Copyright (© 1996 Neil A Carson/SIMTEC ELECTRONICS

Anything that is not expressly permitted below is prohibited and illegal. ‘Thread’ refers to
the RiscOS relocatable module included with the distribution of the RiscOS multithreading
programmers toolkit.

Permission is granted to make and distribute verbatim copies of this document, provided that
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy the Thread archive, of which this document is part, providing
it is not altered in any way. Thread may be included in any non—profit making programs free
of charge; any profit making companies, firms, organisations or individuals are requested to
contact SIMTEC ELECTRONICS for details of licencing. Their address is given at the end of
this document. Faliure to do so will result in prosecution.

Writing multithreaded programs under R1scOS

Neil A Carson SIMTEC ELECTRONICS

Sun 17th November 1996

Contents

1 Introduction 1
2 Multithreading 1
2.1 Concurrent programming e 1
2.2 Terminology L 1
2.3 What is multithreading? o 1
2.4 Technicalities of threads, 2
2.5 Why bother? 2
3 Writing multithreading tasks 3
3.1 Root environmento 3
3.2 Thread environment e 3
3.3 Properties of threads o 3
4 Interaction between threads 4
4.1 Messages oo e 4
4.2 Semaphores 5
5 Thread SWIs 6
5.1 SWI Thread-Initialise (&4DA40) 7
5.2 SWI Thread CloseDown (&4DA41) 8
5.3 SWI Thread On (&4DA42) 9
5.4 SWI Thread 0ff (&4DA43) L 10
5.5 SWI Thread Begin (&4DA44) 11
5.6 SWI Thread_Semaphore (&4DA45), 12
5.7 SWI Thread Signal (&4DA46) 13
5.8 SWI Thread Wait (&4DA47) 14
5.9 SWI Thread Send (&4DA48) 15
5.10 SWI Thread Receive (&4DA49) 16
5.11 SWI Thread Purge (&4DA4A) 17
5.12 SWI Thread_Sleep (&4DA4B) 18
5.13 SWI Thread Context (&4DA4C) 19
5.14 SWI Thread Zap (&4DA4D) 20
5.15 SWI Thread_ZapAnother (&4DA4E) 21
5.16 SWI Thread Self (&4DA4F) 22
5.17 SWI Thread_Yield (&4DA50)o 23
5.18 *Threadlicence o o i i i i e 24
5.19 *ThreadStatus o i e e e e 25
A Bugs, crashes, problems and contacts 26
A1 Bugs . . . e 26
A2 The Toolbox e 26
A3 Crashes e 26
A4 Problems 26
A.5 The Shared C Library 26
A6 Contacts 27

B An introduction to concurrent programming
B.1 Pitfalls
B.1.1 The Dining Philosopher’s problem

B.1.2 Livelock

B.2.4 Condition Critical Regions and Monitors

C Message passing in C

B.1.3 Race Conditions
B.2 Avoidance of pitfalls
B.2.1 Mutual exclusion using semaphores

B.2.2 Counters (or “counting semaphores”) . .
B.2.3 The Banker’s algorithm

27
27
27
28
28
28
28
28
29
29

29

Abstract

Acorn/ART RISC computers have a fast and efficient 32-bit operating system called RiscOS.
It does, however, fail to include the ability to write multithreading and multiprocessing applic-
ations, meaning that hardware such as SIMTEC’s HYDRA is unable to endow most applications
with possible performance gains. Also, existing applications suffer from sluggish user response
when trying to do any work in the background, and RiscOS makes it very difficult to do any
form of smooth concurrent processing.

The RiscOS thread manager module (simply called Thread) fills these holes, is available
now, by providing simple to use support for both application and module level multithreading
on all Acorn machines from the A310 to the Hydra—equipped multiprocessing StrongARM
RiscPC. It is part of a family of programs that will, eventually, provide RiscOS with a full
multitasking, multithreading, and multiprocessing user interface.

1 Introduction

This document, together with the Thread module, forms the first release of the SIMTEC
Ri1scOS multithreading development toolkit. This is by no means the last release of Thread:
The planned evolution is as follows (depending on interest in this initial release):

‘ Date ‘ Stage ‘
October 1996 | Initial release of Thread toolkit (single CPU)
March 1997 New version of Thread module supporting HYDRA
Q3 1997 Process manager for multiprocessing task and thread management
Q1 1998 New window manager using the process manager for desktop apps

Our eventual goal is to provide a multiprocessing, multithreading, and preemptively multi-
tasking environment that is faster, smoother, and generally more pleasant to the user. The
Thread API has how been frozen, so any applications that work well with the initial
release will not need changing at a later date.

