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Abstract

This paper presents the design of a strictness analyser pri-
marily intended to assist in the parallelisation of Haskell
programs. The analyser generates detailed evaluation trans-
former information suitable for use in a parallel graph re-
duction machine. By tuning the design to handle common
cases rapidly, we achieve good performance over a range of
realistic test inputs, of sizes up to a thousand lines. Per-
formance figures are presented. From measuring the time
it takes Glasgow Haskell 0.10 to compile those same pro-
grams, it is apparent that the analyser is sufficiently quick
to be approaching the point where incorporating it into a
Haskell compiler is a viable proposition.

Our strictness analyser contains three major innovations.
Firstly, we employ a mixed forward and backwards analy-
sis, which allows us to do projection analysis even in the
presence of higher order functions. Secondly, we solve the
resulting recursive domain equations using a sophisticated
term rewriting system, which, as far as we know, has abilities
far beyond previous rewrite based solvers in abstract inter-
pretation systems. Finally, we avoid many of the difficulties
of higher order analysis by automatically transforming out
most higher order functions before analysis begins.

1 Introduction

Higher-order, non-flat strictness analysis techniques have ac-
quired a reputation for being too expensive for use in pro-
duction compilers. This is a pity, since many such functions
behave in relatively simple ways, which suggests their ab-
stract behaviour could be divined without much difficulty.

One of the main themes which characterised the past
decade’s advances in hardware and software performance
is that of measurement-lead design. This school of thought
bases design on measuring what programs do most often,
and making these common activities as fast as possible, even
at the expense of slowing down less common operations.
These ideas, elaborated in Hennessy & Patterson [HP90],

∗My apologies for the dog-rough typesetting. This will be fixed in
later versions of the paper.

played a central role in the RISC revolution, and have been
taken up recently by the functional programming commu-
nity [PHHP93] [Par92].

We present, in detail, the design of a fast strictness analyser
for Haskell, dealing with higher-order functions and gen-
erating evaluation transformer information suitable for use
in parallel graph reduction systems [Bur87] [Bur91]. Pre-
liminary experiments have been encouraging. For example,
running in compiled Haskell on a Sun Sparc-10, a 618 line
program was analysed in 44 seconds. Of this, roughly half
was devoted to parsing, desugaring and typechecking, ex-
penses which any compiler would incur. As a naive first
implementation, there is ample scope for performance im-
provement.

This paper argues in favour of a measurement-lead approach
for the implementation of semantic analysis techniques for
functional languages. A major emphasis is to feed the anal-
yser the kinds of programs people really write, rather than
basing design decisions on the usual Mickey Mouse exam-
ples occurring so frequently in papers on the subject. To
this end, test inputs have been taken from the benchmark
suites of Hartel [HL92] and Partain [Par92].

Such an approach reveals some interesting facts. For ex-
ample, we discovered the main limitation on analyser per-
formance was not the necessity to iterate to and detect fix-
points, as had been assumed by so many theoretics. Rather,
it was the sheer size of the terms generated during the ab-
stract interpretation phase. By introducing a little more
intelligence into that phase, term size is cut dramatically,
giving a corresponding performance increase.

Similarly, polymorphism is dealt with by the crude mecha-
nism of a monomorphisation pass before analysis. Previous
workers, including myself, assumed this was a “bad thing”
(see [HH91] and [Sew93]), and put much effort into devising
polymorphic analysis methods [Bar91]. Yet the feared code
explosion, it seems, simply does not happen. Measurements
by Mark Jones on a 13000 line Haskell program – the source
code of this analyser – reveal that only a very few poly-
morphic functions, for example map and foldr, are used at
a large number of instances. Certainly, monomorphisation
does not cause any noticeable performance problems for this
analyser. A much better reason for disliking monomorphic
analyses is that they significantly complicate life when mod-
ules appear on the scene.



1.1 Overview of paper

The remainder of the introduction is devoted to an overview
of the analyser, henceforth referred to as Anna.

Section 2 deals with technical preliminaries. In particular,
we examine how types in the source program are mapped to
abstract domains suitable for the control of parallel evalua-
tion.

The abstract interpretation used forms the subject of sec-
tion 3. A variant of the projection analysis described in
section 6 of [Hug87], the technique is a mixed backwards
and forwards analysis, with the aim of performing back-
wards analysis. By supplying just enough “forwards” infor-
mation to turn functions into first class citizens, the analysis
deals sensibly with higher-order functions, partial applica-
tions and functions inside data structures.

Section 4 presents, in detail, the elaborate term rewriting
system used to detect fixed points in the recursive domain
equations generated by the abstract interpreter.

Functional programmers have long observed that large parts
of the programs they write can be mechanically transformed
to have no higher-order functions. Anna exploits this to
good effect, transforming away as many higher-order func-
tions as possible before analysis. Common higher order func-
tions which encapsulate particular forms of recursion, such
as foldr, are trivially removed. Even more difficult forms,
like the monads so beloved in certain quarters [Wad92] are
transformable. Nevertheless, some difficulties remain. Sec-
tion 5 discusses all this in detail. We also look briefly at the
monomorphiser.

Finally, in section 6, all these goodies are drawn together
with a discussion of the system’s performance, and of related
and further work.

1.2 Overview of the analyser’s front end

Anna is a large Haskell program, consisting of more than
13000 lines. Operation is simple. Anna reads a source pro-
gram on the standard input, and performs extensive trans-
formations on the program, printing it out at various points
on the way. Finally, the strictness information is generated
and printed.

The language accepted is a subset of Haskell. Missing fea-
tures are anything to do with overloading, modules or arrays.
Because of these, offering up arbitrary Haskell programs for
analysis is a difficult task: all overloading has to be resolved
by hand, a tedious business. The lack of module support
does not prove much of a problem, since multimodule inputs
are simply concatenated into one massive program, modulo
solving the odd renaming problem along the way. Anna
knows nothing about the Haskell prelude, and the relevant
parts of this too need to be inserted into the inputs. A very
few operations are taken as primitive: (+), (-), (*) and
(/), all of type Int -> Int -> Int, comparisons (<), (<=),
(==), (/=), (>) and (>=), of type Int -> Int -> Bool, and
conversion functions chr and ord of type Int -> Char and
Char -> Int respectively. A valid program must supply a
binding for main, but unlike a Haskell program, this may be
of any type.

Despite this meagre collection of primitives, Anna knows
about most of the built-in Haskell types, including booleans,
characters, strings, lists and tuples. Although some impor-

tant features of Haskell are missing, the subset allows Anna
to be fed real-world programs of considerable complexity,
albeit after some considerable massaging.

Probably the best way to think of Anna is as a framework
for trying out new analysis techniques. Hence, the system
logically consists of two parts: the analysis proper, and the
supporting framework. The interface between the two is
reasonably clean, so changing the nature of the analysis can
be done without much upheaval. This section focusses on
the supporting framework.

Because we want to exercise the analyses on functional pro-
grams of realistic size, the supporting framework is necessar-
ily large and complex. Indeed, the analysis part is currently
the smaller of the two. The framework contains a goodly
part of what one might expect to find in a full-scale com-
piler for the same language:

• Following the parsing stage, desugaring and pattern
matching transformations are carried out. These pro-
duce Core, a minimal functional language used as
an intermediate form in the Glasgow Haskell com-
piler [PHHP93], and typical of the intermediate forms
of various other compilers, for example the Chalmers
Haskell-B Compiler [Aug87]. All further transforma-
tions prior to strictness analysis proper are Core-to-
Core transformations.

• A dependancy analysis phase splits the program up
into minimal mutually recursive groups, and marks
non-recursive bindings as such. All subsequent trans-
formations are required to maintain dependancy order.

• A crude but effective Core simplification pass removes
unused bindings, and substitutes in constant bindings
only used once. This helps to clean up the rather messy
output of the desugarer. The former feature is useful
for debugging the analyser. Because a binding for main
must be supplied, the simplifier will eventually remove
all bindings not reachable from main. If the analyser is
seen to malfunction, arbitrary subsections of the input
program can be discarded simply by changing the body
of main, until what remains is small enough to make
debugging viable.

• Removing nested environments makes subsequent
transformations and analyses simpler. To this end, the
program is flattened out by a modified Johnsson-style
lambda-lifter [Joh85], followed by another dependancy
analysis pass.

• The program is now typechecked, using a standard
Milner-Hindley inferencer derived from Chapter 9 of
Peyton Jones’ book [Pey87]. Every node in the Core
tree has a type expression attached. Although a com-
plete annotation is rather expensive, it is essential for
subsequent passes.

• The single most complicated transformation, higher-
order function removal (also known as specialisation
or firstification) now follows. The present naive im-
plementation, described in Section 5, is slow but cor-
rect. Most if not all of the higher-orderness of typi-
cal programs can be removed. This transformation is
complicated by the need to maintain type annotations
correctly.
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• Finally, the program is monomorphised. This pass is
quick and relatively painless, even though a third trip
through the dependancy analyser is subsequently re-
quired.

Most compilers would want to mangle the output of the
desugarer in quite different ways to generate good code. For-
tunately, it is easy to see how the output of the strictness
analyser proper pertains to the desugared program. Only
two transformations give much trouble:

• Lambda-lifting simply moves bindings from inner lev-
els to the top level, and adds extra parameters. With a
little bookkeeping, it is possible to keep track of where
nested bindings ended up, so that strictness informa-
tion can be related back to them.

• Higher-order function removal will only ever remove
higher-order functions which have become irrelevant
because of specialisation. All first-order functions are
preserved. We are really only interested in deriv-
ing evaluation transformers for the first order func-
tions. This is because the demand propagated across
a higher-order function largely depends on what the
higher-order parameter is. So exploiting demand prop-
agation across higher-order functions means runtime
manipulation of evaluation transformers, a serious
complication for parallel graph reduction systems.

Building and maintaining the framework is a tiresome, time
consuming task. One could also argue all that effort was un-
necessarily, because the Glasgow Haskell team have specifi-
cally designed their compiler as a basis for experiments like
this, and valiantly supported those brave enough to take
them up [PHHP93]. In retrospect, there are three reasons
why Anna was not built into Glasgow Haskell:

1. At the time work on Anna begun, in the summer of
1991, Glasgow’s compiler (version 0.02) was in still in
the process of development.

2. Until recently, the analyser was relatively feeble, so
the need to feed it realistic Haskell programs has only
recently arisen.

3. The most important reason, though, is this: Anna had
been developed using Mark Jones’ marvellous interac-
tive environment, Gofer. Merging Anna into the Glas-
gow Haskell world would have meant compiling with
a Haskell compiler and this would easily have put an
order of magnitude on the edit-compile-run cycle time.

As Anna becomes more and more powerful, the incentive to
build it into a real compiler grows. This is definitely a long
term objective.

2 Technical preliminaries

2.1 Some terminology

The analyser’s front end produces a Core syntax tree, in
which every node is decorated with its type. This is fed to
the abstract interpreter proper, which translates to an
abstract form: recursive domain equations. The fix-
pointer solves these equations by iterating to their greatest

fixed points, detecting equality of adjacent approximations
by reducing them to normal form using the term rewrit-
ing system, and comparing those normal forms.

There are two kinds of abstract entity.

• Contexts denote an amount of evaluation that should
be applied to a data structure or function. These
are sometimes referred to as demands or backwards
values, but we will stick with context where pos-
sible. We later introduce a Haskell type Context to
model contexts.

• Abstract values amount to some trickery we will in-
troduce to deal with higher order functions. An alter-
native name, which is again avoided where possible,
is forward value. The corresponding Haskell type is
AbsVal.

This paper is primarily concerned with discovering how
source language functions behave viz-a-viz contexts. Nev-
ertheless, the output of the abstract interpreter is one ab-
stract value per Core function. Contexts and abstract values
intertwine, so the Context and AbsVal types are mutually
recursive. The abstract interpreter itself is defined as the
function Z in section 3.6.1.

Contexts and abstract values are, in a sense, strongly typed.
Each context is a member of a particular context domain,
and most operations on contexts are only meaningful if their
operands are drawn from particular domains. Abstract val-
ues are also strongly typed. Although the domains for ab-
stract values are, strictly speaking, different from context
domains, we will ignore abstract value domains. Instead, we
only consider context domains, henceforth referred to sim-
ply as domains, and pretend that for each domain there is
a family of contexts, and a family of abstract values.

For each Milner-Hindley type, there is a corresponding do-
main. In general, there may be many different types which
map to the same domain. The next section defines, infor-
mally, this mapping. We then refine the mapping slightly in
section 2.2.4, and formalise it in section 2.2.5.

2.2 Domains for projection analysis

A primary aim of these analyses is to generate information
useful for exploiting a parallel machine. To this end, we use
domains which are best viewed as a generalisation of the
evaluation transformers introduced by Burn [Bur87]. These
are introduced by example.

2.2.1 Base types

Base types Int and Char are mapped to a two point domain
2 = {0, 1}, with 0 meaning “do not evaluate this” and 1
meaning “evaluate fully”. In this case only, full evaluation is
the same as evaluation to weak head normal form (WHNF).

2.2.2 Non-recursive structured types

Consider the interpretation of a familiar non-recursive struc-
tured type: (Int, Int). We need to model the evaluators
for the components of the pair separately, so there must be
a product involved: (2 x 2). An evaluator corresponding
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to any such point would first have to evaluate the pair clo-
sure to WHNF, so it could get its hands on the individual
components. So we really need a fifth point representing an
evaluator which does nothing at all. The overall interpreta-
tion is Lift (2 x 2).

At this point it is convenient to introduce a notation for
points to be used throughout this paper. The bottom point
of the above domain is written as an underscore, _. The
other four are written in the form U[x, y] where the U
stands for “go up the Lift”, and the x and y are the relevant
product components. The overall collection of evaluators is
thus written {_, U[0,0], U[0,1], U[1,0], U[1,1]} with
the following ordering:

U[1,1]
/ \

U[0,1] U[1,0]
\ /
U[0,0]

|
_

How does this generalise to arbitrary non-recursive struc-
tured types? Well, very simply. A non-recursive structured
type is modelled by the single lifting of the product of what-
ever its type variables are bound to. Further details are ir-
relevant. That’s because we observe the guiding rule that
all objects corresponding to a particular type variable are
treated as a single entity. This rule is imposed for the pur-
pose of keeping things reasonably straightforward. For ex-
ample, given:

data Foo a b = MkFoo a b
| MkA a
| MkB b

data Grok a b c = MkGrok a b c
| GrokodileDundee a a a b b c

a value of (Foo Int Int) is mapped to Lift (2 x 2),
and (Grok Int Int Int) to Lift (2 x 2 x 2). More
complicated parameterisations give rise to more com-
plicated domains. The type (Grok Int (Foo Int Int)
(Grok Int Int Int)) has a 91 point domain
Lift (2 x Lift (2 x 2) x Lift (2 x 2 x 2)).

It is worth understanding that the number of product com-
ponents is equal to the number of type variables, and en-
tirely unrelated to the number of parameters of any partic-
ular constructor. A context U[1,0,0] applied to an object
of type (Grok Int Int Int) means: evaluate the object to
the first constructor. Then, if it is a MkGrok, evaluate the
first argument. Otherwise, it must be a GrokodileDundee,
so evaluate the first three parameters. We treat the first
argument to MkGrok and the first three of GrokodileDundee
as a single entity because they all correspond to the same
type variable, a, in the declaration.

2.2.3 Recursive structured types

So far, things are reasonably straightforward. But defining
evaluators for recursive types is a minefield, partly because
there are so many alternative formulations [Wad87] [WH87].
As it happens, the formulation used in Anna is a trivial

variation of the rule for non-recursive types, but justification
is not so easy.

