
in

in ii

COLLABORATORS

TITLE :

in

ACTION NAME DATE SIGNATURE

WRITTEN BY June 25, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

in iii

Contents

1 in 1

1.1 SamEd, sound sample editor, © 1998 Matthew Hampton . 1

1.2 Introduction to SamEd... 2

1.3 Registering SamEd... 2

1.4 Installation... 3

1.5 Starting SamEd from Workbench... 3

1.6 Starting from CLI... 4

1.7 Editing Samples... 5

1.8 The different sample types... 5

1.9 Exec ports and messages... 5

1.10 Writing external processes in C . 7

in 1 / 8

Chapter 1

in

1.1 SamEd, sound sample editor, © 1998 Matthew Hampton

__
//\AMED
_¯
_¯\
\//ound sample editor.
¯¯

A new 16-bit stereo sound sample editor designed for easy use,
featuring a versatile developers interface for an expandable system.

· Introduction
Introduction
· Registration
Registration
· Usage
Installation

Starting from WB

Starting from CLI

Editing

Sample types
· Development
Basics

Using C
C functions

Autodocs

Please note: Procs and Filers from this version are incompatible with
those supplied on Amiga Format’s disc 32. See

magic numbers

in 2 / 8

1.2 Introduction to SamEd...

Introduction to SamEd sound editing software...

SamEd is a 8 / 16 bit, mono / stereo sound sample editor, designed to be
easy to use and yet powerful and most importantly expandable. To fulfil this
design SamEd has the following features:

· Uses AHI to be compatable with the majority of sound hardware;

· Uses MUI for several reasons including to speed up development, to
supply a customisable and scalable interface, and eventually to allow dynamic
creation of objects;

· Has only one edit window. Although I consider this a limitation, it
does mean that it is easy to see what is happening as all focus is directed
to the one display. You only edit the sample you can see;

· The (theoretical) maximum sample size is over two thousand mega bytes
long, although I have not tested this and the ranging in the waveform window
will not cope with these sizes.

· Copes with 8 / 16 bit, mono / stereo samples without any problems (I
hope :)), and may soon support 32 bit floating point samples, as well as
samples on any device, eg. hard disks.

· Loades and saves samples through filers. For example the 8SVX filer
loads and saves 8SVX type IFF files. More filers can be produced for
different file types. RAW samples are loaded internally by SamEd.

· A powerful ’external process’ launcher allows any developer to produce
his or her own sound effects. The ’external process’ system has a quick and
easy interface to allow programmers to get data from any sample and alter it
as they wish. This system relies on multitasking and creates a multithreaded
editing system.

The requirements of this program are:

· AHI;
· MUI;
· AmigaOS 3.0;
· about 200K chip and 640K fast RAM (based on figures from my title

bar). This will increase as you load samples and effect windows;
· I recomend you have a 640 * 400 srceen, and a few MB of fast RAM.

Anything else? -if you have problems with a particular setup then please
fell free to moan.

1.3 Registering SamEd...

Please register to support development...

If you wish to register SamEd, and get a personal key file allowing you

in 3 / 8

to use all updated versions of SamEd up to at least V2.0, then send your
name, address, and any other relevant information (telephone no., email
addr.) and £10 to me (address below). You will recieve a key file, all the
latest sound effects, and the very latest version of SamEd. You will also
recieve any major updates after that.

If you have any comments, complaints, registrations, bug reports, ideas,
things you wish were implemented etc. feel free to write to me:

54 Myatt Road,
Offenham,
Evesham,
Worcs,

WR11 5SD

(England)

Please note SamEd is obviously SHAREWARE. Your key file is for personal use
only, it will contain your name and address (encrypted), so you should not
pass it on. SamEd © 1998 Matthew Hampton. This software may be redistributed
on any media for non profit purposes. You must not alter any files in any way
when redistributing.

1.4 Installation...

Installing SamEd software...

To install copy all files to a new directory on your hard disk.

Further information:
SamEd looks for files in the current directory. It currently looks

for filers in ’Filers/’, and external processes in ’Procs/’. All libraries
should be accessible through the LIBS: assign.

1.5 Starting SamEd from Workbench...

Starting SamEd from Workbench...

Obviously, to run SamEd double click on its icon. One tool type is
supported by SamEd: OUTPUT = <file>. This redirects SamEd’s debug information
to a file. The file name could be CON:, RAW:, or KCON: etc. The debug
information is usually memory allocations and messages recieved from external
processes, but output from filers will also be directed here.

(v0.80 - output for ext. procs. is not yet directed to OUTPUT. Ext. procs.
are currently opened with no input/output streams.)

in 4 / 8

1.6 Starting from CLI...

Starting SamEd from CLI, Shell, etc...