Thread is now the preferred way of writing applications to take advantage of the HYDRA;
for high speed, low-level multiprocessing code, the Hydra API exists, and is available from
SIMTEC. Although the current version of the Thread module only works on a single ARM
processor, a new version will be shipped with HYDRA boards towards the beginning of next
year (and will be available freely to existing HYDRA users, subject to adoption of the APT)
that will be able to take advantage of the speed increase gained by having up to five ARM
processors fitted to a RiscPC.

2 Multithreading

2.1 Concurrent programming

Concurrent (multithreaded) programming has evolved into quite an art over the years, and
several good textbooks are available on the subject. For more information, see appendix B on
page 27. A particularly good book is “Modern Operating Systems” by Tannenbaum. Readers
not familiar with the concept should read the appendix before carrying on with the rest of
this guide.

2.2 Terminology

A task is either a WIMP application, or a single tasking full screen R1sScOS program. A
thread is a child process of a task.

2.3 What is multithreading?

A multithreading program is able to create child processes (called “threads”) that run at the
same time as itself, possibly at an altered scheduling priority. On a multiprocessor computer
system, such as a high end RiscPC, these threads actually run concurrently, and can be dis-
tributed across any number of ARM processors; on uniprocessor systems, they are preempted
on just one CPU in order to give the illusion of running at the same time.

2.4 Technicalities of threads

As currently no interpreted language, including BASIC, exists for the Acorn platform that
supports threads, all code that runs as a thread must be written in either a compiled language
(such as C, C++, Pascal, Fortran, etc.) or ARM assembler. A C library has been provided
to simplify the writing of multithreaded programs in both C and C++.

All threads run in 26-bit USR mode. They may call SWIs, make use of undefined in-
structions (however, only the floating point ones) and even use virtual memory! to allow the
threads to have a larger workspace. This will even be the case on a system running with
HYDRA. Each thread runs sequentially, and has its own program counter, stack (which is
APCS-compliant) etc. to keep track of where it is. Threads can create child threads, and can
‘block’ waiting for messages or semaphores to enforce mutual exclusion. While one thread
is blocked, another may continue running. All threads share the same address space as the
rest of the task, and because of this may read, write or even wipe out another thread’s stack.
There is no protection between threads, because:

e It is impossible
e [t should not be necessary, anyway

Different threads may run the same code, but should be careful to make sure that new
instances of any variables are created, or that access to them is managed properly with
semaphores.

Threads may also send messages between one another, either to communicate data, or
to achieve code synchronisation (one thread may not be able to continue until another has
reached a given point) in a similar vein to occam’s CSP architecture. In order to allow
both possibilities as efficiently as possible, Thread supports a simple (and efficient) messaging
system that does the job, and nothing more.

2.5 Why bother?

All of the above sounds very good, but may leave you wondering what the point of all this is.
Multithreading is in fact very useful when writing applications software. For example:

Modelling: Concurrency is natural—in the real world, things do tend to happen at the same
time. Right now, ships are sailing round the world, the planet rotates around the sun,
weather systems form in the Atlantic and move northwest, all largely independently.

Responsive Programs: For most WIMP programs, user responsiveness is a crucial factor
in making the application friendly. When multithreading, user input can be monitored
and responded to at all times, regardless of what the rest of the program is doing (with
the exception of redraw event processing, because the WIMP does not have a per-task
redraw queue). A tool, such as a World Wide Web browser, could fetch pages, render
them and monitor user input all at the same time, making the application much more
responsive for people to use.

Blocking programs: When an application needs to frequently wait for things to happen,
such as waiting for some data to arrive, it could quite happily do something else whilst
this is happening in a multithreaded environment.

!Only when a suitable system, such as Clares Virtualise, is running.

Expensive Programs: Applications that make use of a large amount of CPU power (for
instance, JPEG plotters, ray tracers, complex renderers) can simply start off other
threads doing another aspect of the same job. Although on a uniprocessor system this
will have a small overhead (around 2%) this would allow that program to transparently
take advantage of any extra processors, such as those provided by the HYDRA if present.

If your software does not easily fit into one of the above categories, then don’t bother multi-
threading it.

