
MRQ

Matthias Bethke

MRQ ii

COLLABORATORS

TITLE :

MRQ

ACTION NAME DATE SIGNATURE

WRITTEN BY Matthias Bethke June 25, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

MRQ iii

Contents

1 MRQ 1

1.1 Index . 1

1.2 introduction . 2

1.3 features . 2

1.4 requirements . 3

1.5 installation . 3

1.6 tooltypes . 4

1.7 shellargs . 6

1.8 configuration . 7

1.9 examples . 9

1.10 utilities . 10

1.11 faq . 11

1.12 history . 12

1.13 bugs . 13

1.14 legal . 14

1.15 thanks . 14

1.16 author . 15

1.17 MagicUserInterface . 15

MRQ 1 / 15

Chapter 1

MRQ

1.1 Index

-----====****====-----
MRQ V1.12

-----====****====-----

Introduction

Features

Requirements

Installation

Tooltypes

Shell Params

Configfile

Examples

Utilities

FAQ

History

Bugs / ToDo

Legal babble

Thanks

Author

MRQ 2 / 15

1.2 introduction

What it is and why I needed it

MRQ is a MUI-based system patch that tries to do everything1 the well-known
requester improver "ARQ" by Martin J. Laubach does - and a lot more.

ARQ has been around for years now and it always was among my personal
"Top 5 Commodities", but I really wanted something a little more
configurable. Most of its features are hardcoded, you can neither
configure the ARexx interface nor the graphics nor the text scanner
that chooses the graphics depending on the requester text.

See
Features
for how MRQ tries to change all this.

1 Well, there’s a little drawback concerning asynchronous requesters. See the

FAQ
for more info!

1.3 features

Features

- Configurable like every
MUI
program (fonts, frames, group layout, ...)

- Complete keyboard control just like ARQ - the default button (i.e. the
leftmost for intuition functions, configurable by the applicaton in
ReqTools) reacts on "Return", the rightmost on "Esc", and all buttons
can be operated via the function keys (F1-F10 from left to right). The
traditional lcommand-v/lcommand-b combinations still work of course.

- Requester texts can be scanned for arbitrary combinations of localized
strings (identified by their catalog and string number, so a single config
works independently of the used locale) and fixed strings.
The text comparison can be both case-sensitive and -insensitive and can use
AmigaDOS patternmatching as well as simple substring searches.

- Can decorate buttons with additional imagery (like checkmarks, red ’X’es
etc.), also chosen according to the text on the button

- Manages an arbitrary number of images that are loaded via datatypes
and remapped to the current palette. They can be loaded just-in-time
and don’t occupy any memory when no requester is open.
Images can be of any depth, format and size (although it is of course
not awfully smart to use huge pictures or slow formats like JPEG)
If no predefined image matches the requester text, MRQ shows the calling
program’s icon if there is one. As a last resort, it looks for a file
called "MRQ_DefaultImage" in the IMAGES directory (or in

MRQ 3 / 15

PROGDIR:MRQ-Images/ and S:MRQ-Images/ if the image directory is
unspecified).
Since V1.10, MRQ can not only load an remap truecolor images but also show
them in hi-/truecolor if you use the appropriate screenmodes.

- Every image can be combined with an ARexx command, both command and port
are configurable so you can send messages to any program when a particular
requester pops up, even start programs or shellscripts through ARexx’s
system interface.

- also patches reqtools.library (only rtEZRequestA() at the moment)

1.4 requirements

MRQ requires at least

- a 68020 CPU
(it wouldn’t have been a problem to compile MRQ for 68000, I just don’t
think it makes sense on such systems though, it’s just too slow. Time to
upgrade, boyzngals!)

