
Metamorphic
Viruses
Sean O’Toole

Metamorphism Defined
 “Body-polymorphics” (Szor, 127)
 “Self Mutating Code” (Lord Julius)
 “The Art of Extreme Mutation” (Mental Drill)

Brief Description of Sections
 1) Disassembler: used to disassemble host,

most often into a linked list of op codes.
 2) Depermutater: removes some of the

jumps added by the permutater, and
sometime also from the host, and therefore
removes unreachable code.

 3) Shrinker: changes op code clusters to
most efficient op code.

Brief Description of Sections
 4) Expander: randomly chooses code to

change to equivalent op code or op code
cluster.

 5) Permutater: randomly “shuffles” groups
of code and links the groups with JMPs.

 6) Assembler: re-assembles code at the
end of the infection process.

Metamorphic Programming Approach
“Do not think in code think in macros” (Mental

Drill).

In other words, the best approach to this
process it to approach it with software
engineering in mind. Everything is a
separate/independent module or macro.

1) Disassembler (Choices)
 Using a pseudo-language, which was the

idea presented in “Metamorphism in
Practice” by Mental Drill.

 Using a reverse-engineering tool, such as
LDE (Length Disassembly Engine) and
ADE (Advanced Disassembly Engine) by
Zombie.

1.1) “Pseudo” Code Ex. by Mental
Drill
Op Code Structure:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OP *-------- instruction data -------* LM *-pointer-*

Op Coding Ex. (Full List in Article):
MOV:= 40; Reg, Mem:= +2;
So, MOV Reg, Mem := 42

1.2) Using ADE
 ADE32 contains a short manual with the

code that will direct you through the
process of including it with your code.

2) Depermutator (Choices)
 Integrate depermutator into the

disassembly process. (This is the most
common.)

 Create separate module for depermutator.

2.1) Psuedo-Code
Variables:
 ESI = Entrypoint.
 PathMarks: buffer that will contain the depermutated

virus.
 LabelTable: list of elements that are each two DWORDs

long. The first DWORD stores the real EIP where it
points; the second stores a pointer to the depermutated
code.

 FutureLableTable: list that contains pointers to the
destinations of JMPs, CALLs, etc. that have not yet
been depermutated. Each element is a DWORD.

2.1) Psuedo-Code
Initializations:
 1) Initialize the PathMarks map (i.e. zeroing

it) and the number of labels and future
labels.

 2) Translate the current EIP (in ESI) directly
onto the PathMarks map.

2.1) Psuedo-Code
If it's JMP:
 * If it points to an already depermutated address,

write a JMP instruction, insert a label to the
destiny and get a new EIP at FutureLabelTable. If
the label already exists, use that label.

 * If not, then write a NOP (just in case a label points
directly to this JMP) and load a new EIP (in ESI)
with the destiny. In this way, we have eliminated a
possible permutation JMP.

2.1) Psuedo-Code
If it's Jcc (conditional jump):
 * If it points to an already depermutated

address, write the Jcc and insert a label to
the destiny if the label doesn't exist (if not,
use the label already inserted in the table).

 * If the destiny is not depermutated yet, then
store it at FutureLabelTable and continue.

2.1) Psuedo-Code
If it's CALL, act as if it were a Jcc.

If it's RET, JMP Reg or JMP [Mem] (a final
leaf in the code tree), store the instruction
and get a new EIP from FutureLabelTable.

2.1) Psuedo-Code
Note:
When getting a new EIP from the FutureLabelTable,

we check if the labels stored here are already
depermutated. If they are, then we insert the
corresponding labels at the LabelTable and
eliminate the entry in FutureLabelTable. If not, we
get that new EIP (i.e. we load ESI with that new
entrypoint), we insert the new label at LabelTable
and continue.

2.1) Psuedo-Code
If creating a depermutater as a stand-alone

module. The Psuedo-Code is the same,
except that when depermuating a jump the
pointers in the elements of the list are
manipulated instead.