The rule is identical to the non-recursive case, except for
the following modification: the single lifting of the product,
written Lift, is replaced by a double lifting, Lift2. Now,
given the pseudo-declaration

data [a] = []
| a : [a]

it is easy to see that the domain for [Int] is Lift2 (2), a
four point domain corresponding precisely to the interpreta-
tion for that type made by Wadler [Wad87] and later justi-
fied by Burn [Bur87]. Extending the notation of the previous
section, we write the points in this domain as {_, U_, UU[0]
and UU[1]}, understanding them to denote the evaluators
which Burn called {E0, E1, E2 and E3}:

• _: Do not evaluate at all (E0).

• U_: Evaluate as far as the first constructor, that is, to
weak head normal form (E1).

• UU[0]: Evaluate the entire structure of the list (E2).

• UU[1]: Evaluate the entire structure of the list, and
all the elements (E3).

In general, a recursive type of n parameters has evaluators of
the form {_, U_ and UU[x1 ... xn]}. The UU[x1 ... xn]
points denote evaluating the entire structure, and then ap-
plying evaluator x1 to each object corresponding to the first
parameter, x2 to objects corresponding to the second pa-
rameter, and so on. We will see, in Section 4, that this
conceptual partitioning of all recursive domain points into
three sections is crucial to the working of the term rewriting
system used to detect fixpoints. Similarly, the non-recursive
points may be partitioned into two: {_ and U[x1 ... xn]}.

The guiding principle, originally stated by Wadler, is to
model the recursive types by letting the sub-evaluators
in UU[...] values be representative of the least defined
element of that type in the structure. Imagine we
have a list of type [(Int, Int)], which induces do-
main Lift2 (Lift (2 x 2)), and we know that evaluator
UU[U[0,1]] is the strongest that can safely be applied (that
is, without danger of non-termination) to the list. Now
suppose we obtain another list for which UU[U[1,0]] is the
strongest safe evaluator, and append it to the original. What
is the best evaluator that can be applied to the new list?
It cannot be either of the originals, since that risks non-
termination. The most we can evaluate any particular ele-
ment whilst remaining safe is U[0,0], so the best that can
be applied to the list as a whole is UU[U[0,0]] – the great-
est lower bound of the values for the original lists. Wadler
summarised this by stating that a list is characterised “by
its least defined element” but we need to be more precise:
a list is characterised by the greatest evaluator that can
safely be applied to any element, even if a stronger evalua-
tor could be applied to specific elements. The same principle
generalises to structured types of any number of parameters,
with the greatest-lower-bound characterisation occurring in-
dependently for each parameter.

This abstraction, whilst simple, assumes that programs treat
all elements of the same type inside a structure in the same
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way. For example, it assumes list processing functions treat
all elements in the list the same way. Functions not playing
along with this may induce bad, but safe, results. Consider:

tail (x:xs) = xs

If we apply a UU[1] evaluator to (tail zs), what can we
evaluate zs with? Unfortunately, not UU[1], since the ele-
ment that tail throws away might just have been the one-
and-only non-terminating Int in the list. Erring on the
side of safety thus restricts the evaluator for zs to UU[0],
and loses all the potential parallelism in evaluating the ele-
ments in the rest of the list. One upshot of this, also noted
by Wadler, is that defining functions directly by pattern-
matching is essential to get good results. In the example
below, the analyser gives a much better result for sum1 than
sum2, despite them having identical strictness properties.

sum1 [] = 0
sum1 (x:xs) = x + sum1 xs

sum2 xs = if null xs
then 0
else head xs + sum2 (tail xs)

A related defect is the inability of these domains to capture
the notion of head strictness. A head strict function is one
which evaluates the first item in a list whenever it evaluates
the list as far as the first constructor, and discovers it to
be non-nil. Head strictness is useful in a sequential imple-
mentation, so an extension of the domains to capture these
properties would increase the useful scope of this analyser.

2.2.4 Modifying the notation

The above mapping assigns domain Lift () to all
enumeration types, for example the familiar type
data Bool = False | True. Observe that Lift () is iso-
morphic to the two-point domain used for base types, and
rightly so. After all, we could, conceptually, define

data Int = ... -3 | -2 | -1 | 0 | 1 | 2 | 3 ...

and we’d certainly expect a two-point domain for it!

This isomorphism can be used to simplify the domain struc-
ture, and thus the strictness analysis itself. We forget about
domain 2, and instead map base types Int and Char to
Lift (), with points {_, U[]} replacing {0, 1}. Hence-
forth the new notation is used.

2.2.5 Summary

Let D(t) denote the domain for some type t. Let typeName
be the name of some structured type, and te1 ... ten be
some arbitrary type expressions. D is defined as:

D(Int) = Lift ()
D(Char) = Lift ()

D(typeName te1 ... ten)
= Lift (D(te1) x ... x D(ten))
if typeName denotes a non-recursive type

= Lift2 (D(te1) x ... x D(ten))
if typeName denotes a recursive type

The concept of a function-valued context seems rather mean-
ingless, and is left undefined until section 3.2.

2.2.6 Restrictions on structured types

The astute reader may have noticed the examples above
have been rather restricted. In particular, none of them had
constant types as an argument to any constructor. But this
situation is commonplace, for example as the Int conveying
balancing information in the following tree declaration:

data AVLTree a b
= ALeaf
| ANode Int (AVLTree a b) a b (AVLTree a b)

Instead of extending the domain-generating rules to cover
such cases, it is simpler to factorise out the offending Int,
generating a second type AVLTree2:

data AVLTree2 i a b
= ALeaf2
| ANode2 i (AVLTree2 i a b) a b (AVLTree2 i a b)

(AVLTree2 Int a b) is an isomorphic
type to (AVLTree a b), at the same type being a type for
which we know how to generate an abstract domain. Conve-
niently, Milner-Hindley typecheckers are amenable to such
substitutions.

Finally, observe that there are certain types for which it is
hard to devise a sensible set of evaluators, for example:

data Foo a b
= MkFoo a b (Foo (Foo a b) (Foo a b))

The solution adopted in Anna is simply to deem these ille-
gal. We require that, in a type declaration, arguments on
constructors are either simple variables (here, a or b), or a
simple recursive instance of the structure (here, Foo a b).
These restrictions seem inconsequential for real programs,
and have been reported quite independantly in [KHL91].

2.3 The Core datatype

The extensively mangled source program eventually passed
to the abstract interpreter is a type-annotated tree, repre-
senting a simple functional language. Each node in the tree
carries with it an annotation. The Haskell data type used
is parameterised over both the type of the annotations, and
the type of the identifier names:

type AnnExpr a b
= (b, AnnExpr’ a b)

data AnnExpr’ a b
= AVar a
| AConstr a
| ALit Int
| AAp (AnnExpr a b) (AnnExpr a b)
| ALet Bool [AnnBind a b] (AnnExpr a b)
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| ACase (AnnExpr a b) [AnnAlt a b]
| ALam [a] (AnnExpr a b)

type AnnBind a b
= (a, AnnExpr a b)

type AnnAlt a b
= (a, ([a], AnnExpr a b))

The first and second parameters on an AnnExpr type are for
the identifier and annotation types respectively. For exam-
ple, if the type of identifiers is Id, and that of type expres-
sions TExpr, the type of the corresponding Core expression
is (AnnExpr Id TExpr).

Most cases are straightforward. The AVar term represents
an identifer, whilst AConstr represents a constructor name.
Literal values are represented by ALit, and applications by
AAp. Lambda terms are represented by ALam, which can bind
an arbitrary number of formal parameters.

That leaves the two tricky ones. A let/rec expression is
represented by ALet, which has a boolean flag indicating
whether this is a recursive binding, a list of bindings, and a
main expression in which those bindings can be used. Each
binding is an identifier paired with the value it is bound
to. Case expressions, denoted by ACase, contain a switch
expression, and a list of alternatives. Each alternative is a
triple of constructor name, constructor arguments and the
appropriate right-hand side. The use of nested pairs is more
convenient for coding purposes.

All phases downstream of the lambda-lifter exploit certain
assumptions about the form of the program. The most im-
portant are that there are no nested ALets, that the program
is in dependancy order, and that no identifier is undefined
or multiply defined in the same scope.

2.4 Compiling parallel code

Evaluation transformers are supposedly exploited by com-
piling multiple copies of each function, up to one copy for
each context in which the result might be demanded. For
each copy, compile-time analysis indicates how much de-
mand propagates to the parameters of the function, and
thus how much the arguments to the call may be evaluated
before the call. In this manner, demand propagation is pre-
served as far as this style of static analysis makes possible.
Of course, all this is done in pursuit of the overall goal:
maximising available parallelism. An equally important is-
sue, not discussed here, is how to avoid excessive fine-grain
parallelism.

All well and good, but the potential for code explo-
sion renders a naive implementation impractical. Con-
sider a function delivering a result of the contrived type
(Grok Int (Foo Int Int) (Grok Int Int Int)) discussed
in section 2.2.2. Since the domain has 91 points, it would
appear necessary to compile 90 versions of the code, omit-
ting the version for no demand at all on the output. Burn’s
early work simply ignored the problem by restricting itself
to lists of Int, for which at most 3 copies of code are re-
quired. Quite what to do about complex types, which in-
duce product domains, or non-trivial instantiations of lists,
is not clear.

This unsatisfactory state of affairs can to some extent be
alleviated by restricting ourselves to compiling just a subset

of all the possible versions of each function. Then, when
the output of a function is demanded in a context for which
no version has been compiled, the version used is that com-
piled for the greatest demand less than the demand we re-
quired. Observe that the choice of alternative is not neces-
sarily unique, but, provided we compiled in a fully sequential
(that is, WHNF demand) version, an alternative is at least
guaranteed to exist. Of course, some potential parallelism
may well be lost: such is the price for restricting the code
explosion to a tolerable magnitude.

The central question, then, is which versions to compile code
for. One person who has ventured into this quagmire is
Mintchev. For his MSc dissertation [Min92], Mintchev built
a simulation of a parallel graph reduction machine, which
understands three levels of demand: none at all, weak head
normal form demand, and full demand. An immediate ad-
vantage is that these points apply to all structured types,
including tuples and complex instantiations of types, and are
thus more widely applicable than Burn’s scheme. Encour-
agingly, even with so few evaluators, Mintchev found that
substantial amounts of parallel activity were generated, val-
idating his approach. Recently it has been suggested that
a fourth evaluator might be profitably included: evaluation
of the entire structure of a recursive type, but no evalua-
tion of the components. This makes no sense, of course, in
a non-recursive type, or, alternatively, one can regard it as
equivalent to the WHNF evaluator, in this case.

A further complication is what to do about polymor-
phic functions. We may compile three versions of the
reverse function, working from the evaluators of the sim-
plest instance, but then what do we do given an evaluator
UU[U[1,0]] applied to a use of reverse at non-base instance
[(Int, Int)] -> [(Int, Int)]? Suffice it to say that a
possible solution is only to compile versions of polymorphic
functions based on their evaluators for simplest instances,
and use safe approximation techniques based on Conc maps
to handle the non-base instances. See [HH91], section 5, for
an introduction to Conc maps. My MSc dissertation [Sew91]
indicates how Conc maps are useful in matters of polymor-
phism, a theme explored further in [Sew93].

Now, if the compiler is only going to make code for a few of
all the possible evaluators for a function returning an object
of complex type, what is the point of doing strictness anal-
ysis with the full complement of evaluators? After all, this
amounts to doing a detailed analysis, then throwing away
most of the detail in the final answer. It would certainly
be much quicker just to work with those few evaluators we
are really interested in. Nevertheless, doing that risks losing
intermediate detail, and, ultimately, parallelism, compared
with the expensive approach. Building an abstract interpre-
tation for the el cheapo approach might also be rather dif-
ficult, and the interpreter would have to be rewritten every
time the particular subset of interesting evaluators changed.

A final interesting caveat pertains to higher-order functions.
As explained towards the end of section 1.2, it looks dif-
ficult to exploit parallelism in higher-order functions if we
do not want to engage in complicated manipulation of eval-
uation transformers at run-time. One can therefore rea-
sonably argue that the higher-order removal transformation
(firstification) described in section 5 enhances parallelism.
What firstification does is to discover statically some of the
functional parameters passed to higher-order functions, and
specialise them accordingly, generating first-order replace-
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ments. These can then be parallelised in the normal way,
without having to resort to complicated run-time machinery.
Maybe, then, this transformation should be incorporated as
a matter of course into good parallelising compilers.

3 The abstract interpretation

3.1 Preliminaries

3.1.1 The notion of forwards and backwards

Semantic analyses of functional languages seem to fall into
two camps: forwards and backwards. To see the intuitive
meaning of this, consider a function application:

(f x y z)

A forward analysis generates information about f which
tells us properties of the application (f x y z) if we know
the properties of the individual arguments, x, y and z. In
other words, the analysis propagates information forwards
through functions. Forward analyses tend to be expensive
because they have to consider all possible interactions be-
tween arguments. On the other hand, one gets a very de-
tailed picture of what is going on.

A backward analysis, by contrast, generates information
about f which tells us the properties of the individual argu-
ments x, y and z if we know some property of the application
(f x y z). That is, a backwards analysis propagates prop-
erties backwards through functions. Backward analyses may
be cheaper to do, but they may also give less detailed results.

Now, for reasons which will shortly become apparent, Anna
does a combined forward and backward analysis. The prop-
erties which Anna propagates forwards through functions
are the abstract values, whilst those which flow backwards
are contexts. To set the stage, observe critically that Anna’s
main purpose is to determine the backwards behaviour of
the source language functions. The presence of forward (ab-
stract) values is a necessary evil which enables us to deal
cleanly with higher-order functions. The discussion which
now follows makes more sense if you keep a clear notion that
abstract values correspond to a forwards flow of information,
whilst contexts correspond to a backwards flow.

3.1.2 A fundamental problem with backwards analysis

Backwards strictness analysis would be straightforward,
were it not for the higher-order nature of the language under
analysis. To see the problem, consider apply:

apply f x = f x

Given some demand on a use of apply, (apply g y), what
demand may be propagated to y? Without knowing how
g propagates demand to its argument, the only safe answer
is “none”. However, knowing what g is implies having a
forward flow of information, as well as the backward flow of
demand we started with.

Things look grimmer when we put functions inside data
structures, then fish them out and apply them:

1 + (head xs (y+1))

where xs :: [Int -> Int]. There is no way to tell what
demand could be propagated to y.

The solution really lies in building a combined backwards
and forwards analysis. Wray [Wra85] made a start on the
problem, but it took the work of Hughes [Hug87] to gener-
alise Wray’s results to the point of general applicability. The
resulting analysis is rather hard to understand, so, rather
than attempting a head-on assault, we look first at under-
lying issues, starting off with some new concepts.

3.2 Function contexts

Dealing with functions properly means turning them into
first-class citizens for the purposes of the abstract inter-
preter. Section 2.2 discussed the notion of demand (or con-
text) on a data structure. We now extend the notion of
context to functions.

Since a context really denotes a demand for evaluation, the
idea of a function context seems pretty meaningless: after
all, how can a function be evaluated? But imagine we de-
fined a function context as a pair, containing the abstract
value of the argument, and the context for the result of an
application of the function. By making the analysis fully
curried from now on, we can consider all functions as hav-
ing just one argument. Then, for example, the context on a
function of two arguments, such as apply, looks like:

(abstract value of first argument,
(abstract value of second argument,
context on result)

)

Such a scheme would solve the problem outlined above, by
supplying the value of the first parameter, allowing demand
to be propagated onto the second parameter. This abstract
value of the first parameter is just the relevant context func-
tion, but what of the abstract value of the second, non-
functional parameter? Well, we are simply not interested in
it, so we map it to the 1-point domain.

