
The Beetle Forth Virtual Processor

Reuben Thomas

29th October 1993; revised 4th May 1995

Abstract

The design of the Beetle Forth virtual processor is described. Beetle’s purpose is to provide
an easily portable environment for ANS Forth compilers: to move a compiler from one sys-
tem to another only Beetle and the I/O libraries need be rewritten. Like most interpreters,
Beetle gains portability and compactness at the expense of speed, but it retains flexibility by
providing instructions to call machine code and access the operating system.

Typographical notes

bForth instructions and Beetle’s registers are shown in Typewriter font; interface calls are shown
in Bold type, and followed by empty parentheses. Quoted pronunciations of instructions and
registers are given with components separated by dashes; single letters should be pronounced as
the name of the letter.

Addresses are given in bytes and refer to Beetle’s address space except where stated. Addresses
are written in hexadecimal; all hex numbers are followed by “h”.

1 Introduction

Beetle is a simple virtual processor designed to enable the easy implementation of ANS Forth com-
pilers, such as pForth [5], on different systems. It has twelve registers, two stacks, and an instruction
set, called bForth, of ninety-two instructions. The instruction set is based on the Core Word Set of
ANS Forth [1]. This paper gives a full description of Beetle, but certain implementation-dependent
features, such as the size of the stacks, are purposely left unspecified, and the exact method of
implementation is left to the implementor in many particulars.

Beetle is self-contained, and performs I/O via the LIB instruction, which provides access to a
standard library which mimics ANS Forth I/O words. The operating system and machine code
routines on the host computer may be accessed using the OS and LINK instructions. Beetle supports
the saving and loading of simple object modules.

Beetle may exist either as a stand-alone system, or embedded in other programs. A small interface
is provided for other programs wishing to control Beetle.

Since Beetle is heavily oriented towards supporting Forth compilers, it is useful to understand
how Forth compilers operate in order to understand Beetle and to use it properly. An excellent
introduction to Forth and Forth compilers is [3]. An overview of the language and its compilers is
also provided in [1]. For an implementation of Beetle, see [6].

1

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

2 Architecture

Beetle’s address unit is the byte, which is eight bits wide. Characters are one byte wide, and cells
are four bytes wide. The cell is the size of the numbers and addresses on which Beetle operates,
and of the items placed on the stacks. The cell size is fixed to ensure compatibility of object code
between implementations on different machines; the size of the address unit, character and cell
has been chosen with a view to making efficient implementation of Beetle possible on the vast
majority of current machine architectures.

Cells may have the bytes stored in big-endian or little-endian order. The address of a cell is that
of the byte in it with the lowest address.

2.1 Registers

The registers, each with its function and pronunciation, are set out in table 1.

Register Pronunciation Function

EP “e-p” The Execution Pointer. Points to the next cell from which an
instruction word may be loaded.

I “i” The Instruction. Holds the opcode of an instruction to be ex-
ecuted.

A “a” The instruction Accumulator. Holds the opcodes of instructions
to be executed, and immediate operands.

M0 “m-zero” The address of Beetle’s address space on the host system, which
must be aligned on a four-byte boundary.

MEMORY “memory” The size in bytes of Beetle’s address space, which must be a
multiple of four.

SP “s-p” The data Stack Pointer.
RP “r-p” The Return stack Pointer.

’THROW “tick-throw” The address placed in EP by a THROW instruction.
ENDISM “endism” The endianness of Beetle: 0 = Little-endian, 1 = Big-endian.
CHECKED “checked” 0 = address checking off, 1 = address checking on.
’BAD “tick-bad” The contents of EP when the last exception was raised.

-ADDRESS “not-address” The last address which caused an address exception.

Table 1: Beetle’s registers

EP, A, MEMORY, SP, RP, ’THROW, ’BAD and -ADDRESS are cell-wide quantities; I, ENDISM and CHECKED

are one byte wide, and M0’s size depends on the implementation; it would normally have the same
width as addresses on the host computer. The values of MEMORY, ’BAD and -ADDRESS are available
in Beetle’s address space; ’THROW must be physically held there so that it can be changed as well
as read by programs. Their addresses relative to M0 are shown in table 2.

Register Address

’THROW 0h
MEMORY 4h
’BAD 8h

-ADDRESS Ch

Table 2: Registers which appear in Beetle’s address space

2

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

To ease efficient implementation, Beetle’s stack pointers may only be accessed by bForth instruc-
tions (see section 3.7).

2.2 Memory

Beetle’s memory is a contiguous sequence of bytes numbered from 0 to MEMORY − 1.

