
On the Coverability Problem for Asynchronous

Broadcast Networks

Giorgio Delzanno and Riccardo Traverso

Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova, Italy

Abstract. We study verification problems for networks in which nodes
communicate via asynchronous broadcast messages. This type of com-
munication is achieved by using a distributed model in which nodes have
a local buffer. We consider here safety properties expressed as a cover-
ability problem with an arbitrary initial configurations. This formulation
naturally models the search of initial topology that may lead to an er-
ror state in the protocol. We consider here different policies for handling
local buffers such as unordered, FIFO and lossy FIFO queues. Coverabil-
ity turns out to be decidable for unordered and for lossy FIFO buffers.
Undecidability for FIFO buffers follows from a reduction from the halt-
ing problem of counter machines obtained via a non-trivial protocol that
controls the interferences due to the use of broadcast communication.

1 Introduction

Background: Models of Broadcast Communication Broadcast communication is
commonly adopted in the design of protocols for wireless, mobile and ad hoc
networks. In this setting broadcast communication provides a synchronization
pattern independent from the current configuration of the underlying topology.
Formal models of ad hoc and wireless networks are often based on an abstract
representation of broadcast communication, namely an operation that atomically
synchronizes a sender node with the set of all connected receivers ready to receive
the message [7,8,20,21,16,18]. In order to model delays and interferences between
different communications, the start and end time of a transmission may be kept
distinct, thus modeling its boundaries as in [15,12], or an explicit asynchronous
communication mechanism may be defined, e.g., implemented via local message
buffers as in AWN [17,10].

The study of the relative expressiveness of the different types of commu-
nication becomes particularly intriguing when the network configurations are
not fixed a priori. This type of analysis can be formalized, e.g., by studying
decidability and undecidability of problems like reachability (of a fixed target
configuration) and coverability (reachability of a configuration that is greater or
equal than a target configuration w.r.t. some ordering). In particular, the cover-
ability problem is well-suited to reason on parameterized systems, i.e., systems
in which the number of processes is not fixed a priori. Coverability is also tightly
related to verification of safety properties (violations of properties like mutual
exclusion can be expressed as coverability of bad patterns) [3].

A New Model In this paper we present decidability and undecidability results for
the coverability problem for asynchronous broadcast networks (ABN), a model
that combines a topology-dependent, asynchronous communication mechanism.
Our formal model of asynchronous broadcast communication combines three
main features:

– a graph representation of a network configuration decoupled from the spec-
ification of individual process behavior,

– a topology-dependent semantics of synchronization,
– the use of local mailboxes to deliver messages to individual nodes.

The resulting communication layer is similar to that of languages like AWN [10].
As in other protocol models like ω [20,21] and AHN [7], our main abstraction
comes from considering protocols defined via a communicating finite-state au-
tomaton replicated on each node of the network. In our setting the coverability
problem is formulated here as follows. We first define an initial configuration
as any graph in which nodes have labels that represents the initial state of the
protocol (and no constraints on edges). Coverability consists then in checking
whether there exists an initial configuration that can reach a target configuration
that contains a specific pattern given in form of subgraphs or nodes in a given
state. A similar definition is considered in [7] and [12] for synchronous and non-
atomic semantics, respectively. Our analysis is carried out with different policies
to handle buffers, namely unordered bags (an abstraction of a tuple space), and
perfect or lossy FIFO channels.

Technical Results In contrast with the synchronous case, when local buffers are
treated as bags of messages, the coverability problem becomes decidable. For the
proof, we first give a reduction to the restricted case of fully connected topologies.
Then, we resort to the theory of well-structured transition systems [1,11] and
show that, for fully connected topologies, reachability of a given control state
can be solved via a symbolic backward search algorithm.

When mailboxes are ordered buffers, we obtain undecidability already in
the case of fully connected topologies. Indeed, by using (FIFO) ordered mail-
boxes, we give nodes the possibility of recognizing communication with multiple
neighbours with the same role. Although we cannot use this feature to define
discovery protocols as in [7], while simulating a counter machine we exploit the
FIFO ordering in order to block computations in which interferences may lead
to incorrect results.

The coverability problem becomes decidable when introducing non-deterministic
message losses. We exploit again the theory of well structured transition systems
for this positive result.

We then move to an extended model in which a node can test if a mail-
box is empty. This extension leads to undecidability with unordered bags and
non-selective broadcast. The emptiness test cannot be used to directly control
interferences, however we can exploit it to introduce a way to distinguish good
from bad computations as in the case of ordered mailboxes.

2

To our knowledge, these are the first results for the coverability problem for
a formal model of asynchronous broadcast communication.

2 Well-structured Transition Systems

We report here the main definition underlying the theory of well-structured
transition systems (wsts) [3,11]. We first need some terminology. Given a finite
alphabet Σ, a bag (multiset) m is a mapping m : Σ → N such that m(a) is
the number of occurrences of a in m. We often use the notation [a1, . . . , an]
to indicate a multiset containing (possibly repeated) occurrences a1, . . . , an of
elements in Σ. We use ⊕ for multiset union and ⊖ for multiset difference. Given
a finite alphabet Σ, we use Σ∗ to denote the set of finite words over Σ. We use
w1 · w2 to denote concatenation of words w1 and w2. We use |w| to denote the
length of string w, and n to denote the set {1, . . . , n}.

A transition system is a pair 〈D,→〉, where D is a set of configurations
and →⊆ D × D is a transition relation. We use →∗ to denote the reflexive
and transitive closure of →. Given S ⊆ D, post(S) [resp. pre(S)] is the set
of successors [resp. predecessors] of S defined as {c′ | c → c′, c ∈ S} [resp.
{c′ | c′ → c, c ∈ S}]. To give an example, consider a Petri net with places
P and transitions T , the set of markings (multiset of symbols in P that count
the number of tokens in each place) equipped with the firing relation induced
by T forms a (infinite-state) transition system. Consider now a reflexive and
transitive order 〈D,≤〉 defined on the configurations. An upward closed set of
configurations is a set I ⊆ D s.t. for all d, d′ ∈ D, if d ∈ I and d ≤ d′ then
d′ ∈ I. We say that ≤ is a well-quasi ordering (wqo) if for each infinite sequence
e1e2 . . . there exists i and j s.t. i < j and ei ≤ ej . If ≤ is a wqo, then an upward
closed set I has always a finite set F of minimal elements (finite basis property).
We use F ↑ to denote the upward closed set generated by F . We first notice that
if A is finite, then (A,=) is a wqo. The following lemma shows other classical
properties of wqo theory [13,4,11,3].

