
Casl-Chart: a Combination of Statecharts and of

the Algebraic Speci�cation Language Casl

?

G. Reggio and L. Repetto

DISI - Universit�a di Genova, Italy

reggio@disi.unige.it

http://www.disi.unige.it/person/ReggioG/

1 Introduction

In this paper we present Casl-Chart a formal visual speci�cation language for

reactive systems obtained by combining an already existing language for reactive

systems, precisely the statecharts as supported by Statemate ([6, 7]), with an

already existing language for the speci�cation of data structures, precisely the

algebraic speci�cation language Casl ([12,17]).

We think that is valuable to try to combining an existing speci�cation lan-

guage, intended for some particular applications following some particular par-

adigm, with another one aimed at the speci�cation of the data, indeed usually

the former is rather poor for what concerns the data part, and that prevents to

use it e�ectively and productively for non-toy applications.

LOTOS, [9], a well established and used speci�cation language for concurrent

systems, has been developed when trying to use the CCS (\Calculus of Com-

municating Systems" [10]) for realistic applications, precisely the speci�cation

of protocols. At that point, it became clear the need to extend CCS with the

possibility of specifying non trivial data; this extension was done by combining

CCS with the already existing algebraic speci�cation language ACT ONE [5].

There are many reasons because the designers of a speci�cation language ne-

glect the data part. In general their main e�orts concern the peculiar constructs

of the language, while the data part is �lled in some way. Sometimes, they even

think that the data are not relevant, since they have not tried to use their lan-

guage for a non trivial application. In other cases, they just think that data and

their transformations can be speci�ed indirectly by using the speci�c constructs

of the language This is usually true from a computational point of view, but

not if we consider the use of the language in practice; look, for example, to the

speci�cation of queues and stacks realized by particular CCS processes in [10].

On the other hand, the algebraic speci�cation languages, which are extremely

apt to specify data structures, cannot be straightly used to specify reactive,

concurrent, parallel,. . . systems; thus in the literature of the last years we can

�nd many attempts to extend such languages in some way to cope with such

applications (see [1] for an extended survey).

?

Work supported by CoFI (ESPRIT Working Group 29432).

The above problem has been considered in the European \Common Frame-

work Initiative" (CoFI) for the algebraic speci�cation of software and systems,

partially supported by the EU ESPRIT program [12]

1

, which brings together

research institutions from all over Europe. A result of CoFI is the development

of a speci�cation language called Casl (\Common Algebraic Speci�cation Lan-

guage" [17]) that intends to set a standard unifying the various approaches to

algebraic speci�cation and speci�cation of abstract data types. Indeed within

CoFI, the \Reactive Systems Task Group" has the \. . . aim and scope of propos-

ing and develop extensions of the common framework to deal with reactive,

concurrent and parallel systems . . . ".

Casl-Chart is an attempt to work out a possible extension of Casl for the

speci�cation of reactive systems.

We have chosen the statecharts, as the language for the speci�cation of the

reactive systems, more precisely the statechart variant supported by Statemate

[7], because it is visual, formal, well established, widely spread and used in

industry. Moreover, statecharts, also if with a very di�erent semantics, have

been incorporated in the UML [18], the OMG recent standard notation for object

oriented systems.

Casl-Chart is a combination of two formal speci�cation languages. For us

\combination" means that the original features of the two languages with their

original semantics will be present in the combination; thus all data used in a

Casl-Chart speci�cation of a reactive system will be speci�ed by using Casl,

while the behaviour of such system will be speci�ed by a statechart.

As a result we hae that whenever someone uses Casl-Chart, she/he does

not specify algebraically the reactive aspects, but instead she/he uses the stat-

echart machinery (events, steps, . . .), and she/he speci�es the data with Casl

using its particular logic (many-sorted partial �rst-order logic). Thus, a Casl/

Statemateuser may take advantage of its previous know-how on using such

languages, when she/he uses Casl-Chart.

The semantics of the combined languages will be given by \combining" the

original semantics of the two languages. Indeed, here we are not interested to

give the semantics of Casl-Chart by using Casl, and so in some sense to

translate the statechart into Casl (also if that it is possible, see for example in

[14] a semantics of the UML statecharts given by using Casl).