2.3 Stacks

The data and return stacks are cell-aligned LIFO stacks of cells. The stack pointers point to the
top stack item on each stack. To push an item on to a stack means to store the item in the cell
beyond the stack pointer and then adjust the pointer to point to it; to pop an item means to
make the pointer point to the second item on the stack. The stacks grow downwards in memory
as new items are added. Instructions that change the number of items on a stack implicitly pop
their arguments and push their results.

The data stack is used for passing values to instructions and routines and the return stack for
holding subroutine return addresses and the index and limit of the Forth DO...LOOP construct.
The return stack may be used for other operations subject to the restrictions placed on it by its
normal usage: it must be returned before an EXIT instruction to the state it was in directly after
the corresponding CALL, and before a (LOOP), (+LOOP), or UNLOOP to the state it was in before
the corresponding (DO).

In what follows, for “the stack” read “the data stack”; the return stack is always mentioned
explicitly.

2.4 Operation

Before Beetle is started, M0, MEMORY and ENDISM should be set to implementation-dependent values;
’THROW should be set to point to the exception handler, and EP to the bForth code that is to be
executed. CHECKED should be set to 0 or 1 as desired. The other registers should be initialised as
shown in table 3, except for I and A, which need not be initialised.

Register Initial value

SP MEMORY − 100h
RP MEMORY

’BAD FFFFFFFFh
-ADDRESS FFFFFFFFh

Table 3: Registers with prescribed initial values

MEMORY should be copied to 4h; its value and those of ENDISM and CHECKED must not change while
Beetle is executing. Next, the action of NEXT should be performed (see section 3.11): A is loaded
from the cell to which EP points, and four is added to EP.

Beetle is started by a call to the interface calls run() or single step() (see section 4.3). In the
former case, the execution cycle is entered:

3

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

begin
copy the least-significant byte of A to I

shift A arithmetically 8 bits to the right
execute the instruction in I

repeat

In the latter case, the contents of the execution loop is executed once, and control returns to the
calling program.

The execution loop need not be implemented as a single loop; it is designed to be short enough
that the contents of the loop can be appended to the code implementing each instruction.

Note that the calls run() and single step() do not perform the initialisation specified above;
that must be performed before calling them.

2.5 Termination

When Beetle encounters a HALT instruction (see section 3.10), it returns the top data stack item
as the reason code, unless SP does not point to a valid cell, in which case reason code -258 is
returned (see section 2.6). After a call to single step() which terminates without an exception
being raised, reason code 0 is returned.

Reason codes which are also valid exception codes (either reserved (see section 2.6) or user ex-
ception codes) should not normally be used. This allows exception codes to be passed back by an
exception handler to the calling program, so that the calling program can handle certain exceptions
without confusing exception codes and reason codes.

2.6 Exceptions

When a THROW instruction (see section 3.10) is executed, an exception is said to have been
raised. Some exceptions are raised by other instructions, for example by / when division by zero
is attempted; these also execute a THROW. The exception code is the number on top of the stack
at the time the exception is raised.

Exception codes are signed numbers. -1 to -255 are reserved for ANS Forth exception codes, and
-256 to -511 for Beetle’s own exception codes; the meanings of those that may be raised by Beetle
are shown in table 4. ANS Forth compilers may raise other exceptions in the range -1 to -255 and
additionally reserve exceptions -512 to -4095 for their own exceptions (see [1, section 9.3.1]).

Code Meaning

-9 Invalid address (see below).
-10 Division by zero attempted (see section 3.4).
-23 Address alignment exception (see below).
-256 Illegal opcode (see section 3.14).
-257 Library routine not implemented (see section 3.12).

Table 4: Exceptions raised by Beetle

Exception -9 is raised whenever an attempt is made to access an invalid address (not between
zero and MEMORY − 1 inclusive), either by an instruction, or during an instruction fetch (because
EP contains an invalid address). Exception -23 is raised when a bForth instruction expecting an
address of type a-addr (cell-aligned), is given a non-aligned address. When Beetle raises an address
exception (-9 or -23), the offending address is placed in -ADDRESS.

4

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

The initial values of ’BAD and -ADDRESS are unlikely to be generated by an exception, so it may
be assumed that if the initial values still hold no exception has yet occurred.

Address and alignment exceptions are only raised if CHECKED is 1. When CHECKED is 0, a faster
implementation of Beetle may be used—this is especially useful for stand-alone Beetles.

If SP is unaligned when an exception is raised, or putting the code on the stack would cause SP to
be out of range, the effect of a HALT with code -258 is performed (although the actual mechanics
are not, as that too would involve putting a number on the stack). Similarly, if ’THROW contains
an invalid address, the effect of HALT with code -259 is performed.

3 Instruction set

The bForth instruction set is listed in sections 3.2 to 3.13, with the instructions grouped according
to function. The instructions are given in the following format:

NAME “pronunciation” 00h (before -- after)

R: (before -- after)

Description.