Lemma 1. Let (A,≤) and (B,4) be wqo’s, then the following properties hold:

– (A∗,≤∗) is a wqo, where A∗ is the set of finite words over A, u = u1·. . .·un ≤∗

v = v1 · . . . · vm iff there exists a strictly increasing injection h s.t. ui ≤ vh(i)
for i : 1, . . . , n (word embedding).

– (Ab,≤b) is a wqo, where Ab is the set of bags over A and u = [u1, . . . , un] ≤b

v = [v1, . . . , vm] iff there exists an injection h s.t. ui ≤ vh(i) for i : 1, . . . , n
(bag inclusion).

– (A×B, ⊳) is a wqo, where 〈u, u′〉 ⊳ 〈v, v′〉 iff u ≤ v and u′ 4 v′.

For instance, in the Petri net model, verification of properties like mutual ex-
clusion can be formulated as reachability of markings that are covered (i.e. they
are greater than w.r.t. multiset inclusion) by a marking m containing only two
tokens in the place that represent the critical section. In other words the ideal
generated by the marking m represents all violations to mutual exclusion. Mark-
ing (multiset) inclusion is a wqo by Dickson’s Lemma.

3

Definition 1. For a set I of initial configurations and a finite set U , the cover-
ability problem consists in checking if there exists an initial configuration c0 ∈ I
and a configuration cf ∈ U↑ s.t. c0 →∗ cf (U covers cf).

Definition 2. A well-structured transition system (wsts) is a transition system
T = 〈D,→〉 equipped with a quasi ordering ≤ on configurations, s.t.,

– ≤ is a decidable wqo (i.e. there exists an algorithm to decide ≤);
– → is monotonic (or compatible) w.r.t. ≤, i.e., for any c, c′, d if c → c′ and

c ≤ d, there exists d′ s.t. d → d′ and c′ ≤ d′.
– given a finite basis F of an upward closed set I, there exists an algorithm

that takes in input B and computes a finite basis of pre(B↑), we call such
an operator symbolic predecessor operator Pre(B).

For an initial set of configurations I, we call initial test the condition I ∩S↑ = ∅
for any S ⊆ D. We say that the initial test is decidable if it can be decided for
S. The following theorem then holds [11,3].

Lemma 2. Consider a wsts T = 〈D,→,≤〉, a set U ⊆ D, an initial I with
decidable initial test. Then, the coverability problem is decidable for T , I, U .

The algorithm is based on a backward reachability analysis in which we use
bases of upward closed sets to represent predecessors. We maintain intermediate
results in a set of bases I ⊆ Pf (D) (where Pf (D) is the finite powerset over
D). Intermediate sets can be compared by using the ≤ orderings on elements.
Namely, for B,B′ ∈ Pf (D), B ⊑b B

′ if for each c′ ∈ B′, there exists c ∈ B s.t.

c ≤ c′ (i.e. B1 ⊑b B2 implies B↑
2 ⊆ B↑

1). Similarly, for I, J ⊆ Pf (D), I ⊑s J
iff for each B′ ∈ J , there exists B ∈ I s.t. B ⊑b B′ (i.e. I ⊑s J implies
(
⋃

B∈J B
↑) ⊆ (

⋃
C∈I C

↑)).
We define then the sequence I0I1 . . . as follows:

– I0 = {U},
– Ii+1 = Ii ∪ {Pre(B)|B ∈ Ii} for i ≥ 0.

Since ≤ is a wqo, then the sequence necessarily stabilizes, i.e., there exists k s.t.
Ik+1 ⊑s Ik (i.e. Ik is a least fixpoint). When a fixpoint has been detected, to

decide coverability it remains to check whether I intersect I↑k that we assume to
be a decidable problem. Again in the example of Petri nets, we can use marking
inclusion to define upward closed set of markings and use a symbolic semantics
for the transition relation to effectively compute predecessor.

3 Asynchronous Broadcast Networks (ABN)

Our model of computations consists of configurations – snapshots of the global
state of a system – and of a global transition relation – a description of its dy-
namic behavior. A configuration is defined as a labelled graph. Nodes correspond
to processes running a pre-defined protocol. Each node has a local message buffer

4

used to collect messages sent by neighbours. We forbid self-loops in the commu-
nication graph to model half-duplex communication, a natural assumption for
ad hoc and wireless networks. A protocol is specified via a finite-state automa-
ton with send and receive operations that correspond to write [resp. read] on
remote [resp. local] buffers. Communication is topology-dependent, anonymous
and asynchronous: when a process at node n sends a message a, the process
does not block, and the message is added to the local mailbox of all of its neigh-
bors without explicit information about the sender (i.e. messages do not contain
node identifiers). More formally, in the rest of the paper we consider a finite
set Σ of messages, and different disciplines for handling the mailbox (message
buffer), e.g., unordered mailboxes that we represent as bags over Σ, and ordered
mailboxes that we represent as words over Σ.

The initial configuration is any graph in which all the nodes are in the initial
control state and all local buffers are empty. Even if the set of control states is
finite, there are infinitely many possible initial configurations. We next formalize
the above intuition starting from the mailbox structure.

In order to deal in a uniform way with different mailbox types we define a
transition system parametric on the data structures used to model mailboxes.
More specifically, we consider a mailbox structure M = 〈M, del?, add, del, ♭〉,
where M is a denumerable set of elements denoting possible mailbox contents;
for a ∈ Σ and m ∈ M, add(a,m) denotes the mailbox obtained by adding a to
m, del?(a,m) is true if a can be removed from m; del(a,m) denotes the mailbox
obtained by removing a from m when possible, undefined otherwise. Finally,
♭ ∈ M denotes the empty mailbox. We call an element a of m visible when
del?(a,m) = true. Their specific semantics and corresponding properties change
with the type of mailbox considered.

Definition 3. A protocol is defined by a process P = 〈Q,Σ,R, q0〉, where Q is a
finite set of control states, Σ is a finite message alphabet, Act = {τ}∪ {!!a, ??a |
a ∈ Σ}, R ⊆ Q×Act×Q is the transition relation, q0 ∈ Q is an initial control
state.

The label τ represents the capability of performing an internal action, and the
label !!a [??a] represents the capability of broadcasting [receiving] a message
a ∈ Σ.

Definition 4 (Configurations). Configurations are undirected (Q×M)-graphs.
A (Q × M)-graph γ is a tuple 〈V,E, L〉, where V is a finite set of nodes,
E ⊆ V×V is a finite set of edges (such that E is symmetric and ∀v ∈ V.(v, v) /∈ E
to model undirected edges and half-duplex communication), and L : V → (Q×M)
is a labelling function.