3 Writing multithreading tasks

3.1 Root environment

As soon as the original (or “root”) task registers itself with the thread manager, it itself
will become a thread, running with a priority of 0 (priorities can be summed up as —20 <
Priggsk < 20) such that it can start other threads with a priority greater than, or less than,
itself. Remember that all threads, including the root, will execute concurrently. If a thread
starts execution of another thread (a “child” thread) then it becomes a “parent” and the
threads it started are it’s “children” (which are all siblings of each other).

3.2 Thread environment

The entry condition for a thread (the state of its registers as control of the CPU arrives to
it) are as described in SWI Thread Begin. The stack pointed to by R13 is around 4Kb in
size, and is an APCS-compliant stack chunk. (note that if this is done from the Norcroft C
run-time system, the reserved words must be copied from the bottom of the existing stack;
this is done automatically by the supplied C library).

3.3 Properties of threads

Threads can be created, at which point they will start executing, and will be destroyed upon
their completion. Completion of a thread’s execution is done by the standard subroutine
return instruction:

MOV pc, 1r

The C compiler’s variant that sets the PC flags will also work fine.
The threads may also do many other things:

Sleep: In order to facilitate waiting for a while, a thread can go to sleep (ie. stop) for a given
number of centiseconds. Meanwhile, any other threads will continue to run. The time
by which the thread goes to sleep, however, is in fact the number of CPU centiseconds
that it will sleep for. This timing is currently very inaccurate, but will be refined later
on.

Yield: If a thread decides it has done enough for now, it can yield some CPU time in order
to allow a different thread to have a turn, before it is automatically preempted.

Semaphore: Semaphores may be initialised, signalled, and waited on. This means that a
thread that is waiting on an already used semaphore will go to sleep until it is signalled
upon elsewhere. Of course, other threads will continue to execute while the waiting one
is asleep.

Messages: A thread may opt to receive messages asynchronously or synchronously. Messages
are described in more detail below.

4 Interaction between threads

The two ways that threads may interact with each other are by using the messaging and/or
semaphore systems provided by Thread. This section describes in more detail how they have
been implemented.

4.1 Messages

Each thread has an incoming message queue, the size of which is limited only by memory.
All messages must have their space allocated and freed by the user’s code; all Thread does
is keep track of where they are. A given message may not exist in more than one thread’s
incoming message queue; it must also exist only once in any given queue. Failure to observe
either of these points will result in a corrupt messaging system for a given task.

Each message consists of several word-sized fields, namely:

1. Two reserved words

2. Source thread’s handle

3. Destination thread’s handle
4. Message number

5. Data field

Although the data field is only four bytes, it can be used to pass a pointer; a large data field,
like in WIMP messages, is not required, because all threads share the same address space.
This would only serve to force complex memory allocation, and generally slow things down.

When a thread sends a message to a destination thread, it is simply added onto the
destination’s list of incoming messages. The destination thread must look at this queue every
now and again to see if there are any messages in it, if it expects any. On looking at the
queue, the receiving thread can opt to:

e Receive an error if the queue is empty
e Be suspended until there is at least one item in the queue, then receive that item

It is thus obvious how to use threads to send data between each other. An example program
later on shows how to pass messages in C, using dynamic memory allocation and deallocation.
These messages can also be used to provide code synchronisation. Thread ‘A’ sends a message
to thread ‘B’, which is waiting. Thread ‘A’ then in turn starts waiting for a response from
B’

4.2 Semaphores

Semaphores are defined in more detail in the appendix. Thread provides support for initial-
ising, signalling and waiting upon counting semaphores. When waiting on a semaphore, the
thread can specify as to whether or not it wants to be suspended if the semaphore is about
to go negative. If not, an error is simply returned.

5 Thread SWls

The SWIs on the following page are currently provided by the Thread module. Their func-
tionality will probably not change in the future; if, however, changes are made, they will
be ensured to be backwardly compatible. The entries and exits are the same as for normal,
standard SWIs. If something goes wrong, the ‘V’ flag is set on exit, and RO points to a
standard R1scOS error block. In the entry and exit conditions, if a register’s value is not
documented, it will be preserved. If a register’s value is a pointer, it is signified as —; if it is
a numeric value, it is shown as =. In reality, both of these are the same, as all pointers are,
of course, numeric values.