The world now becomes populated by two species of values:

• Contexts (also called backwards values, evaluators or
demands). In what follows, we often say “context” or
“context on” when it would be more natural to say
“demand” or “demand on”. This convention has been
adopted because of a wish to have just one term for
each concept.

Contexts are the first kind of abstract entity referred
to in section 2.1. For non-function values, they are
as discussed in section 2.2. For function values, they
are a pair which we write as (Fnc a c), where Fnc
reminds that this is a FuNction Context, a is the
abstract value of the argument and c is the context on
the result. Henceforth, variables denoting contexts or
context maps have ’c’ as their first letter.

• Abstract values (also called forwards values). These
are the second kind of abstract entity described in sec-
tion 2.1. They are designed purely to convey contexts
to any place involving a call to an unknown function,
such as in the two problematic examples above. The
abstract values of non-function objects are always irrel-
evant and are mapped to a 1-point domain, whose sin-
gle point is denoted #, for the time being. The abstract
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Defining equation Disassembles a ... producing the ...

FncA (Fnc a c) = a functional context abstract value of the argument
FncC (Fnc a c) = c functional context context on the result
FvalA (Fval c a) = a functional abstract value abstract value map: argument to result
FvalC (Fval c a) = c functional abstract value context map: result to argument

Table 1: Selector functions for functional entities

value of a function-valued object is also a pair (but
quite unrelated to Fnc pairs), written (Fval c a),
with Fval reminding us this is a Functional abstract
VALue. The two components are both maps. The
first component, c, maps the context on the function
to context on the argument, whilst amaps the abstract
value of the argument to the abstract value of the re-
sult. Variables denoting abstract values or abstract
value maps have ’a’ as their first letter.

Notice how the two kinds of values are mutually recursive.
The overall output of the abstract interpreter is one ab-
stract value per Core function. Each abstract value con-
tains enough information to propagate demand from the
overall result to each of the arguments, even in the presence
of functional parameters. These concepts are confusing, so
some examples are in order. First, define four selectors FncA,
FncC, FvalA and FvalC to disassemble Fncs and Fvals, with
the behaviour shown in Table 1. Hopefully, their names will
serve as a reminder of their meaning.

Let’s start with the simplest function imaginable:
id :: Int -> Int. The only remotely interesting thing we
can say about id is that it simply propagates the context on
its result to the context on its argument. So, supposing we
now write down a mapping from the context on the result
to the context on the argument, we get:

(\c -> c)

Let’s be clear what this is. It’s not a context, and it’s also
not an abstract value. It’s a map from contexts to contexts.

But that’s not good enough. We said earlier that Anna
produces one abstract value per Core function. So what do
we produce for id? For a start, since id is a function, we
must get a functional abstract value: an Fval term. It must
look like:

id = Fval context_map
abstract_value_map

Now, the context map, as we just mentioned, maps the con-
text on id to the context on id’s argument. And the context
on id, since id is a function, must be a function context, of
the form (Fnc a c), where c is the bit we’re really after.
This gives a context map of (\c -> FncC c), so we’ve now
got:

id = Fval (\c -> FncC c)
abstract_value_map

What of the abstract value map? It tells us what the ab-
stract value of id’s result is given the abstract value of id’s
argument. But, for this instance of id, the result type is
Int. All non-function types have a corresponding abstract
value, denoted #, in a 1-point domain. So we don’t actually
care what the abstract value of id is – it can only be # any-
way. That means, after installing the abstract value map,
we could write either of the following, although the second
is a little clearer:

id = Fval (\c -> FncC c)
(\a -> a)

id = Fval (\c -> FncC c)
(\a -> #)

If you are confused, go no further! It is better to return
to the start of this section, consider again the meanings of
contexts and abstract values, and iterate until the example
makes sense.

Moving on to (+) :: Int -> Int -> Int gives:

(+) = Fval (\c1 -> FncC (FncC c1))
(\a1 -> Fval (\c2 -> FncC c2)

(\a2 -> #))

This time currying comes into play. That’s why the term
which maps the abstract value of the first argument to the
abstract value of the result returns a Fval term: the “re-
sult” here has type Int -> Int. Clearly, (+) simply prop-
agates context on the overall result to both arguments,
which is why the context maps for the two arguments
are (\c1 -> FncC (FncC c1)) and (\c2 -> FncC c2). If
this seems a little mysterious, bear in mind that both
(FncC (FncC c1)) and (FncC c2) refer to the context on
the final result. That’s because c1 binds to a context
in Int -> Int -> Int, which is necessarily of the form
(Fnc # (Fnc # cc)) where cc is the context on the final
result. Similarly, c2 is a context of type Int -> Int, having
the form (Fnc # cc) where cc is again the context on the
final result.

Now for something altogether more adventurous: the famil-
iar apply function, at type (Int -> Int) -> Int -> Int.
This example is easier to follow if one bears in mind that
(apply f x) reduces immediately to (f x), so any context
applied to the former expression also applies directly to the
latter. What the rather formidable term below does is to
route the context from the result of calling apply to the
result of calling the higher-order parameter.
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apply = Fval (\c1 -> Fnc (FncA (FncC c1))
(FncC (FncC c1)))

(\a1 -> Fval (\c2 -> (FvalC a1)
(Fnc (FncA c2)

(FncC c2))
(\a2 -> (FvalA a1) a2))

First of all, consider what the function context c1 will
get bound to must look like: (Fnc a_ho (Fnc # c_final))
where a_ho us the abstract (or forward) value of the func-
tional parameter and c_final is the context on the result
of applying this functional parameter to something. Now,
term (\c1 -> Fnc (FncA (FncC c1)) (FncC (FncC c1)))
maps context on apply to context on the first parameter.
As this is a functional parameter, it makes sense that this
expression is built from a Fnc. So just what context is propa-
gated to the functional parameter? Well, the abstract value
must be the same as the abstract value of the second pa-
rameter to apply, and this value (which must be #) is ex-
tracted by the term (FncA (FncC c1)) Similarly, the con-
text on the result of the functional parameter must be the
same as the context on the overall result of apply, given by
(FncC (FncC c1)).

Everything else is easier to follow. Variable a1 will get bound
to the abstract value of the functional parameter, which
must be a Fval term. So (FvalC a1) returns the map used
by the functional parameter to translate context on itself to
context on its first argument. The map is applied to the
same function context as was built in the preceding para-
graph, except that references to (FncC c1) are replaced by
c2, which is the same thing.

Finally, the abstract value of the result is given by apply-
ing the abstract value map of the functional parameter,
(FvalA a1), to the abstract value of the second parameter,
a2.

Two improvements are possible. Firstly, the abstract value
of the result must simply be #, since the result type is Int.
Secondly, examination of the definition of FncA and FncC
shows that (Fnc (FncA c) (FncC c)) is equivalent simply
to c. The improved version is:

apply = Fval (\c1 -> FncC c1)
(\a1 -> Fval (\c2 -> (FvalC a1) c2)

(\a2 -> #))

The mechanism for dealing with functions and applications
is the hardest part of the abstract interpreter to understand.
A little time spent making sense of this last example is a wise
investment.

Why is it necessary to propagate demand into functional
parameters? Well, consider:

add1 x = apply (+ x) 1

If demand isn’t propagated into apply’s functional parame-
ter, there will be no demand on term (+ x) and none on x,
giving the impression that add1 is not strict, when really it
is.

3.3 More about abstract values

All non-function expressions yield an abstract value in a unit
domain. However, value #, used in the examples above, is

too indiscriminating. The Haskell declaration for abstract
values looks (almost) like this:

data AbsVal
= ANonRec [AbsVal]
| ARec [AbsVal]
| Fval Context AbsVal

| AbsVar Id
| AbsLam Id AbsVal
| AbsAp AbsVal AbsVal

| FncA Context
| FvalA AbsVal
| SelA Int AbsVal
| AMeet [AbsVal]

The ARec and ANonRec terms define abstract values
for recursive and non-recursive types, respectively. In
both cases, the associated list of AbsVals are the ab-
stract values of the parameters of the type. For ex-
ample, a term of type [(Int, Int)] has abstract value
(Rec [NonRec [NonRec [], NonRec []]]), given that Int
is treated as an enumeration and thus maps to (NonRec []).
It is important to realise that this value is still unitary, like
#, but has the added advantage that it can be disassem-
bled to reveal its unitary subcomponents, as necessitated by
the abstract interpretation of case statements. Constructor
SelA is used for this, with meaning:

SelA n (ARec [a1 ... an ... ak]) = an
SelA n (ANonRec [a1 ... an ... ak]) = an

Fval, FncA and FvalA were introduced in the previous sec-
tion. AbsVar, AbsLam and AbsAp allow references to abstract-
valued variables, and for the creation and application of
abstract-valued mappings. Observe that we often omit
AbsVar and AbsAp, when the meaning is obvious, and ab-
breviate (AbsLam a e) to (\a -> e).

Consider again

1 + (head xs (y+1))

where xs :: [Int -> Int]. We expect xs to have been
bound to an abstract value which can supply a sensible
context-mapping function. Once again, we characterise the
list by the least element, this time the least context function,
in it. So, supposing

xs = [id, id] where id x = x

the abstract value of xs will be:

ARec [ Fval (\c1 -> FncC c1)
(\a1 -> ANonRec []) ]

The effect of the head function is to wrap SelA 1 around
this term, making the abstract value of id available where
it is needed. But, now, if xs were defined as

xs = [id, const] where id x = x
const x = 42
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we need to be more cautious. Since the abstract interpre-
tation cannot distinguish items in lists, we must arrange
that the function which emerges from the list represents the
weaker evaluator: const. That requires the list as a whole
to have value:

ARec [ Fval (\c1 -> _)
(\a1 -> ANonRec []) ]

The upshot of all this is that the abstract value of a list
containing functions is characterised by the least function
in the list, with the principle extending analogously to all
other structures. In order to carry that out, a greatest-
lower-bound operation is needed for abstract values. This is
what the AMeet term is for.

3.4 More about contexts

This is a good point at which to wheel in the Haskell decla-
ration for contexts. Unfortunately, it is even more cumber-
some than the AbsVal declaration. Nevertheless:

data Context
= Stop1
| Up1 [Context]
| Stop2
| Up2
| UpUp2 [Context]
| Fnc AbsVal Context

| FncC Context
| FvalC AbsVal

| CJoin [Context]
| CMeet [Context]

| CtxVar Id
| CtxLam Id Context
| CtxAp Context Context

| SelU Int Context
| SelUU Int Context
| CaseU Context Context Context
| CaseUU Context Context Context Context

| DefU Context
| DefUU Context

The first six are for building literal contexts. Stop1 and
Up1 pertain to points in Lift (D1 x ... x Dn), with Stop1
representing the bottom point _, and (Up1 [x1 ... xn])
representing the point U[x1 ... xn]. Similarly, Stop2, Up2
and (UpUp2 [x1 ... xn]) represent the points _, U_ and
UU[x1 ... xn] in the domain Lift2 (D1 x ... x Dn). Fnc
is used for building function-valued contexts, as discussed in
section 3.2. Finally, DefU and DefUU exist to help the term
rewriting system, as described in section 4.4.

FncC and FvalC were also discussed in section 3.2. CJoin and
CMeet unsurprisingly denote the least upper and greatest
lower bounds of their respective argument lists.

CtxVar, CtxLam and CtxAp are exact equivalents to the
AbsVar, AbsLam and AbsAp discussed in section 3.3. They
provide a way to reference context-valued variables, and al-
low the creation and application of context-valued maps.

Once again, note that we often omit CtxVar and CtxAp,
when the meaning is obvious, and abbreviate (CtxLam c e)
to (\c -> e).

Far and away the most interesting constructs are the last
four. CaseU and CaseUU allow partial disassembly of values
in Lift (D1 x ... x Dn) and Lift2 (D1 x ... x Dn) re-
spectively, in the manner discussed in section 2.2.3. The
exact semantics are:

CaseU Stop1 x y = x
CaseU (Up1 _) x y = y

CaseUU Stop2 x y z = x
CaseUU Up2 x y z = y
CaseUU (UpUp2 _) x y z = z

Note that the switch values are restricted to being in do-
mains Lift (D1 x ... x Dn) and Lift2 (D1 x ... x Dn)
respectively. Switch values from any other domain consti-
tute an ill-formed context. CaseU and CaseUU terms denote
a mapping from their switch expressions to one of the al-
ternatives. As such, a well-formed CaseU or CaseUU must
denote a monotonic mapping, so we impose the semantic
constraint that x ⊑ y ⊑ z.

As you might suspect, SelU and SelUU are selectors in the
spirit of SelA, discussed in section 3.3. Semantics are:

SelU n (Up1 [x1 ... xn ... xk]) = xn
SelUU n (UpUp2 [x1 ... xn ... xk]) = xn

But there is a very strong semantic constraint here: it is
illegal to apply SelU or SelUU to a value unless that value is
provably equivalent to an Up1 [...] or UpUp2 [...] value
respectively. This means, for some arbitrary context c, the
following expressions are likely to be ill-formed:

SelU n c
SelUU n c

The one and only way to make them well-formed is to wrap
the appropriate species of Case term around them, leaving
the Sel in the greatest-value arm:

CaseU c (...whatever...) (SelU n c)

CaseUU c (...whatever...) (...whatever...)
(SelUU n c)

In both cases, the term (Sel n c) may not appear in any
place marked “...whatever...”. Note that the Sel term
may appear anywhere within the greatest-value arm, and
is not restricted to the top level, as this example seems to
suggest.

3.5 Constructor functions and case statements

The source-language trappings of structured types give rise
to some of the more interesting parts of the abstract inter-
preter, and warrant a section to themselves. First, though,
some terminology. A structured type is defined like this:

data typeName v1 ... vk = C1 t11 ... t1m
| ...
| Cn t1n ... tnm
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This defines a type called typeName, paramterised by type
variables v1 to vk, with constructors C1 to Cn. The type ex-
pressions t11 to tnm, which form the arguments to the con-
structors, are heavily constrained in the manner discussed
in section 2.2.6: they may only be either one of the type
variables, v1 ... vk, or a direct recursive call to the type:
(typeName v1 ... vk).

Because of this constraint, each constructor argument in a
valid definition can be classified either as a recursive call Rec,
or as one of the type variables, Var n where n is a number
denoting which variable. For example, the definition

data AVLTree i a b
= ALeaf
| ANode i (AVLTree i a b) a b (AVLTree i a b)

can, in principle, be rewritten as

data AVLTree (of 3 type variables)
= ALeaf
| ANode (Var 1) Rec (Var 2) (Var 3) Rec

We now define two strange functions, argkind and update,
to assist in the discussion below. Neither are meant to
be implementable. Rather, they serve as convenient nota-
tional devices, and are best illustrated by example. They
are both meaningless unless the particular constructor ap-
plication they are associated with is stated.

argkind tells us what part of a data type a given construc-
tor argument corresponds to: either a certain type variable,
or a recursive instance of the type. For example, bearing in
mind the declaration above, given the constructor applica-
tion (ANode i l a b r):

argkind i = Var 1
argkind l = Rec
argkind a = Var 2
argkind b = Var 3
argkind r = Rec

update replaces a particular value in a supplied list with
another value. It finds out which location to update by
using argkind, expecting an answer of the form (Var i),
whereupon i is used as the location. It is invalid to use
update in a way which would cause the call to argkind
to return Rec. Again, using the constructor application
(ANode i l a b r):

update i "my" ["the", "cat", "sat"]
= ["my", "cat", "sat"]

update a "dog" ["the", "cat", "sat"]
= ["the", "dog", "sat"]

update b "ran" ["the", "cat", "sat"]
= ["the", "cat", "ran"]

But

update l x xs
update r x xs

are both illegal since argkind l = argkind r = Rec.