In the rest of the paper, for an edge 〈u, v〉 in E, we use the notation u ∼γ v
and say that the vertices u and v are adjacent to one another in γ. We omit γ,
and simply write u ∼ v, when it is made clear by the context. We use L(γ) to
represent the set of labels in γ. The set of all possible configurations is denoted
C, while C0 ⊆ C is the set of all graphs in which every node has the same label
〈q0, ♭〉 that denotes the initial state of individual processes.

5

Given the labeling L and the node v s.t. L(v) = 〈q,m〉, we define Ls(v) = q
(state component of L(v)) and Lb(v) = m (buffer component of L(v)). Further-
more, for γ = 〈V,E, L〉 ∈ C, we use Ls(γ) to denote the set {Ls(v) | v ∈ V }.
⇒M⊆ C × C is the transition relation defined next.

Definition 5 (Operational Semantics). For M = 〈M, del?, add, del, ♭〉, an
Asynchronous Broadcast Network (ABN) associated to P is defined by its as-
sociated transition system T (P ,M) = 〈C,⇒M, C0〉. For γ = 〈V,E, L〉 and γ′ =
〈V,E, L′〉, γ ⇒M γ′ holds iff one of the following conditions on L and L′ holds:

– (local) there exists v ∈ V such that (Ls(v), τ, L
′
s(v)) ∈ R, Lb(v) = L′

b(v),
and L(u) = L′(u) for each u ∈ V \ {v}.

– (broadcast) there exists v ∈ V and a ∈ Σ such that (Ls(v), !!a, L
′
s(v)) ∈ R,

Lb(v) = L′
b(v) and for every u ∈ V \ {v}

• if u ∼ v then L′
b(u) = add(a, Lb(u)) and Ls(u) = L′

s(u),
• otherwise L(u) = L′(u);

– (receive) there exists v ∈ V and a ∈ Σ such that (Ls(v), ??a, L
′
s(v)) ∈ R,

del?(a, Lb(v)) is satisfied, L′
b(v) = del(a, Lb(v)), and L(u) = L′(u) for each

u ∈ V \ {v}.

A local transition only affects the state of the process that executes it. A broad-
cast message has the effect of adding the corresponding message to the mailboxes
of all the neighbors of the sender. The sender then moves to the next state. Notice
that broadcast is never blocking for the sender. Receivers can read the message
in different instants. This models asynchronous communication. A reception of a
message a is blocking for the receiver whenever the buffer is empty or the visible
elements are all different from a. If a is visible in the mailbox, the message is
removed and the process moves to the next state.

An execution is a sequence γ0γ1 . . . such that γ0 is an initial configuration,
and γi ⇒M γi+1 for i ≥ 0. We use ⇒∗

M
to denote the reflexive and transitive

closure of ⇒M. We often use ⇒ and ⇒∗ when the mailbox type M is clear from
the context.

3.1 Safety Analysis: the Coverability Decision Problem

The coverability problem parametric on the mailbox structure M is defined as
follows.

Definition 6. Given a protocol P with transition system T (P ,M) = 〈C,⇒M, C0〉
and a control state q, the coverability problem COVER(M) states: is there an
initial configuration γ0 ∈ C0 and a configuration γ1 ∈ C such that γ0 ⇒∗

M
γ1 and

q ∈ Ls(γ1)?

We often use the terminology γ0 reaches state q as an abbreviation for γ0 ⇒∗
M
γ1

and q ∈ Ls(γ1) for some configuration γ1.
Besides being parametric on the mailbox structure, our decision problem is

parametric on the shape of the initial configuration. As mentioned in the intro-
duction, this feature models in a natural way verification problems for protocols
with partial information about the structure of the network.

6

4 Unordered Mailboxes

In this section we study the coverability problems for ASBNs in which mail-
boxes are unordered buffers modeled as bags over the finite message alphabet
Σ. The mailbox structure Bag is defined as follows: M is the denumerable set
of bags over Σ, add(a,m) = [a] ⊕m (where [a] is the singleton bag containing
a), del?(a,m) = true iff m(a) > 0, del(a,m) = m⊖ [a], and ♭ ∈ M is the empty
bag []. The operational semantics follows from the general definitions.

4.1 Decidability of the Coverability Problem

Let us consider the instance COVER(Bag) of the coverability problem. For syn-
chronous broadcast, coverability is undecidable for arbitrary topologies [7]. We
show next that coverability becomes decidable for unordered mailboxes.

We prove the results in two different steps. We first show that, for the purpose
of deciding coverability, we can focus on fully connected topologies. We then show
that ABN with fully connected topologies form a wsts for which an instance of
the generic algorithm of Section 2 can be applied.

A configuration γ = 〈V,E, L〉 is fully connected if u ∼γ v for each pair

of distinct nodes u, v ∈ V . We use T K(P ,M) [resp. COVERK(M)] to denote
the restriction of T (P ,M) [resp. COVER(M)] to fully connected configurations
only. For asynchronous communication with unordered mailboxes, coverability
for arbitrary topologies case can be reduced to the fully connected case. One side
of the property is immediate. If there exists a fully connected initial configuration
that reaches a configuration in which state q occurs, then coverability is solved.
The other implication is the interesting case to consider. The intuition is that
we can exploit the fact that mailboxes are unordered to ignore messages sent
along links that are not present in a given topology. The formalization is given
below.

Lemma 3. If there exists an arbitrary topology from which we can reach state
q, then there exists a fully connected topology from which we can also reach q.

Proof. Let P = 〈Q,Σ,R, q0〉 be a protocol and let γ = 〈V,E, L〉 and γ′ =
〈V,E, L′〉 be two configurations from the transition system T (P , Bag) such that
γ ⇒M γ′ by applying some rule r ∈ R to a node v ∈ V . Given a configuration
δ = 〈V, V × V,K〉 in the transition system T K(P , Bag) such that, for all u ∈ V ,
Ls(u) = Ks(u) ∧ Lb(u) ⊑b Kb(u) we can apply r at node v in order to reach
the configuration δ′ = 〈V, V × V,K ′〉 where L′

s(u) = K ′
s(u) for all u ∈ V , and,

depending on the type of r:

– if r = (Ls(v), τ, L
′
s(v)) then L′

b(u) = K ′
b(u) for every u ∈ V ;

– if r = (Ls(v), !!a, L
′
s(v)) then L′

b(v) = K ′
b(v) and K ′

b(u) = add(a,Kb(u)) for
every u ∈ V \ {v};

– if r = (Ls(v), ??a, L
′
s(v)) then del?(a,Kb(v)) holds because Lb(v) ⊑b Kb(v)

and by hypothesis del?(a, Lb(v)) is satisfied, L′
b(v) = del(a,Kb(v)), and

L′
b(u) = K ′

b(u) for every remaining u ∈ V \ {v}.