5.1 SWI Thread_Initialise (&4DA40)

On entry:

Register Contents
RO — Task name, NULL terminated (which may be truncated)
R1 — Context switch code (NULL for none)

On exit:

Register Contents
RO = Task handle
R1 = Root thread handle

This SWI is called by a task early in its initialisation to register itself with Thread. From
this stage onwards, the task is under Thread’s control, albeit with only one running thread,
and should behave accordingly (eg. turning threads off across calls to SWI Wimp_Poll).

The context switch function, if supplied in R1, will be called each time Thread performs
a context switch. On entry to this special function, the processor will be in SVC mode, R1
will be the thread handle of the thread being switched out, and R2 the thread handle of the
thread being switched in. Together with SWI Thread Context, this can be used to allow the
user to add to a given thread’s context (eg. for saving the VDU state). The function must
preserve all registers and the CPSR flags.

The root thread runs with a priority of 0, and can do anything that a normal thread can.

5.2 SWI Thread_CloseDown (&4DA41)

This SWI does not take arguments via registers. All registers are preserved. Whichever task
calls this SWI will be deregistered by Thread, and will revert a to normal, single threaded
execution.

5.3 SWI Thread On (&4DA42)

On entry:

Register Contents
RO = Task handle of new task, or NULL

If a task handle is supplied in RO, this code will effect a task switch. It is normally called in
this manner on return from SWI Wimp Poll. If, however RO is NULL, then this will re-enable
multithreaded operation if it has been turned off by SWI Thread 0ff.

Typical action for a task whilst doing a WIMP Poll would be:

thread_off();

wimp_poll(blah, blah, blah);

if (event_got == Redraw) handle_the_redraw_event();
thread_on(my_task_handle); /* Do a context switch back */
thread_on(NULL); /* Turn threads back on */

The action of turning threads back on has been split into two parts because, on a multi-
processor system, the overheads in doing a task switch are great.

5.4 SWI Thread 0ff (&4DA43)

Turns multithreading off, leaving the thread of execution with whichever thread called this
SWI. For example usage, see SWI Thread On.

10

5.5 SWI Thread Begin (&4DA44)

On entry:

Register Contents

RO — Thread name, NULL terminated (may be truncated)
R1 = Execution priority of new thread

R2 = Argument for thread

R3 — Address of code for thread

R4 — Current APCS stack chunk (or NULL for none)

On exit:

Register Contents
RO = Handle of newly created thread

This SWI starts a new thread of execution. The execution priority is in the range —20 to 20,
the lower value being of the highest priority. The thread is entered as follows: On entry:

Register Contents

RO = My thread handle
R1 = Parent’s thread handle
R2 = Argument passed by parent

R10 — Stack limit

R11 — Frame pointer (NULL)

R14 = Link value

R15 = User mode with interrupts enabled

The values of all other registers, including the floating point ones, are undefined. The link
value in fact holds the address of a function that calls SWI Thread Zap, so the thread can
terminate by issuing the normal MOVS pc, 1r instruction.

If a pointer to the current APCS stack chunk is supplied, as is the case with the ThreadLib
C library, then Thread will copy over the SharedCLibrary’s relocation reserved words in order
to enable the SharedCLibrary to continue to function properly. See the note on using the
SharedCLibrary later on.

11

5.6 SWI Thread_Semaphore (&4DA45)

On entry:

Register Contents
RO — Semaphore
R1 = Initial value

This call initialises a counting semaphore (which must be one word in size, properly aligned
etc.) with the given value. The semaphore is held as a signed 32-bit integer. Waiting decre-
ments it, and Signalling increments it. If a user wishes to avoid the overheads of these SWI
calls, he or she may choose to examine the contents of the semaphore directly themselves
first, to work out whether or not a call will block.

12

5.7 SWI Thread_Signal (&4DA46)

On entry:

Register Contents
RO — Semaphore

Performs a Signal (increment) operation on the given semaphore. If there is a thread waiting
on this semaphore, then it will start executing again.