The example used update to replace words in a list thereof to
emphasise update’s polymorphic nature. Note that update
is always used with a constructor wrapped round the final
list argument. This constructor is re-attached to the result:

update i "my"
(SomeConstructor ["the", "cat", "sat"])

= (SomeConstructor ["my", "cat", "sat"])

For the sake of clarity, this inconsequential detail is hence-
forth ignored.

Recall from section 2.2.5 that function D returns the do-
main associated with a particular type. Four more handy
functions of similar ilk are top, bot, topfv and whnf. The
first two simply generate the greatest and least contexts in a
particular domain. topfv(D) generates the greatest abstract
value in domain D.

top (Lift (D1 x ... x Dn))
= Up1 [top(D1) ... top(Dn)]

top (Lift2 (D1 x ... x Dn))
= UpUp2 [top(D1) ... top(Dn)]

top (Ds -> Dt)
= (\c -> top(Ds))

bot (Lift (D1 x ... x Dn))
= Stop1

bot (Lift2 (D1 x ... x Dn))
= Stop2

bot (Ds -> Dt)
= (\c -> bot(Ds))

topfv (Lift (D1 x ... x Dn))
= ANonRec [topfv(D1) ... topfv(Dn)]

topfv (Lift2 (D1 x ... x Dn))
= ARec [topfv(D1) ... topfv(Dn)]

topfv (Ds -> Dt)
= Fval (\c -> top(Ds))

(\a -> topfv(Dt))

whnf(D) is the weak head normal form evaluator for domain
D. This only makes sense for certain values of D:

whnf (Lift (D1 x ... x Dn))
= Up1 [bot(D1) ... bot(Dn)]

whnf (Lift2 (D1 x ... x Dn))
= UpUp2 [bot(D1) ... bot(Dn)]

Finally, for the record, a Core case expression looks like

case switchExpression of
C1 p11 ... p1m -> rhs1

...
Cn p1n ... pnm -> rhsn

where it is assumed that all constructors are present. This
is assured by the pattern-matching phase of the desugarer.

The four following sections document the flow of abstract
values and contexts through constructor applications and
case expressions. In some ways, the two are opposites: con-
structor applications build structures, whilst case expres-
sions disassemble them. An interesting duality arises from
this. The flow of abstract values though case expressions
is uncannily similar to the flow of contexts values through
constructors, and vice versa.
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3.5.1 Constructor functions: abstract value propagation

How do abstract values flow through a constructor? The
discussion of section 3.3 implied that the the (:) function
must behave something like:

(:) = \x xs -> AMeet [xs, ARec [x]]

Observe that the apparently polymorphic nature of this def-
inition is incidental. In general, given an arity-n constructor
C and arguments a1 ... an where (C a1 ... an) :: tau,
the forward behaviour of C is:

\a1 ... an -> AMeet [e1 ... en]

ei = ai
if argkind ai = Rec

= ARec (update ai ai topfv(D(tau)))
if argkind ai == Var x
and C is from a recursive type

= ANonRec (update ai ai topfv(D(tau)))
if argkind ai == Var x
and C is from a non-recursive type

Nullary constructors simply acquire the top abstract value
of the relevant domain (bear in mind that, for a domain not
containing function spaces, this is the same as the bottom
point). The [] case for [Int], for example, is:

[] = topfv(D( [Int] ))
= topfv( Lift2 (Lift ()) )
= ARec [ANonRec []]

The motive in all this is to ensure that the abstract value of
a constructor application is characterised, for each parame-
terising type, by the least value of that type.

As an example, consider an object
of type (AVLTree Int Int Int). Contexts for that type
are drawn from the domain Lift2 (Lift () x Lift () x
Lift ()). We expect the abstract value returned by
both the ALeaf and ANode constructors to be of the form
ARec [ii, aa, bb] where ii represents the least abstract
value of any object corresponding to type variable i in the
type definition, and similarly for aa and bb. So, at this in-
stantiation, the abstract value behaviour of the constructors
is:

ALeaf = ARec [ANonRec [], ANonRec [], ANonRec []]

ANode
= \i l a b r ->
AMeet
[ ARec [i, ANonRec [], ANonRec []],

l,
ARec [ANonRec [], a, ANonRec []],
ARec [ANonRec [], ANonRec [], b ],
r

]

Non-recursive types are dealt with in an exactly analogous
manner. For example, the behaviour of the pairing construc-
tor at type Int -> Int -> (Int, Int) is

(,)
= \x y ->
AMeet
[ ANonRec [x, ANonRec []],

ANonRec [ANonRec [], y ]
]

If your instincts tell you this is much ado about nothing, you
are correct. Since all these examples build structures with-
out embedded function spaces, the result values are unitary,
and may be written:

[] = ARec [ANonRec []]
(:) = \x xs -> ARec [ANonRec []]

(,) = \x y -> ANonRec [ANonRec [], ANonRec []]

ALeaf = ARec [ANonRec [], ANonRec [], ANonRec []]
ANode = \i l a b r ->

ARec [ANonRec [], ANonRec [], ANonRec []]

3.5.2 Constructor functions: context propagation

The name of the game here is to say what context propagates
from a non-nullary constructor to its arguments. Intuiting
first on [Int], (:) exhibits the following behaviour:

Demand on (x:xs) Demand on x Demand on xs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

UU[U[]] U[] UU[U[]]
UU[_] _ UU[_]
U_ _ _
_ _ _

A UU[U[]] context causes evaluation of the entire structure
of the list, and all the Ints in it too. So we may propagate
U[] to x and UU[U[]] to the tail of the list. The same
reasoning explains the propagation of a UU[_] context. Now,
what of U_? This evaluator simply evaluates to WHNF, that
is, the, first constructor, and gives up. So zero context may
be propagated to either head or tail. Similarly, zero context
propagates from zero context on (x:xs).

Is there a pattern here? The context on xs is that same as
the context on (x:xs) except at the WHNF point, whilst
the context on x is “y” in the UU[y] cases, and none other-
wise. This latter operation could be regarded as dropping
the double-lifting, and selecting the first product compo-
nent. Writing the context on (x:xs) as alpha, context on x
and xs respectively could be written as:

DropUU 1 alpha
ZapWHNF alpha

Implementing DropUU and ZapWHNF directly causes major
problems in the term-rewriting system. Fortunately, the
CaseUU and SelUU primitives can be used instead:

DropUU n alpha = CaseUU alpha _ _ (SelUU n alpha)
ZapWHNF alpha = CaseUU alpha _ _ alpha

Analogising the informal argument leads to a general rule.
Given an arity-n constructor C and arguments a1 ... an
where (C a1 ... an) :: tau, context alpha on the con-
structor application produces context on ai as follows:
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ai = ZapWHNF alpha
if argkind ai == Rec

= DropUU x alpha
if argkind ai == Var x
and C is from a recursive type

= DropU x alpha
if argkind ai == Var x
and C is from a non-recursive type

The AVLTree example at instance (AVLTree Int Int Int)
behaves as follows for a context alpha applied to
(ANode i l a b r):

Variable Demand
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
i DropUU 1 alpha
l ZapWHNF alpha
a DropUU 2 alpha
b DropUU 3 alpha
r ZapWHNF alpha

Context propagation for non-recursive types behaves in a
similar manner, except that it is no longer possible to gen-
erate ZapWHNF, and the drop-select operator only drops one
point, instead of two. This operator, called DropU, is imple-
mented as

DropU n alpha = CaseU alpha _ (SelU n alpha)

For a context alpha applied to (x, y) :: (Int, Int), the
contexts propagated to x and y are (DropU 1 alpha) and
(DropU 2 alpha) respectively.

Translation of DropU, DropUU and ZapWHNF into the Case and
Sel primitives requires some passing around of domains, so
that the appropriate kind of bottom values can be manufac-
tured.

3.5.3 Case expressions: abstract value propagation

The task here is to figure out what abstract values to at-
tach to constructor variables in a case expression, given the
abstract value of the switch expression. The solution is re-
markably similar to propagation of contexts to constructor
arguments, and follows a theme which should be becoming
familiar. Given a case expression

case sw of
...
C a1 ... an -> rhs
...

and an abstract value associated with sw of fsw, the abstract
value associated with ai is

ai = fsw
if argkind ai == Rec

= SelA x fsw
if argkind ai == Var x

Let the abstract value of the switch expression be denoted
fsw. For [Int] we have:

case sw of
[] -> rhs1
(x:xs) -> rhs2

giving bindings of

x ---> SelA 1 fsw
xs ---> fsw

(AVLTree Int Int Int) gives:

case sw of
ALeaf -> rhs1
ANode i l a b r -> rhs2

i ---> SelA 1 fsw
l ---> fsw
a ---> SelA 2 fsw
b ---> SelA 3 fsw
r ---> fsw

Finally, (Int, Int) gives:

case sw of
(x, y) -> rhs1

x ---> SelA 1 fsw
y ---> SelA 2 fsw

3.5.4 Case expressions: context propagation

This section establishes how context on a case expression
propagates to context on the switch expression. First, a
subsidiary result.

Forwards propagation of contexts though constructors

Given a constructor application (C a1 ... an) :: tau, the
method of section 3.5.2 can tell us how context on this ap-
plication maps to context on a1 ... an. However, we now
need to run the process in reverse. Given some contexts
c1 ... cn on a1 ... an, we want to find the greatest con-
text alpha that may be put on the application, constrained
so that the contexts that section 3.5.2 indicates would then
propagate to a1 ... an are less than or equal c1 ... cn
respectively.

The following scheme is offered, again without justification.
If C is from a recursive type:

alpha = CJoin [Up2, CMeet [e1 ... en]]

ei = ai
if argkind ai == Rec

= update ai ai top(D(tau))
if argkind ai == Var x

If C is from a non-recursive type, (argkind ai) cannot be
Rec, so this simplifies to:

alpha = CMeet [e1 ... en]

ei = update ai ai top(D(tau))
if argkind ai == Var x

13



Finally, for nullary constructors, like []:

alpha = ctop(D(tau))

Examples: given (a1, a2) :: (Int, Int), we get

alpha = CMeet [ Up1 [c1, U[] ],
Up1 [U[], c2] ]

(a1:a2) :: [Int] gives

alpha = CJoin [ Up2,
CMeet [ UpUp2 [c1],

c2 ]
]

[] :: [Int] gives

alpha = UpUp2 [Up1 []]

(ANode a1 a2 a3 a4 a5) :: (ATree Int Int Int) gives

alpha = CJoin
[ Up2,
CMeet [ UpUp2 [c1, U[], U[] ],

c2,
UpUp2 [U[], c3, U[] ],
UpUp2 [U[], U[], c4 ],
c5 ]

]

Using the lemma

And now to return to the main theme. At this point, it’s
necessary to introduce a function we will see a lot more of
later. The function C tells us how much context is propa-
gated to a variable x when context alpha is propagated to
some arbitrary expression e. Of course, if x does not occur
free in e, the answer is none. We write this as

C x [e] rho alpha

with the e in square brackets to emphasise that C regards
it as a syntactic object. As becomes apparent later, C also
requires an environment rho which supplies abstract values
for all free variables in e.

Recall that a case expression looks like this:

case sw of
C1 p11 ... p1m -> rhs1
...
Cn p1n ... pnm -> rhsn

Now, given context alpha overall, what is the context on
sw? The first step is to find the context on p11 ... pnm.
These context are given by:

(C p11 [rhs1] rho1 alpha) ...
(C p1m [rhs1] rho1 alpha)

...

(C p1n [rhsn] rhon alpha) ...
(C pnm [rhsn] rhon alpha)

For each particular constructor, the original environ-
ment rho is augmented with abstract value bindings for
the variables associated with that constructor, generating
rho1 ... rhon. These values are derived from the abstract
value of the switch expression, as described in section 3.5.3.

The next step is to figure out what context can be safely
applied to each constructor, knowing the contexts on their
individual arguments. The method described in the lemma
is applied, once for each constructor, to the contexts for
p11 ... pnm just computed, giving alpha1 ... alphan.
These values are combined to give the overall context on
sw as:

CMeet [alpha1 ... alphan]

Using CMeet to merge these values reflects the fact that we
cannot know which alternative will be selected at compile
time. The best safe value which can be obtained is the least
of any of alternatives.

Unfortunately, there is one special case where this formu-
lation is wrong. When the switch expression is of a re-
cursive type, like [Int], one finds that propagating zero
context onto the case expression produces non-zero context
on the switch expression. This unsafe result can be traced
to the case for recursive types being of the form alpha =
CJoin [Up2, ...], which imposes a minimum value of Up2
on the context contributed by each constructor. Simply
throwing away the Up2 clamping bit causes more problems
than it solves. A better solution is to explicitly impose the
required condition that zero overall context produces zero
context on the switch expression. Recalling that alpha is
the overall context, this is done by writing

CaseU alpha _ (CMeet [alpha1 ... alphan])

or

CaseUU alpha _ (CMeet [alpha1 ... alphan])
(CMeet [alpha1 ... alphan])

depending on the domain of alpha. The possible duplication
of the (CMeet [alpha1 ... alphan]) term is regrettable,
and could potentially cause major performance problems.
Section 6.1 shows how these may be avoided.

The complications in this business seem endless. We have
just created yet another problem. Consider:

let id y = y in
case e of

[] -> id
(x:xs) -> id

This case expression returns a function, which is perfectly
legitimate. But the overall context on it, alpha, will be a
function context, and it is quite meaningless to scrutinise
such a value with CaseU or CaseUU. A little thought reveals
a simple solution. The case expression returns a function,
which will, eventually, be applied to something. What really
matters is the context on the final result of that application:
if non-zero, it means the case expression will eventually have
to be entered, in order to generate a function which in turn
generates some result to satisfy the demand. So, all we need
do, if alpha is a function context, is test the final context
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encapsulated in alpha, rather than alpha itself. Getting the
final context out of an n-arity function context is easily done
by wrapping n FncC selectors round it. So context on the
switch expression, in terms of alpha, now looks like:

CaseUU (FncC (FncC ..... (FncC alpha) .....))
_
(CMeet [alpha1 ... alphan])
(CMeet [alpha1 ... alphan])

The number of FncCs is equal to the arity of alpha, if alpha
happens to be a function context. case expressions return-
ing functions seem to be rarities, so usually there will be zero
FncCs. The corresponding modification of the CaseU version
is obvious, and it only remains to say that choosing between
the two now depends on the final context encapsulated in
alpha when alpha is a function context.