7

In any case we obtain that L′
s(u) = K ′

s(u) and L′
b(u) ⊑

b K ′
b(u) for all u ∈ V . We

can finally conclude that, given an execution γ0γ1 . . . γk in T (P , Bag) where q ∈
Ls(γk) and γ0 = 〈V,E, L0〉 we can build another one δ0δ1 . . . δk in T K(P , Bag) by
starting from δ0 = 〈V, V × V, L0〉 and replicating each rule application as shown
in the previous scheme. The thesis then follows by observing that, because of
the construction, the set of control states in δi is the same as those in γi for
0 ≤ i ≤ k and in particular q ∈ Ks(γk).

A configuration with fully connected topology can be simply viewed as a multiset
of pairs formed by a control state and a word over the message alphabet. The
label 〈q,m〉 represents the current state q of the corresponding node and its bag
of messages m.

Given a state q we would like to decide whether there exists an initial multiset
γ0 of node labels such that γ0 can reach a configuration γ containing a label
[〈q,m〉] for some bag m of messages. A natural way to attack this problem
consists in performing a backward reachability analysis starting from a finite
representation of all configurations that contain state q. For this purpose, we
introduce an ordering 4b on configurations s.t.

γ = [〈q1,m1〉, . . . , 〈qn,mn〉] 4
b γ′ = [〈q′1,m

′
1〉, . . . , 〈q

′
k,m

′
k〉]

iff there exists an injection h : n → k s.t. qi = q′
h(i) and mi ⊑b m′

h(i) (mi is

contained in m′
h(i)) for i : 1, . . . , n. The ordering can be used to finitely represent

the (upward closed) set U of configurations containing at least one occurrence
of a given control state q. Indeed, U is generated by the configuration 〈q, []〉.
This is the first step for applying the theory of wsts described in section 2. The
following properties are proved in appendix.

Lemma 4. For fully connected transitions, the ordering 4b is a wqo.

As a direct consequence of the wqo property we have that any upward closed set
I of configurations has a finite basis, i.e., a finite set of elements that generates
the whole set I, as in the above mentioned example of the set U . In addition,
the transition system is compatible with respect to 4b.

Lemma 5. For fully connected transitions, ⇒M is monotonic w.r.t. 4b.

The previous property implies that the set of predecessors of an upward closed
set is still upward closed. For this purpose, starting from the finite basis F of
the upward closed set of configurations F ↑, we need to effectively compute the
finite basis F ′ of pre(F ↑) (i.e. Pre(F)). This can be done algorithmically.

Lemma 6. There exists an algorithm to compute the predecessor operator Pre.

The following lemma then holds.

Lemma 7. COVERK(Bag) is decidable.

8

Proof. We apply the backward algorithm defined in Section 2. The seed of the
computation is the basis U = {[〈q, []〉]}. Termination of the symbolic backward
exploration is ensured by the wqo property of 4b. To decide if the fixpoint Ik of
the sequence {Ii}i≥0 intersects the set of initial configurations, we simply have
to check if there exists a B ∈ Ik s.t. all elements have the form 〈q0, []〉. Thus, the
initial test is decidable.

Thanks to Lemmas 3, 7 and 2 we can conclude that the following property holds.

Theorem 1. COVER(Bag) is decidable.

5 FIFO Mailboxes

In this section we prove that the coverability problem for ABN with perfect
FIFO buffers becomes undecidable. In this context we instantiate the mailbox
structure FIFO as follows: M is defined as Σ∗; add(a,m) = m·a (concatenation
of a and m); del?(a,m) = true iff m = a ·m′; del(a,m) is the string m′ whenever
m = a ·m′, undefined otherwise; finally, ♭ ∈ M is the empty string ǫ.

Theorem 2. COVER(FIFO) is undecidable.

Proof. The proof is based on a reduction of the halting problem for two-counter
machines – a well known undecidable problem – to COVER(FIFO). A two-
counter machine is defined by a pair 〈L, I〉 where L is a finite set of control
locations and I ⊆ L × Op × L is a finite set of instructions such that Op =
{c++, c−−, c == 0 | c ∈ {x1, x2}} is a set of operators over the counters x1 and
x2, and ℓ0 ∈ L is the initial location. Configurations are tuples 〈ℓ, v1, v2〉 such
that ℓ ∈ L is the current location and v1, v2 are natural numbers that denote the
current value of x1 and x2, respectively. The operational semantics is defined in
a standard way: the execution of increment and decrement updates the control
location and the current value of the corresponding counter, a zero-test updates
the control location whenever the test is satisfied in the current state of the
counter.

The rationale behind the reduction of coverability to the halting problem
of two-counter machines is as follows. We first use an election protocol that
assigns fixed roles (controller/slave) to a pair of adjacent nodes. Since the initial
configuration is not fixed a priori, our election protocol does not forbid the
election of multiple pairs of controller/slave nodes. However, for the rest of the
simulation to succeed we only require that at least one pair is elected. The
controller/slave nodes set up their mailboxes in order to use them as overlapping
circular queues. Messages represent the current value (in unary) of the counters.
The simulation is guided by the controller. The slave node forwards all received
messages back to the controller. As an example, to check that x1 is zero, the
controller reads all messages in the mailbox and checks that in between two
successive reads of the marker for x1 there are no units. We use interference
to denote an unwanted message occurring in the mailbox of a controller/slave

9

node. Since the network topology is not fixed a priori, a keypoint of the whole
construction is the capability of controlling interferences with other nodes, e.g.,
avoiding the adjacency between multiple controllers and slaves. For this purpose,
we use special control messages to coordinate the different phases and exploit
the FIFO mailboxes in order to enforce the simulation to get into a deadlock
state whenever the same control message is received more than once. A detailed
description of the protocol is given in appendix. The following theorem then
holds.

Corollary 1. COVERK(FIFO) is undecidable.

The same construction can be used for the fully connected case.

6 Lossy FIFO Mailboxes

We now consider coverability for ABNs in which mailboxes are lossy FIFO chan-
nels, i.e., channels in which messages may non-deterministically be lost. Again
we first consider the transition system T K(P , LFIFO) for fully connected net-
works and the corresponding coverability problem COVERK(LFIFO). Given a
protocol P , a configuration γ of T K(P , LFIFO) is a multiset of pairs 〈q,m〉
where q ∈ Q and m ∈ Σ∗. To model non-deterministic loss of messages, we
modify the operational semantics by introducing lossy steps. We first need to
define the following ordering between configurations:

γ = [〈q1,m1〉, . . . , 〈qk,mk〉] 4
∗ γ′ = [〈q′1,m

′
1〉, . . . , 〈q

′
n,m

′
n〉]

if there exists an injective mapping h : k → n s.t. qi = q′
h(i) and mi ⊑∗ m′

h(i) for
i : 1, . . . , k. We modify the transition relation ⇒M to include lossy steps before
and after each transition in the original system as follows: γ 7−→ γ′ iff there
exists η and ν s.t. η 4∗ γ, η ⇒M ν, and γ′ 4∗ ν.