- AmigaOS 3.0 or higher

- MUI 3.x

- NewImage.mcc (still beta as of now, available at
http://www.linguistik.uni-erlangen.de/~msbethke/software.html

- NewImage.mcc requires guigfx.library and render.library (available
at Aminet:dev/misc/guigfx.lha and Aminet:dev/misc/renderlib.lha
respectively)

- optional: wbstart.library (AmiNet:util/libs/WBStart.lha)

1.5 installation

Installation

Since V1.4 MRQ comes with an installer script. I tested it on a couple of
different directories and it seems to work pretty well. Expect it to
contain bugs anyway - it’s constantly being developed and extended! In
case you either don’t have Installer V42.12 (minimum version required - you
should get it from AmiNet anyway!) or the script doesn’t work as expected,
here’s how to install MRQ by hand:

- Put MRQ somewhere on your HD, preferrably the WBStartup drawer. Since V1.2
MRQ can be started from the Shell too, so the icon is no longer obligatory.

- copy MRQ.config to S: or to the same directory as MRQ.
- copy the "mrq-images" drawer anywhere on your HD (PROGDIR: and S: are

searched automatically, if you put it anywhere else you have to tell MRQ
through the

IMAGES

MRQ 4 / 15

tooltype

The installer script automagically sets the CONFIGFILE and IMAGES tooltypes
in MRQ’s icon. If you already have a previous version installed, the
locations of config and image-dir are taken from the icon so you don’t need
to select the drawers on every update :-)
Since V2.0 of the installer script (MRQ V1.7) you may also use the
installer to configure MRQ’s tooltypes.

1.6 tooltypes

Tooltypes

CONFIGFILE
Tells MRQ where to find its configfile. If none is specified, MRQ looks
for the file MRQ.config first in PROGDIR, then in s:
Example: CONFIFILE=ENV:MRQ.config

DEBUG
Makes MRQ print quite a lot of information about what is happening, which
will come in handy when there should be problems with certain programs.
ToolType usage:
- "DEBUG" alone: opens a console window where text is printed
- "DEBUG=T:MRQLog": send debug output to a file called MRQLog in T:
Shell usage:
- DEBUG alone doesn’t work, it needs a value. For debug info to be

printed on the shell where MRQ was started, use DEBUG=""
- Logfile usage is just like from WB

IMAGES
The drawer where you keep the image files for MRQ. This drawer is
used if you specify a relative or no path in the configfile’s "IMAGE"
entries. Specifying no drawer has MRQ search first PROGDIR:, then S:
for a directory called MRQ-Images.
Example: IMAGES=SYS:Tools/MRQ-Images

SAMEWIDTH
Tries to make all buttons in a requester the same width.
Default is to make them only as wide as the text they contain.
SAMEWIDTH-buttons will probably look more aesthetic to most people.

MOUSEREQ
Makes requesters open under the mousepointer.
Default is to open all requesters centered on their screen.

FRONTSCREEN
Tries to open requesters on the frontmost intuition screen.
This is a hack!!!
It is not OS-legal to open windows on alien non-public screens,
therefore MUI defaults to opening its window on either the default
PubScreen or one that was configured for the particular application. But
a couple of tools have always opened their windows on screens they do not
own, and for all current Amiga models/OS versions it works fine. Just
omit this tooltype if it makes you uncomfortable.

MRQ 5 / 15

QUALITY
The quality to use for remapping pictures. Specify one of
"LOW","MEDIUM", "HIGH" and "BEST". Defaults to "MEDIUM".
Note: on screens with lots of free pens "LOW" may actually give the best
results as it avoids all dithering.

TRANSPARENCY
Controls whether color #0 of the requester image should be rendered
transparent, so custom MUI background images can shine through.

SINGLEFRAME
Use a single frame for image and requester text instead of framing them
separately.

SIZEABLE
Make requester windows resizeable. Probably quite useless... :-)

CENTERTEXT
Center all texts in the requester window. Gives a better look if the
gadgets are very wide and there’s little text in the requester.
If there is only a single line in the requester, it will always appear
centered.

IMG_YES / IMG_NO / IMG_CANCEL
Names of images to put on MRQ’s buttons in certain cases
Since V0.6b MRQ can optionally decorate buttons with images, much like
in the requesters you might know from Windoze crates.
As of V1.6 two methods of deciding which image to show for which button
are available:
- The simple one, without IBUTTONSBYTEXT:

if the IBUTTONSBYTEXT tooltype is unset, MRQ only uses the IMG_YES
and IMG_NO images. IMG_YES is put on the leftmost button, IMG_NO on
the rightmost. Simple as that.

