
Casl-Chart: Syntax and Semantics

CoFI Document: CASL/Extension

Version: 0.2 2 February 2000

G. Reggio - L. Repetto E-mail address for comments: reggio@disi.unige.it

CoFI: The Common Framework Initiative

http://www.brics.dk/Projects/CoFI

This document is available on WWW

�

, and by FTP

y

.

Abstract

Casl the basic language developed within CoFI, the CommonFramework Initiative for

algebraic speci�cation and development, cannot be easily used for specifying reactive

systems. Casl-Chart is an extension to overcome this limit, which combines Casl

with a variant of the statechart, similar to that supported by Statemate.

This document gives a detailed summary of the syntax and intended semantics of

Casl-Chart, see [RR00] for an introduction to Casl-Chart on an example, and it

is intended for readers that are already familiar with Casl ([The99]).

�

...

y

.....

i

Chapter 3

Casl-Chart

3.1 Visual and Textual Syntax of Casl-Chart

Casl-Chart is a visual speci�cation language, but it has also a corresponding textual

presentation, that we need to simply de�ne its static and dynamic semantics. In this sec-

tion we present such syntax, in the same way of [The99], together with the corresponding

visual presentation.

Speci�cation

CC-SPEC ::= cc-spec SPEC EVENT-DECS VAR-DECS CHART

The visual presentation of a Casl-Chart consists of the visual presentations of its four

components as detailed in the following.

Casl speci�cation

SPEC ::= abstract syntax of a Casl speci�cation, see [The99]

The visual (but in this case is just formatted text) presentation of a Casl speci�cation is

given by the display concrete syntax of [The99].

Event declarations

EVENT-DECS ::= event-decs EVENT-DEC*

EVENT-DEC ::= event-dec EV-NAME SORT* MODE

EV-NAME ::= SIMPLE-ID

MODE ::= input | local | output

SIMPLE-ID, SORT ::= see Casl syntax in [The99]

The visual presentation of an event declaration depends on its mode:

1

3.1. VISUAL AND TEXTUAL SYNTAX OF CASL-CHART 2

local event-dec e s

1

. . . s

n

local is represented by e(s

1

, . . . , s

n

); .

All local event declarations, preceded by the keyword events, will be enclosed in

a note box (), together with the local variable declarations, that will be put

below the chart icon.

input event-dec e s

1

. . . s

n

input is represented by

e(s ,...,s)1 n .

This representation will be attached (by the arrowhead) to the chart icon.

We may put together the representations of several input event declarations by

drawing only one arrow and putting all inscriptions above it.

output event-dec e s

1

. . . s

n

output is represented by

e(s ,...,s)1 n .

This representation will be attached (by the tail) to the chart icon.

We may put together the representations of several output event declarations by

drawing only one arrow and putting all inscriptions above it.

Variable declarations

VAR-DECS ::= var-decs VAR-DEC*

VAR-DEC ::= var-dec VAR SORT MODE

VAR ::= SIMPLE-ID

The visual presentation of a variable declaration depends on its mode:

local var-dec x s local is represented by x: s; .

All local variable declarations, preceded by the keyword vars, will be enclosed in a

note box (), together with the local event declarations, that will be put below

the chart icon.

input var-dec x s input is represented by

x : s
.

This representation will be attached (by the arrowhead) to the chart icon.

We may put together the representations of several input variable declarations by

drawing only one arrow and putting all inscriptions above it.

output var-dec x s output is represented by

x: s
.

This representation will be attached (by the tail) to the chart icon.

We may put together the representations of several output variable declarations by

drawing only one arrow and putting all inscriptions above it.

3.1. VISUAL AND TEXTUAL SYNTAX OF CASL-CHART 3

Chart

CHART ::= chart STATE HIERARCHICAL-CHART+

STATE ::= SIMPLE-ID

If n > 1 , then chart st hc

1

. . . hc

n

is represented by

hc1 hcn...

st

,

while chart st hc

1

is represented by

hc1

st

.

Hierarchical chart

HIERARCHICAL-CHART ::= hierarchical-chart STATE STATE+ STATE TRANS DECOMPS

DECOMPS ::= decomps CHART*

The visual presentation of a hierarchical chart

hierarchical-chart st st

1

. . . st

n

st

1

trs decomps ch

1

. . . ch

k

is the graph, enclosed by the icon , whose nodes are

st1 stn...

...ch1 chk

st

and whose arcs are determined the transitions trs, as explained below.

Transitions

TRANS ::= trans TRAN*

TRAN ::= tran STATE TRAN-PARAMS TRIGGER ACTIONS STATE

The visual presentation of a transition tran source tpars trg acts target is the following

arc between two states of the owning hierarchical chart

3.1. VISUAL AND TEXTUAL SYNTAX OF CASL-CHART 4

< tpars > trg /acts
source target

If any of the three parts composing the inscription (transition parameters, trigger and

actions) is null (precisely no parameters, constant true trigger, no actions), then such part

with its separators is omitted in the drawing.

Transition parameters

TRAN-PARAMS ::= tran-params TRAN-PARAM* TRIGGER

TRAN-PARAM ::= tran-param PARAM SORT

PARAM ::= SIMPLE-ID

The visual presentation of a group of transition parameters

tran-params tran-param p

1

s

1

. . .tran-param p

n

s

n

trg

is p

1

: s

1

; . . . ; p

n

: s

n

� trg .

If the condition part (trg) is the constant true, then it is omitted together with the pre-

ceding � .

Actions

ACTIONS ::= actions ACTION*

The visual presentation of a group of actions actions act

1

. . . act

n

is act

1

; . . . ; act

n

; .

Action

ACTION ::= assign VAR EXPR | gen-ev EV-NAME EXPR*

The visual presentation of an assignment assign x exp is x := exp; while that of an

event generation statement gen-ev e exp

1

. . . exp

n

is e(exp

1

, . . . , exp

n

) .

Trigger

TRIGGER ::= true | happens EV-EXPR | in-state STATE |

pred PRED-NAME EXPR* | equal EXPR EXPR |

and TRIGGER TRIGGER | or TRIGGER TRIGGER |

not TRIGGER |

quant-trigger QUANT-OP Q-VAR SORT TRIGGER |

timed-trigger TIMED-OP EXPR TRIGGER

Q-VAR ::= SIMPLE-ID

QUANT-OP ::= exists | texistsunique-unique | forall

TIMED-OP ::= timeout | since | before

PRED-NAME ::= see Casl syntax in [The99]

The visual presentation of the triggers is given following their inductive structure:

3.1. VISUAL AND TEXTUAL SYNTAX OF CASL-CHART 5

true true

happens e exp e exp

in-state st in st

pred pr exp

1

. . . exp

n

pr(exp

1

, . . . , exp

n

)

equal exp

1

exp

2

exp

1

= exp

2

and trg

1

trg

2

trg

1

^ trg

2

or trg

1

trg

2

trg

1

_ trg

2

not trg : trg

quant-trigger exists q s trg 9 q: s � trg

quant-trigger texistsunique-unique q s trg 9 ! q: s � trg

quant-trigger forall q s trg 8 q: s � trg

timed-trigger timeout exp trg trg at exp

timed-trigger since exp trg trg since exp

timed-trigger before exp trg trg before exp

Event expression

EV-EXPR ::= ev EV-NAME EXPR* | entered STATE | exited STATE

The visual presentation of the event expressions is given by cases:

ev e exp

1

. . . exp

n

e(exp

1

,. . . ,exp

n

)

entered st entered st

exited st exited st

Expression

EXPR ::= VAR | PARAM | Q-VAR | appl OP-NAME EXPR*

OP-NAME ::= see Casl syntax in [The99]

The visual presentation of the expressions is given by induction on their structure as

follows:

x (chart variable) x

p (trnasition parameter) p

q (quanti�ed variable) q

appl op exp

1

. . . exp

n

op(exp

1

,. . . ,exp

n

)

Presentation options

If the Casl speci�cation is structured, we may split its visual presentation on di�erent

sheets, following such structure. also intermixing it with the chart presentation.