Here, we present Casl-Chart on a toy example, a pocket calculator, that

it is small but it is su�cient to illustrate the novelties of Casl-Chart w.r.t.

the classical statecharts supported by Statemate. A full presentation of Casl-

Chart (precise visual syntax, reference manual, static and dynamic semantics)

can be found in [15]. Unfortunately, we have not here the space to present al-

gebraic speci�cation and statecharts; the reader may refer, e.g., to [2], for the

former, and to [8], for the latter.

At this time we are not aware of other attempts to combine statecharts with

an algebraic speci�cation language, whereas there are many proposals for putting

1

More information on CoFI at http://www.brics.dk/Projects/CoFI/.

together algebraic speci�cation languages with other notations for coping with

concurrency, parallelism, reactivity, and so on, see the extended survey in [1].

There are also proposals for combining statecharts with other speci�cation

languages; for example in the German EXPRESS project a speci�cation language

�SZ combining the statecharts with Z has been developed ([4, 19]); however

in this case both Z and the statecharts languages have been extended/and or

modi�ed.

2 The Example: a Pocket Calculator

In this paper we use, as a running example, a pocket calculator with a keyboard,

a display, and a printer. More precisely it is a small reactive system simulating a

pocket calculator (think of, for example, a small application simulating a graph-

ical calculator on the desktop of your PC).

This calculator may

{ receive keys from a keyboard: either digits, used to express numbers, or

commands (arithmetic operations and printer commands);

{ echo the numbers on a display;

{ compute the commands corresponding to operations and shows the results

on the same display;

{ execte the printer commands (print the display content and start a new line).

We concurrently structure the calculator systems as the parallel of four pro-

cesses: three drivers, taking care of the interactions with the keyboard, the dis-

play and the printer respectively, and a computing unit, executing the opera-

tions. In Fig. 1 we show using a visual-informal notation how such components

cooperate to realize the functionalities of the calculator.

In the following sections we show how we have speci�ed the calculator system

using Casl-Chart, showing in the meantime the various features of this visual/

formal speci�cation language.

3 The Calculator Speci�cation: a Casl-Chart

A Casl-Chart speci�cation of a reactive system consists of

{ a speci�cation of the data used by the system, presented using the algebraic

speci�cation language Casl,

{ and of a statechart that uses such data.

3.1 The Data Part: a Casl Speci�cation

The informal description of our design of the calculator, see Fig. 1, uses keys

(that are digits and commands, that are in turn arithmetic operations, com-

mands for the printer and the equal), numbers (i.e., sequences of digits), and

characters. We have speci�ed these data are speci�ed by means of the following

Casl speci�cation, which shows many features of that language.

accumulates digits building a number till it receive
a command, say com, then it displays such number and
if com is an operation forward it to
COMPUTING_UNIT together with the number,
otherwise to PRINTER_DRIVER

DISPLAY

KEYBOARDPRINTER

if the received operation is equal, then it
computes the previous received operation
using the current and the previous received
numbers, otherwise it saves the received
number and operation

COMPUTING_UNIT

DISPLAY_DRIVER

displays the received
number, char after char

KEYBOARD_DRIVER

PRINTER
DRIVER

prints the received
number, char after

displays characters
refreshs

sends numbers
to be shown

pass numbers
and operations

sends print and
newline commands

sends characters

sends keys

sends numbers
to be shown

Fig. 1. Concurrent Structuring of the Calculator System

spec Data =

Char then

free f

types

Digit ::= 0 j 1 j : : : j 9 ;

Operation ::= plus j mult j min j div;

Command ::= sortOperation j pr j nl j eq;

Key ::= sort Digit j sort Command;

Num ::= null j : (Digit;Num); %% numbers as sequences of digits

ops �rst : Num!? Digit

rest : Num!? Num

to char : Digit! Char

pred is null : Num

vars d :Digit ; n: Num

� �rst(d n) = d

� rest(d n) = n

� 0 to char =

0

0

0

. . .