- The advanced, with IBUTTONSBYTEXT:
with the IBUTTONSBYTEXT tooltype (see there for a description) you
can set strings to scan for in the button texts. If a string is
found, the corresponding imagebutton is used. So, similar to MRQ’s
choice of requester images, the button images actually depend on
what is written on the button.

Of course you can use pictures of any format and size here, too. (tested with
the checkmark and a 250x350 JPEG at the same time :-))
The IMAGES directory doesn’t apply here, specify the full path and filename for
all images!

IBUTTONSBYTEXT
To activate MRQ’s feature to choose an image for a button based on what
text is visible on the button, set this tooltype to a string of the
following format:
- three fields for YES, NO and CANCEL respectively, separated by commas
- each field may consist of any number of strings, separated by pipe

characters (’|’).
Example: yes|ja|ok,no,cancel|back

This lets MRQ choose the image IMG_YES for butons containing
"yes", "ja" or "ok"; IMG_NO for ones containing "no" and
IMG_CANCEL for buttons with "cancel" or "back" on them.

All strings are case-insensitive and need only occur somewhere on

MRQ 6 / 15

the button - so "note" matches "no", and "Say yes!" matches "yes".

NORTPATCH
Do not patch reqtools.library

AFTERPATCH
You will only need this tooltype if you are running some other patch to
EasyRequestArgs() that conflicts with MRQ. Many people reported problems
with things like AssignWedge that are not easily circumvented because
1) MRQ must have patched EasyRequestArgs() earlier than these

and
2) MRQ takes pretty long to start up, so it’s likely that other programs

have already started when it applies its patches.
Using this tooltype you can have MRQ run any other program after it has
installed its patches, thereby asserting the right order.
If the specified program (with spaces!) exists and has an icon, it will
be started using Stefan Becker’s wbstart.library. Otherwise MRQ splits
the name at the first space, using the first part as the program name and
the rest of the line as a parameter list.
Example: AFTERPATCH=C:AssignWedge SomeOption MoreParams
Example: AFTERPATCH=SYS:Tools/Multi CX
The first example starts a shell program, the second a WB process, given
"SYS:Tools/Multi CX" and its icon exists.
CAUTION: if you activate this option, MRQ can not be removed any more
because this would certainly cause programs to jump into unloaded code!

AVOIDTASKS
Any process whose name matches the pattern given here will be redirected
to the original library functions.
The patternmatching is case sensitive here!
Example: AVOIDTASKS=Thor|Hacky-#?|foo#?bar
means: don’t use MRQ for Thor, anything starting in "Hacky-" or starting in

"foo" and ending in "bar".

DEFAULTICON
MRQ can show the calling process’ icon if the requester text didn’t match
any configured pattern and the program does have an icon. Set this
tooltype to activate icon display. Without it, the default image is used.

1.7 shellargs

Shell Parameters

MRQ’s ReadArgs() template when started from the Shell looks like this:

Configfile,
IMD=ImageDir/K,
BY=Button_Yes/K,
BN=Button_No/K,
BC=Button_Cancel/K,
IBBT=IButtonsByText/K,
QU=Quality/K,
AT=AvoidTasks/K,
DI=DefaultIcon/S,
MR=MouseReq/S,

MRQ 7 / 15

SW=SameWidth/S,
FS=FrontScreen/S,
SF=SingleFrame/S,
TR=Transparency/S,
SI=Sizeable/S,
CT=CenterText/S,
NRTP=NoRTPatch/S,
AP=AfterPatch/K,
Debug/S

The corresponding
tooltype
for every parameter should be obvious, see there

for further info!

Example Usage:
mrq IMD=Work:Graphics/mrq-images OB=s:mrq-images/MRQ_OK.brush
CB=s:mrq-images/MRQ_Cancel.brush RP=exact sw fs tr mr

1.8 configuration

Configuration

MRQ has a configfile that tells it how to behave. Here’s all the keywords:
(all but NEWCLASS may be abbreviated, the two-character abbreviation is
given in ReadArgs()-syntax as <abbrev.>=<keyword>!)

