calling a procedure, and make sure that it has not
been modified at procedure return

 Include the bookkeeping and checking code in the
function prologue and epilogue, respectively

04/18/21 Black Hat USA 2004

Binary RAD Prototype
 Aims to protect Windows Portable Executable (PE)

binaries
 Implementing a fully operational disassembler for

X86 architecture
 Inserting RAD code at function prolog and epilog

without disturbing existing code
 Transparent initialization of RAR

04/18/21 Black Hat USA 2004

Performance Overhead

Program Overhead

BIND 1.05%

DHCP Server 1.23%

PowerPoint 3.44%

Outlook Express 1.29%

04/18/21 Black Hat USA 2004

Repairable File Service (RFS)
 There is no such thing as unbreakable computer systems, e.g.,

insider job and social engineering
 A significant percentage of financial loss of computer security

breaches is productivity loss due to unavailability of
information and personnel

 Instead of aiming at 100% penetration proof, shift the
battleground to fast recovery from intrusion: reliability vs.
availability  MTTF/(MTTF+MTTR)

 Key problem: Accurately identify the damaged file blocks
and restore them quickly

04/18/21 Black Hat USA 2004

RFS Architecture

Transparent to protected network file server

NFS
Client

NFS
Client

NFS
Client

RFS Protected
NFS Server

Mirroring
NFS

Server

04/18/21 Black Hat USA 2004

Fundamental Issues
 Keeping the before image of all updates so that every update

is undoable: transparent file server update logging
 Tracking inter-process dependencies for selective undo
 Contamination analysis based on inter-process dependencies

and ID of the first detected intruder process, P
 All updates made by P and its children
 All updates by processes that read in contaminated blocks after

P’s birth time

04/18/21 Black Hat USA 2004

RFS Prototype
 Implemented on Red Hat 7.1
 Works for both NFSv2 and NFSv3
 A client-side system call logger whose resulting log

is tamper proof
 A wire-speed NFS request/response interceptor that

deals with network/protocol errors
 A repair engine that performs contamination analysis

and selective undo
 Undo operations are themselves undoable

04/18/21 Black Hat USA 2004

Performance Results
 Client-side logging overhead is 5.4%
 Additional latency introduced by interceptor is

between 0.2 to 1.5 msec
 When the write ratio is below 30%, there is no

throughput difference between NFS and NFS/RFS
 Logging storage requirement: 709MBytes/day for a

250-user NFS server in a CS department  a 100-
Gbyte disk can support a detection window of 8
weeks

04/18/21 Black Hat USA 2004

Program semantics-Aware
Intrusion Detection (PAID)

 As a last line of defense, prevent intruders from
causing damages even when they successfully take
control of a target victim application

 Key observation: Most damages can only be done
through system calls, including denial of service
attacks

 Idea: prohibit hijacked applications from making
arbitrary system calls

04/18/21 Black Hat USA 2004

System Call Policy/Model
 Manual specification: error-prone, labor intensive, non-

scalable
 Machine learning: error-prone, training efforts required
 Our approach: Use compiler to extract the sites and ordering

of system calls from the source code of any given application
automatically

 Only host-based intrusion detection systems that guarantees
zero false positives and very-close-to-zero false negatives

 System call policy is extracted automatically and accurately

04/18/21 Black Hat USA 2004

PAID Architecture

ApplicationApplication

Compiler

System Call
 Policy

System Call
 Pattern

Legitimacy
 Check

User

Kernel

Compile Time
Extraction Run Time Checking

04/18/21 Black Hat USA 2004

The Mimicry Attack
 Hijack the control of a victim application by over-

writing some control-sensitive data structure, such as
return address

 Issue a legitimate sequence of system calls after the
hijack point to fool the IDS until reaching a desired
system call, e.g., exec()

 None of existing commercial or research host-based
IDS can handle mimicry attacks

04/18/21 Black Hat USA 2004

Mimicry Attack Details
 To mount a mimicry attack, attacker needs to

 Issue each intermediate system call without being
detected

 Nearly all syscalls can be turned into no-ops
 For example (void) getpid() or open(NULL,0)
 Grab the control back during the emulation process
 Set up the stack so that the injected code can take

control after each system call invocation

04/18/21 Black Hat USA 2004

Countermeasures
 Checking system call argument values whenever

possible
 Checking the return address chain on the stack to

verify the call chain
 Minimize ambiguities in the system call model

 If (a>1) { open(..)} else {open(..); write(..)}
 Multiple calls to a function that contains a system call