Any element of a parallel decomposition of a chart (i.e., a hierarchical chart) may be

represented on a separate sheet, in such case the name of its upper level state is written

boldface in place of the hierarchical cart itself. Similarly, any chart component of a

3.1. VISUAL AND TEXTUAL SYNTAX OF CASL-CHART 6

hierarchical chart may be represented on a separate sheet, in such case the name of its

upper level state is written boldface in place of the cart itself.

Local variables and events used only in a subchart drawn on a separate sheet, may be

reported in a note box only on such sheet.

The name of the main state of a chart is put inside the chart icon, if the chart is not

decomposed in parallel, instead of in the external small rectangular box.

3.2. STATIC SEMANTICS 7

3.2 Static Semantics

In the following for each nonterminal symbol NT of the grammar of Casl-Chart (sum-

marized in Appendix .2), we shall denote with NT also the language generated by such

grammar assuming NT as start symbol.

We de�ne the static semantics of Casl-Chart by means a deductive system with meta-

rules of the form

premises

consequence

if condition

where the premises and the consequence are made of judgments of the static correctness

of a Casl-Chart speci�cation or of one of its components.

Such judgments have the form `

NT

n, meaning that the element n of type NT is correct.

Usually the correctness of a construct of Casl-Chart depends on the context in which it

appears, thus the judgments may have also the form � `

NT

n, meaning that the element

n of type NT is correct in the context characterized by the information �.

A construct may contribute to the information on the context, thus we have also judgments

of the form � `

NT

n 7! �

0

, meaning that the element n of type NT is correct in the context

characterized by the information �, and that it changes such information to �

0

; together

the modi�ed context information it is possible to return also other additional informations.

The mathematical notations used in this section and in the following ones are reported in

Appendix .1.

The information on the context of the Casl-Chart constructs are called environment

and consist of

� the signature of the basic data types, speci�ed by the Casl speci�cation,

� the events used by the chart with their modes and the types of their arguments,

� the variables used by the chart with their modes and their types,

� the transition parameters with their types,

� the variables used by the logical quanti�ers appearing in the triggers with their types,

� the states of the hierarchical chart currently considered.

We denote the set of all environments by Env, and we will use the following functions to

access them. The detailed de�nition of Env is trivial, and it is omitted in this report.

� Pr Fun : Env � PRED-NAME! SORT*

returns the functionality of a predicate of the basic data types

� Op Fun : Env � OP-NAME! (SORT*� SORT)

returns the functionality of an operation of the basic data types

3.2. STATIC SEMANTICS 8

� Sorts : Env ! P

�n

(SORT)

returns the sorts of the signature of the basic data types

� Vars : Env ! P

�n

(VAR)

returns the names of the variables in the current scope (the chart variables, the tran-

sition parameters, and the variables used by the logical quanti�ers in the triggers)

� Var Type : Env � VAR! SORT

returns the type of a variable

� Var Mode : Env � VAR! MODE

returns the mode of a variable

� Events : Env ! P

�n

(EV-NAME)

returns the names of the events of the chart

� Ev Type : Env � EV-NAME! SORT*

returns the types of the arguments of an event

� Ev Mode : Env � EV-NAME! MODE

returns the mode of an event

� States : Env ! P

�n

(STATE)

returns the set of the states of the current hierarchical chart

� Add Var : Env � VAR� MODE� SORT! Env

adds a variable with its mode and its type

� Add QVar : Env � Q-VAR� SORT! Env

adds a logical quanti�er variable with its type

� Add Par : Env � PARAM� SORT ! Env

adds a transition parameter with its type

� Add Event : Env � EV-NAME� MODE� SORT*! Env

adds an event with its mode and the types of its arguments

� Set States : Env � P

�n

(STATE)! Env

sets the set of the states of the current hierarchical chart

� Init : Sig ! Env

returns the initial environment, where the signature of the basic data types is given

3.2. STATIC SEMANTICS 9

Speci�cation

`

CC

� CC-SPEC

`

CASL

spec 7! �

Init(�) `

EVS

evs 7! �

� `

VS

vars 7! �

0

�

0

`

C

ch 7! ALLS, REFS

`

CC

cc-spec spec evs vars ch

if REFS � ALLS

ALLS is the set of all the states of ch, and REFS is the set of the states referred in some

trigger in ch; therefore, the side-condition asserts that all the referred states have to be

states of the chart too.

Casl speci�cation

`

CASL

7! � SPEC� Sig

where Sig denotes the class of (many-sorted, �rst-order) signatures (with predicates).

`

CASL

spec 7! � means that

� spec is correct as Casl speci�cation, and � is its signature (see [oS99]);

� Sig(Integer) � � (Sig(Integer) is the signature of the standard speci�cation of

integers Integer, provided by the standard Casl libraries, see [RM99]);

� if two operations or two predicates in � have the same name, then their respective

arities (i.e., sequences of argument sorts) are di�erent

1

;

� the Casl semantics of spec is a nonempty isomorphism class of structures (the models

of spec) such that, if D is an element of this class, then D

jSig(Integer)

is (isomorphic

to) the usual model of integers.

Event declarations

`

EVS

7! � Env � EVENT-DECS� Env

�

i

`

EV

e

i

7! �

i+1

i = 1 ; : : : ; n

�

1

`

EVS

event-decs e

1

. . . e

n

7! �

n+1

Event declaration

`

EV

7! � Env � EVENT-DEC� Env

1

Otherwise, we have to extend our language with quali�ed names in expressions and triggers, as well

as in Casl terms and formul�.

3.2. STATIC SEMANTICS 10

� `

EVS

event-dec e s

1

. . . s

n

m 7! Add Event(�,e,m,s

1

. . . s

n

)

if e 62 Events(�) and s

i

2 Sorts(�) for i = 1 ; : : : ; n

Variable declarations

`

VS

7! � Env � VAR-DECS� Env

�

i

`

V

vdec

i

7! �

i+1

i = 1 ; : : : ; n

�

1

`

VS

var-decs vdec

1

. . . vdec

n

7! �

n+1

Variable declaration

`

V

7! � Env � VAR-DEC� Env

� `

V

var-dec x s m 7! Add Var(�,x,m,s)

if x 62 Vars(�) and s 2 Sorts(�)

Chart

`

C

7! � Env � CHART� (P

�n

(STATE)�P

�n

(STATE))

� `

C

ch 7! ALLS, REFS means that ch is correct w.r.t. �, and is associated with ALLS

(the set of all its states), and REFS (the set of the states referred in some of its triggers).