NEWCLASS
This starts a new entry. For each image and ARexx-command you need to
define one "event class" - just like the "delete", "printerstuff",
"software failure" etc. classes know from ARQ, you can just have more of
them. The following keywords each need an event class they belong to and
thereby define this class’ behavior.

IM=IMAGE
Specifies filename (and optional path) of an image to display when a
requester of the current class is detected. The image can be of any
size and any format you have a datatype for, but remember it will be
loaded every time a requester pops up, unless you use the PRELOAD switch
(see below), so don’t use too big images/slow formats if you don’t have
a super-fast machine.
If you specify a full path here, MRQ will use this to look for the image
file; otherwise the "IMAGES"-tooltype’s value is prepended.

PL=PRELOAD
This is a modifier for IMAGE. It changes the default behavior of loading
images every time a requester pops up to loading the image while the
config is being parsed and keeping it in memory. This increases memory
usage, speed, and the time to start up. Since V1.10 there is no need any
more to load all pictures once on startup because their size isn’t needed
that early.
The default image is always preloaded.

MRQ 8 / 15

TR=TRANSPARENT
A modifier for IMAGE as well, this thells MRQ to render the image with
transparent background. Every pixel in color #0 is considered background.
The global

TRANSPARENCY
option still works to enable transparency

for all images.

RP=REXXPORT
The name of an ARexx port which MRQ should send a command to when opening a
requester of the current class.
Default (i.e. if you only specify REXXCMD) is "PLAY".

RC=REXXCMD
Command to dispatch via ARexx. For

example
, if you want to keep using UPD as

configured for ARQ, use something like "ID error_task_held" here.

Only one IMAGE, REXXPORT and REXXCMD should be specified for each class!

Strings a requester should be scanned for can be specified with the following
two keywords, each of which may appear multiple times for each class:

ST=STRING
STRING needs only one argument: a string :-) If this string occurs as a
requester’s body text, it tells ARQ to use image and arexx command of the
current class.

LO=LOCALE
LOCALE takes any number of arguments, the first of which must be the name of
a locale catalog (e.g. "sys/devs.catalog") and the rest numeric arguments
representing string numbers from that catalog.
See

examples
if you have no idea what this means :-)

If you do, well then, how do you get the locale catalog number of a
given string? That’s what

dumpcat
is for, see there its doc for more

info!

To modify the behavior of the text scanner, STRING and LOCALE can be combined
with a couple of switches as follows. Note that not every switch makes sense
with both STRING and LOCALE!

PA=PATTERN
Use the AmigaOS patternmatching routines to compare the given string and the
requester text. For a complete description of patterns see your AmigaOS
manuals; some

examples are here
.

Can be used with STRING only.

SU=SUBSTRING

MRQ 9 / 15

Simpler and less CPU-intensive than PATTERN, SUBSTRING only searches for the
specified string at any position inside the requester text. SUBSTRING and
PATTERN are mutually exclusive of course! (if both are found on one line,
PATTERN is used and a warning printed if the

debug console
is open)

Can be used with both STRING and LOCALE.

NC=CMPNOCASE
Forces case-insensitive comparison.
Can be used with both STRING and LOCALE.

FO=FORMATTED
Don’t search the text as input to the requester functions but the already
formatted text as output into the requester.
To understand the difference, it’s necessary to know that EasyRequestArgs()1
(the function MRQ replaces) can construct requester texts from a format
string and an argument list. Usually programs feed a localized format string
to EasyRequestArgs() (it can looks like "This is the %s with %d arguments"
for example) and have certain placeholders (the percent-some-character
things) replaced with arguments like "body text" and ’2’. In this case it’s
just fine to search the format string for some pattern or substring to
determine the correct requester image. But then, a few programs (among them
the Workbench!) pass only a very general format string to EasyRequestArgs(),
like"%s\n%s\n%s". The actual text is filled in with localized argument
strings - the above format string can result in
"You MUST replace volume
Blah
in any drive!"
Of course you can’t tell what the requester will look like from the format
string alone, you have to scan the text as it appears in the requester, and
that’s what FORMATTED does. As there are always parameters that change from
one requester to another (the volumename in the above example) you’ll almost
certainly want to combine FORMATTED with SUBSTRING to scan f.e. for the string
"You MUST replace volume" in the above requester.
FORMATTED can be used with both STRING and LOCALE.

