
Peer Distributed Transfer
Protocol

Presenter: Tony Arcieri
<tarcieri@pdtp.org>

DEFCON 12
July 30th – August 1st

http://www.pdtp.org/

http://www.pdtp.org/

What is PDTP?
 Replacement for anonymous FTP
 A protocol designed to leverage

server networks instead of
individual systems

 Bringing BitTorrent-like technology
to the web and FTP mirror
networks

Existing Technologies
 FTP provides nice mechanisms for

querying directory structures but
requires manual mirror selection and
individual servers to handle all traffic.

 HTTP provides a more elegant transfer
protocol but makes it harder to browse
directories and still requires individual
servers to handle all traffic.

BitTorrent
 BitTorrent became popular in 2003 as a

means to transfer large, high demand
files, such as operating system ISOs or
often copyrighted content.

 BitTorrent is designed to serve static
file groupings. The data from the
grouping is divided into “pieces” shared
over a peer network.

Problems with BitTorrent
 Static file groupings are hard to

integrate into the dynamic nature of
web and FTP servers.

 Existing BitTorrent implementations
are difficult to effectively integrate
into web browsers.

 BitTorrent’s HTTP-based tracker
protocol is resource intensive.

Where is BitTorrent going?
 BitTorrent 2 will feature hash trees

as opposed to hash lists, making it
easier to checksum parts of files.

 The new tracker protocol will be
UDP based, which is much lower
overhead than HTTP but requires
complex packet management
code.

PDTP – BitTorrent for the
masses
 PDTP provides content transfer

through a peer network while also
exporting dynamically changing
directory mappings, just like
HTTP/FTP.

 PDTP provides tools needed for
usage within corporate or other large
networks, such as a proxy server.

PDTP vs. BitTorrent
 BitTorrent currently uses HTTP as a

heavyweight transaction
mechanism for its protocol.
BitTorrent 2 will move to UDP to
mitigate scalability issues with the
HTTP-based tracker protocol.

 PDTP uses a lightweight TCP-based
transaction protocol.

PDTP vs. BitTorrent
(cont’d)
 BitTorrent networks are comprised of

a “tracker” which manages the
transfer and one or more “seeders”
serving pieces of files to the network.

 PDTP provides additional scalability
by allowing multiple servers to
manage transfers or serving pieces
of files to the network.

PDTP vs. BitTorrent
(cont’d)
 A detailed protocol specification for

BitTorrent does not yet exist, nor has
BitTorrent received port assignments
from IANA. Implementers of third party
clients are more or less on their own.

 PDTP has applied to IANA for port
assignments. The protocol is
documented as an IETF Internet-Draft
(i.e. RFC format), HTML, and RFC2629
XML format.

PDTP Components -
Servers
 PDTP servers function like BitTorrent

trackers, but also provide caching for
server directory maps and file information.

 One or more PDTP servers connect to PDTP
hubs, allowing transfer management to be
distributed. Clients are automatically load
balanced between servers at connection,
eliminating mirror selection.

PDTP Components - Hubs
 Hubs are the heart of any PDTP

network. They provide network maps,
directory listings, and file service to
the network.

 The file service function of a PDTP hub
is similar to a BitTorrent “seed”,
however piece proxies may be used
for additional piece service scalability.

PDTP Piece Proxies
 Piece proxies download and cache file

pieces from a hub, then serve them to
the network on demand, reducing the
bandwidth requirements of hubs.

 BitTorrent solves this problem through
the use of multiple seeds. However, if
no seeds are available for a torrent,
content becomes inaccessable.

PDTP Proxy Servers
 PDTP proxies allow multiple users behind a

firewall to accept incoming peer connections
and, if necessary, make outgoing
connections through the proxy rather than
directly.

 PDTP proxies also allow multiple users on a
network transferring the same file from the
same server to share the file among each
other rather than each downloading it
separately, good for OS patches.

PDTP Clients
 PDTP clients can browse directory lists

and request file transfers.
 Clients transfer pieces either from a

hub/proxy or to/from each other in a
peer-to-peer manner.

 Clients are either “passive” (behind a
firewall and cannot accept incoming
connections) or “active” (can make both
outgoing and incoming connections)

PDTP Networks
 Simplest configuration: One server, one hub
 Server manages transfers on network
 Hub “seeds” clients with initial pieces

More Scalable Networks
 Additional servers can be added for

increased network scalability
 Hub still needs to “seed” entire client

network

Maximum Scalability
 Piece proxies can be added to decrease

the hub’s bandwidth consumption
 This configuration shields the address of

the hub from the rest of the network

Interesting Features…
 With servers and piece proxies in

place, the address of the network
hub is hidden from the rest of the
network.