04/18/21 Black Hat USA 2004

Example
Entry(main)

call(foo)

return(foo)

call(foo)

return(foo)

Exit()

Exit(main)

Entry(foo)

sys_foo

sys_foo

Exit(foo)

main()
{

foo();
foo();
exit();

}

foo()
{

for(….){
sys_foo();

 sys_foo();
}

}

04/18/21 Black Hat USA 2004

System Call Policy Extraction
 From a given program, build a system call graph

from its function call graph (FCG) and per-function
reduced control flow graph (RCFG)

 For each system call, extract its memory location,
and derive the following system call set

 Each system call site is in-lined with the actual code
sequence of entering the kernel (e.g., INT 80), and
thus can be uniquely identified

04/18/21 Black Hat USA 2004

Dynamic Branch Targets
 Not all branch targets are known at compile time:

function pointers and indirect jumps
 Insert a notify system call to tell the kernel the target

address of these indirect branch instructions
 The kernel moves the current cursor of the system

call graph to the designated target accordingly
 Notification system call is itself protected

04/18/21 Black Hat USA 2004

Asynchronous Control
Transfer

 Setjmp/Longjmp
 At the time of setjmp(), store the current cursor
 At the time of longjmp(), restore the current cursor

 Signal handler
 When signal is delivered, store the current cursor
 After signal handler is done, restore the current cursor

 Dynamically linked library
 Load the library’s system call graph at run time

04/18/21 Black Hat USA 2004

From NFA to DFA
 Use graph in-lining to disambiguate the return address for a

function with multiple call sites
 Every recursive call chain is in-lined and turned into self-

recursive call
 Use system call stub in-lining to disambiguate two system

calls that are identical and that are at two arms of a
conditional branch
 Does not completely solve the problem: F1 system_call()
 Difficult to implement because some glibc functions are written

in assembly
 Adding extra notify() for further disambiguation

04/18/21 Black Hat USA 2004

PAID Example
Entry(main)

sys_foo_call_site_1

sys_foo_call_site_2

sys_foo_call_site_1

sys_foo_call_site_2

exit_call_site_1

Exit(main)

main()
{

foo();
foo();
exit();

}

foo()
{

for(….){

sys_foo();

sys_foo();
}

}

foo()
{ for(….){

 { int ret;
 __asm__ (“movl sys_foo_n, %eax\
n”

 “int $0x80\n”
 “sys_foo_call_site_1:\n”
 “movl %eax, ret\n”

 ….);
 }

 { int ret;
 __asm__ (“movl sys_foo_n, %eax\
n”

 “int $0x80\n”
 “sys_foo_call_site_2:\n”
 “movl %eax, ret\n”

 ….);
 }
}

}

04/18/21 Black Hat USA 2004

PAID Checks
 Ordering
 Site
 Insertion of random notify() at load time

 Different for different instance
 Stack return address check

 Ensure they are in the text area
 Checking performed in the kernel

In most cases, only two comparisons are needed

04/18/21 Black Hat USA 2004

Ordering Check Only
main

Buffer Overflow

setreuid read open stat write

setreuid

read

open

stat

write Compromise
d

Call chain
Call
sequence

04/18/21 Black Hat USA 2004

Ordering and Site Check

main

Buffer Overflow

setreuid read open stat write

Compromise
d

Call chain
Call
sequenceint 0x80

04/18/21 Black Hat USA 2004

Ordering, Site and Stack Check (1)

main

Buffer Overflow

setreuid read open stat write

Call chain
Call
sequenceint 0x80

04/18/21 Black Hat USA 2004

Ordering, Site and Stack Check (2)