To run SamEd type SamEd (or SamEd#.##) into a CLI or Shell. SamEd’s
debuging information will automatically be outputted to the console. To stop
it redirect it eg. SamEd >NIL: or SamEd >Ram:samed.debug.

SamEd supports the following arguments. First two arguments are scanned
for:

NOINTF - will start SamEd without opening the MUI interface. You can
load and play samples automatically from the CLI with
more commands.

ICONFYFIRST - opens SamEd in an iconified state (ie. only an icon will
apear on the desktop which you can double click to open
the interface).

The following commands are then executed in the order which they appear:

CLOSEINTF / OPENINTF - Open or close the interface (all windows exept
windows opened by external procs.).

ICONFY / UNICONFY - Iconify or uniconify the interface (all windows
exept external procs.).

PLAY <n> - Play sample number <n>.

PLAYONCE <n> - Play sample number <n> once (ie. ignore loops -
at present loops are ignored anyway).

PLAYLOOP <n> - Play the loop part of sample <n> only
(activates playonce in current version).

PLAYWAIT - Wait until the sample has finished playing.

WAIT <ticks> - Wait <ticks> amount of time. The time is
measured in ’ticks’ or 50/60 ths of a second
(ie. 50 ticks = 1 second).

FLUSH <n> - Flush sample number <n> from memory.

FLUSHALL - Flush all currently loaded samples from memory.

LOAD <n><name> - Load sample named <name> into sample number <n>

QUIT - Quit SamEd. SamEd may be running even though
you cannot see it because it has no
interface.

Any arguments or parameters for arguments not recognised will be treated
as file names and SamEd will attempt to load the file into the first
available sample slot.

Please note you can only load SamEd once, but you can send SamEd commands

in 5 / 8

while it is running. Eg. type SamEd, Then SamEd again with some of the above
arguments, and they will be executed (but NOINTF and ICONFYFIRST will be
ignored). Because there are wait commands included, and commands are executed
in order this allows you to produce a simple ’script’, especially if you hide
the interface.

1.7 Editing Samples...

Editing samples and general usage...

Sorry, not completed :(

1.8 The different sample types...

The four supported sample types...

There are four sample types supported by SamEd:

8 bit mono
8 bit stereo
16 bit mono
16 bit stereo

As you may know 16 bit samples are generally of better quality than 8 bit
samples but take up twice as much memory. This is due to them being 256 times
as ’accurate’.

SamEd keeps note of each sample’s type from when it is loaded, so that it
may play back the data (through AHI) correctly. When you load a RAW sample
(ie. a sample with waveform data but no pitch, volume, loop data etc.), you
need to specify the samples type. The type window opens automatically, change
the type then select OK. If it does not play back correctly try opening the
type window again (Type button on main window), change the type, and press
OK.

When you have found the samples type you will not need to use the OK
button, in the type window, any more. If you wish to change the samples type
use the convert button. This will not only set the right type but will also
convert the samples data to the correct format.

Note that a sample may be loaded RAW even if it is not actually RAW. This
happens when a sample format is not recognised. When this happens there may
be some noise at the begining of the sample which you can easily delete.

1.9 Exec ports and messages...

Basics to writing effects for SamEd...

To develop for SamEd you will need to understand Exec Tasks, Ports,
Messages, and Signals, at least in part. It is possible to create an external

in 6 / 8

process (effect) using any programming language which supports these objects.
For example Blitz Basic has access to the Exec library.

I’ll run through what is involved in creating an external process. The
ideas are simple if you understand messages and ports. First what does SamEd
do:

· First of all SamEd sets up a Message port which it listens to
continually.

· If the user presses an ext. procs. button then SamEd launches it as a
separate task passing it it’s button number as a CLI type argument.

· If the ext. proc. decides it needs some information from SamEd (any
thing from the version no., to sample data, or setting up a new signal), The
proc. sends SamEd a message which SamEd returns with the data filled in.

Now what the ext. proc. must do:

· You will need an initialised message port for replies, a message, and
possibly a signal.

· First, when the ext. proc. starts check SamEd’s version number. This is
done by sending a EPC_VERSION command in the message. This is only needed if
you require a command which requires a certain version of SamEd’s message
port.

· Next if your proc should be allowed to be loaded multiple times then
send an EPC_MULTI. If you don’t then there will only ever be one copy of your
program running at any time.

· When you need sensitive data (requiring a lock) obtain SamEd’s lock by
sending EPC_LOCK and CHECK FOR ERRORS. SamEd will return an error if it is
already locked. Data requiring the lock includes sample data, and ranging
data, etc.