As our long journey through the forest of supporting ma-
chinery comes to a close, so the final destination draws into
sight: the definition of the abstract interpreter proper. We
pause but briefly to take respite in the following example,
then embark upon the final straight: section 3.6.

case vs of
[] -> 0
(x:xs) -> x

Clearly, vs :: [Int] and the overall type is Int. So a con-
text alpha placed on the result must be in domain Lift (),
with the resulting context on vs in Lift2 (Lift ()). Sec-
tion 3.5.4 indicates that the [] case contributes context
UpUp2 [Up1 []]. Now, propagating alpha to the (:) alter-
native puts context alpha on x and Stop2 (that is, none) on
xs. Combining these two, again using section 3.5.4, shows
that the context propagated by this alternative is:

CJoin [Up2, CMeet [alpha, Stop2]]
= CJoin [Up2, Stop2]
= Up2

This gives overall context on vs as:

CaseU alpha Stop2
(CMeet [UpUp2 [Up1 []], Up2])

= CaseU alpha Stop2 Up2

That’s intuitively correct: with no demand on the resulting
Int, there’s no (Stop2) demand on the incoming list. Oth-
erwise, we may evaluate the list to WHNF (Up2), that is,
to the first constructor. It is a pity these domains can’t tell
us about the head-strictness here: given non-zero demand,
it’s obvious we can not only evaluate to the first construc-
tor, but can also evaluate the first element of the list if it is
non-empty.

3.6 Defining the abstract interpreter

Section 3.5.4 introduced the context-finding function C. We
now augment this with Z, the abstract interpreter itself. C
takes any Core expression, a context on that expression, and
a variable, and returns the resulting context on the variable.
Z takes any Core expression, and returns the abstract value
of that expression. Since the forward and backward flows of
information are heavily intertwined, C and Z are mutually
recursive. In a call to C orZ

C x [e] rho alpha
Z [e] rho

x is a variable, e is a Core expression, alpha is a context,
and rho is an environment binding all free variables in e to
abstract values. As implemented, both functions carry an
extra parameter used to help generate new variable names.
C also carries the domain of x so it can generate the appro-
priate bottom value when needed. Recall also that a Core
expression is a pair, the first part of which is the type of the
expression, and the second the expression proper.

3.6.1 Definition of Z

The abstract value of a literal is a value in the appropriate
one-point domain.

Z (tau, ALit n) rho = ANonRec []

Variables have their values looked up.

Z (tau, AVar v) rho = rho v

Applications are a little more tricky. First, the abstract
value of the function is created. From that, the abstract-
value-map is extracted using FvalA,, and applied to the ab-
stract value of the argument to give the abstract value of
the result.

Z (tau, AAp f e) rho
= AbsAp (FvalA (Z f rho)) (Z e rho)

Lambda terms are a lot more tricky. Let a and c denote
new variables.

Z (tau, ALam [x] e) rho
= Fval (CtxLam c (C x e rho_c (FncC (CtxVar c))))

(AbsLam a (Z e rho_a))
where

rho_c = rho {x -> FncA (CtxVar c)}
rho_a = rho {x -> AbsVar a}

An Fval is returned. Its first component is a map from the
function context c on (\x.e) to the context on parameter
x. Bear in mind that c will get bound to a term of the
form (Fnc aa cc), where aa is the abstract value supplied
for x, and cc is the context on e. So the context on x
is found by finding C of x in e, with rho augmented by
binding x to aa, that is, to FncA (CtxVar c), and with the
context on the body of the function, e, equal to cc, that is,
FncC (CtxVar c).

The second Fval component maps the abstract value a of x
to the abstract value of e. This is easily done by computing
Z of e, with rho modified to bind x to AbsVar a.

The ACase case is quite easy:

Z (tau, ACase sw [(cname1, (pars1, rhs1)) ...
(cnamen, (parsn, rhsn))])

rho
= AMeet [Z rhs1 rho1 ... Z rhsn rhon]

The augmented environments rhoi (1 <= i <= n) are ob-
tained by extending rho to provide bindings for parsi in
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view of the value of Z sw rho, using the method of sec-
tion 3.5.3.

Finally, the AConstr case. Although sections 3.5.1 and 3.5.2
completely document abstract value and context flows
through constructors, we as yet have no way of creating
abstract values for constructors. Starting from a general
constructor application

C e1 ... en

we desire to build

Fval (\c1 -> f1 (FncC^n c1))
(\a1 -> Fval (\c2 -> f2 (FncC^(n-1) c2))
(\a2 -> ...

...

... -> Fval (\cn -> fn (FncC^1 cn))
(\an -> aresultant) ...))

where FncC^i e means FncC applied i times to e. Observe
that each use of FncC here is of the form FncC^i cj where
i + j == n + 1, and so all these terms simply denote the
context on the result of the constructor application. What
section 3.5.2 provides is a way to compute the n context
maps, f1 ... fn. Section 3.5.1 generates a term of the
form

\a1 ... \an -> aresultant

and between them, that’s all that’s needed. As this
is rather confusing, here’s a couple of examples. For
(:) :: Int -> [Int] -> [Int]:

Fval (\c1 -> DropUU 1 (FncC (FncC c1)))
(\a1 -> Fval (\c2 -> ZapWHNF (FncC c2))

(\a2 -> ARec [ANonRec []]))

For (,) :: Int -> Int -> (Int, Int):

Fval (\c1 -> DropU 1 (FncC (FncC c1)))
(\a1 -> Fval (\c2 -> DropU 2 (FncC c2))

(\a2 -> ANonRec [ANonRec [],
ANonRec []]))

3.6.2 Definition of C

Propagation of a context onto a constant has no effect:

C x (tau, ALit n) rho alpha
= bot (domain-of-x)

The variable case is:

C x (tau, AVar v) rho alpha
= if x == v
then alpha
else bot (domain-of-x)

As before, the application and lambda cases are a bit mind
bending.

C x (tau, ALam [y] e) rho alpha
= C x e rho2 (FncC alpha)
where

rho2 = rho {y -> FncA alpha}

Here, alpha is a function context being applied to (\y.e).
Assuming that x and y are not the same variable (the
lambda-lifter assures this), context on x in (\y.e) can be
found from the context on x in e. Since alpha is a function
context, FncA alpha is an abstract value which y is bound
to, generating rho2. FncC alpha is the context on e itself.

C x (tau, AAp f e) rho alpha
= CJoin [ C x f alpha_f rho,

C x e alpha_e rho ]
where

alpha_f = Fnc (Z e rho) alpha
alpha_e = CtxAp (FvalC (Z f rho)) alpha_f

To deal with applications, observe that x may occur in both
the function and argument expressions, so we need to col-
lect up the contexts from f and e, and “add them together”
using CJoin. The only problem is figuring out what con-
text propagates to f and e. Recall that a function con-
text consists of the abstract value of the argument, and the
context on the result. Hence, the context on f must be
Fnc (Z e rho) alpha. The context on e is equal to the
context that f would propagate to its argument, and we
know that the context on f is alpha_f. So, we build the
abstract interpretation for f with Z f rho, extract the con-
text map using FvalC, and apply that to alpha_f. All told,
that’s Ctx (FvalC (Z f rho)) alpha_f.

Due to the heroic efforts of section 3.5.4, the rather compli-
cated case clause is stated quite succinctly:

C x (tau, ACase sw [(cname1, (pars1, rhs1)) ...
(cnamen, (parsn, rhsn))])

rho alpha
= CJoin [ C x sw rho alpha_sw,

CMeet [ C x rhs1 rho1 alpha ...
C x rhsn rhon alpha

]
]

Here, alpha_sw is the context on sw, given alpha context
on the case expression itself, as computed by the method of
section 3.5.4.

As before, the rhoi (1 <= i <= n) are obtained by extend-
ing rho to provide bindings for parsi in view of the value
of Z sw rho, using the method of section 3.5.3.

Variable x can appear in both the switch expression, and
any of the alternatives. To deal with the former, con-
text on sw is computed as per section 3.5.4, and this con-
text propagated into sw. Context for x in alterative i is
C x rhsi rhoi alpha, but since we can’t say which alter-
ative will actually be selected, we must take the greatest
lower bound over all alternatives. Finally, the switch and
alterative contexts are once again “added” using CJoin. As
with the Z clause for case rho is extended to provide bind-
ings for the variables associated with each constructor.

Finally, the AConstr case. All the actual work of dealing
with context flow through constructors is done in the corre-
sponding Z clause. All we need do here is observe that x is
never free in any constructor, and so return zero context:

C x (tau, AConstr c) rho alpha
= bot (domain-of-x)
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4 The term rewriting system

4.1 Introduction

For each Core function, the abstract interpreter produces
an AbsVal term. Recursive groups of terms require fixpoint-
ing, which is done in a straightforward manner. The initial
approximation for a function in domain D is atop(D), so
the fixpointing produces the greatest fixpoint. Although it
might seem a little unusual to seek the greatest fixed point,
bear in mind that this approach represents starting off from
a dangerous value, atop(D) and iterating one’s way to safety.
In forward analyses in the style of [Sew91], danger is rep-
resented by the least point in the domains, and fixpointing
yields the least fixed point. In any case, this discussion is
rather academic, since we can claim to be looking for least
fixpoints here too simply by turning all the domains upside-
down – as they are finite, complete lattices, such a trick is
quite allowable.

The term rewriter exists because of the need to compare ap-
proximations during fixpointing. For non-recursive terms,
there is, strictly speaking, no need to use the rewriter. Nev-
ertheless, because what emerges from the abstract inter-
preter is usually grossly redundant, all terms are subject
to rewriting, and the recursive ones are subsequently fix-
pointed.

What the rewriter does is to transform each possible term
into a normal form, such that semantically equivalent forms
map to the same normal form. Detection of fixed points
is then a simple matter of detecting syntactic equality of
the normal forms. For higher order terms, unfortunately,
this implies an ability to solve the halting problem. We
therefore deal with higher order functions as described in
section 5, and restrict ourselves to generating unique normal
forms for the abstract interpretations of first order functions,
something which is, fortunately, decidable.

The term rewriter proper is an elaborate system which gen-
erates normal forms by applying many local transformations
to a term. When no more transformations can be applied,
the term is deemed to be in normal form. Each kind of al-
lowable transformation is encapsulated in a so-called rewrite
rule. Each rule must implement a semantically invariant
transformation. Section 3.2 introduced a few equalities,
which, when given a directionality, become rewrite rules:

FncA (Fnc a c) ===> a
FncC (Fnc a c) ===> c
FvalA (Fval c a) ===> a
FvalC (Fval c a) ===> c

Most rules are complicated by the presence of side-
conditions:

Fnc (FncA c1) (FncC c2) ===> c1
provided

c1 == c2

These examples illustrate the problem of whether to simplify
terms starting from the leaves (innermost-first) or from the
root (outermost-first). Since, in the second example, the
rule only applies if subterms c1 and c2 are provably equal,
innermost-first rewriting seems necessary. But the same
strategy applied to FvalC (Fval c a)) could waste a lot

of effort simplifying a, only to throw it away, so outermost-
first might give better performance.

Providing the rules are finitely confluent and terminating,
both approaches still give the same normal forms. Observe
however that whatever approach is used, multiple passes
over the tree will, in general, be needed to arrive at nor-
mal form. The decision can therefore be based purely on
whichever scheme gives better performance. Experimenta-
tion showed that outermost-first rewriting was up to ten
times slower than innermost-first for realistically sized terms
emitted by the abstract interpreter. Although it would be
foolish to claim that this is always so, the evidence suggested
an innermost-first scheme would usually be much quicker, so
an innermost-first scheme1 was adopted.

4.2 Performing a single simplification pass

Because the AbsVal and Context types are mutually re-
cursive, the term rewriter proper consists of two functions
of type AbsVal -> AbsVal and Context -> Context, each
of which performs multiple innermost-first simplification
passes with an auxiliary function. When stability is reached,
it means normal form has been achieved. This section dis-
cusses how those auxiliary functions work. For simplicity,
they are treated as a single function, called simp, working
on the union of AbsVal and Context, called Term.

To maximise performance, each pass of simp tries to do as
much as possible, so as to minimise the number of passes
required. Measurements showed the vast majority of terms
reach normal form in one pass, and no term has been ob-
served to require more than three passes.

The individual rewrite rules are classified into groups (rep-
resented as lists) by the root symbol of the term which they
rewrite. The mechanism which directs the application of
rewrite rules ensures that each rule is only applied to terms
possessing the relevant root symbol. Each rule is imple-
mented as a function of type Term -> Maybe Term, where:

data Maybe a = Nothing | Just a

As becomes clear shortly, we need to know whether the ap-
plication of a rewrite rule has had any effect. We could
make each rule have type Term -> Term and compare the
term before and after application, but this seems abom-
inably inefficient, because the rule itself “knows” when it
has made a change. Therefore, we encode that knowledge
in the return value by passing back Nothing if there is no
change. Observe that the returned Maybe Term value is in-
stantly disassembled using a Haskell case expression, to find
out whether the rule has succeeded. Therefore, a Haskell
implementation which returns constructors in registers, like
Glasgow Haskell [PJ92], never actually builds the Nothing
or Just closure in the heap, a pleasing little efficiency.

Let t denote a term, and rulesfor(t) denote the list of

1One of the sharper wits in the functional programming commu-

nity, on reading an early draft, commented:

How could you let such a wonderful example of self-

reference go by unremarked? I thought it was absolutely
marvelous that you decided to use an innermost-first
scheme in the term rewriter which is, after all, the whole

point of Anna’s existance in the Real World outside it-
self!
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rewrite rules relevant to the root symbol of t. simp(t) is
computed as follows:

simp(t)
= schedule(t_inner_simp)
where

t_inner_simp
= t with simp applied to t’s subterms

schedule(t)
= rewrite_with(rulesfor(t), t)

rewrite_with([], t)
= t

rewrite_with((rule:rules), t)
= case (rule t) of

Nothing -> rewrite_with(rules,t)
Just t2 -> schedule(t2)

Firstly, t’s subterms are simplified, giving t_inner_simp.
This is passed to intermediary schedule, which examines
the root symbol to determine the relevant list of rewrite
rules. schedule passes the rules and its argument to
rewrite_with, which works its way through the list of rules.
If it runs out of rules, it simply returns the term. But if there
is a rule, it is applied to the term. This either has no effect,
in which case the next rule is tried, or it produces a new
term t2. Now t2 may well have a different root symbol,
which would invalidate all the remaining rules. So rewriting
of t2 is continued by passing it back to schedule.

The net effect of schedule(t) is thus to keep applying
rewrite rules to the root of t until no applicable rules can
be found. This process deals properly with changes in
the root symbol. Observe that the call to schedule from
rewrite_with is not necessary for correctness. We could
simply return t2 at this point. What this would mean is that
any possible rewrites of t2 would be delayed until the next
simplification pass, rather than being done straight away. So
omitting the re-schedule implies more simplification passes
and a serious loss of efficiency.

4.3 Dealing with lambdas and applications

The presence of AbsLam, AbsAp and AbsVar terms intro-
duces the need to perform lambda calculus-like substi-
tution. What follows applies equally to the dual con-
structions CtxLam, CtxAp and CtxVar. In particular,
simp needs to be able to deal with terms of the form
(AbsAp (AbsLam v e) a). Naturally, we can reach di-
rectly for the blunderbuss solution: devise a function
subst(e,v,a) to replace free occurrences of v in e with a,
and employ it in the rewrite rule:

AbsAp (AbsLam v e) a ===> subst(e,v,a)

Two defects are apparent. Firstly, since simp is committed
to doing innermost-first simplification, both function and ar-
gument are simplified extensively before substitution begins.
Our hands are now tied: we cannot make the lambda/apply
term reduction any lazier. Inefficiency is the second com-
plaint. This scheme demands a complete substitution pass
over e for every argument.