As for unordered mailbox we first consider the restricted case of fully con-
nected topologies and show that ABN with lossy FIFO mailboxes form a wsts.

The following lemmas are proved in appendix.

Lemma 8. The ordering 4∗ is a wqo.

We consider again upward closed sets of configurations since the wqo properties
ensure the existence of a finite basis and the target configuration can be gener-
ated by the minimal element 〈q, ǫ〉. For fully connected topologies, the transition
relation 7−→ is monotonic with respect to 4∗. (it directly follows from the lossy
semantics).

Lemma 9. For fully connected configurations, 7−→ is monotonic w.r.t. 4∗.

Lemma 10. For fully connected configurations, the symbolic operator Pre is
effective.

By Lemmas 9, 10, and 2, the following theorem then holds.

10

Theorem 3. COVERK(LFIFO) is decidable.

The coverability problem for lossy FIFO mailboxes has a property in common
with the one for bags, that is in both cases processes are able to ignore incoming
messages indefinitely; this is achieved by either leaving the message in the mul-
tiset or by deleting it from the lossy fifo queue. We can therefore take advantage
of this property to obtain the following theorem.

Theorem 4. COVER(LFIFO) is decidable.

7 ABN with Emptiness Test

In this section we enrich the ABN model with a new type of transitions in
order to enable processes to test whether their mailbox is empty, we call the
resulting model ABNǫ. The set Act of action labels is extended to include ǫ,
i.e., Act = {τ, ǫ} ∪ {!!a, ??a | a ∈ Σ}. The transition systems associated to an
ABNǫ are changed accordingly to take ǫ into account; given two configurations
γ = 〈V,E, L〉 and γ′ = 〈V,E, L′〉, γ ⇒M γ′ holds also if the following condition
is met.

Emptiness test There exists a v ∈ V such that (Ls(v), ǫ, L
′
s(v)) ∈ R, Lb(v) =

L′
b(v) = ♭, and L(u) = L′(u) for each u ∈ V \ {v}.

The only difference with respect to the semantics of τ -transitions consists in the
Lb(v) = ♭ condition, that ensures that ǫ-transitions only fire when the mailbox
is empty.

The introduction of ǫ-transitions affects the different instances of the cover-
ability problem in different ways.

The simplest case is for COVERK(FIFO) and COVER(FIFO), which of
course are still undecidable: the possibility to test the emptiness of the mailbox
does not have any effect on the reduction from two-counter machines.

The decidability of COVERK(LFIFO) depends on the Lemma 9 on mono-
tonicity and on Lemma 10 on the computability of the predecessors. Monotonic-
ity is preserved by ǫ-transitions: given two configurations γ 4∗ η if ǫ can be
fired in γ then it is enabled in η too, through a preliminary lossy step that
empties the relevant mailbox. The predecessors can be computed by extending
the case analysis to rules of the form (q, ǫ, q′); it is very similar to computing
predecessors of local transitions, except that we can replace 〈q′,m〉 with 〈q,m〉
in the configuration G only if m = ♭. From these observations we can therefore
derive that both COVER(LFIFO) and COVERK(LFIFO) are decidable even
with ǫ-transitions.

We incur in a completely different case when considering bags: as it can be
shown, the extended semantics traces indeed a sharp boundary between decid-
ability and undecidability. Without the emptiness test, both reachability prob-
lems COVER(Bag) and COVERK(Bag) are decidable; we prove that the opera-
tor ǫ introduced with the extended model is sufficient to make them undecidable.
The proof proceeds by building a reduction from the control state reachability

11

problem for two-counter machines to COVER(Bag). The reduction encodes a
counter machine M with an ABN protocol P = 〈Q,Σ,R, q0〉 where, like before,
each location l ∈ L and each instruction i ∈ I corresponds respectively to a state
P(l) ∈ Q and to a set of intermediate states and rules.

Theorem 5. COVER(Bag) [COVERK(Bag)] is undecidable in ABNǫ.

Proof. The protocol is split in two phases. In the first phase processes follow a
distributed election protocol to identify who takes care of which role and who
is excluded from the simulation. The second phase is the simulation of M. The
alphabet is partitioned in two sets, Σe for the election and Σs for the simulation.
Since we do not make any particular assumption on the connectivity graph, the
proof works for both COVERK(Bag) and COVER(Bag) topologies.

Election A simulation must be carried out by three nodes: a controller and
two slaves, one per counter. As Figure 1 shows, the election protocol is
similar to the one from section 5: the process which chooses to be a controller
must receive announcements from two different slaves, while each slave must
receive the announce message from a controller.

q0 P(ℓ0)
!!c ??s1 ??s2

qS1

!!s1

??c

qhalt qS2

τ
!!s2

??c

Fig. 1. COVER(Bag): Election protocol

qSUBj
qSj

qTZj

??subj??uj

!!subj

??Σs \ (Σe ∪ {uj})

??tzj ǫ

!!tzj

Fig. 2. COVER(Bag): Slave process

Simulation Each slave Sj keeps in its mailbox a number of uj messages equal
to the current value of counter xj . The controller sends messages subj or tzj

12

to give orders depending on the instruction (l, op, l′) that is going to be sim-
ulated by the system and waits for the interested slave to react accordingly
(see Figure 2). Once the slave is done, the same control message is sent back
to the controller as acknowledgment and the controller is able to proceed.
When A is a set we write ??A to mean that for every a ∈ A the protocol has
a reception rule ??a with the same endpoints. Again, the increment can be
done directly by the controller with a single broadcast !!uj.

The election protocol only ensures the minimum connectivity requirements
for the simulation, but this encoding alone is not enough to make sure that the
simulation proceeds without interferences. The only instruction that may make a
process of the system get stuck due to interferences is the test for zero: messages
from Σe are removed from the mailbox only during the election, thus the only
outgoing transition ǫ cannot proceed in such events. This is why the reduction
does not compute reachability of the encoding P(ℓf) of the target state ℓf , but
instead it checks for the reachability of a fresh state qtarget added according to
Figure 3. It is straightforward to check that the instructions added to M just

ℓf ℓf
x1 == 0

x1 −−

x2 == 0

x2 −−

P
(

ℓf
)

qtarget
ǫ

Fig. 3. COVER(Bag): Interference detection

decrement down to zero both counters before reaching the destination – thus
forcing the system to deadlock in case of interferences on the slaves. The last
ǫ-transition ensures the absence of interferences in the controller too.