The first line consists of the name of the instruction followed by the pronunciation in quotes, and
the instruction’s opcode. On the right are the stack comment or comments. Underneath is the
description. The two stack comments show the effect of the instruction on the data and return
(R) stacks.

Stack comments are written
(before -- after)

where before and after are stack pictures showing the items on top of a stack before and after
the instruction is executed (the change is called the stack effect). An instruction only affects
the items shown in its stack comments. The brackets and dashes serve merely to delimit the
stack comment and to separate before from after . Stack pictures are a representation of the
top-most items on the stack, and are written

i1 i2...in−1 in

where the ik are stack items, each of which occupies a whole number of cells, with in being on
top of the stack. The symbols denoting different types of stack item are shown in table 5.

Symbol Data type

flag flag
true true flag
false false flag
char character
n signed number
u unsigned number
n|u number (signed or unsigned)
x unspecified cell
xt execution token

a-addr cell-aligned address
c-addr character-aligned address

Table 5: Types used in stack comments

5

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

Types are only used to indicate how instructions treat their arguments and results; Beetle does
not distinguish between stack items of different types. In stack pictures the most general argument
types with which each instruction can be supplied are given; subtypes may be substituted. Using
the phrase “i ⇒ j” to denote “i is a subtype of j”, table 6 shows the subtype relationships. The
subtype relation is transitive.

u ⇒ x

n ⇒ x

char ⇒ u

a-addr ⇒ c-addr ⇒ u

flag ⇒ x

xt ⇒ x

Table 6: The subtype relation

Numbers are represented in twos complement form. a-addr consists of all unsigned numbers less
than MEMORY. Numeric constants can be included in stack pictures, and are of type n|u .

Each type may be suffixed by a number in stack pictures; if the same combination of type and
suffix appears more than once in a stack comment, it refers to identical stack items. Alternative
after pictures are separated by “|”, and the circumstances under which each occurs are detailed
in the instruction description.

The symbols i*x , j*x and k*x are used to denote different collections of zero or more cells of any
data type. Ellipsis is used for indeterminate numbers of specified types of cell.

If an instruction does not modify the return stack, the corresponding stack picture is omitted.
Some instructions have two forms, the latter ending in “I”. This denotes Immediate addressing:
the instruction’s argument is included in the instruction cell (see section 3.1), rather than being
placed separately in the next available cell.

3.1 Programming conventions

Since branch destinations must be cell-aligned, some instruction sequences may contain gaps.
These must be padded with NEXT (opcode 00h).

Literals and branch addresses should be placed in memory as follows. If a literal (see section 3.9)
or branch address (see section 3.8) will fit in the rest of the cell directly after its instruction (see
below), it should be placed there, and the immediate form of the instruction used. Otherwise it
should be placed in the cell after the instruction. Further instructions may still be stored in the
current cell. If more than one literal or branch instruction is encoded in one instruction cell, the
literal values follow each other in successive cells.

Given an instruction cell with n bytes free, a literal will fit into it if it can be represented as an
n-byte twos complement number. Immediate mode branch destinations are given as the relative
cell count from the value EP will have when the instruction is executed (rather than the address
of the instruction cell containing the instruction) to the address of the destination instruction cell
(not as absolute addresses). The literal or branch is stored with the bytes in the same order as for
a four-byte number, at the most significant end of the instruction cell.

3.2 Stack manipulation

These instructions manage the data stack and move values between stacks.

6

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

DUP “dupe” 01h (x -- x x)

Duplicate x .

DROP 02h (x --)

Remove x from the stack.

SWAP 03h (x1 x2 -- x2 x1)

Exchange the top two stack items.

OVER 04h (x1 x2 -- x1 x2 x1)

Place a copy of x1 on top of the stack.

ROT “rote” 05h (x1 x2 x3 -- x2 x3 x1)

Rotate the top three stack entries.

-ROT “not-rote” 06h (x1 x2 x3 -- x3 x1 x2)

Perform the action of ROT twice.

TUCK 07h (x1 x2 -- x2 x1 x2)

Perform the action of SWAP followed by OVER.

NIP 08h (x1 x2 -- x2)

Perform the action of SWAP followed by DROP.

PICK 09h (xu...x1 x0 u -- xu...x1 x0 xu)

Remove u . Copy xu to the top of the stack. If u = 0, PICK is equivalent to DUP. If there are fewer
than u + 2 items on the stack before PICK is executed, the memory cell which would have been
xu were there u + 2 items is copied to the top of the stack.