An altogether nicer solution is to forget about subst and the
rewrite rule. Instead, we equip simp with an environment
env which binds Abs-variables to values. Now, give simp
a couple of special cases. These omit the usual simplifica-
tion of subterms, and bypass the general rewriting mecha-
nism. In this way we regain precise control over the order
of rewrites, and no separate substitution passes are needed.
Variables are simply looked up:

simp env (AbsVar v) = env v

On encountering (AbsAp f a), we need to try and turn f
into an (AbsLam v e). The obvious way to do this is by
applying simp to f, but this would be a big waste of time if
f is in that form already. So there is a special check for this
case. The environment is then augmented with a binding
for v, and simplification continues with e. By choosing to
bind v to a or simp env a, we can again vary the strictness
of the scheme. The latter choice gives better performance,
so the special case for (AbsAp f a) is:

simp env (AbsAp f a)
= let sa = simp env a

sf = simp env f
in
case f of

AbsLam v e
-> simp env{v :-> sa} e

other
-> case sf of

AbsLam v2 e2
-> simp env{v2 :-> sa} e2

other
-> AbsAp sf sa

If f simply refuses to be rewritten into an AbsLam, the term
has its subterms simplified and is then returned as-is. This
is consistent with how normal cases are dealt with, since
there are no more AbsAp rewrite rules.

An AbsVar construct can refer not just to variables bound
by a surrounding AbsLam, but also to the abstract values
of other functions. To deal with these, we “preload” the
Abs-environment with suitable bindings before starting sim-
plification. Finally, note that the dual Ctx-constructions
are dealt with in the same way, so simp carries two envi-
ronments, rather than just one. The only difference is that
a CtxVar can only refer to CtxLam bound variables. These
two environments are henceforth referred to as aenv and
cenv respectively.

4.4 Avoiding infinite branching

4.4.1 A naive approach

Section 3.4 introduced the CaseU and CaseUU constructions
as one of the fundamental mechanisms for disassembling
contexts. A serious problem which becomes apparent as
soon as one starts fixpointing is the potential for infinite
branching. Fixpointing produces expressions like

CaseU e (CaseU e w x) (CaseU e y z)

which is equivalent to:
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CaseU e w z

We can get round this by designing the normal form so that
for a term (CaseU e a b), neither subterm a nor b may do
a CaseU on e. To achieve this normalisation requires using
partial knowledge about the value of e when simplifying a
and b.

To implement this, we could adopt the following scheme.
Give simp yet another environment, selenv, which maps
switch expressions seen in surrounding CaseU and CaseUUs
to partial information about their value. When a nested
Case expression is encountered, look up its switch value in
selenv. If there is a corresponding entry, this Case expres-
sion must be examining a context which has already been
looked at, so the Case expression is replaced by whichever
arm the table entry says is correct. For example, given a
call

simp selenv (CaseU e (CaseU e w x) (CaseU e y z))

simplification of (CaseU e w x) is done with selenv binding
e to Stop1, and simplification of (CaseU e y z) is done with
selenv binding e to some value of the form Up1 [...]. This
partial information about e immediately allows the system
to reduce the two subterms to w and z respectively. Prop-
agation of information about CaseUU selector values is done
analogously.

selenv is augmented each time a CaseU or CaseUU is “gone
past”. A problem is what happens when we go past
a (CtxLam v e), since this would invalidate any keys in
selenv containing free variable v. Remember that the keys
are arbitrary expressions, rather than mere variables. An
expensive solution is to filter out all (key, value) pairs which
refer to v, but that’s overkill. It is cheaper to completely
empty selenv at every CtxLam. This doesn’t lose informa-
tion because the abstract interpreter never builds context
expressions where we need to maintain selector information
across CtxLam boundaries. For example, it never builds any-
thing like:

CaseU s1 (\c1 -> ... (CaseU s2 ....))
(\c2 -> ... (CaseU s2 ....))

4.4.2 Generalising the scheme

A little thought shows our solution, whilst perfectly work-
able, is too weak. We need a more general way to propagate
so-called “selenv information” around, as can be seen by
considering:

CMeet [e, UpUp2 [Stop1, Stop1]]

Initially, it looks like nothing more can be done with this.
But if, by looking in selenv, we can show that e has an
UpUp2 [...] value, then:

CMeet [e, UpUp2 [Stop1, Stop1]]
= UpUp2 [Stop1, Stop1]

What we really need is a general mechanism for propagat-
ing selenv information. To be fully general, we will have
to search selenv for each term simp encounters. This pro-
cess can be rolled into the general mechanism of simp, by

searching selenv after simp runs out of applicable rewrite
rules. We expect to discover nothing about the vast ma-
jority of terms, in which case simp acts as before. But, for
a lucky few, selenv tells us a little about the term: it is
either Stop1, Stop2, Up2, Up1 [...] or UpUp2 [...]. In
the first three cases, we can obviously replace the term with
the relevant value, but the other two are problematic. How
can we exploit partial information like this? Conceptually,
we need to add a footnote to the value saying, for example,
“P.S. This value is known to be UpUp2 [...]”, and modify
the rewrite rules to take account of such footnotes.

This all sounds rather clumsy, but there is a neat solution.
Recall section 3.4 introduced DefU and DefUU. Defs stand
for “definitely”, and are intended as a way of attaching such
a footnote to a value. The intuitive reading of (DefU e) is
“I’m not sure what the exact value of e is, but I do know it’s
an Up1 [...] value”. So now, on discovering from selenv
that a term c has an Up1 [...] or UpUp2 [...] value, we
merely need to wrap c in DefU or DefUU respectively. All
that remains to do is modify rewrite rules to take account of
DefU and DefUU as appropriate. This mechanism subsumes
the previous one. Consider again:

simp selenv
(CaseU e (CaseU e w x) (CaseU e y z))

Ignoring possible changes to w, x, y and z, simp tranforms
this to:

CaseU e (CaseU Stop1 w x) (CaseU (DefU e) y z)

Application of the rewrite rules

CaseU Stop1 a b ===> a
CaseU (DefU e) a b ===> b

yields the desired result:

CaseU e w z

Recall the other example, in which selenv binds e to an
UpUp2 [...] value:

CMeet [e, UpUp2 [Stop1, Stop1]]

After wrapping DefUU around e, the following sequence of
rewrites is possible:

CMeet [DefUU e, UpUp2 [Stop1, Stop1]]

= UpUp2 [ CMeet [SelUU 1 e, Stop1],
CMeet [SelUU 2 e, Stop1] ]

= UpUp2 [Stop1, Stop1]

Again, the desired result is obtained. All we had to do is
include a rewrite rule derived from this:

CMeet [ UpUp2 [x1, x2], UpUp2 [y1, y2] ]
===> UpUp2 [ CMeet [x1, y1],

CMeet [x2, y2] ]

By modifying the rule so that one of the initial terms is
(DefUU e), and bearing in mind the meanings of DefUU and
SelUU (see section 3.4), one can easily show that:
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CMeet [ DefUU e, UpUp2 [y1, y2] ]
===> UpUp2 [ CMeet [SelUU 1 e, y1],

CMeet [SelUU 2 e, y2] ]

All in all, a rather elegant solution to a tricky problem.
There is just one final caveat. Consider:

simp selenv (CaseU e a b)

If we cannot find a value for e in selenv, the CaseU expres-
sion may still be removable by the following means. Find
in selenv a key k for which we can prove that k ⊑ e,
and for which k is bound to some Up1 [...] value. So e
must also bind to some Up1 [...] value, so we can replace
(CaseU e a b) by (CaseU (DefU e) a b). CaseUUs are, as
ever, analogous. So we might be able to do just a little bit
better my taking monotonicity of keys into account when
searching selenv.

4.5 Avoiding an exponential explosion

Although we have avoided non-termination via infinite
branching, another insidious problem lurks: terms which
expand exponentially for a while, before shrinking back to
a compact normal form. Such behaviour causes the term
rewriter to run out of memory simplifying seemingly in-
significant expressions. The problem manifests itself, once
again, with CaseU and CaseUU terms. The normal form re-
quires that the switch expression cannot itself be a CaseU or
CaseUU, giving rise to some rules of the form:

CaseUU (CaseUU a b c d) e f g
===>
CaseUU a (CaseUU b e f g)

(CaseUU c e f g)
(CaseUU d e f g)

The problem occurs because of the way rewrite_with at-
tempts to apply rewrite rules to the root term until no more
can be found. If a is itself a CaseUU term, rewrite_with
will immediately reapply the rule, trebling the expres-
sion size again. It would be better to look to see if
we can do some simplifications on the (CaseUU b e f g),
(CaseUU c e f g) and (CaseUU d e f g) terms before se-
lecting another rewrite rule for the root term. There’s a
very good chance we can, because it is likely that we already
know enough about b, c and d to eliminate their associated
CaseUUs. It may also turn out that a is the same as b, c or
d, and this is helpful too.

Implementing this is not only easy, but essential. When
rewrite_with detects that a rewrite rule has created a
CaseUU term, it does not immediately seek out another
rewrite rule for the root term. Instead, it tries to rewrite
the subterms as much as possible, and only then looks again
at the root term. This minor modification proves very suc-
cessful at avoiding exponential explosions.

4.6 Type-specific AbsVal optimisation

The abstract values (AbsVals) of all non-function-space ob-
jects are points in a one point domain. Therefore, for any
AbsVal at all, if we can determine that the object’s domain
is non-functional, we can manufacture an equivalent value

from ARec and ANonRec. This is extremely useful. The def-
inition of AbsVal, presented in section 3.3, is augmented so
we can identify the domain for any term. This is done by
tagging each AbsVal with a context domain value, except for
the ARec and ANonRec cases, where the domain is obvious.

The simp action for AbsVals now begins by extracting the
context domain, and building a literal replacement if appro-
priate. Let domainof(a) be the domain of a.

simp a
= let a_ctx_domain = domainof(a)

in
if unitary_ctx_domain(a_ctx_domain)
then unit_value(a_ctx_domain)
else (... do as before ...)

unitary_ctx_domain (Lift (D1 x ... x Dn))
= unitary_ctx_domain(D1) && ... &&

unitary_ctx_domain(Dn)

unitary_ctx_domain (Lift2 (D1 x ... x Dn))
= unitary_ctx_domain(D1) && ... &&

unitary_ctx_domain(Dn)

unitary_ctx_domain (Ds -> Dt)
= False

unit_value (Lift (D1 x ... x Dn))
= ANonRec [unit_value(D1) ... unit_value(Dn)]

unit_value (Lift2 (D1 x ... x Dn))
= ARec [unit_value(D1) ... unit_value(Dn)]

This works fine, but, as usual, we can do a little better.
Presented with a term already composed entirely of ARec
and ANonRecs, the scheme returns a copy of the term, giving
a potential loss of sharing. A small modification detects
such terms and returns them as-is.

4.7 Improving the representation of contexts: ApplyET

For many trivial-looking functions, the abstract interpreter
emits a remarkably cumbersome and unintuitive-looking
term. Examination of terms from first order functions shows
a way to cut down their sizes. Since all abstract values per-
taining to the arguments and result of a first order function
are unitary, the only thing one can ask about it is how the
context on the result propagates to each argument. Suppos-
ing we have f, a first order function of m arguments, and we
want to know what context propagates to the n’th argument
if the result is demanded in context alpha. At present, we
get a large term of the form:

CtxAp (FvalC (AbsAp (GetA ... (AbsAp (FvalA f)
a1)

...
ai)

))

(Fnc aj ... (Fnc am alpha) ...)

where i = n − 1 and j = n + 1. What this does it to use
the (AbsAp (GetA ...)) construction n−1 times to supply
the first n− 1 abstract value arguments, which exposes the
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FsqDiff
= (Fval (\c1 -> (CJOIN

(ApplyET#0 F+ (ApplyET#1 F* (FncC (FncC c1))))
(ApplyET#0 F- (ApplyET#0 F* (FncC (FncC c1))))))

(\a1 -> (Fval (\c2 -> (CJOIN
(ApplyET#1 F+ (ApplyET#1 F* (FncC c2)))
(ApplyET#1 F- (ApplyET#0 F* (FncC c2)))))

(\a2 -> (ANonRec [])))))

FsqDiff
= (Fval (\c1 -> (CJOIN

{(FvalC F+)
(Fnc (ANonRec []) (Fnc (ANonRec []) {(FvalC {*(FvalA F*) (ANonRec [])*})

(Fnc (ANonRec []) (FncC (FncC c1)))}))}
{(FvalC F-)
(Fnc (ANonRec []) (Fnc (ANonRec []) {(FvalC F*)

(Fnc (ANonRec []) (Fnc (ANonRec [])
(FncC (FncC c1))))}))}))

(\a1 -> (Fval (\c2 -> (CJOIN
{(FvalC {*(FvalA F+) (ANonRec [])*})
(Fnc (ANonRec []) {(FvalC {*(FvalA F*) (ANonRec [])*})

(Fnc (ANonRec []) (FncC c2))})}
{(FvalC {*(FvalA F-) (ANonRec [])*})
(Fnc (ANonRec []) {(FvalC F*)

(Fnc (ANonRec []) (Fnc (ANonRec []) (FncC c2)))})}))
(\a2 -> (ANonRec [])))))

Figure 1: Abstract interpretation of sqDiff, with and without using ApplyET

n’th context map. This is then applied to alpha wrapped
up in a chain of (Fnc ...) constructions which supply the
remaining m− n− 1 abstract value arguments.

This seems an enormously wasteful way to say what amounts
to:

ApplyET n f alpha

That is, “extract the n’th context map from f and apply it to
the context alpha”. Well, almost. In fact, f’s n’th context
map expects to be applied not directly to alpha, but to the
term (Fnc aj ... (Fnc am alpha) ...). It looks at first
like we need to include the abstract values aj to am in the
ApplyET term. Fortunately, that is avoidable: since they
are all unitary, we should never need to know what they
are. Instead, we simply record in the ApplyET term how
many of these “trailing” arguments there are. When the
term rewriter finally gets hold of f’s n’th context map, it
uses this number to build a suitable “dummy term”

(Fnc Error ... (Fnc Error alpha) ...)

to which it applies the relevant context map. In effect, we
avoided storing those trailing arguments, and faked them
instead, using Error terms, because we can guarantee they
will never be used. From this it follows that it is an error
for Error to appear in the normal form of any term.

Use of ApplyET shrinks many terms dramatically, and en-
hances the time and space performance of the analyser. As
an example, Figure 1 shows the abstract interpretation of

sqDiff x y = (x + y) * (x - y)

with and without using ApplyET. Of course, when the defi-
nitions of (+), (-) and (*) are substituted in, both terms
reduce to the same thing. Note that (CtxAp e1 e2) and
(AbsAp e1 e2) are written as {e1 e2} and {*e1 e2*} re-
spectively.

4.8 Normal forms and termination properties

Showing that the term rewriting system always terminates,
and produces normal forms, is important. For a system with
as many rewrite rules and complications as this, producing
a correctness argument is a formidable task. We hope to
include one in a later version of this paper. Also to be
included will be a listing of the rewrite rules, along with
their associated proofs of correctness. There are at present
in the region of sixty rewrite rules.

5 Firstification and monomorphisation

5.1 Introduction

Although first order functions are easily handled by term-
rewriting based fixpointing, higher order recursive functions
give trouble, as typified by foldr:

foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

Naively fixpointing this gives an series of approximations
in which a term involving functional parameter f is applied
ever more times to an initial term. The term rewriter cannot
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show that two approximations are the same, so a fixpoint
is apparently never reached. What’s really going on is that
the fixpoint of foldr depends on the fixpoint of f.

There are only two ways round this. The first is to iter-
ate enough times to be sure that the fixpoint is certainly
reached. Work by Nielson and Nielson [NN92] gives safe
lower bounds on the number of iterations needed. Unfor-
tunately, the expense of doing this makes it unattractive.
Note also that this approach demands monomorphisation.