� 9 to char =

0

9

0

� is null(null)

g end

Data is the extension (Casl keyword then) of the speci�cation Char, pro-

vided by the standard Casl libraries [16], with some data types, some operations,

and a predicate. The Casl construct types allows one to provide for the given

types, the constructors (either constant, as null, or with parameters, as : ,

for Num), and possible subtypes (Operation is a subtype of Command, and Key

is the disjoint union of Digit and Command).

Casl allows the users to freely de�ne the syntax of the operations and predi-

cates in a speci�cation; e.g., to char states that to char is a post�x operation,

and : that : is in�x.

The underlying logic of Casl is many-sorted partial �rst-order logic. Thus

in a Casl speci�cation it is possible to declare total (as to char) and partial

operations (as �rst), using ! and !? respectively, and predicates (as is null).

\=" in axioms stands for strong equality : t = t

0

holds i� both terms are

de�ned and have the same value, or both are unde�ned

2

. It is possible to require

the de�nedness of a term with the special atom def t .

The keyword free states that the speci�cation Data has an initial semantics;

such semantics is characterized by the fact that an atom (either an equation or

a predicate application) holds in such model i� it can be proved in the sound

and complete deductive system for the Casl logic.

Thus, in the initial model of Data we have that is null does not hold

on 0 : null, and that �rst(null) is unde�ned because we cannot prove that

is null(0 : null) and def �rst(null).

2

Casl provides also for existential equality =

e

: t =

e

t

0

holds i� both terms are de�ned

and have the same value.

Casl provides also a rich set of constructs for structuring speci�cations and

for \architectural speci�cations" that are not used in this simple example.

3.2 The Whole System Behaviour: a Chart

We specify the behaviour of a reactive system with a statechart, denominated in

Casl-Chart simply chart, whose form is very similar to that of the Statemate

statecharts. In Fig. 2 we show the chart de�ning the whole calculator system.

var display_cont : Num;
events NEWLINE; PRINT; SHOW(Num); PASS(Command,Num);

PRINT_DRIVER

KEYBOARD_DRIVER

DISPLAY_DRIVER

COMPUTING_UNIT OUT_D(Digit)

INK(Key)

REFRESH

out_p: Char

CALCULATOR

Fig. 2. Chart: CALCULATOR

is the icon for the chart, while CALCULATOR is the name of the

chart, or better of its upper level state.

A reactive system may interact with its external environment in a discrete

and in a continuous way. In a chart the �rst kind of interaction is provided by

the events. The events may be received from outside (input events) graphically

presented in Casl-Chart by a simple incoming arrow attached to the chart

icon, and sent outside (output events) graphically presented by an outgoing

simple arrow. Moreover, in Casl-Chart events may have parameters, that are

values of the types de�ned by the Casl speci�cation of the data.

The chart CALCULATOR has an input event INK parameterized by an

element of type Key, and two output events OUT D and REFRESH, the latter

without parameters.

The variables provide the continuous interactions in a chart. Similarly to the

events, they are distinguished in input (which can be only read by the chart)

and output (that can be only written by the chart) and are typed using the

basic types speci�ed by the Casl part. The variables are graphically presented

in Casl-Chart by double arrows, incoming for input and outgoing for output

(

,

).

The calculator has a unique output variable out p of type Char.

The not box below the chart contains the declarations of the local events and

of the local variables that will be used, instead, only by the chart itself.

A reactive system may be composed by several components operating in

parallel; in Casl-Chart such components are named hierarchical charts, and

the parallel decomposition of a chart is shown by splitting the chart icon in slots

by means of dashed lines.

CALCULATOR is made of four components: PRINTER DRIVER,

KEYBOARD DRIVER,COMPUTING UNIT andDISPLAY DRIVER.

In this case we present the hierarchical charts corresponding to the four

components on di�erent drawings, but we could also have put them inside the

various slots of CALCULATOR.

The chart describes a reactive system that moves step after step. At each

step depending on the received input events, on the local events generated in

the previous step, and on the values of the variables, its various components will

perform a step, clearly those that can do it, generating output and local events

and modifying the values of the variables.

3.3 The System Components: Hierarchical Charts

Display Driver The display driver is a very simple example of hierarchical

chart. Indeed, its behaviour is very simple: it waits until it detects the occurrence

of the local event SHOW(n), then it records n in two local variables to display

and display cont; thus it forwards the digits composing n to the display one after

the other; �nally it goes back to wait.