2.2.1) Example (permutated code)
xxx1
xxx2
xxx3
jmp @A
yyy1
yyy2

@B: xxx4
xxx5

xxx6
jmp @C
yyy3
yyy4

@A: xxx7
xxx8
xxx9
jmp @B

@D: xxx13
xxx14
RET
yyy5

@C: xxx10
xxx11
jz @D
xxx12
RET

2.2.2) Example (depermutated code)
xxx10
xxx11
jz @D
xxx12
RET

@D: xxx13
xxx14
RET

xxx1
xxx2
xxx3
xxx7
xxx8
xxx9
xxx4
xxx5
xxx6

2.3) Code
All the depermutators that I have run into

have been included within the disassembler
or reverse-engineering tools. Therefore, I
do not have a concrete example of a
depermuation module.

3)Shrinker
The shrinker is pretty much a stand alone

module.
The only possible relation is if the expander

uses a list to find code and choose an
equivalent, the list can be reversed to find
the shrunken equivalent to a cluster of op
code.

3.1) Psuedo-Code
CurrentPointer = FirstInstruction
@@Loop:
if([CurrentPointer] == MATCHING_SINGLE){

Convert it
if (CurrentPointer != FirstInstruction) call
DecreasePointer
if (CurrentPointer != FirstInstruction) call
DecreasePointer
if (CurrentPointer != FirstInstruction) call
DecreasePointer
goto @@Loop
}

 if ([CurrentPointer] == MATCHING_PAIR) {
 Convert it
if (CurrentPointer != FirstInstruction) call
DecreasePointer
if (CurrentPointer != FirstInstruction) call
DecreasePointer
if (CurrentPointer != FirstInstruction) call
DecreasePointer

goto @@Loop
}
if([CurrentPointer] ==MATCHING_TRIPLET){

 Convert it
if (CurrentPointer != FirstInstruction) call
DecreasePointer
if (CurrentPointer != FirstInstruction) call
DecreasePointer
if (CurrentPointer != FirstInstruction) call
DecreasePointer

 goto @@Loop
}
 do (CurrentPointer++) while ([CurrentPointer]

== NOP)
if(CurrentPointer != LastInstruction) goto

@@Loop
 DecreasePointer: do (CurrentPointer--) while

(([CurrentPointer] == NOP) &&
([CurrentPointer.Label == FALSE)) return

3.2) Code
 I have not yet found any code related to

shrinking code so I do not have anything
concrete to show for shrinkers.

4) Expander
The expander is most often it’s own module,

with the only possible relationship being the
previously mentioned relationship with the
shrinker.

4.1) Psuedo-Code
CurrentPointer = FirstInstruction
AmountExpanded = 0
While(NotEndOfCode) {

boolean isExpandable = Expandable ([CurrentPointer])
RandomNum = 0
if(0<isExpandable<4) RandomNum = random() % 2
else if(3<isExpandable<7) RandomNum = (random() % 4) - 1
else if(isExpandable == 7) RandomNum = (random() % 6) – 2

 if(RandomNum <= 0 || AmountExpanded == EXPANDEDENOUGH) {
IncrementPointer(CurrentPointer) AmountExpanded = 0 }
else { replace(CurrentPointer, expandOp([CurrentPointer],
isExpandable, RandomNum)) Increment(AmountExpanded) }

}

4.1) Psuedo-Code (Notes)
Expandable checks if the current operation can be expanded to

a larger amount of code. Return Values:
0: not expandable
1: can expand to one operation
2: can expand to two operations
3: can expand to three operations
4: can expand to one or two operations
5: can expand to one or three operations
6: can expand to two or three operations
7: can expand to one, two, or three operations

4.1) Psuedo-Code (Notes)
Function replace: replaces the instruction pointed at by

argument one with the instruction(s) in argument two.
Function expandOp: expands the operation pointed at by

current pointer with instructions based on the values of the
second two arguments (isExpandable, RandomNum)
Possible Arguments:
exchange current operation with the one listed: (1,1),(4,1),
(5,1), or (7,1)
expand current operation to the two mentioned in the list:
(2,1),(4,2),(6,1), or (7,2)
expand current operation to the three mentioned in the list:
(3,1),(5,2),(6,1), or (7,3)

4.2) Code (from Ramones by Vecna)
MOV Reg,Reg to PUSH RegPOP Reg

mov eax, edx
cmp al, 89h

;is mov?
 jne @@no_mov_r2r
 mov al, ah
 and eax, 01100000000111111b
cmp ah, 0c0h

;sure?
 jne @@no_mov_r2r
 mov ah, al
 and ax, 0000011100111000b

;reg registers

 shr al, 3
 add ax, 5850h

;transform to PUSH/POP
 stosb
 call garble
 mov al, ah
 stosb

 @@add2andgo:
 inc esi

;adjust input buffer by 2
 inc esi
 jmp @@insert_nocode

 @@no_mov_r2r:

5) Permutater
Permutaters are self-contained modules,

which can be seen in the Win32/Ghost and
Win95/Zperm.