� `

HC

hc

i

7! ALLS

i

, REFS

i

i = 1 ; : : : ; n

� `

C

chart st hc

1

. . . hc

n

7! fstg [

n

i=1

ALLS

i

, [

n

i=1

REFS

i

if ALLS

1

, . . . , ALLS

n

are pairwise disjoint and do not contain st

A correct chart consists of a nonempty list of hierarchical charts that do not share states.

Hierarchical chart

`

HC

7! � Env � HIERARCHICAL-CHART� (P

�n

(STATE)� P

�n

(STATE))

� `

HC

hc 7! ALLS, REFS means that hc is correct w.r.t. �, and is associated with ALLS

(the set of all its states) and REFS (the set of all the states referred in some of its triggers).

3.2. STATIC SEMANTICS 11

�

0

`

TRS

trs 7! REFS'

�

0

`

DCS

dcs 7! INNS, REFS"

� `

HC

hierarchical-chart st stl start trs dcs 7! S', REFS' [REFS"

if

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

S is the set of the states appearing in stl,

S' = fstg [S [INNS,

start 2 S,

st 62 S

�

0

= Set States(�,S'),

(fstg [S) \ INNS = ;

The states of a hierarchical chart (S') are the upper level state (st), those on its �rst level

not decomposed (S), and those on the �rst level decomposed together their inner states

(INNS).

Decompositions

`

DCS

7! � Env � DECOMPS� (P

�n

(STATE)� P

�n

(STATE))

� `

DCS

dcs 7! INNS, REFSmeans that dcs is correct w.r.t. �, and is associated with INNS

(the set of all its states), and REFS (the set of the states referred in the triggers of the

transitions of its components).

� `

C

ch

i

7! INNS

i

, REFS

i

i = 1 ; : : : ; n

� `

DCS

decomps ch

1

. . . ch

n

7! [

n

i=1

INNS

i

, [

n

i=1

REFS

i

if INNS

1

, . . . , INNS

n

are pairwise disjoint

Transitions

`

TRS

7! � Env � TRANS� P

�n

(STATE)

� `

TRS

trs 7! REFS means that trs is correct w.r.t. �, and is associated with REFS (the

set of the states referred in its triggers).

� `

TR

tr

i

7! REFS

i

i = 1 ; : : : ; n

� `

TRS

trans tr

1

. . . tr

n

7! [

n

i=1

REFS

i

Transition

`

TR

7! � Env � TRAN�P

�n

(STATE)

� `

TR

tr 7! REFS means that tr is correct w.r.t. �, and is associated with REFS (the set

of the states referred in its trigger).

3.2. STATIC SEMANTICS 12

� `

TPS

tpars 7! �

0

�

0

`

TG

trg 7! REFS

�

0

`

AS

acts

� `

TR

tran source tpars trg acts target 7! REFS

if source, target 2 States(�)

Notice that both the trigger trg and the actions acts are judged w.r.t. the environment �

0

enriched by the declarations of the transition parameters tpars.

Transition parameters

`

TPS

7! � Env � TRAN-PARAMS� Env

� `

TPS

tpars 7! �

0

means that tpars is correct w.r.t. � and updates the environment

returning �

0

by adding the transition parameters.

�

i

`

TP

tp

i

7! �

i+1

i = 1 ; : : : ; n

�

n+1

`

TG

tr 7! ;

�

1

`

TPS

tran-params tp

1

. . . tp

n

tr 7! �

n+1

if neither happens, nor in-state, nor timed-trigger occur in tr

Transition parameter

`

TP

7! � Env � TRAN-PARAM� Env

� `

TP

tran-param p s 7! Add Par(�,p,s)

p 62 Vars(�) and s 2 Sorts(�)

Actions

`

AS

� Env � ACTIONS

� `

A

act

i

i = 1 ; : : : ; n

� `

AS

actions act

1

. . . act

n

Action

`

A

� Env � ACTION

� `

EX

exp 7! s

� `

A

assign x exp

if Var Type(�,x) = s and Var Mode(�,x) 6= input

� `

EX

exp

i

7! s

i

i = 1 ; : : : ; n

� `

A

gen-ev e exp

1

. . . exp

n

if Ev Type(�,e) = s

1

. . . s

n

and Ev Mode(�,e) 6= input

3.2. STATIC SEMANTICS 13

Trigger

`

TG

7! � Env � TRIGGER� P

�n

(STATE)

� `

TG

trg 7! REFS means that trg is correct w.r.t. �, and is associated with REFS (the

set of the states referred in itself).

� `

TG

true 7! ;

� `

EE

e exp 7! REFS

� `

TG

happens e exp 7! REFS

� `

TG

in-state s 7! fsg

� `

EX

exp

i

7! s

i

i = 1 ; : : : ; n

� `

TG

pred pr exp

1

. . . exp

n

7! ;

if Pr Fun(�,pr)=s

1

. . . s

n

� `

EX

exp

1

7! s

� `

EX

exp

2

7! s

� `

TG

equal exp

1

exp

2

7! ;

� `

TG

trg

1

7! REFS

1

� `

TG

trg

2

7! REFS

2

� `

TG

and trg

1

trg

2

7! REFS

1

[REFS

2

� `

TG

trg

1

7! REFS

1

� `

TG

trg

2

7! REFS

2

� `

TG

or trg

1

trg

2

7! REFS

1

[REFS

2

� `

TG

trg 7! REFS

� `

TG

not trg 7! REFS

Add QVar(�,q,s) `

TG

trg 7! REFS

� `

TG

quant-trigger qop q s trg 7! REFS

if s 2 Sorts(�)

� `

EX

ie 7! Integer

� `

TG

trg 7! REFS

� `

TG

timed-trigger top ie trg 7! REFS

if timed-trigger does not occur in trg

Event expression

`

EE

7! � Env � EV-EXPR�P

�n

(STATE)

� `

EE

e exp 7! REFS means that e exp is correct w.r.t. �, and is associated with REFS

(the set of the states, at most one, referred in itself).

� `

EX

exp

i

7! s

i

i = 1 ; : : : ; n

� `

EE

ev e exp

1

. . . exp

n

7! ;

if Ev Type(�,e) = s

1

. . . s

n

, and Ev Mode(e) 6= output

� `

EE

entered s 7! fsg � `

EE

exited s 7! fsg

3.2. STATIC SEMANTICS 14

Expression

`

EX

7! � Env � EXPR� SORT

� `

EX

exp 7! s means that exp is correct w.r.t. �, and has type s.

� `

EX

x 7! Var Type(x)

if x 2 Vars(�)

� `

EX

p 7! Var Type(p)

if p 2 Vars(�)

� `

EX

q 7! Var Type(q)

if q 2 Vars(�)

� `

EX

exp

i

7! s

i

i = 1 ; : : : ; n

� `

EX

appl op exp

1

. . . exp

n

7! s

if Op Fun(�,op)=(s

1

. . . s

n

,s)

3.3. SYNCHRONOUS TIME SEMANTIC (SINGLE STEP) 15

3.3 Synchronous Time Semantic (Single Step)

In this section, and in the next one too, we consider only those Casl-Chart speci�cations

that are statically correct, according to Sect. 3.2; all semantics functions are partial and

by default are unde�ned on all the uncorrect speci�cations.