13

5.8 SWI Thread Wait (&4DAA47)

On entry:

Register Contents
RO — Semaphore
Rl = Pointer to flag (or NULL)

Performs a Wait (decrement) operation on the given semaphore, if possible. If the operation
causes the semaphore to go negative, the action can be twofold:

1. If the pointer in R1 is NULL, then the thread will be suspended until the semaphore is
signalled upon

2. If the pointer in R1 is not NULL, the word at the address will be filled with a boolean
value indicating whether or not the Wait failed

14

5.9 SWI Thread_Send (&4DA48)

On entry:

Register Contents
RO — Message

Sends the message, pointed two by RO, to the appropriate destination thread. The message
block pointed to by RO contains the following words:

1. RESERVED

2. RESERVED

3. Source thread handle

4. Destination thread handle
5. Message number

6. Data field

The RESERVED fields should be empty. The only field that must be filled in is the destination
thread handle; the source thread handle will be useful, though, if the destination thread
expects to be able to reply.

The message number and data fields of the message are both totally arbitrary values;
there are no standards, it is up to the software author what to use. Several points must be
observed:

1. A message block can only exist in one thread’s message queue
2. A message block can only exist once in a given queue

3. Messages can only be sent between threads in the same task. If inter-task communica-
tion is required, use the Window Manager’s own form of messaging. This could easily
be extended to allow the encapsulation of a thread message within a WIMP message,
should it be desired.

15

5.10 SWI Thread Receive (&4DA49)

On entry:

Register Contents
RO = Boolean flag

On exit:

Register Contents
RO — Message (or NULL if flag set, and no messages waiting)

The thread that called the SWI receives a message from its incoming message list, if there is
one present. If not, the action can be twofold:

1. If the flag in RO is NULL, then the thread will be suspended until a message arrives

2. If the flag in RO is TRUE, then a NULL pointer will be returned in RO

16

5.11 SWI Thread Purge (&4DA4A)

On entry:

Register Contents
RO = Thread handle
R1 = Termination flag

On exit:

Register Contents
R1 — Next message (if Termination flag is NULL)

This SWI should be used with care, either when a thread is in serious trouble, or during
debugging. The action of this call is twofold:

1. If the Termination flag in R1 is NULL, the call will return a pointer to the next message
in a given thread’s incoming queue, after removing it, and re-starting the thread if it
was waiting for a message from the queue. If the queue is empty, it will return NULL.

2. If the termination flag is TRUE, then the incoming message count in the given thread’s
queue will be set to zero. The call should only be used in this way after the any messages
have been sucked out as above.

17

5.12 SWI Thread Sleep (&4DA4B)

On entry:

Register Contents
RO = Time to sleep in centiseconds

The thread that makes this call will go to sleep for the number of centiseconds specified in
RO.

18

5.13 SWI Thread Context (&4DA4C)

On entry:

Register Contents
RO = Thread handle (or NULL)

On exit:

Register Contents
RO — Context (or boolean)

Gets a pointer to a thread’s context, given a thread handle. The form of the context is
documented, in C-style syntax, in ThreadLib.h.Thread. The main use of this call is to
examine a thread’s register set, and allow reading and writing of it’s private word (a user-
supplied value unique to each thread).

If, however, R0 is NULL on entry, RO will contain, on exit, a boolean dictating whether or
not the task is currently single-threaded (note, in this case, single threaded means all threads
are disabled not that there is only one thread running).

19

5.14 SWI Thread Zap (&4DA4D)

The thread that calls this will be terminated.

20

5.15 SWI Thread _ZapAnother (&4DA4E)

This SWI has not been tested yet, so we do not recommend its use.

21

5.16 SWI Thread Self (&4DAA4F)

On exit:

Register Contents
RO = Handle of calling thread

If a thread calls this SWI, its handle will be returned.

22

5.17 SWI Thread Yield (&4DA50)

A thread can call this SWI at will, in order to yield CPU time to the rest of the system, if it
feels it isn’t doing anything particularly important or time-critical.

23

5.18 *ThreadLicence

Displays the licence for the Thread module.

24

5.19 *ThreadStatus

Displays the status of the Thread module. It lists the tasks currently registered with Thread,
which one is active, together with the total number of tasks. Each task also has listed along
with it the handle of its currently active thread, and the status of all the other threads in the
queue. The meanings of the thread statuses are as follows:

e 0: Virgin (ready to run).
e 1: Running (being executed, or eligible to be).
e 2: Semaphore wait.

e 3: Time wait (sleeping).

25

A Bugs, crashes, problems and contacts

A.1 Bugs

This implementation of Thread is no doubt not perfect, and contains bugs. The most notice-
able problem is that timings, as displayed by *ThreadStatus, are highly inaccurate. Also,
timings when calling SWI Thread Sleep aren’t too great, either. This will be fixed soon.
Also, the code’s error checking, to make sure that thread handles, task handles, semaphore
pointers , messages etc. are valid is minimal to say the most. This will be improved.