ROLL 0Ah (xu xu − 1...x0 u -- xu − 1...x0 xu)

Remove u . Rotate u + 1 items on the top of the stack. If u = 0 ROLL does nothing, and if
u = 1 ROLL is equivalent to SWAP. If there are fewer than u + 2 items on the stack before ROLL

is executed, the memory cells which would have been on the stack were there u + 2 items are
rotated.

?DUP “question-dupe” 0Bh (x -- 0 | x x)

Duplicate x if it is non-zero.

>R “to-r” 0Ch (x --)

R: (-- x)

Move x to the return stack.

R> “r-from” 0Dh (-- x)

R: (x --)

Move x from the return stack to the data stack.

R@ “r-fetch” 0Eh (-- x)

R: (x -- x)

Copy x from the return stack to the data stack.

3.3 Comparison

These words compare two numbers (or, for equality tests, any two cells) on the stack, returning a
flag, true with all bits set if the test succeeds and false otherwise.

< “less-than” 0Fh (n1 n2 -- flag)

flag is true if and only if n1 is less than n2.

7

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

> “greater-than” 10h (n1 n2 -- flag)

flag is true if and only if n1 is greater than n2.

= “equals” 11h (x1 x2 -- flag)

flag is true if and only if x1 is bit-for-bit the same as x2.

<> “not-equals” 12h (x1 x2 -- flag)

flag is true if and only if x1 is not bit-for-bit the same as x2.

0< “zero-less” 13h (n -- flag)

flag is true if and only if n is less than zero.

0> “zero-greater” 14h (n -- flag)

flag is true if and only if n is greater than zero.

0= “zero-equals” 15h (x -- flag)

flag is true if and only if x is equal to zero.

0<> “zero-not-equals” 16h (x -- flag)

flag is true if and only if x is not equal to zero.

U< “u-less-than” 17h (u1 u2 -- flag)

flag is true if and only if u1 is less than u2.

U> “u-greater-than” 18h (u1 u2 -- flag)

flag is true if and only if u1 is greater than u2.

3.4 Arithmetic

These instructions consist of monadic and dyadic operators, and numeric constants. All calcula-
tions are made without bounds or overflow checking, except as detailed for certain instructions.

Constants:

0 “zero” 19h (-- 0)

Leave zero on the stack.

1 “one” 1Ah (-- 1)

Leave one on the stack.

-1 “minus-one” 1Bh (-- −1)

Leave minus one on the stack.

CELL 1Ch (-- 4)

Leave four on the stack.

-CELL “minus-cell” 1Dh (-- −4)

Leave minus four on the stack.

Addition and subtraction:

+ “plus” 1Eh (n1|u1 n2|u2 -- n3|u3)

Add n2|u2 to n1|u1, giving the sum n3|u3.

- “minus” 1Fh (n1|u1 n2|u2 -- n3|u3)

Subtract n2|u2 from n1|u1, giving the difference n3|u3.

>-< “reverse-minus” 20h (n1|u1 n2|u2 -- n3|u3)

Perform the action of SWAP (see section 3.2) followed by -.

8

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

1+ “one-plus” 21h (n1|u1 -- n2|u2)

Add one to n1|u1, giving the sum n2|u2.

1- “one-minus” 22h (n1|u1 -- n2|u2)

Subtract one from n1|u1, giving the difference n2|u2.

CELL+ “cell-plus” 23h (n1|u1 -- n2|u2)

Add four to n1|u1, giving the sum n2|u2.

CELL- “cell-minus” 24h (n1|u1 -- n2|u2)

Subtract four from n1|u1, giving the difference n2|u2.

Multiplication and division (note that all division instructions raise exception -10 if division by
zero is attempted, and round the quotient towards minus infinity, except for S/REM, which rounds
the quotient towards zero):

* “star” 25h (n1|u1 n2|u2 -- n3|u3)

Multiply n1|u1 by n2|u2 giving the product n3|u3.

/ “slash” 26h (n1 n2 -- n3)

Divide n1 by n2, giving the single-cell quotient n3.

MOD 27h (n1 n2 -- n3)

Divide n1 by n2, giving the single-cell remainder n3.

/MOD “slash-mod” 28h (n1 n2 -- n3 n4)

Divide n1 by n2, giving the single-cell remainder n3 and the single-cell quotient n4.

U/MOD “u-slash-mod” 29h (u1 u2 -- u3 u4)

Divide u1 by u2, giving the single-cell remainder u3 and the single-cell quotient u4.

S/REM “s-slash-rem” 2Ah (n1 n2 -- n3 n4)

Divide n1 by n2 using symmetric division, giving the single-cell remainder n3 and the single-cell
quotient n4.

2/ “two-slash” 2Bh (x1 -- x2)

x2 is the result of shifting x1 one bit toward the least-significant bit, leaving the most-significant
bit unchanged.

CELLS 2Ch (n1 -- n2)

n2 is the size in bytes of n1 cells.