· Obtain a pointer to the data. You may then alter it safely with no
interference. Eg. apply the sound effect to the sound.

· It is important that you now unlock SamEd.

· When you quit, if you didn’t send EPC_MULTI, send EPC_QUIT so that your
button can be reused (your program can be launched again).

If you have to set up the mesage ’manually’ each time then your written
code will become long. However, if you are using C there are some functions
to aid you considerably.

Using C
C functions

in 7 / 8

1.10 Writing external processes in C

Writing ’external processes’ (effects) in C...

Magic numbers - SamEd now uses ’magic numbers’ so ext. procs. and filers
know that (a suppported version of) SamEd launched them.

Writing ’external processes’ in C is now very easy thanks to some useful
functions. These functions try to hide the long winded process of sending
messages to SamEd. This includes setting up a message port to send and
recieve messages and sending messages with all the data in the message
properly initialised. SamEd’s message structure looks like this:

static struct Ext_Proc_Msg {
struct Message epm_Msg;
ULONG epm_Command;
ULONG epm_Error;
APTR epm_Data;

};

To use it manually you need to set up the message epm_Msg, set epm_Command =
EPC_#, set epm_Data to point to the required data, and then send it. Then you
need to check epm_Error, before reading the contents of epm_Data. This is
almost all replaced by the EP_SendMsg() function.

I’ll now run through an ’external process’ and the functions it uses:

· When your ext. proc. is launched it is passed three arguments. argv[0]
= your button and program name; argv[1] = PROC_MAGIC which you should check
to make sure SamEd launched you; And argv[2] = your button number (ULONG).

· Set up a new port using EP_NewPort(). This will not only set up a new
port but will set up other data for you, eg. you pass it your button number
for use with EP_Quit().

· You could now allocate a quit signal (SamEd will signal you when it
quits so you can also). This is done by sending EP_AllocQSig(). You must pass
it the EPP_HANDLE, which was returned by EP_NewPort(), and it will return
either the allocated signal number or -1 indicating a failure.

· Next you could set up an interface (MUI ?), and wait for user input.
You will need to wait on a combination of you signals and the quit signal if
allocated. Remember to make the signal into a mask,
ie. sig_mask = 1 << sig_num.

· If the user selects an action which requires sample data (etc.), you
will need to aquire the lock to SamEd using EP_Lock(). This function returns
FALSE if there was an error, or TRUE if the lock was aquired or if you
already hold it.

· Now you can get a pointer to the data to alter it. The easiest way to
accomplish this is to use EP_GetSample(). This function will fill in the
pointers you pass it. So if you pass a pointer to a sam_info structure as the
’sample’ parameter, then this will be set to point to the current sample.

in 8 / 8

· You now have exclusive access to the data. See extproc.h. You can free
the sample by using FreeMem (sample->waveform, sample->length); Then set the
sample length to 0: sample->length = 0; This is the standard way to show an
empty sample. To create new sample data, use
sample->waveform = AllocMem (new_length, MEMF_CLEAR | MEMF_PUBLIC);
Remember samples can be of different types (8/16 bit etc.). Try to ignore
samples of strange types. You can set anything in the sam_info structure
except file_type, and please leave dir and name pointing where they are set.

NOTE: length is always in BYTEs, loop_begin / _length is in sample frames.

· After altering data, you must unlock SamEd, as it is set to sleep while
you hold the lock, using EP_UnLock();

· You can send any other command using EP_SendMsg(), and EP_SendIDMsg().
Both return TRUE if the message was sent, you must check for errors, ie.
epp_han->message.epm_Error = NULL for success.

· When you need to quit send EP_Quit() to tell SamEd our button can be
reused and to take us off SamEd’s ’quit list’; Use EP_DeletePort to free the
memory use by the message port; And finally use EP_DeallocQSig to deallocate
the quit signal.

Further information:
SamEd stores the data for all samples in an array of sam_info

structures. Currently there is a fixed number of 65 samples. sample[0] is the
copy buffer. When you obtain the lock you have exclusive access to all of
these samples. Please check for the maximum number of samples from SamEd if
you plan on accessing samples randomly (ie. sample[num] where num may be
picked by the user, don’t assume 65 samples). Use
EP_SendMsg (epp_han, EPC_TOTALNUM, &max_sams);

See General.c and extproc.h for more information.

If you find any bugs or have any problems, don’t hesitate to tell me.

	in
	SamEd, sound sample editor, © 1998 Matthew Hampton
	Introduction to SamEd...
	Registering SamEd...
	Installation...
	Starting SamEd from Workbench...
	Starting from CLI...
	Editing Samples...
	The different sample types...
	Exec ports and messages...
	Writing external processes in C

