
Peer Distributed Transfer
Protocol

Presenter: Tony Arcieri
<tarcieri@pdtp.org>

DEFCON 12
July 30th – August 1st

http://www.pdtp.org/

http://www.pdtp.org/

What is PDTP?
 Replacement for anonymous FTP
 A protocol designed to leverage

server networks instead of
individual systems

 Bringing BitTorrent-like technology
to the web and FTP mirror
networks

Existing Technologies
 FTP provides nice mechanisms for

querying directory structures but
requires manual mirror selection and
individual servers to handle all traffic.

 HTTP provides a more elegant transfer
protocol but makes it harder to browse
directories and still requires individual
servers to handle all traffic.

BitTorrent
 BitTorrent became popular in 2003 as a

means to transfer large, high demand
files, such as operating system ISOs or
often copyrighted content.

 BitTorrent is designed to serve static
file groupings. The data from the
grouping is divided into “pieces” shared
over a peer network.

Problems with BitTorrent
 Static file groupings are hard to

integrate into the dynamic nature of
web and FTP servers.

 Existing BitTorrent implementations
are difficult to effectively integrate
into web browsers.

 BitTorrent’s HTTP-based tracker
protocol is resource intensive.

Where is BitTorrent going?
 BitTorrent 2 will feature hash trees

as opposed to hash lists, making it
easier to checksum parts of files.

 The new tracker protocol will be
UDP based, which is much lower
overhead than HTTP but requires
complex packet management
code.

PDTP – BitTorrent for the
masses
 PDTP provides content transfer

through a peer network while also
exporting dynamically changing
directory mappings, just like
HTTP/FTP.

 PDTP provides tools needed for
usage within corporate or other large
networks, such as a proxy server.

PDTP vs. BitTorrent
 BitTorrent currently uses HTTP as a

heavyweight transaction
mechanism for its protocol.
BitTorrent 2 will move to UDP to
mitigate scalability issues with the
HTTP-based tracker protocol.

 PDTP uses a lightweight TCP-based
transaction protocol.

PDTP vs. BitTorrent
(cont’d)
 BitTorrent networks are comprised of

a “tracker” which manages the
transfer and one or more “seeders”
serving pieces of files to the network.

 PDTP provides additional scalability
by allowing multiple servers to
manage transfers or serving pieces
of files to the network.

PDTP vs. BitTorrent
(cont’d)
 A detailed protocol specification for

BitTorrent does not yet exist, nor has
BitTorrent received port assignments
from IANA. Implementers of third party
clients are more or less on their own.

 PDTP has applied to IANA for port
assignments. The protocol is
documented as an IETF Internet-Draft
(i.e. RFC format), HTML, and RFC2629
XML format.

PDTP Components -
Servers
 PDTP servers function like BitTorrent

trackers, but also provide caching for
server directory maps and file information.

 One or more PDTP servers connect to PDTP
hubs, allowing transfer management to be
distributed. Clients are automatically load
balanced between servers at connection,
eliminating mirror selection.

PDTP Components - Hubs
 Hubs are the heart of any PDTP

network. They provide network maps,
directory listings, and file service to
the network.

 The file service function of a PDTP hub
is similar to a BitTorrent “seed”,
however piece proxies may be used
for additional piece service scalability.

PDTP Piece Proxies
 Piece proxies download and cache file

pieces from a hub, then serve them to
the network on demand, reducing the
bandwidth requirements of hubs.

 BitTorrent solves this problem through
the use of multiple seeds. However, if
no seeds are available for a torrent,
content becomes inaccessable.

PDTP Proxy Servers
 PDTP proxies allow multiple users behind a

firewall to accept incoming peer connections
and, if necessary, make outgoing
connections through the proxy rather than
directly.

 PDTP proxies also allow multiple users on a
network transferring the same file from the
same server to share the file among each
other rather than each downloading it
separately, good for OS patches.

PDTP Clients
 PDTP clients can browse directory lists

and request file transfers.
 Clients transfer pieces either from a

hub/proxy or to/from each other in a
peer-to-peer manner.

 Clients are either “passive” (behind a
firewall and cannot accept incoming
connections) or “active” (can make both
outgoing and incoming connections)

PDTP Networks
 Simplest configuration: One server, one hub
 Server manages transfers on network
 Hub “seeds” clients with initial pieces

More Scalable Networks
 Additional servers can be added for

increased network scalability
 Hub still needs to “seed” entire client

network

Maximum Scalability
 Piece proxies can be added to decrease

the hub’s bandwidth consumption
 This configuration shields the address of

the hub from the rest of the network

Interesting Features…
 With servers and piece proxies in

place, the address of the network
hub is hidden from the rest of the
network.