Sign functions:

ABS “abs” 2Dh (n -- u)

u is the absolute value of n .

NEGATE 2Eh (n1 -- n2)

Negate n1, giving its arithmetic inverse n2.

Maxima and minima:

MAX 2Fh (n1 n2 -- n3)

n3 is the greater of n1 and n2.

MIN 30h (n1 n2 -- n3)

n3 is the lesser of n1 and n2.

9

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

3.5 Logic and shifts

These instructions consist of bitwise logical operators and bitwise shifts. The result of performing
the specified operation on the argument or arguments is left on the stack.

Logic functions:

INVERT 31h (x1 -- x2)

Invert all bits of x1, giving its logical inverse x2.

AND 32h (x1 x2 -- x3)

x3 is the bit-by-bit logical “and” of x1 with x2.

OR 33h (x1 x2 -- x3)

x3 is the bit-by-bit inclusive-or of x1 with x2.

XOR “x-or” 34h (x1 x2 -- x3)

x3 is the bit-by-bit exclusive-or of x1 with x2.

Shifts:

LSHIFT “l-shift” 35h (x1 u -- x2)

Perform a logical left shift of u bit-places on x1, giving x2. Put zero into the least significant bits
vacated by the shift. If u is greater than or equal to 32, x2 is zero.

RSHIFT “r-shift” 36h (x1 u -- x2)

Perform a logical right shift of u bit-places on x1, giving x2. Put zero into the most significant
bits vacated by the shift. If u is greater than or equal to 32, x2 is zero.

1LSHIFT “one-l-shift” 37h (x1 -- x2)

Perform a logical left shift of one bit-place on x1, giving x2. Put zero into the least significant
bit vacated by the shift.

1RSHIFT “one-r-shift” 38h (x1 -- x2)

Perform a logical right shift of one bit-place on x1, giving x2. Put zero into the most significant
bit vacated by the shift.

3.6 Memory

These instructions fetch and store cells and bytes to and from memory; there is also an instruction
to add a number to another stored in memory.

@ “fetch” 39h (a-addr -- x)

x is the value stored at a-addr .

! “store” 3Ah (x a-addr --)

Store x at a-addr .

C@ “c-fetch” 3Bh (c-addr -- char)

If ENDISM is 1, exclusive-or c-addr with 3. Fetch the character stored at c-addr . The unused
high-order bits are all zeroes.

C! “c-store” 3Ch (char c-addr --)

If ENDISM is 1, exclusive-or c-addr with 3. Store char at c-addr . Only one byte is transferred.

+! “plus-store” 3Dh (n|u a-addr --)

Add n|u to the single-cell number at a-addr .

10

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

3.7 Registers

As mentioned in section 2.1, the stack pointers SP and RP may only be accessed through special
instructions:

SP@ “s-p-fetch” 3Eh (-- a-addr)

a-addr is the value of SP.

SP! “s-p-store” 3Fh (a-addr --)

Set SP to a-addr .

RP@ “r-p-fetch” 40h (-- a-addr)

a-addr is the value of RP.

RP! “r-p-store” 41h (a-addr --)

Set RP to a-addr .

3.8 Control structures

These instructions implement unconditional and conditional branches, subroutine call and return,
and various aspects of the Forth DO. . . LOOP construct.

Branches:

BRANCH 42h (--)

Load EP from the cell it points to, then perform the action of NEXT.

BRANCHI “branch-i” 43h (--)

Add A × 4 to EP, then perform the action of NEXT.

?BRANCH “question-branch” 44h (flag --)

If flag is false then load EP from the cell it points to and perform the action of NEXT; otherwise
add four to EP.

?BRANCHI “question-branch-i” 45h (flag --)

If flag is false then add A × 4 to EP. Perform the action of NEXT.

EXECUTE 46h (xt --)

R: (-- a-addr)

Push EP on to the return stack, put xt into EP, then perform the action of NEXT.

@EXECUTE “fetch-execute” 47h (a-addr1 --)

R: (-- a-addr2)

Push EP on to the return stack, put the contents of a-addr into EP, then perform the action of
NEXT.

Subroutine call and return:

CALL 48h (--)

R: (-- a-addr)

Push EP + 4 on to the return stack, then load EP from the cell it points to. Perform the action
of NEXT.

CALLI “call-i” 49h (--)

R: (-- a-addr)

Push EP on to the return stack, then add A × 4 to EP. Perform the action of NEXT.

11

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

EXIT 4Ah (--)

R: (a-addr --)

Put a-addr into EP, then perform the action of NEXT.

DO. . . LOOP support:

(DO) “bracket-do” 4Bh (x1 x2 --)

R: (-- x1 x2)

Move the top two items on the data stack to the return stack.

