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Abstra
t

Casl the basi
 language developed within CoFI, the Common Frame-

work Initiative for algebrai
 spe
i�
ation and development, 
annot be

used for spe
ifying the requirements and the design of dynami
 software

systems. Casl-Ltl is an extension to over
ome this limit, allowing to

spe
ify dynami
 system by modelling them by means of labelled tran-

sition systems and by expressing their properties with temporal formu-

lae. It is based on LTL, the Labelled Transition Logi
, that is a logi
-

algebrai
 formalism for the spe
i�
ation of dynami
 systems, mainly

developed by E.Astesiano and G. Reggio (see [AR01℄ and [CR97℄).

This do
ument gives a detailed summary of the syntax and intended

semanti
s of Casl-Ltl. It is intended for readers who are already

familiar with Casl ([Mos03℄).

Four short examples are given in the appendix, and extended 
ase stud-

ies using Casl-Ltl are given in [CR00, CR03℄. An extensive 
ompan-

ion user method is given in [CR03℄ (while [CR00℄ gives a �rst attempt

to rely on stru
turing 
on
epts). Casl-Ltl was also used to present

the semanti
s of some parts of UML in [RACH00, RCA01℄.

�

...

y

.....

i



Chapter 1

Casl-Ltl

[ABR99℄ present di�erent ways of exploiting algebrai
 methods in 
on
ur-

ren
y. The Casl-Ltl extension (A3 \algebrai
 spe
i�
ations of dynami
-

data types" approa
h of [ABR99℄) uses dynami
 sorts, the elements of whi
h


orrespond to 
on
urrent systems. It is based on LTL, the Labelled Transi-

tion Logi
, that is a logi
-algebrai
 formalism for the spe
i�
ation of dynami


systems, mainly developed by E.Astesiano and G. Reggio (see [AR01℄ and

[CR97℄). While [CR97℄ explains the di�eren
es with the temporal logi
s de-

veloped in [MP89, MP92℄ (e.g., LTL is bran
hing-time instead of linear), the


onne
tors and formula of LTL are 
lose to those of CTL* [Eme90℄, and LTL

is an
hored (
f. footnote 1 page 4), �rst-order many-sorted and provides

also edge formulas.

1.1 Basi
 Con
epts

Casl-Ltl is an extension of Casl for the spe
i�
ation of what we 
all in a

general way dynami
 systems, as pro
esses, 
on
urrent, rea
tive, distributed,

parallel, . . . systems. The basi
 idea behindCasl-Ltl is to model a dynami


system by using a labelled transition system.

A labelled transition system (shortly lts) is a triple (STATE;LABEL;!),

where STATE and LABEL are two sets, and!� STATE�LABEL�STATE

is the transition relation. A triple (s; l ; s

0

) 2! is said to be a transition and

is usually written s

l

��! s

0

.

Given an lts we 
an asso
iate with ea
h s

0

2 STATE the tree (transition

tree) whose root is s

0

, where if it has a node n de
orated with s and s

l

��! s

0

,

then it has a node n

0

de
orated with s

0

and an ar
 de
orated with l from

1
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n to n

0

, the order of the bran
hes is not 
onsidered, and two identi
ally

de
orated subtrees with the same root are 
onsidered as a unique subtree.

We model a dynami
 system S with a transition tree determined by an lts

(STATE;LABEL;!)

and an initial state s

0

2 STATE; the nodes in the tree represent the inter-

mediate (interesting) situations of the life of S, and the ar
s of the tree the

possibilities of S of passing from one situation to another. It is important

to note here that an ar
 (a transition) s

l

��! s

0

has the following meaning:

S in the situation s has the 
apability of passing into the situation s

0

by

performing a transition, where the label l represents the intera
tion with

the environment during su
h a move; thus l 
ontains information on the


onditions on the environment for the 
apability to be
ome e�e
tive, and

on the transformation of su
h environment indu
ed by the exe
ution of the

transition.

An lts may be spe
i�ed by an algebrai
 spe
i�
ation having two sorts,

State and Label,

whose elements are the states and the labels of the lts respe
tively, and a

ternary predi
ate

-- --> : State� Label� State


orresponding to the transition relation.

The basi
 idea behind Casl-Ltl is to add to Casl a spe
ial 
onstru
t to

de
lare su
h two sorts and the asso
iate predi
ate that 
orrespond to an lts;

pre
isely the de
laration of dynami
 sort

dsort Ds label Label Ds

where Ds is 
alled a dynami
 sort and Label Ds is its label sort. This termi-

nology wants to remind that the elements of Ds are dynami
, indeed they


orrespond to a dynami
 system in a parti
ular initial situation.

dsort Ds label Label Ds 
orresponds to the following de
larations

sorts Ds, Label Ds

pred -- --> : Ds � Label Ds �Ds.