5.1) Pseudo-Code
ESI = Initial address of instructions
EDI = Address of last instruction
while(ESI < EDI)

Store ESI
ESI += Random(8)+8
Store ESI
if((ESI+0F > EDI)

Store ESI,EDI
break;

end if
end while

5.2) Code (from RPME by Zombie)
 for (hooy*h0=root,*h1=h0; h0; h1=h0, h0=h0->next)
 {
 /* ... h1 h0 ... */ // if h0->nxt is standard cmd
 if (!(h1->flags&(CM_USER1|CM_XREF)))
 if (!(h0->flags&(CM_USER1|CM_STOP|CM_XREF)))
 if ((h0->nxt)&&(!(h0->nxt-> flags&(CM_HAVEREL|

CM_STOP|CM_XREF))))
 {
 int r1,r2,r3,r4;
 int n1=get_args(&h0->cmd[0], &r1,&r2, h0->len);
 int n2=get_args(&h1->cmd[0], &r3,&r4, h1->len);
 if (n1 && n2 && (n1+n2<=3)) // both ok, and only 1

may use stack
 if (((r1!=5)&&(r3!=5))||(n1+n2==2)) // check if ESP

//used
 if ((r1==-1)||(r3==-1)||(r1!=r3))
 if ((r1==-1)||(r4==-1)||(r1!=r4))

 if ((r2==-1)||(r3==-1)||(r2!=r3))

 if (user_random(fp,2))
 {
 for (int i=0; i<MAXCMDLEN; i++) // swap opcodes
 {
 h0->cmd[i]^=h1->cmd[i];
 h1->cmd[i]^=h0->cmd[i];
 h0->cmd[i]^=h1->cmd[i];
 }
 h0->len^=h1->len; // swap lengths
 h1->len^=h0->len;
 h0->len^=h1->len;
 }
 }
 }

6) Assembler
In the assembler, the most prevalent problem

that needs to be fixed during assembly is
jump relocation.

6.1) Psuedo-Code
Initialized:

eip_table (8 bytes per entry):
new_eip
old_eip (+4)

jmp_table (4 bytes per entry):
ofset of referenced
instructions.

6.1) Psuedo-Code
for (int y=0; still jumps to process; y++)

for(int x=0; not end of jmp_table; x++)
if(jmp_table[x*4] == eip_table[(y*8)+4])
assign jump eip_table[y*8]
endif
endfor

endfor

6.2) Code
(from W95/Ramones by Vecna)

fix_damn_jmps:
mov ebx, [ebp+ofs jmp_table_cnt-ofs engine]
mov esi, [ebp+(ofs jmp_table-ofs engine)]

 @@fix_jmp:
dec ebx

;for all jmps, do...
js @@done_fix_jmp
mov eax, [esi+ebx*8]
mov edi, [esi+ebx*8+4]

;translate old offset to new
call xref
mov edx, edi
btr edx, 31
mov ecx, edx
sub ecx, [ebp+(ofs destino-ofs engine)]

 sub eax, ecx
;calculate new relative distance
 @@near:
 bt edi, 31
 jc @@short
;and patch
 mov [edx-4], eax
 jmp @@fix_jmp
 @@short:
;patch 8b displacement
 mov [edx-1], al
 jmp @@fix_jmp
 @@done_fix_jmp:
 ret

7) Other Ideas
 Register Exchange (EBX becomes ECX)
 Entry Point Obscuring (EPO) & Unknown

Entry Point (UEP) Techniques
 Integrating other modules, such as garbage

code generators and encryption, into
metamorphism.

7.1) Register Exchange
This technique can be found in

W9x/Regswap by Vecna and Zombie’s
AZCME32c engine. Both use different
techniques.

7.2) EOP & UEP Techniques
 EOP: randomly placing a call or jmp to the

virus rather than placing the virus so that it
can be found at the entry point or by a call
or jmp at the entry point.

 UEP: randomly placing the code for the
virus directly in the stream of the hosts
code (No call or jmp to the virus code).