8 Comparison with Other Semantics and Related Work

We have studied coverability problems for networks with an arbitrary number of
identical finite automata equipped with asynchronous communication primitives.
Nodes have local mailboxes controlled with different policies (e.g. unordered and
FIFO mailbox). Coverability is defined with respect to initial configurations with
an arbitrary finite number of nodes. Our results are summarized in Table 1. Our
analysis completes previous work on verification and expressiveness (w.r.t. cover-
ability) of broadcast communication. More specifically, for synchronous broad-
cast communication, the coverability problem is decidable for fully connected
graphs [9] and undecidable for arbitrary graphs in the AHN model of [7]. Broad-
cast in AHN is topology-dependent. Synchronous communication is used here to

13

COVER
K(M) COVER(M)

ABN ABNǫ ABN ABNǫ

LFIFO X X X X

BAG X x X x
FIFO x x x x

Table 1. Decidability results for COVERK(M) and COVER(M)

implement a sort of discovery protocol that, by a careful control of interferences,
allows individual nodes to infer precise information about their vicinity (e.g. the
existence of one and only one neighbour with a certain role). The discovery pro-
tocol is a building block for more complex computations. In this paper we use
similar idea but reductions of different nature to obtain undecidability (e.g. we
encode counters using mailboxes and not by using linked structures).

For variations of the synchronous semantics like those proposed in [12], inter-
mittent nodes and non-atomic broadcast, coverability turns to be decidable. The
decidability results exploit however different proof techniques. Indeed, coverabil-
ity with intermittent nodes can be decided by using a weaker model than Petri
nets, whereas we need to resort to the theory of wsts with nested data structures
(bags of tuples containing multisets) to show decidability for the unordered case.
There seems to be no direct reduction from one model to the other. Furthermore,
by either introducing ǫ-transitions or moving to the case of ordered mailboxes
we obtain undecidability of the resulting model. Concerning other models of
broadcast communication, we would like to mention the CBS process calculi by
Prasad [18,19] for fully connected networks with synchronous broadcast commu-
nication, the ω-calculus by Singh et al. [20,21] for fully connected networks with
synchronous broadcast communication, and the model with topology-dependent
broadcast by Ene and Muntean [8]. More recently, a process algebra for dif-
ferent types of communication, including asynchronous broadcast, called AWN,
has been proposed in [10]. Semantics that take into consideration interferences
and conflicts during a transmission have been proposed in [15,14]. Verification
of unreliable communicating FIFO systems have been studied in [2,5]. In [6]
the authors consider different classes of topologies with mixed lossy and perfect
channels [6]. Differently from all the previous works, we consider here coverability
for parametric initial configurations for a distributed model with asynchronous
broadcast. Furthermore, we also consider different policies to handle the message
buffers (bags/queues) and as well as unreliability of the communication media.

Concerning possible refinement of the unordered case, we are currently con-
sidering an extension with identifiers. When each node has a unique identifier
that can be passed using broadcast messages and compared with equality, we
conjecture that we just need a single slot of memory in each node (i.e. labels
〈state, id, value〉) and a single value in each message (i.e. labels 〈m, value〉) to
obtain undecidability of coverability even for fully connected topologies. The
reason is that equalities over identifiers induces an overlay network on top of the

14

fully connected topology that can be exploited to build unbounded structures,
used to simulate the memory of a Turing equivalent model. The introduction of
the extended semantics with identifiers and value passing and the formal analysis
of the coverability problem is left for an extended version of the work.

References

1. Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General
decidability theorems for infinite-state systems. In LICS, pages 313–321, 1996.

2. Parosh Aziz Abdulla and Bengt Jonsson. Undecidable verification problems for
programs with unreliable channels. Inf. Comput., 130(1):71–90, 1996.

3. Parosh Aziz Abdulla and Bengt Jonsson. Ensuring completeness of symbolic veri-
fication methods for infinite-state systems. Theor. Comput. Sci., 256(1-2):145–167,
2001.

4. Parosh Aziz Abdulla and Aletta Nylén. Better is better than well: On efficient
verification of infinite-state systems. In LICS, pages 132–140, 2000.

5. Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. Unreliable channels are
easier to verify than perfect channels. Inf. Comput., 124(1):20–31, 1996.

6. Pierre Chambart and Ph. Schnoebelen. Mixing lossy and perfect fifo channels. In
CONCUR, pages 340–355, 2008.

7. Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized verifi-
cation of ad hoc networks. In CONCUR, volume 6269 of Lecture Notes in Computer

Science, pages 313–327. Springer, 2010.
8. Cristian Ene and Traian Muntean. A broadcast-based calculus for communicating

systems. In IPDPS, page 149, 2001.
9. Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast

protocols. In LICS, pages 352–359, 1999.
10. Ansgar Fehnker, Rob J. van Glabbeek, Peter Höfner, Annabelle McIver, Marius

Portmann, and Wee Lum Tan. A process algebra for wireless mesh networks. In
ESOP, pages 295–315, 2012.

11. Alain Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1-2):63–92, 2001.

12. Gianluigi Zavattaro Giorgio Delzanno, Arnaud Sangnier. Verification of ad hoc
networks with node and communication failures. In FORTE, 2012.

13. Graham Higman. Ordering by divisibility in abstract algebras. Proc. of the London

Mathematical Society, 3(2):326–336, 1952.
14. Massimo Merro, Francesco Ballardin, and Eleonora Sibilio. A timed calculus for

wireless systems. Theor. Comput. Sci., 412(47):6585–6611, 2011.
15. Nicola Mezzetti and Davide Sangiorgi. Towards a calculus for wireless systems.

Electr. Notes Theor. Comput. Sci., 158:331–353, 2006.
16. Sebastian Nanz and Chris Hankin. Formal security analysis for ad-hoc networks.

Electr. Notes Theor. Comput. Sci., 142:195–213, 2006.
17. Sebastian Nanz, Flemming Nielson, and Hanne Riis Nielson. Static analysis of

topology-dependent broadcast networks. Inf. Comput., 208(2):117–139, 2010.
18. K. V. S. Prasad. A calculus of broadcasting systems. Sci. Comput. Program.,

25(2-3):285–327, 1995.
19. K. V. S. Prasad. Broadcasting in time. In COORDINATION, pages 321–338, 1996.
20. Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. Query-based model check-

ing of ad hoc network protocols. In CONCUR, volume 5710 of Lecture Notes in

Computer Science, pages 603–619. Springer, 2009.

15

21. Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. A process calculus for
mobile ad hoc networks. Sci. Comput. Program., 75(6):440–469, 2010.