main

Buffer Overflow

exec

Call chain
Call
sequenceint 0x80

Stack check passes

04/18/21 Black Hat USA 2004

Random Insertion of Notify Calls

Call
sequenceint 0x80main

Buffer Overflow

exec

Call chain

notify

notify

Attac
k
failed

04/18/21 Black Hat USA 2004

Alternative Approach
 Check the return address chain on the stack every time a

system call is made
 Every system call instance can be uniquely identified by a

function call chain and the return address for the INT 80
instruction

 Main F1 F2  F4  system_call_1 vs.
 Main F3 F5  F4  system_call_1

 Need to check the legitimacy of transitioning from one
system call to another

 No graph or function in-lining is necessary

04/18/21 Black Hat USA 2004

System Call Argument Check
 Start from each “file name” system call argument, e.g.,

open() and exec(), and compute a backward slice,
 Perform symbolic constant propagation through the slice,

and the result could be
 A constant: static constant
 A program segment that depends on initialization-

time inputs only: dynamic constant
 A program segment that depends on run-time inputs:

dynamic variables

04/18/21 Black Hat USA 2004

Dynamic Variables
 Derive partial constraints, e.g., prefix or suffix,

“/home/httpd/html”
 Enforce the system call argument computation path

by inserting null system calls between where
dynamic inputs are entered and where the
corresponding system call arguments are used

04/18/21 Black Hat USA 2004

Vulnerabilities

Buffer Overflow
Buffer Overflow

exec

execnotify

notify

Call chain
Call
sequenceint 0x80

Desired system call follows
Immediately

Argument
replacement

04/18/21 Black Hat USA 2004

Prototype Implementation
 GCC 3.1 and Gnu ld 2.11.94, Red Hat Linux 7.2
 Compiles GLIBC successfully
 Compiles several production-mode network server

applications successfully, including Apache-1.3.20,
Qpopper-4.0, Sendmail-8.11.3, Wuftpd-2.6.0, etc.

04/18/21 Black Hat USA 2004

Throughput Overhead

Apache

Qpopper

Sendmail

Wuftpd

PAID PAID/stack PAID/random PAID/stack
 random

4.89% 5.39% 6.48% 7.09%

5.38% 5.52% 6.03% 6.22%

6.81% 7.73% 9.36% 10.44%

2.23% 2.69% 3.60% 4.38%

04/18/21 Black Hat USA 2004

Conclusion
 Paid is the most efficient, comprehensive and accurate host-

based intrusion prevention (HIPS) system on Linux
 Automatically generates per-application system call policy
 System call policy is in the form of deterministic finite automata

to eliminate ambiguities
 Extensive system call argument checks
 Can handle function pointers and asynchronous control transfers
 Guarantee no false positives
 Very small false negatives
 Can block most mimicry attacks

04/18/21 Black Hat USA 2004

Future Work
 Support for threads
 Integrate it with SELinux
 Derive a binary PAID version for Windows platform
 Further reduce the latency/throughput overhead
 Reduce the percentage of “dynamic variable”

category of system call arguments

04/18/21 Black Hat USA 2004

For more information

Project Page: http://www.ecsl.cs.sunysb.edu/PAID

Thank You!

	Program semantics-Aware Intrusion Detection
	Introduction
	Control- Hijacking Attacks
	Stack Overflow Attack
	Palladium (since 1999…)
	Array Bound Checking
	Segmentation Hardware
	Checking Array bound using Segmentation Hardware (CASH)
	Performance Overhead
	Return Address Defense (RAD)
	Binary RAD Prototype
	Performance Overhead
	Repairable File Service (RFS)
	RFS Architecture
	Fundamental Issues
	RFS Prototype
	Performance Results
	Program semantics-Aware Intrusion Detection (PAID)
	System Call Policy/Model
	PAID Architecture
	The Mimicry Attack
	Mimicry Attack Details
	Countermeasures
	Example
	System Call Policy Extraction
	Dynamic Branch Targets
	Asynchronous Control Transfer
	From NFA to DFA
	PAID Example
	PAID Checks
	Ordering Check Only
	Ordering and Site Check
	Ordering, Site and Stack Check (1)
	Ordering, Site and Stack Check (2)
	Random Insertion of Notify Calls
	Alternative Approach
	System Call Argument Check
	Dynamic Variables
	Vulnerabilities
	Prototype Implementation
	Throughput Overhead
	Conclusion
	Future Work
	For more information