 As long as the hub and one server
remain active, the network will
continue transferring files.

 A possible headache for Johnny Law?

Self-Optimizing Networks
 While BitTorrent relies on some interesting

properties of random networks, PDTP
servers use a weighted scoring algorithm
to select peers for transfers.

 PDTP calculates a weighted score for each
peer every time a transfer completes, and
factors in the transfer rate and respective
scores of all peers which a given peer has
ever transferred pieces to/from.

Protocol Design
 PDTP uses a lightweight binary

transactional format.
 The protocol is fully bidirectional

and supports both synchronous and
asynchronous operational modes.

 PDTP does not use ASN.1 due to
input validation complexity issues.

Transaction Format
PDTP transactions are structured as follows:

 uint32 - Length
 uint32 - Serial number
 uint16 - Opcode
 uint16 - Object count
 Arbitrary number of objects

The opcode is a bitfield whose highest bit indicates a request (0) vs
reply (1). The lower 15 bits comprise an integer ID for the operation.

Object Format
Transactions take a variable number of
“objects” as arguments. These are
structured as follows:

 Uint32 – Length of object
 Uint16 – Integral type identifier
 String – Object payload

Protocol Security Concerns
 PDTP’s transaction format has been

designed with all lengths explicit,
centralizing much of the input
validation and eliminating
assumptions.

 Connection authorization is handled
through existing, secure standards
such as RFC2104 HMAC hashing.

File Integrity Validation
 PDTP clients check for a signed X.509

certificate containing a DSA key.
 Clients will compute a DSS signature

for a file and compare it against the
server-provided one.

 A signature mismatch indicates
server-side file tampering, possibly
trojaning.

PDTP Search System
 Decentralized – Clients query

servers directly for searches by
sending a large number of UDP
datagrams.

 PDTP Trackers store lists of active
server addresses.

 http://search.pdtp.org/ will store a
list of active trackers.

http://search.pdtp.org/

Server Query Process
 Clients send a UDP search request

to the server.
 Server responds with a UDP

acknowledgement containing a
results retrieval key.

 Clients connect via TCP to fetch
search results.

PDTP Development –
libpdtp
 Client library designed for use in

single threaded and multithreaded
applications, written in C.

 Portable across all Win32
operating systems and POSIX.

 Available on SourceForge at: http://
libpdtp.sf.net/

http://libpdtp.sf.net/
http://libpdtp.sf.net/
http://libpdtp.sf.net/

PDTP Development -
Squall
 Squall is a development project for all

PDTP server/proxy components.
 Squall utilizes advanced event and

filesystem monitoring features to
improve scalability.

 Squall is portable across Windows
NT/2k/XP/2k3 and POSIX.

 Available on Sourceforge at: http://
squall.sf.net/

http://squall.sf.net/
http://squall.sf.net/
http://squall.sf.net/

Future PDTP Projects
 Skyfire – GUI client application written

with Qt 4. Will allow PDTP searching,
server browsing, and file download. On
SourceForge at: http://skyfire.sf.net/

 USRI - APR for Squall. Provides a
synchronous interface to a number of
host specific features across multiple
Win32 and POSIX systems.
Development page: http://usri.pdtp.org/

http://skyfire.sf.net/
http://skyfire.sf.net/
http://skyfire.sf.net/
http://usri.pdtp.org/

Getting Involved
 Join the developers mailing list:

developers-subscribe@pdtp.org
 Visit the project forums at:

http://forum.pdtp.org/
 Visit the project web page at:

http://www.pdtp.org/

mailto:developers-subscribe@pdtp.org
http://forum.pdtp.org/
http://www.pdtp.org/
http://www.pdtp.org/
http://www.pdtp.org/

	Peer Distributed Transfer Protocol
	What is PDTP?
	Existing Technologies
	BitTorrent
	Problems with BitTorrent
	Where is BitTorrent going?
	PDTP – BitTorrent for the masses
	PDTP vs. BitTorrent
	PDTP vs. BitTorrent (cont’d)
	Slide 10
	PDTP Components - Servers
	PDTP Components - Hubs
	PDTP Piece Proxies
	PDTP Proxy Servers
	PDTP Clients
	PDTP Networks
	More Scalable Networks
	Maximum Scalability
	Interesting Features…
	Self-Optimizing Networks
	Protocol Design
	Transaction Format
	Object Format
	Protocol Security Concerns
	File Integrity Validation
	PDTP Search System
	Server Query Process
	PDTP Development – libpdtp
	PDTP Development - Squall
	Future PDTP Projects
	Getting Involved