The second solution requires us to supply a value for f be-
fore fixpointing foldr, so that we are, in effect, no longer
dealing with a higher-order function. There are numerous
ways to do this, some rather obscure in that they partially
substitute in functional parameters as part of the fixpoint-
ing process [?]. By contrast, Anna adopts a completely
straightforward approach: transform the source program.
Program transformation is a popular subject, and various
papers describe higher-order function removal (also known
as firstification or specialisation) [CD91] [Nel]. The scheme
presented below is based on work by George Nelan [Nel].

Not all functional parameters can be removed. For exam-
ple, recursive functions which have accumulating functional
parameters are not transformable, at least with the scheme
below:

f g x = if x == 0
then g 1
else x * f (\y -> g x + y) (x-1)

We justify this design decision on the basis that the vast
majority of functions that people really write can be firsti-
fied, and the vast majority of the rest can be handled by a
secondary mechanism outlined in section 6.4. In doing this
we implicitly appeal to the measurement-lead approach to
design discussed in the introduction. We only need to re-
move functional parameters for recursive functions, but, as
becomes clear, this means firstifying non-recursive functions
too.

5.2 Firstification by examples

For the moment, let’s use foldr as a running example.
Given a use of foldr, like

sum xs = foldr (+) 0 xs

we can unfold functional parameter (+) and identity 0 into
foldr, giving a new function foldrSpec:

sum xs = foldrSpec xs

foldrSpec [] = 0
foldrSpec (x:xs) = x + foldr (+) 0 xs

And now, folding the body of foldrSpec gives what we really
want:

sum xs = foldrSpec xs

foldrSpec [] = 0
foldrSpec (x:xs) = x + foldrSpec xs

The key to success here is the ease with which that last
fold was done. In general, folding is a tricky business, with

no guarantee of termination. However, by restricting the
functions we deal with, we can guarantee to make the fold
step terminating, and trivial to carry out. The restriction
is that the function must pass along all parameters which
we want to specialise in the same position in recursive calls
as they appeared in the arguments. For example, in foldr,
both a and f satisfy this.

In fact, we only want to substitute in functional parameters.
So the transformation of sum is really:

sum xs = foldrSpec 0 xs

foldrSpec a [] = a
foldrSpec a (x:xs) = x + foldrSpec a xs

A little terminology. The function or recursive group of func-
tions - for example, foldr - for which functional parameters
are being removed is called the target group. And a func-
tion containing a call to a target group is called a source.

The restriction on valid targets seems to be this: the func-
tion must pass along all functional parameters unchanged in
all recursive calls. Generalising this to deal with mutually
recursive targets requires the notion of a constant argu-
ment set. Calling a recursive group in general causes calls
within the group, and a constant argument set gathers to-
gether arguments which are guaranteed to have the same
value for every sub-call. For example, given

f x y z = f y y z + g z x
g a b = f a b a + g a b

a little thought shows f’s third argument and g’s first argu-
ment are always the same, giving a constant argument set
written {f.3, g.1}. A group can have more than one set,
as the following trivial example shows:

f x y = g x y
g a b = f a b

Constant argument sets can be computed using a simple
abstract interpretation described below. What is important
here is that for a recursive target group to be specialisable,
all functional parameters in the group must be constant ar-
guments. Certain other constraints also apply. We return
to these later.

The following example breaks our nice scheme:

map f [] = []
map f (x:xs) = f x : map f xs

addN n xs = map (+ n) xs

Folding and unfolding as above gives

addN n xs = mapSpec xs

mapSpec [] = []
mapSpec (x:xs) = (x+n) : mapSpec xs

which is clearly wrong because n is undefined in mapSpec.
What we need to do is pass along all free lambda-bound
variables in the specialising value (+ n) as new parameters,
in a style reminiscent of lambda-lifting:
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addN n xs = mapSpec n xs

mapSpec n [] = []
mapSpec n (x:xs) = (x+n) : mapSpec n xs

Nevertheless this still allows us to get our knickers in a twist.
In the following (admittedly contrived) example, we may
select either inc or g as a source to transform first:

apply f x = f x
g a b = apply a b

inc y = g (+ 1) y

Doing g first gives:

applySpec x = a x
g a b = applySpec b

inc y = g (+ 1) y

Now we need to introduce free variables of the specialising
value a as a new parameter to applySpec:

applySpec a x = a x
g a b = applySpec a b

inc y = g (+ 1) y

Whereupon it should be eminently clear that we’ve achieved
exactly nothing! Our mistake was to select a source for
which the specialising value had function-valued free vari-
ables, since passing them as new parameters to applySpec
means applySpec is still a higher-order function. The moral
is clear: only transform sources for which the free lambda-
bound variables of the specialising value are not higher-
order. A second obvious constraint on source calls is that
the call should be sufficiently applied for all function-valued
parameters to be visible.

In what follows, we assume that naming issues are dealt with
correctly. In particular, the free variables in an specialising
value need to be renamed before they can be safely inserted
as new parameters of the specialised target.

The algorithm below requires the program to be stratified
into minimal mutually recursive groups, and topologically
sorted. We adopt the usual convention that the program
is written top-to-bottom, with any given function referring
only to its own group, if recursive, and groups above it. The
root expression is right at the bottom.

Specialisation of target groups may result in some groups
becoming unreachable from main. These groups should be
removed. A more difficult problem is how to insert a new
group, resulting from specialisation of an existing group,
into the program so as to maintain dependancy. It turns
out that two different behaviours are possible. In the usual
case, the new group “splits” away from the source group:

letrec map f [] = []
map f (x:xs) = f x : map f xs

in let
square x = x * x

in let
squareList xs = map square xs

in ...

Since the specialised target mapSpec refers to square, we
must place it after square. Taking this argument to its
conclusion shows we should place any “splitting” group im-
mediately before the source group:

let square x = x * x
in letrec

mapSpec [] = []
mapSpec (x:xs) = square x :

mapSpec xs
in let

squarelist xs = mapSpec xs
in ...

Sources giving rise to “joining” specialisations are unusual:

letrec map f [] = []
map f (x:xs) = f x : map f xs

in letrec
squareList xs

= map (head.squareList.unit) xs
in ...

Here, the definitions of (.), head and unit are unimportant.
Because the specialising value (head.squareList.unit)
refers to the source group from which it originates, the re-
sulting specialisation of map will also refer to squareList,
and that in turn means the specialisation should be merged
into the source group:

letrec
squareList xs = mapSpec xs
mapSpec [] = []
mapSpec (x:xs) = (head.squareList.unit) x :

mapSpec xs
in ...

Since only recursive source groups can refer to themselves,
specialisations corresponding to sources in non-recursive
groups never exhibit this “joining” behaviour.

5.3 An algorithm

The procedure below is repeated until no more valid (source,
target) pairs can be found. As shown by Nelan [Nel], the
order in which these pairs are selected makes no difference.
Unused targets should be deleted, but again it doesn’t make
any difference when. As a running example, we take:

letrec
map1 f g (x:y:xys) = f x : g y : map2 g f xys
map1 f g _ = []

map2 g f (x:y:xys) = g x : f y : map1 f g xys
map2 g f _ = []

in let
addmul p q xs = map1 (+ p) (* q) xs

1. Find a valid target group, and a valid source group
which refers to the target group.

Target group = {map1, map2}
Source group = {addmul}, refers to map1
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2. If the target group is recursive, compute its constant
argument sets (see section 5.4). In reality, this com-
putation has to be performed at step (1). If non-
recursive, manufacture a “fake” singleton set listing
all higher-order parameters as constant.

Const arg sets = { {map1.1, map2.2},
{map1.2, map2.1} }

3. Invent a new set of names for the specialised target
group.

New names = {map1Spec, map2Spec}

4. Determine, from the constant argument set, which ar-
guments in the source call site are the specialising val-
ues. Extract their free lambda-bound variables and
rename.

Original:
specialising values = {(+ p), (* q)}
free variables = {p, q}

Renamed:
specialising values = {(+ pnew), (* qnew)}
free variables = {pnew, qnew}

5. Rebuild the source call by deleting the specialisation
values, inserting free variables as new parameters, and
changing the called function to its new name, as de-
termined in step (3).

Rebuilt source call = map1Spec p q xs

6. Build the specialised target group, starting with a copy
of the original target group. For each recursive call
inside the group, modify that call in a similar way to
how the source call was modified in step (5).

Rebuilt target group:

map1Spec pnew qnew (x:y:xys)
= (x + pnew) : (y * qnew) :

map2Spec pnew qnew rest
map1Spec pnew qnew _

= []

map2Spec pnew qnew (x:y:xys)
= (x * qnew) : (y + pnew) :

map1Spec pnew qnew rest
map2Spec pnew qnew _

= []

7. Determine whether the specialised target group should
split or join, by finding out whether the specialisation
values contained any reference to the source group.
Augment program appropriately.

Specialisation vals {(+ p), (* q)} don’t
refer to {addmul}, so new group splits.

A valid non-recursive target group must consist of a single
higher order function. A valid recursive target group satis-
fies all the following:

• All functions in the group have at least one functional
parameter.

• Each functional parameter in the group is a member
of exactly one of the group’s constant argument sets.
This implies that all intra-group calls must be suffi-
ciently applied to expose all functional arguments.

• Each constant argument set must mention exactly one
argument for each function in the group. This disal-
lows certain contrived pathological cases which would
otherwise seriously complicate the algorithm.

A valid source call site satisfies the following:

• The site is a call to a valid target group.

• The application must have sufficient arguments to sup-
ply all higher order (specialisable) arguments.

• For each specialisable argument, none of the free
lambda-bound variables may be, or contain, a func-
tion space.

Although it looks easy on paper, implementing this algo-
rithm is tricky. Taking into account the mechanisms for
detecting constant arguments and maintaining type anno-
tations, the Haskell implementation approaches 1500 lines
of code.

5.4 Computing constant argument sets

A simple abstract interpretation is used. Each function call
in the group is abstracted to expose the parameters it passes
along:

f x y z = f y y z + g z x
g a b = f a b a + g a b

Phrased abstractly, this becomes:

f: calls f [#2, #2, #3]
calls g [#3, #1]

g: calls f [#1, #2, #1]
calls g [#1, #2]

Now we iterate to a fixed point, gathering a complete set of
the possible values of each argument. There is a list for each
function, and each list contains a set of possible values for
each argument. Initially, each argument can only be itself:

F0 = [ {f.1}, {f.2}, {f.3} ]
G0 = [ {g.1}, {g.2} ]

At each iteration, new approximations are computed by us-
ing the abstract versions of functions to look up possible
argument sets in the existing approximation. Also, the ex-
isting approximation is merged in wholesale:

F1 = F0 U [ {f.2}, {f.2}, {f.3} ]
U [ {g.1}, {g.2}, {g.1} ]

= [ {f.1, f.2, g.1}, {f.2, g.2}, {f.3, g.1} ]

G1 = G0 U [ {f.3}, {f.1} ]
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U [ {g.1}, {g.2} ]
= [ {f.3, g.1}, {f.1, g.2} ]

F2 = F1 U [ {f.2, g.2}, {f.2, g.2}, {f.3, g.1} ]
[ {f.3, g.1}, {f.1, g.2}, {f.3, g.1} ]

= [ {f.1, f.2, f.3, g.1, g.2},
{f.1, f.2, g.2}, {f.3, g.1} ]

G2 = G1 U [ {f.3, g.1}, {f.1, f.2, g.1} ]
U [ {f.3, g.1}, {f.1, g.2} ]

= [ {f.3, g.1}, {f.1, f.2, g.1, g.2} ]

Eventually this process stabilises, giving the following pos-
sible argument values:

f.1 could have value f.1, f.2, f.3, g.1, g.2
f.2 could have value f.1, f.2, f.3, g.1, g.2
f.3 could have value f.3, g.1
g.1 could have value f.3, g.1
g.2 could have value f.1, f.2, f.3, g.1, g.2

So we have two candidate constant argument sets:
{f.1, f.2, f.3, g.1, g.2} and {f.3, g.1}. We reject
the first because it does not mention each function exactly
once. Deducing that {f.1, f.2, f.3, g.1, g.2} is a con-
stant argument set is correct, but only under the conditions
that, for the initial call into the group, f.1 == f.2 == f.3,
if f was called, or g.1 == g.2 for an initial call to g. This
leaves {f.3, g.1} as the sole constant argument set for this
recursive group.

A glaring flaw is the inability to abstract function calls which
do anything more than pass parameters unchanged. In this
case, a special value Unknown is used to denote that we can-
not be sure what the value of this argument is. For example

f x y = f x (y+1) + f y x

abstracts to

f: calls f [#1, Unknown]
calls f [#2, #1]

During fixpointing, Unknown annihilates any other values in a
set. For example, a set {f.1, g.2, Unknown} is equivalent
simply to {Unknown}. Unknown represents an argument of
uncertain origin, so we disallow any constant argument set
containing it.

5.5 Preserving type annotations

Since Anna works with type annotated Core expressions,
we need to go to a little trouble to transform the annota-
tions too. At first glance, this looks like a simple matter of
modifying function types pertaining to specialised functions,
by deleting types of specialised arguments and inserting the
types of free variables being passed as extra parameters.
This is indeed correct, but there’s more to it. Recall the
previous definition of foldr. The typechecker infers:

foldr :: (a -> b -> b) -> b -> [a] -> b

Given the usual
Haskell definition of (++) :: [c] -> [c] -> [c], we can
define

concat = foldr (++) []

which specialises to:

foldrSpec a [] = a
foldrSpec a (x:xs) = x ++ foldrSpec a xs

concat = foldrSpec []

Merely adding and deleting argument types gives foldrSpec
an apparent type b -> [a] -> b, which is too gen-
eral. We need to unify the type of specialising value
(++), [c] -> [c] -> [c] with the type of the func-
tional parameter it replaces, a -> b -> b, and apply
the resulting substitution {a -> [c], b -> [c]} to the
annotations on foldrSpec. This gives foldrSpec ::
[c] -> [[c]] -> [c], as required.

Such trickery should not come as a complete surprise. Af-
ter all, the Milner-Hindley type rules for an application of
f :: (T1 -> T2) to a :: T3 require unification of T1 with
T3. That’s effectively what is going on here.

The need to preserve type annotations is a major nuisance
from the implementation viewpoint, because more time is
spent in fixing up types than doing the transformation
proper. Work to improve efficiency is a priority. The scheme
described above is a first implementation in which correct-
ness was more important than efficiency.

5.6 Monomorphisation

By comparison with firstification, monomorphisation is sim-
ple. Monomorphisation is a two-phase process. The first
pass conducts what amounts to a depth-first search from
main to discover all required instances. The second pass
clones code, changes function names accordingly and re-
stores dependancy order.

5.6.1 Collecting the instances

I am indebted to Mark Jones for suggesting the following
algorithm. We carry a set instances to accumulate the
eventual result, and a stack toVisit recording places we
need to visit. Elements of instances and toVisit are pairs
of (function name, type expression) specifying a particu-
lar instance of a function. The type expressions are always
monomorphic.

Since main may be of any type, we trivially monomor-
phise it by substituting any type variables with Int. This
gives a single initial value for toVisit, with instances ini-
tially being empty. The final value of instances is then
search(instances, toVisit), where:

search(instances, toVisit)
= if [toVisit is empty]
then instances
else
let next = head toVisit
in if next ‘elem‘ instances

[We’ve already been here]
then search(instances, tail toVisit)
else [Get the function specified by next.