16

A Examples

Semantics of ⇒Bag. For γ and γ′, γ ⇒Bag γ′ holds iff one of the following
conditions holds:

– (local) γ = [〈q,m〉] ⊕ η, (q, τ, q′) ∈ R, and γ′ = [〈q′,m〉]⊕ η;

– (broadcast) γ = [〈q,m〉] ⊕ η, η = [〈q1,m1〉, . . . , 〈qk,mk〉], (q, !!a, q′) ∈ R,
γ′ = [〈q′,m〉]⊕ η′, and η′ = [〈q1, [a]⊕m1〉, . . . , 〈qk, [a]⊕mk〉] for k ≥ 0;

– (receive) γ = [〈q,m〉] ⊕ η, (q, ??a, q′) ∈ R, m(a) > 0, and γ′ = [〈q′,m ⊖
[a]〉]⊕ η;

As an example, consider a protocol with the following rules a
!!m
−→ b, a

??m
−→ c,

and c
??m
−→ d. Starting from the initial configuration [〈a, []〉, 〈a, []〉, 〈a, []〉] we can

first reach the configuration [〈b, []〉, 〈a, [m]〉, 〈a, [m]〉], from which we can ob-
tain executions like [〈b, [m]〉, 〈b, [m]〉, 〈a, [m,m]〉], [〈b, [m]〉, 〈b, [m]〉, 〈c, [m]〉], and
[〈b, [m]〉, 〈b, [m]〉, 〈d, []〉].

B Proofs

Proof of Lemma 4 For fully connected transitions, the ordering 4b is a wqo.

Proof. The ordering 4b consists of multiset inclusion of bags of pairs in which
the first components are compared using = and the second components are
compared using multiset inclusion. The latter orderings are well quasi orderings.
So is the point-wise ordering over pairs of such elements. By Lemma 1, we obtain
then that 4b is a wqo.

Proof of Lemma 5

Proof. The proof is by case analysis on the type of applied rule. The interesting

cases are send and receive. For the send case, assume that q
!!m
−→ q′ is a rule

that can be fired in γ = [〈q,m〉, 〈q1,m1〉, . . . , 〈qk,mk〉]. Its firing leads to the
configuration γ = [〈q′,m〉, 〈q1, [a] ⊕ m1〉, . . . , 〈qk, [a] ⊕ mk〉]. Now assume that
γ 4b η. Then, η = [〈q,m′〉, 〈q1,m′

1〉, . . . , 〈qk,m
′
k〉] ⊕ ν, where m ⊑b m′ and

mi ⊑b m′
i for i : 1, . . . , k. Clearly, the transition is still fireable in η and leads to

the configuration η′ = [〈q,m′〉, 〈q1, [a] ⊕ m′
1〉, . . . , 〈qk, [a] ⊕ m′

k〉] ⊕ ν′, where ν′

is obtained from ν by adding a to all bags of its elements. As a result, we have
that γ′ 4b η′.

For the receive case, assume that q
??m
−→ q′ is a rule that can be fired in

γ = [〈q, [a] ⊕ m〉] ⊕ ν. Its firing leads to the configuration γ′ = [〈q′,m〉] ⊕ ν.
Now assume that γ 4b η. Then, η = [〈q, [a] ⊕ m′〉] ⊕ ν′, where m ⊑b m′ and
ν 4b ν′. Clearly, the transition is still fireable in η and leads to the configuration
η′ = [〈q′,m〉]⊕ ν′. Thus, we have that γ′ 4b η′.

17

Proof of Lemma 6

Proof. We give an algorithm for a single generator. The definition can be ex-
tended to sets in the natural way. Let G = [〈q1,m1〉, . . . , 〈qk,mk〉] be a config-
uration that generates an upward closed set I of configurations. The generators
of Pre(I) are defined by case analysis on the type of rules in R:

– Consider a rule (q, τ, q′) ∈ R, for every i s.t. q′ = qi, we have a generator
obtained by replacing 〈qi,mi〉 with 〈q,mi〉 in G. Another possible generator
is obtained by adding 〈q, []〉 to G.

– Consider a rule (q, !!a, q′) ∈ R, for each i s.t. q′ = qi and mj = [a] ⊕m′
j for

j 6= i, we have a generator [〈q1,m
′
1〉, . . . , 〈q,mi〉, . . . , 〈qk,m

′
k〉] (the bag of the

i-th process is unchanged). Furthermore, if mj = [a]⊕m′
j for all j, another

possible generator is [〈q, []〉, 〈q1,m′
1〉, . . . , 〈qk,m

′
k〉].

– Consider a rule (q, ??a, q′) ∈ R. For every i s.t. q′ = qi, we have a genera-
tor obtained by replacing 〈qi,mi〉 with 〈q, [a] ⊕mi〉 in G. Another possible
generator is obtained by adding 〈q, [a]〉 to G.

It is straightforward to check that the previous gives a representation of Pre(I).
⊓⊔

Proof of Theorem 2 Formally, let M = 〈L, I〉 be a two-counter machine.
The encoding of M is defined via an ABN protocol PM = 〈Q,Σ,R, q0〉, where
each location l ∈ L corresponds to a state P(l) ∈ Q, and each instruction r ∈ I
corresponds to a set of auxiliary states and rules. The i-th counter is represented
by the FIFO mailboxes of two collaborating processes that forward each other
the units ui and a distinguished token ti which marks the beginning of the
circular queue. The protocol is split in three phases: election, initialization and
simulation. The alphabet Σ is partitioned in Σe, the messages exchanged during
the election, and Σs, the messages used for the simulation.

qhalt

q0 qIC

τ

!!c ??s

qS

!!s

??c

Fig. 4. Distributed election protocol

Election Since all processes start the protocol in the same initial state, the first
thing is to distinguish their roles and make sure that all required communica-
tion links are present. This is the purpose of the election phase, during which

18

processes try to build pairs of communicating nodes. An active process may
be either a controller or a slave. The duty of the controller is to orchestrate
the whole simulation; the purpose of the slave is to bounce back every simu-
lation message received from the controller. We do not care of how pairs will
be able to proceed to the next phase, as long as their minimum connectivity
requirements are fulfilled: each of them will try to independently carry on
its own simulation, or deadlock due to interferences.
Figure 4 shows the election protocol. At first every node nondeterministically
chooses an active role and announces it to its neighbours (!!c or !!s) or shuts
down itself by going to qhalt. After choosing a role, an handshake is needed
to ensure the existence of the interconnection between controller and slave:
a controller needs to receive the announce from a slave, and vice versa. The
slave reaches the state qS that starts its main loop, while the controller goes
to an intermediate initialization state qIC .