A.2 The Toolbox

There appear to be some problems whilst using Thread with the Toolbox, that cause applic-
ations on the desktop to occasionally crash whilst receiving events. This does not seem to
affect (to the extent of our testing, anyway) other WIMP programs, though.

A.3 Crashes

Programs running under Thread, and hopefully not very often Thread itself, may well crash.
If this is the case, then they will probably go out in a big bang. By typing *ThreadStatus,
you may notice that the task is still registered with Thread. This is not a problem; it merely
increases RMA usage. In order to rectify the situation, the current solution is to reload
Thread. Thread will be extended to detect crashes shortly.

A.4 Problems

Thread descriptors, task descriptors and 4Kb stacks are currently allocated from the RMA,
occasionally leading to fragmentation. In a not too distant release, these will move into a
dynamic area on RiscPC machines.

A.5 The Shared C Library

Just briefly... this shouldn’t go here, but the Shared C Library is mot reentrant, and thus
should be treated as a mutually exclusive resource. In particular, do not allocate and free
memory at the same time, etc. Liberal use of semaphores is required. For example, the
message passing example in the appendix uses a semaphore to make sure memory is not
allocated and freed at the same time.

There also exists a function in the ThreadLib library called thread kludge(). This
modifies the entry vectors for the functions malloc(), calloc(), realloc(), free(), and
x$stack_overflow and places a semaphore round them, to avoid heap modification functions
being called at once. These functions may indeed be called from within the shared library
itself; unfortunately, until we hear back from ART, there is nothing we can do about it.
Many thanks to Miles Sabin for pointing this out, especially the stack extension bit. Note
that thread kludge has not been extensively tested; the source code is provided to get the
general idea, though.

26

A.6 Contacts

If you wish to use Thread, or a future version, in a commercial, profit making application,

please contact SIMTEC for details of licencing. Otherwise feel free to use it. If you do plan to

use the product, please E-Mail thread@simtec.demon. co.uk letting us know, so we can keep

you up to date with announcements. Alternatively, just call SIMTEC for more information.
SIMTEC’s address is:

SIMTEC ELECTRONICS,
Avondale Drive,
Tarleton,
Preston,
Lancs PR4 6AX (phone: (01772) 812863, e-mail: thread@simtec.demon.co.uk)

B An introduction to concurrent programming

Concurrent programming (writing multithreading programs) and sequential programming
(writing normal R1scOS programs) are completely different kettles of fish. In a multithreaded
execution environment, execution and completion order of threads are both undefined, and
each thread must be mutually exclusive—in essence, each thread will need to access a resource
(memory, disc, etc.). If more than one thread has access to such a resource at one time, then
this will cause chaos. Threads may also wish to communicate with one another, either to
allow synchronisation, or pass messages. A good book to look at is Tannenbaum’s book on
Modern Operating Systems.

B.1 Pitfalls

Concurrent and multithreaded programming have evolved into quite an art over the years;
several techniques have been developed to aid mutual exclusion, message passing, and illus-
trate problems that may be encountered. This subsection aims to illustrate these problems,
and the next subsection illustrates, in more detail, the methods that Thread uses to both
enforce mutual exclusion and allow message passing.

B.1.1 The Dining Philosopher’s problem

Many problems and their solutions have very fancy names in concurrent programming; this is
one such problem, used to illustrate some problems that can arise without mutual exclusion,
namely:

e Deadlock
e Infinite overtaking

In ancient times, a wealthy philanthropist endowed a college to accommodate five eminent
philosophers. Each philosopher had a room in which he could engage in his professional
activity of thinking; there was also a common dining room, furnished with a circular table,
surrounded by five chairs, each labelled with the name of the philosopher who was to sit on
it. To the left of each philosopher laid a golden fork, and in the centre stood a large bowl of
spaghetti which was being constantly replenished.

27

A philosopher was expected to spend most of his time thinking; but when he felt hungry,
he went into the dining room, sat down at his chair, picked up the golden fork on his left, and
plunged it into the spaghetti. However, such was the tangled nature of the spaghetti that a
second fork was required to lift it to the mouth. The philosopher, therefore, also had to pick
up the fork on his right. When he was finished he would put the forks down, get up from his
chair, and continue to think. Of course, a fork can only be used by one philosopher at a given
time. If the philosopher on his right wants to use it, he has to wait until it is free again.