Find out what instances of other
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functions are called. Add these
instances to (tail toVisit) giving
toVisitAug, and then do]
search({next} U instances, toVisitAug)

For example, given

id x = x
f x = id x
main = id 42 + ord (f ’c’)

the algorithm runs through these states:

instances toVisit
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
{} [(main, Int)]

{(main, Int)} [(id, Int -> Int),
(f, Char -> Char)]

{(main, Int), [(f, Char -> Char)]
(id, Int -> Int)}

{(main, Int), [(id, Char -> Char)]
(id, Int -> Int),
(f, Char -> Char)}

{(main, Int), []
(id, Int -> Int),
(id, Char -> Char),
(f, Char -> Char)}

This gives two instances for id. Because the abstract inter-
pretation of types maps both Int and Char to the two point
domain, only one of those instances is needed for analysis
purposes. In general, we can exploit the fact that many
different types are assigned the same domain to reduce the
program expansion caused by monomorphisation. Far and
away the easiest way to do this is to transform the type an-
notations to domain annotations before monomorphisation,
using the results of section 2.2.5. Type variables are simply
replaced by domain variables.

5.6.2 Cloning code

This is fairly trivial. Each function is duplicated once per
instance, with appropriate new names. The function bod-
ies have their call sites modified to refer to appropriately
named instances in previous groups, and this one, if recur-
sive. Then the bodies have the type variables in their anno-
tations substituted appropriately for each different instance
required. The entire program can be processed in a single
top-to-bottom pass.

The only slightly tricky problem is rebuilding recursive
groups so as to maintain dependancy. For non-recursive
clones, this is easy, but because of the existance of cer-
tain contrived recursive functions, maintaining dependancy
in the recursive case can be complicated. We avoid these
problems by lumping all the clones arising from a recursive
function group into a single letrec, and passing the pro-
gram a third time though the dependancy analyser.

Despite these complications, the monomorphiser is ex-
tremely quick and does not prove a significant limitation
on performance.

6 Discussion

This section draws together the detailed technical threads
expounded in the previous three sections, by presenting
some performance results, and looking at related and fur-
ther work. But we begin by looking at some performance
issues.

6.1 Putting it all together

Throwing realistically sized programs at the analyser re-
vealed some performance problems which were traced to
niceties in the interface between the abstract interpreter and
the term rewriter.

Performance problems appear when the term rewriting sys-
tem is fed a gigantic term to simplify. Usually, such terms
reduce to something quite trivial. It is important to realise
that the abstract interpreter will generate absolutely enor-
mous terms, especially from source text which has deeply
nested function calls or deeply nested case expressions, both
of which are quite common. For example, the bigger pro-
grams mentioned in section 6.2 generated terms which, when
pretty-printed in the style used in this paper, covered liter-
ally tens of A4 pages.

Analysis of a program proceeds as follows. First, the pro-
gram is passed in its entirety through the abstract inter-
preter, generating a corresponding collection of recursive
equations (or terms). These equations are hugely redun-
dant and are simplified individually, without reference to
each other. Finally, the fixpointing system travels along
the groups of equations, accumulating an environment of
“solved” equations. A solved equation is self-contained: it
does not refer to the abstract interpretation of any other
function. Solving non-recursive equations is a simple matter
of substituting in the abstract interpretations of other func-
tions, and simplifying. For recursive functions, this stage is
followed by fixpointing.

What really ruins performance is not fixpointing, but the
initial simplification of terms which emerge from the ab-
stract interpreter. This problem was largely alleviated by
giving the abstract interpreter a little more intelligence, in
the form of:

• The type-specific AbsVal rewrites described in sec-
tion 4.6.

• A knowledge of key Context rewrite rules. In par-
ticular, the rules for case statements generate large
expressions involving CMeet, CJoin, Stop1 and Stop2.
A handful of rules embodying simple facts such as
CMeet [... Stop2 ...] == Stop2 were added.

Between them, the sizes of terms generated were some-
times cut by two orders of magnitude, and perfor-
mance was much improved.

A second performance problem was traced to the initial sim-
plification of terms emerging from the abstract interpreter.
These terms are simplified without reference to each other.
It turns out to be better to simplify a term only when
we know the solved values of the other terms it refers to,
because knowing these values makes the final term much
smaller. In effect, this is achieved simply by omitting this
simplification pass altogether. For at least one input, anal-
ysis time was cut by a factor of five.
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For a complete run Analysis only Compiling with ghc-0.10
Program Lines Time Claim Space Time Claim Time analysis time as %

concat < 10 0.42 s 1.485 M 47.2 k 0.18 s 0.586 M 0.92 s 19 %
zip3 < 10 0.52 s 1.793 M 56.1 k 0.17 s 0.570 M 1.00 s 17 %
wang 385 23.62 s 85.396 M 908.8 k 9.15 s 15.861 M 43.61 s 21 %
wave4main 619 43.40 s 116.207 M 2897.7 k 21.62 s 43.239 M 199.29 s 11 %
ag2hs 1047 208.95 s 275.245 M 9653.8 k 126.42 s 135.335 M 100.68 s 126 %

Table 2: Some performance figures for Anna

6.2 Absolute performance results

Five test programs were used. The first two, concat and
zip3, are utterly trivial and were included as comparison
against figures presented in [Sew93]. wang and wave4main
are taken from Pieter Hartel’s benchmark suite [HL92]. The
biggest one, ag2hs, is preprocessor for a dialect of Haskell
augmented with attribute grammar [Joh87] facilities, writ-
ten by David Rushall. The analyser was compiled with
Chalmers Haskell-B 0.999.4, with flags -fpbu -O, and run
using an eight megabyte heap for all except ag2hs, which
required a sixteen megabyte heap. A generational garbage
collector was employed. Tests were run on a lightly loaded
Sun Sparc 10/31, and each test was performed at least three
times. Times are user CPU seconds.

Simply measuring overall run times is not particularly help-
ful, because we really want to establish how expensive this
analyser would be if employed in a Haskell compiler. It
seems reasonable to consider the “border” between the front
end and the analyser itself as the point where the type-
checker produces a type-annotated Core tree, since, at least
in Glasgow Haskell, the compiler produces this tree any-
way. So we present figures not only for a complete run, but
also for the analysis phase proper. The latter category cov-
ers firstification, monomorphisation, abstract interpretation
and fixpointing, all of which are legitimate analysis expenses.

To assess whether or not we are approaching the right ball-
park, we timed Glasgow Haskell 0.10 compiling the programs
into C, and compared those times with the analysis phase
time of Anna. The compiler options were -O2 -C. Compiler
semispace sizes were 3 megabytes for the small two, and 8
megabytes for the big three: this turned out to be plenty.
The times reported for Glasgow Haskell are for the compiler
proper, that is, that part of the compiler which is itself writ-
ten in Haskell, and which translates the output of the Yacc
parser into C.

Table 2 presents the figures. The maximum residency fig-
ures were obtained using a copying collector with heap sizes
set only just big enough. This quantity is omitted for the
analysis-only figures because of the difficulties of deciding
on how to divide space expenses between the front end and
the analysis phase.

For the big three, times are, very roughly, divided equally
between the front end and analysis phases. ag2hs has a rel-
atively large analysis time in comparison to its size. This
is because it makes considerable use of lazy pattern match-
ing, which translates to a large quantity of complex Core

expressions. These in turn generate some large, complex
sets of equations for the fixpointer to solve. A technique
mentioned in section 6.4 might help here. For the larger
problems, space consumption is of concern. Much, if not the
majority, of the space used is related to front-end process-
ing, and it seems likely that the analysis itself is relatively
cheap on space. Further investigation with a heap profiler
is necessary.

The results of comparing analysis time with a run of Glasgow
Haskell on the same program are intriguing. The tests are at
least fair in the sense that both Anna and the Haskell com-
piler are written in Haskell, so neither has an unfair advan-
tage. Just by themselves, it is a little unusual that ghc com-
piled ag2hs in almost half the time it took for wave4main.
It may be that the heavy use of numeric overloading in wang
and wave4main has slowed down ghc as it will have had
to generate and optimise large quantities of dictionary han-
dling code. ag2hs, by comparison, is mostly string handling:
there is little overloading in it. Anna has a naive view of
the Haskell numbers – it only knows about Int, so it will
not have seen any such numeric overloading. In order to
make Anna accept these two programs, we had to strip out
the extensive type signatures which had been placed there
expressely to eliminate numeric overloading. These factors
may well have conspired to give Anna a remarkably good rel-
ative showing for wang and wave4main, although it is hard
to believe they account for all the difference between 11%
(wave4main) and 126% (ag2hs).

Because wang and wave4main are machine-generated
Haskell, the expressions in them are reasonably simple and
small. By comparison, the desugared version of ag2hs con-
tained some very large expressions and some quite compli-
cated structured types. Watching the behaviour of Anna
on this example, it is clear that the majority of the analysis
time is spent fixpointing a single large group of about twenty
functions which arose from the extensive use of lazy pattern
matching. It seems plausible that this particular group did
not cause any similar difficulty to ghc, and it may also be
possible that ghc’s desugarer did a better job than Anna’s
in translating the pattern matching. Nevertheless, the dis-
parity in relative analysis/compile costs between ag2hs and
the other two big examples is a warning that we should not
read too much into these measurements beyond the perhaps
heartening conclusion that we are indeed approaching the
right ballpark for analyser performance.
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6.3 Related work

Mycroft’s original work [Myc80] on applying abstract inter-
pretation to the analysis of functional programs sparked off
intense work on forward analyses. A forward strictness anal-
ysis tells us the definedness of a function application given
the definedness of the arguments. Landmark papers include
the Burn-Hankin-Abramsky work [BHA85] which put higher
order analysis on a firm theoretical footing, and Wadler’s
paper [Wad87] which showed how one might deal sensibly
with sum-of-products types. Implementors made much of
finding fixpoints using the Frontiers algorithm, massaging it
extensively to deal with higher order functions [HH91], sum-
of-products types [Sew91] and polymorphism [Sew93]. De-
spite this and other trickery [HH92] [Sew92], frontiers failed
to deliver usable performance for high-definition strictness
analysis for anything other than trivial inputs, and there are
good theoretical reasons for believing the situation cannot
be improved.

Starting at around the same time, another school of thought
was developing backwards, or projection, analyses. A back-
wards analysis shows how the semantic quantity in question
- here, demand for evaluation - propagates from a function
application to the individual arguments. Hughes [Hug90] ar-
gues that backwards analyses are inherently more efficient
than forward ones, because the function spaces with which
the analyses deal are smaller in the backwards case. Projec-
tion analysis deals easily with sum-of-products types, and
captures certain properties, such as head-strictness, that
seem to elude forward analyses. A good reference for pro-
jection analysis is [WH87]. Later work showed how to do
make non-flat projection analysis polymorphic [Hug], and
a successful non-flat, polymorphic projection analyser was
built into Glasgow Haskell [KHL91].

Despite these successes, projection analyses have a funda-
mental inability to deal with higher order functions. Fol-
lowing the lead of Wray [Wra85], Hughes defined a mixed
analysis which was forwards for the higher order bits and
backwards for everything else [Hug87]. Doing this gives an
analysis which deals with higher-orderness whilst retaining
the inherent efficiency of backward analysis. Recently, other
workers have begun to explore the relationship between for-
ward and backward analysis [Bur90] [HL90] [DW90]. The
analysis described in this paper is a modification of Hughes’
original mixed analysis.

Meanwhile, people have been looking at other ways of solv-
ing recursive domain equations. There has been a discern-
able shift towards term oriented approaches. Ferguson and
Hughes developed “concrete data structures” (CDSs) [?]
based on Curien’s work on sequential algorithms [Cur86].
CDSs deal with higher-orderness by regarding a higher or-
der function as containing a CDS interpreter for each func-
tional parameter. This is really a disguised way of substi-
tuting in functional parameters before fixpointing. Whether
or not CDSs can deliver a viable fixpointing mechanism re-
mains to be seen. Early implementations hinted at space
problems, but these may now have been solved [Hug93].
CDSs can also be viewed as a higher-order generalisation
of the minimal function graph scheme originally described
by Neil Jones [JM86]. Minimal function graphs are used
in the Semantique analyser [KHL91] built into Glasgow
Haskell [PHHP93].

The term rewriting based fixpointer described here was,

in part, inspired by Charles Consel’s strictness analyser in
the Yale Haskell compiler [Gro92]. Consel’s paper [Con91],
which seems to have passed by almost unnoticed, described
a successful, if simple, strictness analyser solving fixpoint
equations by term rewriting. In view of how well this and
Consel’s system work, it is perhaps a pity that Peyton Jones
et al made disparaging remarks about term-based fixpoint-
ing in their seminal frontiers paper [PC87].

6.4 Further work

Anna’s performance is encouraging. Nevertheless, there’s
still a long way to go before evaluation transformer infor-
mation can be generated automatically in production com-
pilers. Three avenues of development need to be persued.

• Enhancement of applicability. Anna’s most worry-
ing limitation is her inability to deal with higher order
functions which cannot be firstified. A possible partial
solution is to iterate these (or, more precisely, just the
nasty bits) as many times as is necessary to guaran-
tee a fixpoint. The work of Nielson and Nielson [NN92]
gives the magic number of iterations needed. For many
common forms, this number is reasonably low, and
it seems reasonable to expect this approach to yield
worthwhile results.

It is also necessary to remove some of the excessive re-
strictions on user-defined data types discussed in sec-
tion 2.2.6. This does not appear to be particularly
difficult. Kubiak et al [KHL91] managed this quite
successfully.

• Enhancement of performance. The refinements of
section 6.1 have done a lot to improve the system’s
performance. Nevertheless, some programs we tried
recently - in excess of a thousand lines - run more
slowly than one would like. Investigations are being
made.

Fixpointing large groups of functions could conciev-
ably be accelerated by reducing the group to a “mini-
mal form” first. For example, given

a = ... a ... b ...
b = ... c ...
c = ... c ... d ...
d = ... a ...

we can remove b and d by substituting them into a and
c respectively. This halves the number of functions in
the group being fixpointed. Once the solutions to a
and c have been generated, we obtain values for b and
d by straightforward back-substitution.

Note that this technique may be used in any situa-
tion involving fixpointing mutually recursive groups of
equations. The idea stems from an analogy with the
Gauss-Jordan method for solving simultaneous linear
equations. In this case, a recursive group can only be
reduced to the point where every equation in the group
refers directly to itself – no further. After that, fix-
pointing is unavoidable. Whether or not this renders
a speedup depends on the relative costs of substitution,
back substitution and fixpointing.
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• Dealing with modules. Modules are an unmiti-
gated nuisance for many kinds of high powered seman-
tic analyses and optimisations. In particular, mod-
ules cause big difficulties for any kind of what John
Young termed “collecting interpretations” [You89]. A
collecting interpretation is essentially a global anal-
ysis. Many compile time optimisations are limited
by the module structure. For example, some of the
more recent schemes for compiling overloading ef-
ficiently [Jon93] [Aug93] require global analysis for
full applicability. The point of all this is that the
monomorphisation and firstification transformations
used in Anna also require a global view.

There is an urgent need to devise sophisticated com-
pilation systems which maintain enough intermodule
communication to make global analyses possible. De-
velopment of such a framework would benefit not only
strictness analysis, but many aspects of compile time
optimisation. Such a compiler might work by dump-
ing a lot of information into a module’s interface file,
enough to do whatever analyses we need. This would
really just be an extension of the schemes used al-
ready in the Chalmers and Glasgow compilers, which
dump function arity and rudimentary strictness infor-
mation into interface files. The question is not re-
ally whether we could construct such a system, but
whether the quantity of information dumped into in-
terface files could be limited sufficiently to render the
scheme practical.
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