1Since V1.7 MRQ has been able to patch other
functions, namely in reqtools.library. What is said here about
EasyRequestArgs() equally applies to the other functions!

1.9 examples

Examples

Here’s a short sample configuration that should make a few things
clearer...

NEWCLASS
LOCALE hello.catalog 2 1 3
LOCALE test.catalog 5
STRING "Hello, (world|Brazil|Erlangen)?" PATTERN
STRING "good morning" NC SU
IMAGE hello.ilbm
REXXPORT "MYSOUNDPLAYER"

MRQ 10 / 15

REXXCMD "play my_sample"

Let’s have a look at the individual lines now:
NEWCLASS starts a new event class as described in

Configuration
.

Following that is a LOCALE parameter defining three strings (numbers 1, 2
and 3 - order doesn’t matter) from "hello.catalog" - a (hypothetical)
catalog for a localized "Helloworld" program that might contain strings
like "Hallo, Welt!", "Schweinewelt!" and "Wo soll das alles enden?" (in
its german version :)). Now if any of these strings is found in a
requester’s text, this counts as positive identification of the current
event class.
The next line adds another string from test.catalog to the list of strings
that identify this event (you see, the total number of strings that identify
a class and where they come from doesn’t matter at all!).
Next is an explicitely specified (non-localized) STRING using
case-sensitive patternmatching. The given pattern matches "Hello, world",
"Hello, Brazil" and "Hello, Erlangen", with an optional character (an
exclamation mark or something) at the end.
The string "good morning" has both the "case-insensitive" and "substring"
switches set, that means anything like "good morning", "gOOd MornInG",
"GOOd MOrnINg", ... matches anywhere inside the requester text, no matter how
much additional text is before of after the string (like, "A very nice GOOD
MORNING to you all!" will match as well).
IMAGE should be easy to understand - it’ simply the name of a picture file
that should be displayed in the requester if any of the above strings is
found. You need not specify a path as long as you keep all your pictures in
the directory specified with the

IMAGES
tooltype, but you can if you want to.

The last two lines aren’t difficult either - REXXPORT and REXXCMD tell MRQ
to send the command "play my_sample" to the port "MYSOUNDPLAYER" when a
requester of this class opens.

1.10 utilities

There’s currently only one utility that you’ll need to configure ←↩
MRQ:

dumpcat
Dumpcat is a tool to dump the contents of a locale catalog file to
the shell (stdout). It takes the following parameters:
Catalog/A,Neg/S,Max/N
Catalog is simply the name of the catalog file of which you want to

see the contents, "sys/devs.catalog" f.e.
Neg tells dumpcat to scan catalog numbers from zero downwards. Normal

catalog files contain strings numbered from 0 or 1 upwards, sometimes
with unused numbers for historical or other reasons. I have only
come across a single catalog that contains strings with negative
numbers (sys/dos.catalog) though, but if a catalog seems to be empty,
trying "Neg" could be the solution.

Max is the maximum number of strings to scan, defaults to 65536
Theoretically, catalogs may contain strings under every index possible

MRQ 11 / 15

in a longword, but scanning all of them would mean 2^32 calls to
locale.library, so the range has to be somewhat smaller :)

Catalog strings are printed one per line, preceded with their number (the
one you want for MRQ’s config!) If it finds newline characters in a string,
it replaces them with the C-notation for newlines, Backslash-n (’\n’).

Dumpcat will hopefully be obsoleted by the coming
Prefs Editor
which will

handle all this cryptic stuff internally so you only need to click on the
string you want and have its number and catalog name stored in the
configfile.