The hierarchical chart in Fig. 3 visually presents such behaviour.

A hierarchical chart is \hierarchically/sequentially" decomposed in several

states, and in any moment only one of them is active. DISPLAY DRIVER

has three states: the initial state, represented by , which will be active at the

beginning, WAITING D, and DISPLAYING.

The local variable to display is declared in the box below the chart icon,

because its scope consists of just this hierarchical chart; while the scope of

display cont is the whole chart CALCULATOR.

The three transitions of this hierarchical chart have di�erent forms, but the

general form of a transition in Casl-Chart is

< pars > trigger / actions
S1 S2

where

{ S1 and S2 are two states of the chart, as in classical statecharts (source and

target states).

{ trigger is the transition trigger, and is a Casl formula (thus a formula of

the many-sorted partial �rst-order logic) built using also the chart variables

(input and local) and special atoms related to the statechart machinery,

WAITING_D

DISPLAYING

not is_null(to_display) /
OUT_D(first(to_display) to_char) ;
to_display := last(to_display)

<n: Num >
SHOW(n) /
to_display := n; cont_display := n;

var to_display : Num ;

REFRESH

DISPLAY_DRIVER

is_null(to_display) /

Fig. 3. Hierarchical Chart: DISPLAY DRIVER

checking, for example, for the happening of events and for a state of whole

chart to be active.

The Casl-Chart transition trigger is a combination of the trigger and of

the condition part of the transitions of the classical statecharts.

{ actions are the statements describing what to do when the transition is �red,

such statements include, for example, assignments to the variables (local and

output) and the generation of events; this part is similar to the corresponding

one of the classical statecharts.

{ pars are the transition parameters, this part, di�erently from the others, is

not present in any form in the classical statecharts.

3

It consists of a list of

variables typed using the types of the Casl speci�cation of the data followed

by a condition

< x

1

: t

1

; : : : ; x

n

: t

n

� cond >,

x

1

, . . . , x

n

are the transition parameters and may appear in trigger and in

actions.

For any instantiation of the transition parameters with v

1

, . . . , v

n

, values

of the appropriate types, s.t. cond holds there is a transition obtained by

replacing x

1

, . . . , x

n

by v

1

, . . . , v

n

.

There exists a default value for any part of the transition to be used if such part

is lacking: the default for the for the trigger is the always true formula, that for

the actions is the null statement, and that for the parameters is the empty set

of parameters.

3

UML statecharts have something of similar because also their events are parameter-

ized, see [18].

At each step, a transition whose source state is active and whose trigger holds

will be �red; if several transitions with the same source state may �re one of them

will be nondeterministically chosen. After the �ring the associated actions will

be executed, and the target state will become active (clearly the source will be

not active except when it coincides with the target).

The transition fromWAITING D to DISPLAYING means that for any value

n of type Num, if the event SHOW(n) has happened, then n will be assigned to

the variables to display and display cont.

The transition from DISPLAYING to itself is not parameterized, it may be

�red when the content of to display is not null, and when it will �re the event

OUT D(�rst(to display) to char)

will be generated and the content of the variable to display will be modi�ed. No-

tice that is null, �rst, rest, and to char are predicates and operations speci�ed

in Data.

The last transition of the hierarchical chart for the display driver is very

simple; indeed it has just the trigger part consisting of checking whether the

content of to display is null.

Printer Driver The hierarchical chart specifying the behaviour of the printer

driver is quite similar to that of the display driver, see Fig. 4. They di�er only

because the printer driver passes the character to be printed to the printer by

using the output variable out p, instead of generating an event, and gets the

number to be printed by looking at the local variable display cont, instead of

receiving it as a parameter of the event �ring the printing procedure.

Keyboard Driver The behaviour of the keyboard driver is more complex and

we specify it with the hierarchical chart in Fig. 5.