7.3) Integrating Other Modules
Trash Code Generators

 An example generator is Zombie’s ETG
(Executable Trash Generator).

 Trash generation works best when the code
is unreachable because of JMPs, among
others, so that the generated code can be
removed by the depermutater. Otherwise,
the virus will grow to an extremely large
size after a few generations.

7.3) Integrating Other Modules
Encryption

 An example of encryption used in a metamorphic
virus is in the ZMIST virus, which uses a module
for polymorphic encryption/decryption.

 One of the main issue to notice when using an
encryption is where the module places the
decrypted code during the process. In ZMIST,
this is dealt with by placing the code in the
initialized data section, which is the same as a file
that decompresses itself at runtime.

8) How Does This Technique Defeat
AV Techniques?

The article “Zmist Opportunities” in
Virus Bulletin March 2001 the
authors stated, “Metamorphic
creations will come very close to the
concept of a theoretically
undetectable virus.”

Zmist will be used as the test for the
AV techniques.

8.1) Zombie’s Ideas on Undetectable
Viruses (29A #6).
 Variables:

C := complexity of checking file for some virus.
C[i] := complexity, caused by metamorphism,
polymorphism, etc., of checking file for some virus
at a specific address.
I := number of possible addresses in file where
execution of virus body (or part of this body could)
start.

 Formula:
C = C[i] * I.

8.2) Signature Scan
 Obviously, by having a constantly variable body

generation to generation, there will be no
signature, unless the virus purposely leaves an
unambiguous sign to mark already infected files.

 Zmist places a ‘Z’ at offset 0X1Ch as an infection
mark.

 If an ambiguous marker is used false positives will
be encountered by the virus and AV, if it uses it
as a signature.

8.3) Geometric Scanning
 The Zmist virus causes at least a 32KB

increase in the virtual size of the data
section.

 If a geometric scanner, which looks for size
changes, the scanner will often give false
positives since this action is extremely
similar to the actions of a runtime-
compressed file.

8.4) Possible Answer
 A combination of techniques that as a whole

could be used in a heuristic concept.
 The flaws in this answer:

 This would become very time consuming and therefore
would often not be used by the public, as pointed out on
many occasion by Ferrie & Szor.

 Techniques that require emulation can be blocked by the
latest anti-emulation technique being integrated into the
code.

9) Future Possiblities
 Using a psuedo-language with multiple

assemblers for cross-platform infection.
 Use in worms.
 Communication between viruses.

10) Why This Technique Is Superior
To Previous Techniques:

 Trash generation: This technique will cause
a constant growth in code size until the
virus becomes to large and obvious.

 Polymorphism: The majority of polymorphic
viruses decrypt into a constant code body
that can be recognized.

11) Thank You

I will be happy to answer any
questions to the best of my
abilities that you have with the
remaining time. If you still have
questions, I’d be happy to speak
to you later.

	Metamorphic Viruses
	Metamorphism Defined
	Brief Description of Sections
	Slide 4
	Metamorphic Programming Approach
	1) Disassembler (Choices)
	1.1) “Pseudo” Code Ex. by Mental Drill
	1.2) Using ADE
	2) Depermutator (Choices)
	2.1) Psuedo-Code
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	2.2.1) Example (permutated code)
	2.2.2) Example (depermutated code)
	2.3) Code
	3)Shrinker
	3.1) Psuedo-Code
	3.2) Code
	4) Expander
	4.1) Psuedo-Code
	4.1) Psuedo-Code (Notes)
	Slide 26
	4.2) Code (from Ramones by Vecna) MOV Reg,Reg to PUSH RegPOP Reg
	5) Permutater
	5.1) Pseudo-Code
	5.2) Code (from RPME by Zombie)
	6) Assembler
	6.1) Psuedo-Code
	Slide 33
	6.2) Code (from W95/Ramones by Vecna)
	7) Other Ideas
	7.1) Register Exchange
	7.2) EOP & UEP Techniques
	7.3) Integrating Other Modules Trash Code Generators
	7.3) Integrating Other Modules Encryption
	8) How Does This Technique Defeat AV Techniques?
	8.1) Zombie’s Ideas on Undetectable Viruses (29A #6).
	8.2) Signature Scan
	8.3) Geometric Scanning
	8.4) Possible Answer
	9) Future Possiblities
	10) Why This Technique Is Superior To Previous Techniques:
	11) Thank You