In order to simplify the presentation we introduce some syntactic sugar. Let
q ∈ Q be a state with an outgoing reception transition labeled by ??(m); then,
in the actual ABN automaton, the transition is replaced by a regular ??m and
appropriate deletion rules (q,m′, q) are added to get rid of all those messages
m′ ∈ Σs that cannot be consumed by some outgoing transition.

qIC P(ℓ0)
!!t1 !!t2

Fig. 5. Initialization protocol

Initialization Once all nodes have been elected, it is time for the controller
to initialize the representation of the counters. This is simply achieved by
creating two tokens t1 and t2 to be used as markers for the circular queues
representing the counters (Figure 5). At this point the controller is able to
move to the encoding of the initial location of M, P(ℓ0).

Simulation When everything is ready, the nodes proceed to the simulation
phase. The slave node starts in qMj

, a sort of idle state which manages
the forwarding of messages of the counters (Figure 6). In order to increment
the j-th counter the controller needs to put one more unit uj in the circular
queue, so a simple !!uj is enough. Subtraction is achieved by removing a uj

token from the loop (Figure 7); if xj is already at 0, the controller will loop
forever on qSUBj

without being able to proceed. Testing for zero xj can be
done by checking for a sequence of two messages tj in a row – or going to
deadlock in any other case. Of course both operations must carefully keep
forwarding messages for the other counter xi. Remember that the election
cannot forbid to multiple nodes to choose the same roles, nor it can avoid
interferences between different simulations. The simulation protocol has to
deal with this possibility by itself, and this the reason for the choice of the
semantics for ??(a): messages in Σe cannot be read during the simulation

19

qS

??(u1)

!!u1

??(t1)

!!t1

??(u2)

!!u2

??(t2)

!!t2

Fig. 6. Main loop of the slave node qS

P(ℓ) P(ℓ)′

??(ui)

!!ui

??(ti)

!!ti

τ ??(uj)

??(tj)

!!tj

Fig. 7. Subtraction from counter j, with i 6= j

P(ℓ) P(ℓ)′
τ ??(tj) !!tj ??(tj) !!tj !!tzj

??(ui)!!ui ??(ui)!!ui

qhalt

??(uj) ??(uj)

??(ti)!!ti ??(ti)!!ti

Fig. 8. Testing for zero counter j, with i 6= j

20

phases, and since they must appear before any message in Σs – having FIFO
mailboxes – they always lead to a deadlock just before the system starts
to consume untrustworthy messages. Subtraction and zero testing are not
atomic, and to be sure that the slave was alive during the whole execution
the reduction applies the greeting protocol shown in Figure 9 after each
operation, so that for each instruction of the form (l, op, l′) ∈ I the system
may reach the P(l′) state only after exchanging hello messages; in case of
interferences deadlocks are propagated to the controller before completing
the simulation of the transition.

P(ℓ)′ P(ℓ′)
!!hello ??(hello)

??(u1)

!!u1

??(t1)

!!t1

??(u2)

!!u2

??(t2)

!!t2

qS

??(hello) !!hello

Fig. 9. Greeting protocol

Thanks to the FIFO ordering of the queues, we have the following properties.
If the two-counter machine M halts, i.e., the target location ℓtarget is reachable
from the initial configuration of the machine 〈ℓ0, 0, 0〉, then there exists an initial
configuration for the ABN protocol PM to reach a configuration in which the
controller is labelled by P(ℓtarget). The property follows by selecting a config-
uration with only two nodes: one acting as controller and the other acting as
slave. Vice versa, assume that there exists an initial configuration for the ABN
protocol PM from which it is possible to reach a configuration in which ℓhalt
occurs. Our protocol is designed so as to ensure that the controller node and
the slave node exchange acknowledgment messages in order to be informed of
the presence of the link between them. This implies that at least a pair of nodes
concludes the simulation (i.e. the controller reaches the state associated to ℓhalt).
We show that such a computation correctly mimics an execution of the machine
PM.

– Any increment instruction may be executed regardless of the current value
of the counter; because of this, interferences before or after increments are
not a problem at all: the execution is still valid.

– Zero-tests and decrements must be concluded by a run of the greeting pro-
tocol, meaning that only interference-free executions are able to proceed.

From the previous properties, it follows that if the controller node reaches the
halting state, then the simulation of the counter operation is consistent with

21

the original two counter machine. The undecidability proof is valid also for fully
connected topologies.

Proof of Lemma 8

Proof. The ordering 4∗ consists of multiset inclusion of bags of pairs in which
the first components are compared using = and the second components are
compared using string embedding. The latter orderings are well quasi orderings.
So is the point-wise ordering over pairs of such elements. By Lemma 1, we obtain
that 4∗ is a wqo.

Proof of Lemma 10

Proof. We give an algorithm for a singleton generatorG = [〈q1,m1〉, . . . , 〈qk,mk〉].
The generators of Pre(I) are defined by case analysis on the type of rules in R:

– Consider a rule (q, τ, q′) ∈ R, if there exists i s.t. q′ = qi, then one generator is
obtained by replacing 〈qi,mi〉 with 〈q,mi〉 in G. Another possible generator
is obtain by adding 〈q, ǫ〉 to G.

– Consider a rule (q, !!a, q′) ∈ R. We use S(a,m) to denote the singleton with m
if m = m′ · b with a 6= b, and the set {m′,m} (it models the loss of messages)
if m = m′ · a. For each i s.t. q′ = qi, the corresponding generators have the
form [〈q1,m′

1〉, . . . , 〈q,m
′
i〉, . . . , 〈qk,m

′
k〉] for m′

j ∈ S(a,mj) for every j 6= i.
Furthermore, we have a generator [〈q, ǫ〉, 〈q1,m′

1〉, . . . , 〈q,m
′
i〉, . . . , 〈qk,m

′
k〉]

for m′
j ∈ S(a,mj) (it models the loss of messages) for every j.

– Consider a rule (q, ??a, q′) ∈ R. For each i s.t. q′ = qi, the corresponding
generators are G itself (loss of messages), and G′ = [〈q1,m1〉, . . . , 〈q, a ·
m′

i〉, . . . , 〈qk,mk〉].

It is straightforward to check that the above case analysis corresponds to all
possible generators for Pre(I).

Proof of Theorem 4

Proof. Let P = 〈Q,Σ,R, q0〉 be a protocol and q ∈ Q. There exist an execution
k0k1 · · · kn in the transition system T K(P , LFIFO) such that q ∈ Ls(kn) if
and only if there exists another execution g0g1 · · · gn in T (P , LFIFO) such that
q ∈ Ls(gn). The theorem follows from this proposition and from theorem 3. One
implication is trivial, being the first transition system a restricted version of the
second. The other side can be proved by means of a monotonicity property on
the individual transition steps, just like for lemma 3 but relying on the relation
4∗ instead of 4b, and exploiting lossy steps instead of the bag semantics.

22

	On the Coverability Problem for Asynchronous Broadcast Networks
	Giorgio Delzanno and Riccardo Traverso