(LOOP) “bracket-loop” 4Ch (--)

R: (n1|u1 n2|u2 -- | n1|u1 n3|u3)

Add one to n2|u2; if it then equals n1|u1 discard both items and add four to EP, otherwise load
EP from the cell to which it points and perform the action of NEXT.

(LOOP)I “bracket-loop-i” 4Dh (--)

R: (n1|u1 n2|u2 -- | n1|u1 n3|u3)

Add one to n2|u2; if it then equals n1|u1 discard both items, otherwise add A × 4 to EP. Perform
the action of NEXT.

(+LOOP) “bracket-plus-loop” 4Eh (n1|u1 --)

R: (n2|u2 n3|u3 -- | n2|u2 n4|u4)

Add n1|u1 to n3|u3; if n3|u3 thereby crosses the (n2|u2 − 1) to n2|u2 boundary discard both
items and add four to EP, otherwise load EP from the cell to which it points and perform the
action of NEXT.

(+LOOP)I “bracket-plus-loop-i” 4Fh (n1|u1 --)

R: (n2|u2 n3|u3 -- | n2|u2 n4|u4)

Add n1|u1 to n3|u3; if n3|u3 thereby crosses the (n2|u2 − 1) to n2|u2 boundary discard both
items, otherwise add A × 4 to EP. Perform the action of NEXT.

UNLOOP 50h (--)

R: (x1 x2 --)

Discard the top two items on the return stack.

J 51h (-- x1)

R: (x1 x2 x3 -- x1 x2 x3)

Copy the third item on the return stack to the data stack.

3.9 Literals

These instructions encode literal values which are placed on the stack.

(LITERAL) “bracket-literal” 52h (-- x)

Push the cell pointed to by EP on to the stack, then add four to EP.

(LITERAL)I “bracket-literal-i” 53h (-- x)

Push the contents of A on to the stack. Perform the action of NEXT.

3.10 Exceptions

These instructions give access to Beetle’s exception mechanisms.

12

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

THROW “bracket-throw” 54h (--)

Put the contents of EP into ’BAD, then load EP from ’THROW. Perform the action of NEXT. If
’THROW contains an out of range or unaligned address stop Beetle, returning reason code -259 to
the calling program (see section 4.3).

HALT 55h (x --)

Stop Beetle, returning reason code x to the calling program (see section 4.3). If SP is out of
range or unaligned, -258 is returned as the reason code.

3.11 Miscellaneous

(CREATE) implements part of the Forth CREATE. . .DOES> construct. NEXT performs an instruction
fetch when Beetle runs out of instructions in the A register.

(CREATE) “bracket-create” 56h (-- a-addr)

Push EP on to the stack.

NEXT 00h/FFh (--)

Load the cell pointed to by EP into A then add four to EP.

3.12 External access

These instructions allow access to Beetle’s libraries, the operating system and native machine
code.

LIB 57h (i*x n -- j*x)

Call library routine n . The parameters passed and returned depend on n . If the library routine
is not currently available, raise exception -257.

OS “o-s” 58h (i*x -- j*x)

Make an operating system call. OS typically takes an operating system call number then makes
that call and returns any result, with other parameters and result data being communicated via
the stack or a shared data area.

LINK 59h (i*x --)

Make a subroutine call to the routine at the address given (in the host machine’s format, padded
out to a number of cells) on the data stack. The size and format of this address are machine-
dependent.

3.13 Recursion

These instructions are provided to simplify the task of writing a low-level debugger for Beetle that
runs directly on Beetle. Such a debugger might be written in pForth. The instructions perform
roughly the same function as the interface calls run() and single step().

RUN 5Ah (a-addr1 a-addr2 a-addr3 x -- n)

Save the current values of EP, A, SP, RP, ’THROW, ’BAD and -ADDRESS and load a-addr1 into SP,
a-addr2 into RP, a-addr3 into EP, and x into A. Enter the execution loop. If Beetle halts, restore
the contents of the registers to those saved, and push the reason code on to the stack.

STEP 5Bh (a-addr1 a-addr2 a-addr3 x -- n)

Save the current values of EP, A, SP, RP, ’THROW, ’BAD and -ADDRESS and load a-addr1 into SP,
a-addr2 into RP, a-addr3 into EP and x into A. Perform the contents of the execution loop once.
Restore the contents of the registers to those saved, and push the reason code on to the stack.

13

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

3.14 Opcodes

In table 7 are listed the opcodes in numerical order. All undefined opcodes (5Ch–FEh) raise
exception -256.

Opcode Instruction Opcode Instruction Opcode Instruction

00h NEXT 1Fh - 3Eh SP@

01h DUP 20h >-< 3Fh SP!