1.11 faq

Frequently Asked Questions

Q: A few requesters like "delete" and "copyright" have the correct images
but most show only the default image. what’s wrong?

A: Most likely there are some catalog files missing from your
LOCALE:Catlogs/sys directory because you are running an english system
and all texts are english by default so there don’t need to be any catalog
files. I haven’t had the time to make an extra config for you yet - it
requires getting all the messages that are now encoded als LOCALE config
lines and writing them verbatim into the config. If anybody wants to do
this - go ahead,

I
’ll include the config in the next

release!

Q: Why don’t AssignWedge and similar functions in MCP etc. work any more?

A: These programs also patch EasyRequestArgs(). Some (e.g. the original
AssignWedge by Olaf Barthel) will work fine if started after MRQ.
That’s because MRQ replaces the entire EasyRequestArgs-function with code
of its own and never calls the old function back like most patches do, so
previously installed patches won’t get called any more.
Since V1.8 there’s the

AFTERPATCH
tooltype to have programs started

by MRQ after the patches were applied.

Q: Why can I resize but not snapshot an MRQ window?

A: I tried to make this possible but it didn’t do no good at all. The
problem is that I have to assign a MUI object-ID to windows which is the
same for all requesters - and MUI remembers the size of each
window that has an ID for the next time it is opened. So when a requester
with lots of text appears, the window will naturally be large. But
subsequent requesters won’t shrink, they are always as big as the largest

MRQ 12 / 15

requester you had open before - they have the same ID after all!
This sucks, so I didn’t use it...

Q: Why is MRQ so slow?

A: Both MUI and the datatypes system are not quite the fastest components
in AmigaOS. They’re programmed for versatility, not speed. You can do
something to speed them up though:
- use

PRELOAD
for frequently used images. They will be

kept in memory and no slow datatypes components are involved with
their display.

- don’t use too many patterns and backgrounds in MUI (looks ugly anyway :))
- don’t use slow formats like GIF (let alone JPEG!) for your images

Q: What about patches for some other functions like the intuition async
requester functions?

A: I tried to patch the async requesters but found it is unwise to do
so. This is because they have to return a window pointer, and the window
I open is managed by MUI. It is to be expected that the caller uses the
async function to mess with the window somehow, and MUI is pretty
allergic to that.
Since V1.7 MRQ can also patch reqtools.library, currently only
rtEZRequestA(), but I’ll have a look for other possibilities soon.

1.12 history

History

V0.1 07-Nov-97 - - Ancient history :)
V1.8 20-Sep-98

V1.9 01-Dec-98 - changed
DEBUG
usage: you can now specify a file

to send debug output to
- removed the exit delay when a debug console was

open - if you want to read the output later, send
it to a file or use the TEE: handler!

- changed requester on exit to a standard MUI
requester.

- Bugfix: tiny bug in the search-that-darn-config
routine removed

- Bugfix: pr_WindpwPtr misinterpreted, removed
all checks for that.

- Bugfix: AT LAST! MRQ works with non-CGfx
dataypes! These nonstandard bitmaps required
some tricks :-((be assured: nothing illegal!)
This also means: no more weird-looking
imagebuttons!

V1.10 05-Mar-99 - Linebuffer for configfile reading increased to

MRQ 13 / 15

(Homepage only) 512 characters
- Now finds SetMan and doesn’t warn on exit any

more if it is installed.
- fixed the function to check AVOIDTASKS, now

works with strange programs like THOR where
GetProgramName() returns success and an empty
name

- the <RETURN>-key-handling has changed somewhat:
- MRQ now activates the default button so it can

be rendered with a colored frame by MUI.
- there is no fixed binding of <RETURN> to the

default button any more, so you can change the
active object with the tab key (this has been
possible ever since but before there was no
active object until the first <TAB>)

- if the application requests that no button
should react on <RETURN>, no button will be
activated when the requester opens. You can
still cycle through them with <TAB> and press
<RETURN> just like before though.

- major rework of the graphics system! Now uses
NewImage.mcc for much cleaner image handling.
See http://www.linguistik.uni-erlangen.de/~msbethke/ ←↩

software.html
for the latest versions!