The keyboard driver receives keys from the keyboard by means of the events

INK(k), then its behaviour depends on k. If k is a digit, checked by k 2 Digit

4

,

then it is accumulated to build a number, otherwise the accumulated number

is shown on the display. \in WAITING D" checks that the display driver is in

the state WAITING D, and thus it is not showing another number. Afterwards,

if k is the print or newline command, then it is passed to the printer driver by

generating the corresponding events; otherwise, i.e., it is an operation, checked

by k 2 Operation (Operation is a subtype of Command), it is passed to the

computing unit together the accumulated number.

Computing Unit The computing unit is the last component of the CALCU-

LATOR and is speci�ed by the hierarchical chart in Fig. 6.

4

In the speci�cation Data Digit is a subtype of Key, and Casl provides special

predicates \2" for checking if an element belongs to a subtype.

NEWLINE / out_p := ’nl’
WAITING_P

PRINTING

not is_null(to_print) /
out_p := first(to_print) to_char;
to_print := last(to_print) to_char

PRINT /
to_print := display_cont

var to_print : Num;

is_null(to_print)

PRINT_DRIVER

Fig. 4. Hierarchical Chart Printer Driver

The essential role of this component is to compute the result of the appli-

cation of the received operation to two numbers, represented by sequences of

digits. We specify its behaviour rather simply by using a partial operation

apply : Operation� Num� Num!? Num;

speci�ed by using Casl instead of using the statechart machinery. Technically,

we extend the union of the speci�cation Data with that of the integers Integer

by apply using also some auxiliary operations (code and decode).

spec Apply =

Data and Integer then

ops apply : Operation�Num� Num!? Num

code : Integer!? Num

decode : Num! Integer

vars n;n

0

: Num;

axioms

apply(plus;n;n

0

) = code(decode(n) + decode(n

0

))

apply(mult;n;n

0

) = code(decode(n) � decode(n

0

))

apply(min;n;n

0

) = code(decode(n)� decode(n

0

))

apply(div;n;n

0

) = code(decode(n)=decode(n

0

))

8 n : Num � code(decode(n)) = n

8 i : Integer � i > 0) decode(code(i)) = i

g end

This example shows how in Casl-Chart the data transformations may be

speci�ed algebraically, and thus in a quite abstract way. Moreover, they can be

<k: Key . not k ∈Digit >
INK(k) /
com := k

com ∈ Operation

RECEIVING

co
m

 =
 n

l
 /

N
E

W
L

IN
E

 ;
 a

cc
 :

=
 n

ul
l

co
m

 =
 p

r
 /

P

R
IN

T
 ;

 a
cc

 :
=

 n
ul

l

SHOWING

in WAITING_D /
SHOW(acc)

not in COMPUTING /
PASS(com,acc) ;
acc := null

<k: Key . k ∈Digit >
INK(k) /
acc := k . acc

vars acc: Num; com: Command;

INIT_K

acc := null

PASSING

KEYBOARD_DRIVER

CHECKING

Fig. 5. Hierarchical Chart Keyboard Driver

WAITING_C

COMPUTING
in WAITING_D and cur_com = eq /
cur_num := apply (prev_com,prev_num,cur_num) ;
SHOW(cur_num)

< c : Command ; n : Num >
PASS(c,n) /
prev_num := cur_num ;
cur_num := n ;
cur_com := c

vars prev_num, cur_num: Num; prev_com, cur_com: Command;

INIT

prev_num := cur_num := null ;
prev_com := cur_com := eq

not cur_com = eq /
prev_com := cur_com

COMPUTING_UNIT

Fig. 6. Hierarchical Chart Computing Unit

checked by using the various tools supporting the algebraic speci�cations (as

theorem provers and rapid prototypers), see, e.g., [11].

3.4 Other Casl-Chart Constructs

To produce the speci�cation of the pocket calculator, presented in the preceding

sections, we have did not used all the Casl-Chart constructs. We want to recall

that in Casl-Chart we have also:

{ multilevel charts. In the examples shown in this paper, the states of the

hierarchical charts are simple states, but they can be decomposed by asso-

ciating with them a chart, that can be drawn either inside the state icon or

on a separate sheet. The charts and hierarchical charts used in the decom-

positions may be accompanied by declarations of local variables, as we have

seen before, and of local events; while the input/output variables and events

are allowed only for the upper level chart, describing the whole system (as

CALCULATOR in our example).