We give a dynamic semantics to a correct Casl-Chart speci�cation in two steps:

{ �rst, we give a semantics to its Casl speci�cation component, and use the resulting

model (an algebra) to de�ne the semantic domains;

{ then, we shall give the semantics for its chart component using such domains.

Casl speci�cation

� CASL: SPEC !

p

Alg

where Alg is the class of the many-sorted �rst-order structures (or algebras).

CASL(spec) is de�ned i� spec is statically correct, and in such cases

CASL(spec) = D

where the � -algebra D is an element of the Casl semantics of spec.

This is a good de�nition, because the static correctness of spec ensures that the Casl

semantics of spec is a class of isomorphic algebras. Moreover we have that D

jSig(Integer)

is isomorphic to the usual algebra of the integers.

Casl-Chart Speci�cation

Assume to consider a statically correct Casl-Chart speci�cation,

cc-spec = cc-spec spec evs vars ch,

s.t. CASL(spec) = D, where D is a � -algebra.

The semantics of cc-spec should represent all possible executions of the system modelled

by such speci�cation. We represent a system execution by saying at each time unit (step)

what is the input and what is the output of the system: in this case the input is given

by the values updating the input variables and by the happened input events, while the

output is given by the values updating the output variables and by the happened output

events. Thus, a generic execution may be graphically presented as below, where a simple

arrow (!) represents the system life during a time unit (a step).

3.3. SYNCHRONOUS TIME SEMANTIC (SINGLE STEP) 16

in0

out0

in1

out1

ink

outk

.

in0, ..., ink , ... inputs out0, ..., outk , ... outputs

A time-unit corresponds to a single step in the \synchronous time model", whereas it

corresponds to a macro-step in the \asynchronous time model" [HN96], see Sect. 3.4.

The synchronous time model assumes that the system executes one (single) step per time-

unit, reacting to the external changes represented by the inputs. The internal changes

(i.e., updating of variables, and generating events), performed by the system during a step

execution, and the input received during such step, will be perceived only in the next

step, and so on. Hence, assuming that the computation of the involved conditions and the

execution of the involved actions terminate, a step execution always terminates.

Formally, we de�ne the system executions as a partial function from streams

2

of inputs

into sets of streams of outputs. We cannot simply use functions from input streams to

output streams, because the behaviour of the modelled system may be nondeterministic,

i.e., many outputs may be the result of the same input. The inputs and the outputs

are pairs, whose components are the updates of the the input (output) variables and the

received input (generated output) events.

The index D below denotes the � -algebra modelling the data used by the system.

� CC: CC-SPEC !

p

S

D2Alg

Executions

D

CC(cc-spec spec evs vars ch)=

if cc-spec spec evs vars ch is correct, then CC'

SP(spec)

(evs, vars, ch) else unde�ned.

� Executions

D

= [Input

1

D

!

p

P(Output

1

D

)]

� Input

D

= Output

D

= Updates

D

� Events

D

� Updates

D

= P

�n

(VAR� Value

D

)

� Value

D

=

S

s2Sorts(�)

D

s

(therefore, Z � D

Integer

� Value)

� Events

D

= P

�n

((EV-NAME�Value

�

D

) [f(entered; st); (exited; st) j st 2 STATEg)

� CC'

D

: EVENT-DECS� VAR-DECS� CHART ! Executions

D

To de�ne CC' we have to consider that, in general, the e�ects produced by an acceptable

input stream over the system modelled by a Casl-Chart speci�cation in a particular

execution, starting from a given initial con�guration, can be suitably represented by a

2

A stream is an in�nite sequence.

3.3. SYNCHRONOUS TIME SEMANTIC (SINGLE STEP) 17

stream of \snapshots". Intuitively, a snapshot represents the situation of the system at

the end of a step; it contains:

{ the set (�nite) of all the current active states (i.e., the states of the chart in which

the system happens to be) at the end of that step;

{ the current store, that associates with variables their current values of appropriate

sorts (the values of the input variables are those given by the received input);

{ the set (�nite) of the events that have been generated in this step, including those

events that signal an exiting from or entering into a state, and the input events

(received from outside); such events will be sensed in the following step.

The initial snapshot is characterized by the start states of the whole chart, the empty

store, and the events that represent the entering into the start states.

Graphically:

in0

out0

in1

out1

ink

outk

sn0 is the initial snapshot

sn0 sn1 sn2 snk snk+1.

in0, ..., ink , ... inputs
out0, ..., outk , ... outputs

sn0, ..., snk , ... snapshots

Formally

� Snapshot

D

= States � Store

D

� Events

D

� States = P

�n

(STATE)

� Store

D

= [VAR !

p

Value

D

]

From now on we will drop the index D referring to the data part from the various domains

and functions.

We de�ne CC' by means of an auxiliary function, step, describing the change of the con-

�guration (snapshot) of the system modelled by a chart due to a given input. Because the

trigger of a transition may concern the past history of the chart (i.e., the sequence of the

past snapshots), step will take a history (a �nite sequence of snapshots) as an argument

instead of just a snapshot.

The output produced at each step is be determined by a function output by looking at the

snapshot at the end of the step.

Graphically:

3.3. SYNCHRONOUS TIME SEMANTIC (SINGLE STEP) 18

in0

out0 out1 outk

sn0 sn1 sn2 snk snk+1

sn0 = init_snapshot()show
grestore
/Times-Italic findfont 14 scalefont setfont
gsave
121 229 translate 1 -1 scale 0 0 moveto
0 setgray
(ch)show
grestore
/Times-Roman findfont 14 scalefont setfont
gsave
134 229 translate 1 -1 scale 0 0 moveto
0 setgray
()
sn1 = step()show
grestore
/Times-Italic findfont 14 scalefont setfont
gsave
69 244 translate 1 -1 scale 0 0 moveto
0 setgray
(sn0)show
grestore
/Times-Roman findfont 14 scalefont setfont
gsave
88 244 translate 1 -1 scale 0 0 moveto
0 setgray
(,)show
grestore
/Times-Italic findfont 14 scalefont setfont
gsave
96 244 translate 1 -1 scale 0 0 moveto
0 setgray
(in0)show
grestore
/Times-Roman findfont 14 scalefont setfont
gsave
114 244 translate 1 -1 scale 0 0 moveto
0 setgray
()
sn2 = step()show
grestore
/Times-Italic findfont 14 scalefont setfont
gsave
69 259 translate 1 -1 scale 0 0 moveto
0 setgray
(sn0)show
grestore
/Times-Roman findfont 14 scalefont setfont
gsave
88 259 translate 1 -1 scale 0 0 moveto
0 setgray
(&)show
grestore
/Times-Italic findfont 14 scalefont setfont
gsave
107 259 translate 1 -1 scale 0 0 moveto
0 setgray
(sn1)show
grestore
/Times-Roman findfont 14 scalefont setfont
gsave
126 259 translate 1 -1 scale 0 0 moveto
0 setgray
(,)show
grestore
/Times-Italic findfont 14 scalefont setfont
gsave
134 259 translate 1 -1 scale 0 0 moveto
0 setgray
(in1)show
grestore
/Times-Roman findfont 14 scalefont setfont
gsave
152 259 translate 1 -1 scale 0 0 moveto
0 setgray
()
...
snk+1 = step()show
grestore
/Times-Italic findfont 14 scalefont setfont
gsave
84 289 translate 1 -1 scale 0 0 moveto
0 setgray
(sn0)show
grestore
/Times-Roman findfont 14 scalefont setfont
gsave
103 289 translate 1 -1 scale 0 0 moveto
0 setgray
(&)show
grestore
/Times-Italic findfont 14 scalefont setfont
gsave
122 289 translate 1 -1 scale 0 0 moveto
0 setgray
(sn1)show
grestore
/Times-Roman findfont 14 scalefont setfont
gsave
141 289 translate 1 -1 scale 0 0 moveto
0 setgray
(& ... &)show
grestore
/Times-Italic findfont 14 scalefont setfont
gsave
191 289 translate 1 -1 scale 0 0 moveto
0 setgray
(snk)show
grestore
/Times-Roman findfont 14 scalefont setfont
gsave
210 289 translate 1 -1 scale 0 0 moveto
0 setgray
(,)show
grestore
/Times-Italic findfont 14 scalefont setfont
gsave
218 289 translate 1 -1 scale 0 0 moveto
0 setgray
(ink)show
grestore
/Times-Roman findfont 14 scalefont setfont
gsave
236 289 translate 1 -1 scale 0 0 moveto
0 setgray
()
...

in1 ink

out0 = output()show
grestore
/Times-Italic findfont 14 scalefont setfont
gsave
391 229 translate 1 -1 scale 0 0 moveto
0 setgray
(sn1)show
grestore
/Times-Roman findfont 14 scalefont setfont
gsave
410 229 translate 1 -1 scale 0 0 moveto
0 setgray
()
out1 = output()show
grestore
/Times-Italic findfont 14 scalefont setfont
gsave
391 244 translate 1 -1 scale 0 0 moveto
0 setgray
(sn2)show
grestore
/Times-Roman findfont 14 scalefont setfont
gsave
410 244 translate 1 -1 scale 0 0 moveto
0 setgray
()
...
outk = output()show
grestore
/Times-Italic findfont 14 scalefont setfont
gsave
391 274 translate 1 -1 scale 0 0 moveto
0 setgray
(snk+1)show
grestore
/Times-Roman findfont 14 scalefont setfont
gsave
425 274 translate 1 -1 scale 0 0 moveto
0 setgray
()
...

.

CC'(evs, vars, ch) = exec, where

exec(is) is de�ned i� is is an admissible input stream for the chart, i.e., the updates in

is provide values only to input variables and the events contained in is are input only;

formally, for all j � 0 , if is#

j

= (ups, ES):

{ if (x, val) 2ups, then var-dec x s input appears in vars and val 2 D

s

{ if (e, val

1

. . . val

n

) 2ES, then event-dec e s

1

. . . s

n

input appears in evs, and

val

i

2 D

s

i

for i = 1 ; : : : ; n.

Whenever exec(is) is de�ned, we have that:

exec(is) =

f outputs(ss, evs, vars) j 9ss 2 Snapshot

1

s.t. ss #

0

= init snapshot(ch) and

for all j � 0 : ss #

j+1

2 step(ch; ssc

j

; is#

j

) g

Output projection

� outputs: Snapshot

1

� EVENT-DECS� VAR-DECS ! Output

1

outputs(sn

0

& sn

1

& sn

2

& . . . , evs, vars) =

output(sn

1

, evs, vars) & output(sn

2

, evs, vars) & . . .

� output: Snapshot � EVENT-DECS� VAR-DECS ! Output

output(hAS, �, ESi, evs, vars) = h f (x, �(x)) j x 2 OUTVSg, ES \ OUTES i

OUTVS is the set of the output variables, i.e.,

fxj var-dec x s output appears in varsg,

and OUTES is the set of the output events, i.e.,

3.3. SYNCHRONOUS TIME SEMANTIC (SINGLE STEP) 19

fej event-dec e s

1

. . . s

n

output appears in evsg.

Initial snapshot

� init snapshot: CHART ! Snapshot

init snapshot(ch) = hAS, Empty

F

, f(entered, st) j st 2 ASgi

where AS = start states(ch).

� start states: CHART [HIERARCHICAL-CHART ! States

start states(ch) returns the states that are entered whenever ch is activated.

{ start states(chart st hc

1

. . . hc

n

) = fst g[

n

i=1

start states(hc

i

)

{ start states(hierarchical-chart st stl start trs dcs) = start

A step

� step: CHART�History � Input ! P(Snapshot)

� History = Snapshot

+

(histories, i.e., �nite sequences of snapshots)

This is the basic function that \executes" a (single) step. Given a chart and a history till

the beginning of a certain step, an input, then a possible result of a step consists of a new

con�guration of the system, i.e., a snapshot.

Notice that we might have a numerable in�nity

3

of di�erent results, due to the transition

parameters; and that there is at least one result, due to the possibility of the \idle move",

whenever no other move is allowable. By move, we mean the execution of a transition.

In general, nondeterminism occurs, due to both the choice from the allowable sets of

transitions and the e�ect of their respective actions; actually, the same set of assignment

actions might lead to di�erent stores, it being understood that all the expressions on the

right side evaluate according to the same store { the one at the beginning of the current

step { and the same transition parameter evaluation, because write-write racing conditions

[HN96] might occur on some local or output variables. As well as in Statemate, during

a step execution, a maximal subset of the enabled transitions

4

is taken, in which no pair

of transitions is in conict and no transition having higher priority is left out. For our

purposes, we point out that:

{ a transition is enabled if the system is in its source state (i.e., its source state belongs

to the set of the current active states) and its trigger holds (i.e., its trigger evaluates

to true, w.r.t. a possible transition parameter evaluation and the current history);

3

It is numerable, if we assume D term generated.

4

Obviously, the transitions we consider are enabled w.r.t. the snapshot at the beginning of the step,

considering the new input.