- as a result, MRQ now supports truecolor images,
displayed in all their glory on hi-/truecolor
screens!

- added DITHER AND PRECISION tooltypes
V1.11b 11-May-99 - bugfix: errors while building the MUI object tree

(Homepage only) were not handled correctly at all
- bugfix: printed garbage instead of program name if

started from the shell and MRQ already running
- replaced DITHER and PRECISION with NewImage.mcc’s

new
QUALITY
parameter.

- Added
DEFAULTICON
option: if a requester text

doesn’t match any class, MRQ can now show the
calling program’s icon (if any) instead of the
default image.
NOTE: this doesn’t seem to work well right now.
I don’t know yet whether the fault is MRQ’s or
NewImage.mcc’s.

V1.12 21-Jan-00 - Fixed a few bugs that could cause Enforcer hits
if function parameters were incomplete (which is
legal in some cases for ReqTools)

- Again: fixed a problem with pr_WindowPtr
- Adapted to latest version of NewImage.mcc
- Showing icons *does* work now! :)

1.13 bugs

MRQ 14 / 15

Stuff that should really be fixed

- there’s a pretty good chance for a crash if you quit MRQ via CX Exchange
while there are still requesters open. Wanna make this foolproof so it
will have to use semaphores. RSN!

Things planned for future releases (roughly in order of priority)

- real prefs editor with IFF configfile

- animation.datatype support
Had a hell of a time trying to integrate real BOOPSI objects in MUI
windows already. No success so far, I’m not sure if it’s possible at all.
Now with NewImage.mcc things seem to get easier again...

- ...anything else?
Send suggestions!

1.14 legal

MRQ is freeware

You know what that means, don’t you?
If you don’t - well, I want to spare myself the usual kilobyte-long disclaimers:

I don’t guarantee anything, so if MRQ causes you damage of any kind, it’s entirely
your own problem. You get what you pay for.

Of course I tried to make it as bugfree as possible, and if you tell me about any
bugs that show up on your system I will probably consider fixing them. Don’t rely
on it though - installing MRQ on a mission-critical system is definitely a Very ←↩

Bad
Idea(tm)! But you knew that already :-)

1.15 thanks

Thanks go to:

- Martin Laubach for
ARQ

- Stefan Stuntz for
MUI

- Timm S. Müller for guigfx.library and a lot of help with ←↩
using it

- Jonas ’Zaphod’ Petersson for UPD
- Tony Matthews for the LinuxBrushes archive
- Stefan Becker for wbstart.library
- the SAS/C blokes for great work
- all bugreporters for constructive criticism

MRQ 15 / 15

- Unconscious Collective, XIS, Hallucinogen, Acid Junkies and the Green
Nuns of the Revolution for incredible sounds

- Cris for being just wonderful

1.16 author

Author

Send comments, suggestions, gifts, flames, files etc. to:

email: Matthias.Bethke@gmx.net

smail: Matthias Bethke
Haagstr. 5
91054 Erlangen
Germany

Homepage: http://www.linguistik.uni-erlangen.de/~msbethke
Software page: http://www.linguistik.uni-erlangen.de/~msbethke/software.html

1.17 MagicUserInterface

This application uses

MUI - MagicUserInterface

(c) Copyright 1993/94 by Stefan Stuntz

MUI is a system to generate and maintain graphical user interfaces. With
the aid of a preferences program, the user of an application has the

ability to customize the outfit according to his personal taste.

MUI is distributed as shareware. To obtain a complete package containing
lots of examples and more information about registration please look for
a file called "muiXXusr.lha" (XX means the latest version number) on

your local bulletin boards or on public domain disks.

If you want to register directly, feel free to send

DM 30.- or US$ 20.-

to

Stefan Stuntz
Eduard-Spranger-Straße 7

80935 München
GERMANY

	MRQ
	Index
	introduction
	features
	requirements
	installation
	tooltypes
	shellargs
	configuration
	examples
	utilities
	faq
	history
	bugs
	legal
	thanks
	author
	MagicUserInterface