{ The \real time" temporal combinators of Statemate statecharts may be

used in the triggers; precisely: before, since and at, requiring that some con-

dition holds before x time unit, since x time unit, at the time x.

{ there are special events corresponding to enter/to exit a state.

4 Semantics

The complete static and dynamic semantics of Casl-Chart is in [15] and we

cannot report it here due to lack of space.

The semantics of the Casl speci�cation of the data results in a set of algebras

(�rst-order structures) D de�ning the data used in that particular speci�cation.

Given D 2 D, we de�ne a possible semantics of the Casl-Chart speci�cation

using D following the semantics of the Statemate statecharts of [7], to be more

precise we give two semantics as in [7], a micro-step and a macro-step semantics.

The only di�erence between our semantics and [7] is when evaluating con-

ditions and expressions, in such point we follow the Casl semantics (see [13])

by considering the special terms (as the statechart variables and the transition

parameters) as extra constant operations and the special atoms (as those check-

ing whether an event has happened or that some state of the chart is active) as

extra zero-ary predicates.

This combination of the semantics should allow also for a combination of

existing support tools. For example, if we restrict the used Casl speci�cations

to conditional speci�cations, then the Statemate toolset could be extended to

a toolset for Casl-Chart by replacing the modules taking care of the evaluation

of expressions and of conditions with, for example, a rewrite tool for Casl.

5 Conclusion and Future Works

We have presented, on an example, Casl-Chart, that is a combination of the

algebraic speci�cation language Casl and of the statecharts as supported by

Statemate. See [15] for a complete presentation of the syntax and of the se-

mantics of Casl-Chart.

The Casl-Chart speci�cation language is truly a combination of Casl and

of the statecharts, because both the ways to specify data structures and the

statechart machinery have been preserved, at the syntactic level and also at the

semantic level. We have thus obtained a Casl extension for the speci�cation of

reactive systems, that is a way to use Casl for relevant practical applications,

and, in our opinion, also a better variant of statecharts.

The advantages of Casl-Chart w.r.t. Statemate statecharts are

Casl-Chart speci�cations may be more abstract because the used data

and their transformations may be axiomatically speci�ed (e.g., in our small

example we have not detailed described as to perform the coding, decoding of

numbers, but we have just asserted that such operations are one the inverse of

the other, see the speci�cation Apply). In Statemate statecharts, instead

such data elaborations have to be described in a very detailed way by using

the statechart machinery.

Casl-Chart speci�cations are more compact because inCasl-Chart we

have the possibilities

{ of de�ning apart, in the Casl speci�cation, the user de�ned data with

an user de�ned syntax, and the operations and the predicates to operate

on them;

{ of parameterizing events, and thus transitions, over values.

The above features, allows the Casl-Chart users to write statecharts whose

visual diagram is simpler and smaller than a corresponding Statemate one.

We think that this aspect of Casl-Chart is rather valuable, because one

of the problems with the visual languages is to avoid that the dimensions of

the drawings become too large.

Statemate o�ers three visual notations for the speci�cation of a reactive

system during its development: statecharts, that we have considered in this pa-

per, for describing reactive components, activity charts to describe the structure

of the system in terms of logical components (statecharts and of other kinds),

and module charts to describe the structure of the system at the implementa-

tion level (similar to the deployment diagrams of UML [18]). We plan to ex-

tend Casl-Chart to cope with activity and module charts. For what concerns

module charts, we plan to investigate their relationships with the architectural

speci�cation of Casl (see [3]) developed with similar aims.

Statecharts are one of the many notations incorporated by UML ([18]), and so

also if their semantics is partly di�erent from that of the Statemate statecharts,

we think that this work could o�er a starting point for developing a combination

of UML with the algebraic speci�cation language Casl, allowing to o�er an

alternative to OCL, soundly founded on a formal notation.

References

1. E. Astesiano, M. Broy, and G. Reggio. Algebraic Speci�cation of Concurrent

Systems. In E. Astesiano, B. Krieg-Bruckner, and H.-J. Kreowski, editors, IFIP

WG 1.3 Book on Algebraic Foundations of System Speci�cation, pages 467 { 520.