3.3. SYNCHRONOUS TIME SEMANTIC (SINGLE STEP) 20

{ two transitions are in conict if there exists a same state from which the system

exits if either is taken;

{ a transition has higher priority than another, if the former's source state \contains"

the latter's one as inner state.

step(ch, h & hAS, �, ESi, (ups

I

;ES

I

)) =

f (AS n EXIT) [ENTER, �

0

, INT [ES

I

) j

(EXIT, ENTER, ups, INT) 2 C(ch, h & hAS, �, ESi) and �

0

2 apply(ups [ups

I

, �)

g

Apply updates

� apply: Updates � Store ! P

�n

(Store)

apply(ups, �) returns the set of all the stores that might come out owing to the application

of all the updates in ups to � in all the possible orders. Recall that an update is a pair

consisting of a variable and of an assigned value.

apply(ups, �) =

if ups = ; then f�g

else f�

0

[x 7! val] j (x, val) 2 ups and �

0

2 apply(ups n f(x, val)g, �) g

Single-step basic function

� C: CHART� History ! P(Local Result)

� Local Result = States � States �Updates � Events

C is the basic function de�ning the semantics of a (single) step. Rather than a set of

snapshots, as step does, C returns a more disaggregate information, named local results,

precisely a set of quadruples:

{ the exited states;

{ the entered states;

{ the variable updates performed by the taken transitions, it is necessary to keep

this information, instead of the new stores, because of possible write-write racing

conditions;

{ the events whose generation is associated with the taken transitions, including those

that signal an exiting from or entering into a state (note that this set does not include

input events, because them cannot be generated by the chart).

idle = (;, ;, ;, ;) 2 Local Result is the result of the \idle move" (i.e., when the input values

and sensed events produced no e�ect), so no change in the active states, no produced

updates, and no generated events.

3.3. SYNCHRONOUS TIME SEMANTIC (SINGLE STEP) 21

Obviously, several (even in�nite) quadruples might be produced. This may happen only

if di�erent sets of transitions can be taken in the current snapshot, considering the given

history.

C(chart st hc

1

. . . hc

n

, h) =

f ([

n

i=1

EXIT

i

, [

n

i=1

ENTER

i

, [

n

i=1

ups

i

, [

n

i=1

EVS

i

) j

for i = 1 ; : : : ; n (EXIT

i

, ENTER

i

, ups

i

, EVS

i

) 2 HC(hc

i

, h) g

Hierarchical Cahrt

� HC: HIERARCHICAL-CHART�History ! P(Local Result)

HC(hierarchical-chart st stl start trs dcs, h) =

letAS = �

1

(hd(h));

hd(h) is the snapshot at the beginning of the current step; its �rst component, AS,

is the set of the active states in the whole chart, not only in this hierarchical chart

S = active states(stl, dcs, AS);

S is the set of active states in this hierarchical chart, at most it contains one element

in

if S = ; then

f idle g

else

let fst

0

g = S, recall that S has at most one element

EFFS = TRS(trs, st

0

, h)

EFFS is the set of the e�ects due to the execution of any possible habilitated

transition in trs starting from st

0

in if EFFS = ; then i.e., if the �rst level of this hierarchical chart cannot move

if is decomposed(st

0

, dcs) = true then

C(decomp(st

0

, dcs), h)

whenever possible, the inner chart, in which st

0

is decomposed, will move

else f idleg

this hierarchical chart does not move, so the only result is the \idle move"

else this is the case when EFFS 6= ;

let EXIT = AS \ substates(st

0

, dcs); states exited by any move in EFFS

in

f (EXIT, ENTER, ups,

GEN [f(exited, st

00

) j st

00

2 EXITg [f(entered, st

00

) j st

00

2 ENTERg) j

(target, ups, GEN) 2 EFFS and

ENTER = ftargetg [start states(decomp(target, dcs)

g

� is decomposed: STATE� DECOMPS ! ftrue; falseg

is decomposed(st, decomps ch

1

. . . ch

n

) =

st = upper state(ch

1

) or . . . or st = upper state(ch

n

)

3.3. SYNCHRONOUS TIME SEMANTIC (SINGLE STEP) 22

� upper state: CHART ! STATE+

upper state(chart st hc

1

. . . hc

n

) = st

� decomp: STATE� DECOMPS !

p

CHART

{ decomp(st, decomps �) is unde�ned

{ decomp(st, decomps ch

1

. . . ch

n

) =

if st = upper state(ch

1

) then ch

1

else decomp(st, decomps ch

2

. . . ch

n

)

Note that is decomposed(st, dcs) = true i� decomp(st, dcs) is de�ned.

� active states: STATE+�DECOMPS � States ! States

active states(stl, decs, AS) returns the active states of the hierarchical chart made of

stl and decs w.r.t. AS; it returns either a singleton or the empty set.

active states(st

1

. . . st

n

, decomps ch

1

. . . ch

k

, AS) =

fst

1

, . . . , st

n

, upper state(ch

1

), . . . , upper state(ch

k

) g \ AS

� substates : STATE� DECOMPS ! States

substates(st, dcs) is the set of the states, whose elements are st, and all the states of

the possible chart, among those listed in dcs, that forms the decomposition of st.

{ substates(st, dcs) = all states(decomp(st, dcs))

� all states: CHART [CHART ! States

{ all states(chart st hc

1

. . . hc

n

) = fst g[

n

i=1

all states(hc

i

)

{ all states(hierarchical-chart st st

1

. . . st

n

start trs decomps ch

1

. . . ch

k

) =

fst, st

1

, . . . ,st

n

g[

k

i=1

all states(ch

i

)

Transitions

� TRS: TRANS� STATE�History ! E�ects

� E�ects = P(STATE� Updates � Events)

TRS(trs, st, h) returns the set of all the possible \e�ects" associated with those transitions

listed in trs that are enabled w.r.t. the active state st and the history h, i.e., whose source

state is st and whose trigger evaluates to true w.r.t. a permitted transition parameter

evaluation and the history h. Note that we might have a (numerable) in�nity of di�erent

e�ects, due to transition parameters, or even no e�ect, whenever no transition is enabled.

Each e�ect, caused by taking an enabled transition, is a triple that consists of:

{ a target state,

{ a �nite set of updates, due to the assignment actions of the transitions,

3.3. SYNCHRONOUS TIME SEMANTIC (SINGLE STEP) 23

{ a �nite set of local or output events, due to the event generation actions of the

transitions.

TRS(trans tr

1

. . . tr

n

, st, h) = TR(tr

1

, st, h) [. . . [TR(tr

n

, st, h)

Transition

� TR: TRAN� STATE� History ! E�ects

TR de�nes the possible e�ects of a transition w.r.t. a current active state and a history.

First of all, we check whether the current state is the source state of the transition. If the

answer is no, we get the empty set of e�ects. Otherwise, the possible transition parameters

are processed, taking into account any permitted instantiation of them that satis�es the

given condition, considering the current store too. This might lead to a (numerable)

in�nity of e�ects, as a �nal result.

Then, the transition trigger is evaluated w.r.t. each permitted instantiation of the transi-

tion parameters, and the same history; whenever it evaluates to true { i.e., the transition is

enabled { a further part of the e�ect is given by the evaluation of the actions (assignments

and event generations, separately).

TR(tran source tpars trg acts target, st, h) =

if source = st then

let I = TPS(tpars, h)

in

S

�2I

TR'(trg, acts, target, h, �)

else ;

� TR': TRIGGER� ACTIONS� STATE� History � PEval ! E�ects

� PEval = [PARAM !

p

Value] (transition parameter instantiations)

If the transition trigger evaluates to true w.r.t. the given history and transition parameter

evaluation, then a single e�ect can be calculated.

TR'(trg, acts, target, h, �) =

if TG(trg, h, �, Empty

F

) = true then

let � = �

2

(hd(h)) the current store

(ups, ES) = AS(acts, �, �)

in f (target, ups, ES) g

else ;

Transition Parameters

� TPS: TRAN-PARAMS�History ! P(PEval)

de�ne the possible instantiations of the transition parameters.