02h DROP 21h 1+ 40h RP@

03h SWAP 22h 1- 41h RP!

04h OVER 23h CELL+ 42h BRANCH

05h ROT 24h CELL- 43h BRANCHI

06h -ROT 25h * 44h ?BRANCH

07h TUCK 26h / 45h ?BRANCHI

08h NIP 27h MOD 46h EXECUTE

09h PICK 28h /MOD 47h @EXECUTE

0Ah ROLL 29h U/MOD 48h CALL

0Bh ?DUP 2Ah S/REM 49h CALLI

0Ch >R 2Bh 2/ 4Ah EXIT

0Dh R> 2Ch CELLS 4Bh (DO)

0Eh R@ 2Dh ABS 4Ch (LOOP)

0Fh < 2Eh NEGATE 4Dh (LOOP)I

10h > 2Fh MAX 4Eh (+LOOP)

11h = 30h MIN 4Fh (+LOOP)I

12h <> 31h INVERT 50h UNLOOP

13h 0< 32h AND 51h J

14h 0> 33h OR 52h (LITERAL)

15h 0= 34h XOR 53h (LITERAL)I

16h 0<> 35h LSHIFT 54h THROW

17h U< 36h RSHIFT 55h HALT

18h U> 37h 1LSHIFT 56h (CREATE)

19h 0 38h 1RSHIFT 57h LIB

1Ah 1 39h @ 58h OS

1Bh -1 3Ah ! 59h LINK

1Ch CELL 3Bh C@ 5Ah RUN

1Dh -CELL 3Ch C! 5Bh STEP

1Eh + 3Dh +! FFh NEXT

Table 7: Beetle’s opcodes

4 External interface

Beetle’s external interface comes in three parts. The calling interface allows Beetle to be controlled
by other programs. The library format provides a simple mechanism for Beetle to access I/O and
other system-dependent functions via the LIB instruction. User-written libraries may also be used,
allowing Beetle to benefit from previously written code, code written in other languages, and the
speed of machine code in time-critical situations. The object module format allows compiled code
to be saved, reloaded and shared between systems. pForth is loaded from an object module.

14

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

4.1 Object module format

The first six bytes of an object module should be the ASCII codes of the letters “BEETLE”; next
should come an ASCII NUL (00h), then the one-byte contents of the ENDISM register of the Beetle
which saved the module. The next four bytes should contain the number of cells the code occupies.
The number must have the same endianness as that indicated in the previous byte. Then follows
the code, which must fill a whole number of cells. The format is summarised in table 8 (the bytes
in each cell are shown in the order in which they are stored in the file, regardless of the endianness
of the machine on which the file is written).

Cell Contents

1 42h 45h 45h 54h
2 4Ch 45h 00h ENDISM

3 Length l

4 1st cell of code. . .
...

...
l + 3 . . . lth cell of code

Table 8: Object module format

Object modules have a simple structure, as they are only intended for loading an initial memory
image into Beetle, such as the pForth compiler. Forth does not typically support the loading of
compiled code into the compiler, nor there is any need, as compilers are fast, and an incremental
style of program development, with only a little source code being recompiled at a time, is typically
used.

4.2 Library format

The first six bytes of a library file should be the ASCII codes of the letters “BEETLE”; next
should come FFh followed by the one-byte contents of the ENDISM register of the Beetle which
saved the library. Next is a cell containing the number of library routines in this library. After this
come the routines: first a cell containing the number of the routine (the same as that passed to
LIB to call that routine), then a cell with the length of the routine in bytes, then the machine code
itself, padded if necessary with 00h to a whole number of cells. The number of routines, routine
numbers and lengths should be stored with the same endianness as that indicated earlier. The
format is summarised in table 9 (the bytes in each cell are shown in the order in which they are
stored in the file, regardless of the endianness of the machine on which the file is written).

If relocation tables or other data are needed for the machine code to work, they should be included
with the code; it is up to the implementation how to decode the machine code sections of the library
file.

4.3 Calling interface

The calling interface is difficult to specify with the same precision as the rest of Beetle, as it may
be implemented in any language. However, since only basic types are used, and the semantics are
simple, it is expected that implementations in different language producing the same result will be
easy to program. A Modula-like syntax is used to give the definitions here. Implementation-defined
error codes must be documented, but are optional. All addresses passed as parameters must be
cell-aligned. There are six calls which a Beetle must provide:

15

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

Cell Contents

1 42h 45h 45h 54h
2 4Ch 45h FFh ENDISM

3 Number of calls
4 1st call number
5 1st call length l

6 1st cell of code. . .
...

...
l + 5 . . . lth cell of code
...

...
... further calls
...

...