 As long as the hub and one server
remain active, the network will
continue transferring files.

 A possible headache for Johnny Law?

Self-Optimizing Networks
 While BitTorrent relies on some interesting

properties of random networks, PDTP
servers use a weighted scoring algorithm
to select peers for transfers.

 PDTP calculates a weighted score for each
peer every time a transfer completes, and
factors in the transfer rate and respective
scores of all peers which a given peer has
ever transferred pieces to/from.

Protocol Design
 PDTP uses a lightweight binary

transactional format.
 The protocol is fully bidirectional

and supports both synchronous and
asynchronous operational modes.

 PDTP does not use ASN.1 due to
input validation complexity issues.

Transaction Format
PDTP transactions are structured as follows:

 uint32 - Length
 uint32 - Serial number
 uint16 - Opcode
 uint16 - Object count
 Arbitrary number of objects

The opcode is a bitfield whose highest bit indicates a request (0) vs
reply (1). The lower 15 bits comprise an integer ID for the operation.

Object Format
Transactions take a variable number of
“objects” as arguments. These are
structured as follows:

 Uint32 – Length of object
 Uint16 – Integral type identifier
 String – Object payload

Protocol Security Concerns
 PDTP’s transaction format has been

designed with all lengths explicit,
centralizing much of the input
validation and eliminating
assumptions.

 Connection authorization is handled
through existing, secure standards
such as RFC2104 HMAC hashing.

File Integrity Validation
 PDTP clients check for a signed X.509

certificate containing a DSA key.
 Clients will compute a DSS signature

for a file and compare it against the
server-provided one.

 A signature mismatch indicates
server-side file tampering, possibly
trojaning.

PDTP Search System
 Decentralized – Clients query

servers directly for searches by
sending a large number of UDP
datagrams.

 PDTP Trackers store lists of active
server addresses.

 http://search.pdtp.org/ will store a
list of active trackers.

http://search.pdtp.org/

Server Query Process
 Clients send a UDP search request

to the server.
 Server responds with a UDP

acknowledgement containing a
results retrieval key.

 Clients connect via TCP to fetch
search results.

PDTP Development –
libpdtp
 Client library designed for use in

single threaded and multithreaded
applications, written in C.

 Portable across all Win32
operating systems and POSIX.

 Available on SourceForge at: http://
libpdtp.sf.net/

http://libpdtp.sf.net/
http://libpdtp.sf.net/
http://libpdtp.sf.net/

PDTP Development -
Squall
 Squall is a development project for all

PDTP server/proxy components.
 Squall utilizes advanced event and

filesystem monitoring features to
improve scalability.

 Squall is portable across Windows
NT/2k/XP/2k3 and POSIX.

 Available on Sourceforge at: http://
squall.sf.net/

http://squall.sf.net/
http://squall.sf.net/
http://squall.sf.net/

Future PDTP Projects
 Skyfire – GUI client application written

with Qt 4. Will allow PDTP searching,
server browsing, and file download. On
SourceForge at: http://skyfire.sf.net/

 USRI - APR for Squall. Provides a
synchronous interface to a number of
host specific features across multiple
Win32 and POSIX systems.
Development page: http://usri.pdtp.org/

http://skyfire.sf.net/
http://skyfire.sf.net/
http://skyfire.sf.net/
http://usri.pdtp.org/

Getting Involved
 Join the developers mailing list:

developers-subscribe@pdtp.org
 Visit the project forums at:

http://forum.pdtp.org/
 Visit the project web page at:

http://www.pdtp.org/

mailto:developers-subscribe@pdtp.org
http://forum.pdtp.org/
http://www.pdtp.org/
http://www.pdtp.org/
http://www.pdtp.org/

	Peer Distributed Transfer Protocol
	What is PDTP?
	Existing Technologies
	BitTorrent
	Problems with BitTorrent
	Where is BitTorrent going?
	PDTP – BitTorrent for the masses
	PDTP vs. BitTorrent
	PDTP vs. BitTorrent (cont’d)
	Slide 10
	PDTP Components - Servers
	PDTP Components - Hubs
	PDTP Piece Proxies
	PDTP Proxy Servers
	PDTP Clients
	PDTP Networks
	More Scalable Networks
	Maximum Scalability
	Interesting Features…
	Self-Optimizing Networks
	Protocol Design
	Transaction Format
	Object Format
	Protocol Security Concerns
	File Integrity Validation
	PDTP Search System
	Server Query Process
	PDTP Development – libpdtp
	PDTP Development - Squall
	Future PDTP Projects
	Getting Involved