3.3. SYNCHRONOUS TIME SEMANTIC (SINGLE STEP) 24

TPS(tran-params tpl trg, h) =

f� 2 PEval j ok(tpl, �) = true and TG(trg, h, �, Empty

F

) = true g

� ok: TRAN-PARAM*� PEval ! ftrue ; falseg

ok(�, Empty

F

) = true

ok(tran-param p s tpl, �) = ok(tpl,�

jDom(�)nfpg

) and �(p) 2 D

s

Actions

� AS: ACTIONS� Store � PEval !

p

(Updates � Events)

AS(actions act

1

. . . act

n

, �, �) =

let (ups

1

, EVS

1

) = A(act

1

, �, �), . . . , (ups

n

, EVS

n

) = A(act

n

, �, �)

in ([

n

i=1

ups

i

, [

n

i=1

EVS

i

)

Action

� A: ACTION� Store � PEval !

p

Updates � Events

A(assign x exp, �, �) = (f (x, EX(exp, �, �, Empty

F

))g,;)

A(gen-ev e exp

1

. . . exp

n

, �, �) =

(;, f(e, EX(exp

1

, �, �, Empty

F

) . . . EX(exp

n

, �, �, Empty

F

)) g)

Trigger

� TG: TRIGGER� History � PEval � QEval ! ftrue ; falseg

� QEval = [Q-VAR !

p

Value] (logical variables instantiations)

To evaluate a trigger we need, besides the transition parameters evaluation, the current

history as well (see timed triggers).

{ TG(true, h, �,') = true

{ TG(happens e exp, h & hAS, �, ESi, �, ') =

if EE(e exp, �, �,') 2 ES then true else false

Intuitively, happens e exp means that the event coming out from the evaluation of

e exp is happening (it is perceived just now), at the beginning of the current step.

{ TG(in-state st, h & hAS, �, ESi, �, ') = if st 2 AS then true else false

in-state st means that the system is in the state st at the beginning of the current

step.

3.3. SYNCHRONOUS TIME SEMANTIC (SINGLE STEP) 25

{ TG(pred pr exp

1

. . . exp

n

, h & hAS, �, ESi, �, ') =

if (EX(exp

1

, �, �,'), . . . , EX(exp

n

, �, �,')) 2 pr

D

then true else false

{ TG(equal exp

1

exp

2

, h & hAS, �, ESi, �, ') =

if EX(exp

1

, �, �,') = EX(exp

2

, �, �,') then true else false

{ TG(and trg

1

trg

2

, h, �,') =

if TG(trg

1

, h, �,') = true and TG(trg

2

, h, �,') = true then true else false

{ TG(or trg

1

trg

2

, h, �,') =

if TG(trg

1

, h, �,') = false and TG(trg

2

, h, �,') = false then false else true

{ TG(not trg, h, �,') = if TG(trg, h, �,') = true then false else true

{ TG(quant-trigger exists q s trg, h, �,') =

if there exists val 2 D

s

s.t. TG(trg, h, �,'[q 7! val]) = true then true else false

{ TG(quant-trigger forall q s trg, h, �,') =

if for all val 2 D

s

TG(trg, h, �,'[q 7! val]) = true then true else false

{ TG(timed-trigger timeout ie trg, h, �,') =

let � = �

2

(hd(h)) the current store in timeout(EX(ie, �, �,'), trg, h, �, ')

where

timeout(n, trg, h, �,')

def

=

if n � 0 then true else

if TG(trg, h, �,') = true then false else

if tl(h) = � then true else timeout(n - 1, trg, tl(h), �, ')

Intuitively, timed-trigger timeout ie trg means that at least ie time-units have

elapsed (i.e., at least ie steps have been performed) since the last time trg was true;

and this is regarded as true, if from the current history it turns out that trg was

always false.

{ TG(timed-trigger since ie trg, h, �,') =

let � = �

2

(hd(h)) in since(EX(ie, �, �,'), trg, h, �, ')

where

since(n, trg, h, �,')

def

=

if n � 0 then true else

if TG(trg, h, �,') = false then false else

if tl(h) = � then false else since(n - 1, trg, tl(h), �, ')

Intuitively, timed-trigger since ie trg means that, now and at least through the

last ie time-units (or steps), trg was true; and this is regarded as false, if less than

ie steps have been performed till now.

3.4. ASYNCHRONOUS TIME MODEL (MACRO-STEPS) SEMANTICS 26

{ TGtimed-trigger before ie trg, h, �,') =

let � = �

2

(hd(h)) in before(EX(ie, �, �,'), trg, h, �, ')

where

before(n, trg, h, �,')

def

=

if n < 0 then false else

if n = 0 then TG(trg, h, �,') else

if tl(h) = � then false else before(n - 1, trg, tl(h), �, ')

Intuitively, timed-trigger before ie trg means that trg was true exactly ie time-

units (or steps) ago, and this is regarded as false, if less than ie steps have been

performed till now.

Event expression

� EE: EV-EXPR� Store � PEval � QEval !

p

Events

{ EE(ev e exp

1

. . . exp

n

, �, �,') = f(e, EX(exp

1

, �, �,') . . .EX(exp

n

, �, �,'))g

{ EE(entered st, �, �,') = f(entered, st)g

{ EE(exited st, �, �,') = f(exited, st)g

Expression

� EX: EXPR� Store � PEval � QEval !

p

Value

{ if x 2 VAR, then EX(x, �, �,')= �(x)

{ if p 2 PARAM, then EX(p, �, �,') = �(p)

{ if q 2 Q-VAR, then EX(q, �, �,') = '(q)

{ EX(appl op exp

1

. . . exp

n

, �, �,') = op

D

(EX(exp

1

, �, �,'), . . . , EX(exp

n

, �, �,'))

3.4 Asynchronous Time Model (Macro-steps) Semantics

The asynchronous time model allows several steps { that form a macro-step, or super-step

{ to take place within a time-unit: time does not advance inside a macro-step. In this

model, the system is assumed to repeatedly execute a single step { here called micro-step

{ reacting to both the same input and the e�ects due to the previous micro-steps in the

current macro-step, until the system is in a stable con�guration { i.e., there is no internally

generated event, even of the form (exited, st) or (entered, st). Only then the system

becomes ready to react to the next input. Hence, it might result in an in�nite loop.

3.4. ASYNCHRONOUS TIME MODEL (MACRO-STEPS) SEMANTICS 27

st1

st2

st

E

st1

st2

st

E

Figure 3.1: Two di�erent charts.

In other words, the next input takes e�ect if and when the whole chart reaches a stable

con�guration, following a maximal chain reaction composed of a �nite sequence of micro-

steps.

For simplicity, according to one of the possibilities analyzed in [?], we assume that the

lifetime of each external event in the input is the whole macro-step, whereas lifetime of

each internally generated event is since its generation till the possible end of the macro-

step. Just as before, the new values are assigned to the required input variables at the

beginning of the (�rst micro-step in the) macro-step, whereas the appropriate local and

output variables are updated at the end of each micro-step. Furthermore, a macro-step {

provided that it terminates { takes one time-unit.