There are two problems. If all of the philosophers get hungry at the same time, and each
picks up his fork and plunges it into the spaghetti at the same time, then each will not be able
to get another fork to carry it to his mouth, and the situation is said to be one of deadlock.
The other danger is that the left neighbour will always beat a philosopher to his fork. This
is a case of infinite overtaking.

In this example, a philosopher can be thought of as a thread, and a fork a mutually
exclusive resource.

B.1.2 Livelock

1. Deadlock can be summed up as a state in which threads are blocked while waiting for
something which will never happen;

2. Livelock is a condition in which processes are executing instructions uselessly, in the
sense that they will never make constructive progress.
B.1.3 Race Conditions

These are often the hardest of all things to track down. If there is a resource of some sort,
occasionally one thread may access it before another, causing a problem. The only way to
avoid this happening is to write code very carefully in the first place, and plan it in detail.

B.2 Avoidance of pitfalls

B.2.1 Mutual exclusion using semaphores

Dijkstra introduced the semaphore in 1968. A semaphore is a boolean data type, with values
1 or 0. It has two operations on it, (with two names, the single character being from the
Dutch equivalent of the English words):

wait(P): decrement the specified semaphore by 1, providing the result is non-negative, oth-
erwise deschedule the calling thread until an appropriate signal is received on that
semaphore

signal(V): increment the specified semaphore by 1, providing that there is no process already
descheduled on it. Otherwise, reschedule the waiting process.

Thread provides a set of SWIs for implementing semaphores in user-level processes.

B.2.2 Counters (or “counting semaphores”)

A counting semaphore (or “counter” or “general semaphore”) is similar to a binary semaphore
(above), however it is allowed to hold values greater than 1.

28

B.2.3 The Banker’s algorithm

Suppose there are 12 instances of a shared resource. Never allocate all of the resource,
such that all processes can complete properly ie. impose a process-dependant limit on each
resource.

B.2.4 Condition Critical Regions and Monitors

These two approaches to writing complex multi-threaded programs both need to be imple-
mented early in the program design phase.

CCRs involve dividing the program into groups of procedures/functions that can only be
executed when given global conditions are True. Compilers are available (though not
necessarily for the Acorn platform) which will develop CCR expressions at compile-time.

Monitors rely on the coder dividing resources, and the operations that may need to be
performed upon them, into individual objects. That way, each process can keep track,
with semaphores or the like, of exactly what is happening.

C DMessage passing in C

This is a trivial bit of C code that passes a textual message between two threads. Because
a message may not be included in a message queue more than once, each message here is
dynamically allocated.

/* This is the thread that sends messages, saying "fish and chips", at
* random intervals to the main task, which then prints them out.
*/

void thread_a(thread_handle me, thread_handle dad, int argument)

{

thread_message *m;

while (1)
{
thread_sleep(rand() & 255); /* Wait for a random amount of time */
thread_wait (&tweak_mem, 0);
m = malloc(sizeof (thread_message));
thread_signal (&tweak_mem) ;
if (m == 0)
{
printf ("Error allocating memory for message!\n");
exit (0);
}
memset(m, 0, sizeof(thread_message));
m->from = me;
m->to = dad;
m->no = 0;
m->data = (int) "Fish and chips!";

29

thread_send(m);

/* This is called at exit time
*/

void at_exit(void)

{

thread_closedown() ;

int main(void)

{
thread_handle thread_a_h, my_thread;
task_handle my_task;
thread_message *m;

/* Make sure thread_closedown() is called when we quit
*/

atexit(at_exit);

/* Kludge the SharedCLibrary vectors
*/
thread_kludge () ;

/* Start the threads and initialise the semaphore

*/
thread_initialise("Simtec Demo 1", NULL, &my_task, &my_thread);
thread_init_semaphore(&tweak_mem, 1); /* Resource is initially free */
thread_begin("Child", 0, 0, (thread_func) thread_a, &thread_a_h);

/* Enter into a loop, receiving and freeing messages
*/
while (1)
{
m = thread_receive(0);
printf ("Got message %s\n", (char *) m->data);

/* Free up the message’s memory
*/

thread_wait (&tweak_mem, 0);

free(m);

thread_signal (&tweak_mem) ;

30