Table 9: Library format

run () : integer

Start Beetle by entering the execution cycle as described in section 2.4. If Beetle ever
executes a HALT instruction (see section 3.10), the reason code is returned as the result.

single step () : integer

Execute a single pass of the execution cycle, and return reason code 0, unless a HALT

instruction was obeyed (see section 3.10), in which case the reason code passed to it is
returned.

load object (file, address) : integer

Load the object module specified by file, which may be a filename or some other specifier,
to the Beetle address address . First the module’s header is checked; if the first seven
bytes are not as specified above in section 4.1, or the endianness value is not 0 or 1,
then return -2. If the code will not fit into memory at the address given, or the address
is out of range, return -1. Otherwise load the bForth code into memory, resexing it if
the endianness value is different from the current value of ENDISM. The result is 0 if
successful, and some other implementation-defined value if there is a filing system or
other error.

save object (file, address, length) : integer

Save the length cells in Beetle’s memory starting at address as an object module under
the filename or other specifier file. The result is 0 if successful, -1 if there is a Beetle
error (the address is out of range or the area extends beyond MEMORY), and some other
implementation-defined value if there is a filing system or other error.

load library (file) : integer

Load the library specified by file, which may be a filename or some other specifier.
Return 0 if successful, or some other implementation-defined value if not. It is up to the
implementation whether particular library calls may be loaded more than once; if this
is allowed, the old version should be overwritten by the new.

16

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

save standalone (file, size, start, copied, libs) : integer

Write an executable stand-alone Beetle to the file file, which may be a filename or some
other specifier. The executable should have MEMORY equal to size, and the first copied

cells should have the contents of the copied cells in the current Beetle starting at start .
The library calls specified in the list of cells libs should be linked to the executable, and
the current values of the registers should be stored. The result is 0 if successful, -1 if the
area extends beyond MEMORY, or some other implementation-defined value if there is a
filing system or other error. See section 4.4 for the behaviour required of the stand-alone
Beetle.

Beetle must also provide access to its registers and address space through appropriate data objects.

4.4 Stand-alone Beetles

A stand-alone Beetle should perform the following steps when it is executed:

1. Initialise the registers with the values they held when the stand-alone Beetle was saved.

2. Perform the action of NEXT.

3. Perform the action of a call to run().

If the Beetle stops with a reason code, this should be returned to the calling environment if this
is supported; otherwise it may be ignored. The stand-alone program should then terminate.

Any library calls which were linked to the stand-alone Beetle must execute correctly when called
by the LIB instruction. Any other parameter passed to LIB should raise exception -257 (library
call not implemented).

5 Libraries

Beetle has one standard library, the core I/O library. Its routines mimic the four system-dependent
I/O words in the ANS Forth Core Word Set. The descriptions below are identical to those given
for bForth instructions (see section 3), except that the opcode is replaced by the routine number,
which is passed to LIB to call the routine.

BL “b-l” 0 (-- char)

char is the character value for a space.

CR “c-r” 1 (--)

Cause subsequent output to appear at the beginning of the next line.

EMIT 2 (x --)

If x is a graphic character in the implementation-defined character set, display x . The effect
of EMIT for all other values of x is implementation-defined. When passed a character whose
character-defining bits have a value between 20h and 7Eh inclusive, the corresponding character
from the ASCII code [2] is displayed.

KEY 3 (-- char)

Receive one character char , a member of the implementation-defined character set. Keyboard
events that do not correspond to such characters are discarded until a valid character is received,
and those events are subsequently unavailable. Any standard character returned by KEY has the
numeric value specified by the ASCII code [2].

17

c© Reuben Thomas 1995 (Reuben.Thomas@cl.cam.ac.uk)

For more precise information on the behaviour of the library calls, see the descriptions of the
corresponding words in [1, chapter 6].

Acknowledgements

Leo Brodie’s marvellous books [3, 4] turned my abstract enthusiasm for a mysterious language
into actual knowledge and appreciation.

I have taken or extrapolated the pronunciations of Forth words from [1].

Martin Richards’s demonstration of his BCPL-oriented Cintcode virtual processor convinced me
that this project was worth attempting. He also gave valuable advice on Beetle’s design and
proof-read this paper.

Tony Thomas read an earlier draft of this paper, and gave advice on making it more understandable
to readers without a knowledge of Forth.

References

[1] ANS X3.215–1994.

[2] ANS X3.4–1974.

[3] L. Brodie, Starting Forth (2nd ed., Prentice-Hall; ISBN 0–13–843079–9).

[4] L. Brodie, Thinking Forth (Prentice-Hall; ISBN 0-13-917568-7).

[5] R. R. Thomas, The pForth portable Forth compiler (unpublished).

[6] R. R. Thomas, An implementation of the Beetle virtual processor in ANSI C (unpublished).

18