Let us be more explicit about what we mean by \stable con�guration". Quite simply,

a con�guration is stable if no more moves are allowable, with the exception of the idle

move. Note that the two charts in Figure 3.1 are di�erent in their behaviour: in the former

case, being in the state st, no move is possible (except the idle one); but, in the latter

case, one move is always allowable, which generates the events (exited, st) and (entered,

st): actually, in the latter case, a macro-step does not terminate. Therefore, as a general

rule, we can assert that, because no event has been internally generated, it follows that

the system has stopped: no transition has been taken, and so the status reached by the

system is stable.

Graphically

in0

out0

ss0 ss1 ssk+1 . . .

ss0, ..., ssk , ... stable snapshots

. . .

in1

out1

ss2
. . .

. . .

micro step macro step

In order to de�ne this alternative dynamic semantics, it is su�cient to modify slightly the

de�nition of CC', see 3.3: now, it applies Macro(ch, is #

j

, ssc

j

), in place of step(. . .).

Hence, we de�ne the function Macro in terms of repeated applications of another function,

3.4. ASYNCHRONOUS TIME MODEL (MACRO-STEPS) SEMANTICS 28

Micro, that \executes" one micro-step at a time; in turn, Micro is de�ned in terms of the

same step as before.

� Macro: CHART� HistoryInput � Input !

p

P(Snapshot)

� Macro: CHART� History � Input !

p

P(Snapshot)

Macro(ch,h, in) = Micro(step(ch,h,in))

Micro(ch,h, in) =

if step(ch,h, in) = f hd(h)g then

the head of h consists of a stable con�guration

f hd(h)g

else [

sn2 step(ch,h, in)

Micro(ch,h & sn, in)

.1. NOTATIONS 29

.1 Notations

Let X and Y be two sets.

� [X ! Y] denotes the class of the total functions from X to Y , whereas [X !

p

Y]

denotes the class of the partial functions.

� If f 2 [X !

p

Y], then Dom(f) denotes the domain of f ,

i.e., the set fx j x 2 X and f (x) is de�nedg.

� Empty

F

denotes the function in [X !

p

Y] s.t. Dom(Empty

F

) = ;.

� If f 2 [X !

p

Y], x

0

2 X , and y

0

2 Y , then f [x

0

7! y

0

] denotes the function s.t.

Dom(f [x

0

7! y

0

]) = Dom(f)[fx

0

g, and f [x

0

7! y

0

](x)

def

= if x = x

0

then y

0

else f (x).

� f

k

, where k � 1 , denotes k repeated applications of the function f 2 [X ! X].

� �

i

denotes the i-th projection of a generic tuple (x

1

; : : : ; x

n

), where n � 1 :

�

i

(x

1

; : : : ; x

i

; : : : ; x

n

) = x

i

for i = 1 ; : : : ; n.

� P

�n

(X) [resp., P(X)] denotes the set of the �nite [resp., �nite or in�nite] subsets of

X .

� X

�

denotes the set of the possibly empty [resp., nonempty] �nite sequences (or lists)

of elements in X .

� X

1

denotes the set of the in�nite sequences of elements in some nonempty set X

(or streams), that is to say total functions from naturals to X .

� We use the following functions on streams and lists

{ � denotes the empty list.

{ & : X �X

�

! X

+

adding an element to a list

{ hd : X

�

!

p

X

� hd (�) unde�ned

� hd (x & l) = x

{ tl : X

�

!

p

X

�

� th(�) unde�ned

� th(x & l) = l

{ # : X

1

� NAT !

p

X

xs #

j

returns the j -th element of xs

{ c : X

1

� NAT !

p

X

+

� xsc

0

= (xs #

0

) & �

� xsc

j+1

= (xs#

j+1

) & (xsc

j

)

.2. ABSTRACT SYNTAX 30

.2 Abstract Syntax

CC-SPEC ::= cc-spec SPEC EVENT-DECS VAR-DECS CHART

EVENT-DECS ::= event-decs EVENT-DEC*

EVENT-DEC ::= event-dec EV-NAME SORT* MODE

EV-NAME ::= SIMPLE-ID

MODE ::= input | local | output

VAR-DECS ::= var-decs VAR-DEC*

VAR-DEC ::= var-dec VAR SORT MODE

VAR ::= SIMPLE-ID

CHART ::= chart STATE HIERARCHICAL-CHART+

HIERARCHICAL-CHART ::=hierarchical-chart STATE+ STATE TRANS DECOMPS

STATE ::= SIMPLE-ID

DECOMPS ::= decomps CHART*

TRANS ::= trans TRAN*

TRAN ::= tran STATE TRAN-PARAMS TRIGGER ACTIONS STATE

TRAN-PARAMS ::= tran-params TRAN-PARAM* TRIGGER

TRAN-PARAM ::= tran-param PARAM SORT

PARAM ::= SIMPLE-ID

ACTIONS ::= actions ACTION*

ACTION ::= assign VAR EXPR | gen-ev EV-NAME EXPR*

TRIGGER ::= true | happens EV-EXPR | in-state STATE |

pred PRED-NAME EXPR* | equal EXPR EXPR |

and TRIGGER TRIGGER | or TRIGGER TRIGGER | not TRIGGER |

quant-trigger QUANT-OP Q-VAR SORT TRIGGER |

timed-trigger TIMED-OP EXPR TRIGGER

Q-VAR ::= SIMPLE-ID

QUANT-OP ::= exists | forall

TIMED-OP ::= timeout | since | before

EV-EXPR ::= ev EV-NAME EXPR* | entered STATE | exited STATE

EXPR ::= VAR | PARAM | Q-VAR | appl OP-NAME EXPR*

We refer to the Casl summary [oLD98] for what concerns the nonterminal symbols SPEC,

SORT, OP-NAME, PRED-NAME, and SIMPLE-ID.

Bibliography

[HN96] D. Harel and A. Naamad. The Statemate Semantics of Statecharts. ACM

Transactions on Software Engineering and Methodology, 5(4):293{333, 1996.

[oLD98] The CoFI Task Group on Language Design. Casl Sum-

mary. Version 1.0. Technical report, 1998. Available on

http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary/.

[oS99] The CoFI Task Group on Semantics. textscCasl The Common Algebraic

Speci�cation Language: Semantics CoFI Note S-9. Technical report, 1999.

ftp://ftp.brics.dk/Projects/CoFI/Notes/S-9/.

[RM99] M. Roggenbach and T. Mossakovski. Basic Data Types in Casl . CoFI Note L-12.

Technical report, 1999. http://www.brics.dk/Projects/CoFI/Notes/L-12/ .

[RR00] G. Reggio and L. Repetto. Casl-Chart: A Combination of Stat-

echarts and of the Algebraic Speci�cation Language Casl. Techni-

cal Report DISI-TR-00-2, DISI { Universit�a di Genova, Italy, 2000.

ftp://ftp.disi.unige.it/person/ReggioG/ReggioRepetto00b.ps.

[The99] The CoFI Task Group on Language Design. Casl The Common Algebraic Spec-

i�cation Language Summary. Version 1.0. Technical report, 1999. Available on

http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary/.

31