Springer Verlag, 1999.

2. E. Astesiano, B. Krieg-Bruckner, and H.-J. Kreowski, editors. IFIP WG 1.3 Book

on Algebraic Foundations of System Speci�cation. Springer Verlag, 1999.

3. M. Bidoit, D. Sannella, and A. Tarlecki. Architectural speci�cations in Casl. In

Proc. 7th Int. Conf. Algebraic Methodology and Software Technology (AMAST'98),

Amazonia, Brazil, Lecture Notes in Computer Science, pages 341{357. Springer

Verlag, Berlin, 1999.

4. R. Bussow, R. Geisler, and M. Klar. Specifying Safety-Critical Embedded Systems

with Statecharts and Z: A Case Study. In E. Astesiano, editor, Proc. FASE'98,

number 1382 in Lecture Notes in Computer Science. Springer Verlag, Berlin, 1998.

5. H. Ehrig, W. Fey, and H. Hansen. ACT ONE: An Algebraic Speci�cation Language

with two Levels of Semantics. Technical Report 83-01, TUB, Berlin, 1983.

6. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-

Trauring, and M. Trakhtenbrot. STATEMATE: A Working Environment for the

Development of Complex Reactive Systems. EEE Transactions on Software Engi-

neering, 16(4):396{406, 1990.

7. D. Harel and A. Naamad. The Statemate Semantics of Statecharts. ACM Trans-

actions on Software Engineering and Methodology, 5(4):293{333, 1996.

8. D. Harel and M. Politi. Modeling Reactive Systems With Statecharts : The State-

mate Approach. McGraw Hill, 1998.

9. I.S.O. ISO 8807 Information Processing Systems { Open Systems Interconnection

{ LOTOS { A Formal Description Technique Based on the Temporal Ordering

of Observational Behaviour. IS, International Organization for Standardization,

1989.

10. R. Milner. A Calculus of Communicating Systems. Number 92 in Lecture Notes

in Computer Science. Springer Verlag, Berlin, 1980.

11. T. Mossakowski. Casl: From Semantics to Tools (tool). In Proc. TACAS 2000,

Lecture Notes in Computer Science. Springer Verlag, Berlin, 2000. To appear.

12. P.D. Mosses. CoFI: The Common Framework Initiative for Algebraic Speci�cation

and Development. In M. Bidoit and M. Dauchet, editors, Proc. TAPSOFT '97,

number 1214 in Lecture Notes in Computer Science, pages 115{137, Berlin, 1997.

Springer Verlag.

13. The CoFI Task Group on Semantics. Casl The Common Algebraic Spec-

i�cation Language: Semantics CoFI Note S-9. Technical report, 1999.

ftp://ftp.brics.dk/Projects/CoFI/Notes/S-9/.

14. G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML Active

Classes and Associated State Machines { A Lightweight Formal Approach. In Proc.

FASE 2000 - Fundamental Approaches to Software Engineering, Lecture Notes in

Computer Science. Springer Verlag, Berlin, 2000. To appear.

15. G. Reggio and L. Repetto. Casl-Chart : Syntax and Semantics. Tech-

nical Report DISI-TR-00-1, DISI { Universit�a di Genova, Italy, 2000.

ftp://ftp.disi.unige.it/person/ReggioG/ReggioRepetto00a.ps.

16. M. Roggenbach and T. Mossakovski. Basic Data Types in Casl . CoFI Note L-12.

Technical report, 1999. http://www.brics.dk/Projects/CoFI/Notes/L-12/ .

17. The CoFI Task Group on Language Design. Casl The Common Algebraic Spec-

i�cation Language Summary. Version 1.0. Technical report, 1999. Available on

http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary/.

18. UML Revision Task Force. OMG UML Speci�cation, 1999. Available at

http://uml.shl.com.

19. M. Weber. Combining Statecharts and Z for the Desgin of Safety-Critical Control

Systems. In M.-C. Gaudel and J. Woodcock, editors, FME'96: Industrial Bene�t

and Advances in Formal Methods, number 1051 in Lecture Notes in Computer

Science, pages 307{326. Springer Verlag, Berlin, 1996.