The Casl formulae (many sorted �rst order logi
) built by using the tran-

sition predi
ate ( -- --> ) allows to express some properties on the be-

haviour of a dynami
 system, but they are not suÆ
ient. For example, using

su
h formulae we 
annot state liveness properties as, \eventually the system
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will send out some value" (i.e., eventually it will perform a transition whose

label 
orrespond to send out su
h value). Instead su
h properties 
ould be

easily expressed by using some kind of temporal logi
. Thus Casl-Ltl in-


ludes temporal logi
 
ombinators, and pre
isely those of the many-sorted

�rst-order temporal logi
 of [CR97℄. Clearly, the temporal formulae are

sensible only when referring to elements of dynami
 sorts.

1.2 Dynami
 Signatures

A dynami
 many-sorted signature D� = (S ;DS ;TF ;PF ;P) 
onsists of:

� a set S of sorts;

� a set DS of dynami
 sorts s.t. DS � S and for all Ds 2 DS there

exists Label Ds 2 S �DS ;

� sets TF

w ;s

, PF

w ;s

, of total fun
tion symbols, respe
tively partial fun
-

tion symbols, su
h that TF

w ;s

\ PF

w ;s

= ;, for ea
h fun
tion pro�le

(w ; s) 
onsisting of a sequen
e of argument sorts w 2 S

�

and a result

sort s 2 S ;

� sets P

w

of predi
ate symbols, for ea
h predi
ate pro�le 
onsisting of a

sequen
e of argument sorts w 2 S

�

, s.t. for ea
h Ds 2 DS -- --> 2

P

Ds Label Ds Ds

.

A dynami
 many-sorted signature morphism

� : (S;DS ;TF ;PF ; P )! (S

0

;DS

0

TF

0

;PF

0

; P

0

)


onsists of a mapping from S to S

0

, and for ea
h w 2 S

�

; s 2 S , a mapping

between the 
orresponding sets of fun
tion, resp. predi
ate symbols, s.t.

dynami
 sorts are sent into dynami
 sorts, and the asso
iated label sort and

transition predi
ate are sent into the 
orresponding label sort and transition

predi
ate. Pre
isely:

�(Label Ds) = Label �(Ds) and

�( -- --> : Ds � Label Ds �Ds) = -- --> : �(Ds)� Label �(Ds)�

�(Ds).

1.3 Models

Assume that D� = (S ;DS ;TF ;PF ;P) is a dynami
 many-sorted signature.

A dynami
 many-sorted model for D� M 2Mod(D� ) is de�ned as for the

basi
 Casl.
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A (weak) dynami
 many-sorted homomorphism h from M

1

to M

2

, with

M

1

;M

2

2 Mod(D� ) is de�ned as for the basi
 Casl.

However, the expli
it presen
e of the dynami
 sorts allows us to equip a dy-

nami
 modelM with a set of \paths" for ea
h dynami
 sort Ds representing

the possible behaviours of the elements of sort Ds in M .

Paths are de�ned pre
isely as follows. For ea
h M 2Mod(D� ) and Ds 2

DS , the set of the paths on M of sort Ds, denoted by PATH(M ;Ds), is the

set of all the sequen
es of transitions having the form either (1) or (2) below:

(1) s

0

l

0

s

1

l

1

s

2

l

2

: : : (in�nite path)

(2) s

0

l

0

s

1

l

1

s

2

l

2

: : : s

n

n � 0

where for all i � 0 , s

i

2 Ds

M

, l

i

2 Label Ds

M

, (s

i

; l

i

; s

i+1

) 2!

M

, and there

do not exist l , s

0

su
h that (s

n

; l ; s

0

) 2!

M

.

If � = s

0

l

0

s

1

l

1

s

2

l

2

: : : and � 2 PATH(M ;Ds)

- given h � 0 , if there exists s

h

, then �j

h

denotes the path s

h

l

h

s

h+1

l

h+1

s

h+2

: : :

and is referred to as \� at point h", otherwise it is unde�ned,

- �rst state(�) denotes s

0

, the �rst state of �, and �rst label(�) denotes l

0

,

the �rst label of �, if exists, i.e., if � is not just a state.

1.4 Senten
es

For a dynami
 many-sorted signature D� = (S ;DS ;TF ;PF ;P) the dy-

nami
 many-sorted senten
es in TSen(D� ) are the usual 
losed many-

sorted �rst-order logi
 formulae, built from atomi
 formulae using quanti�-


ation (over sorted variables) and logi
al 
onne
tives plus temporal formulae

an
hored to the elements of the dynami
 sorts.

The temporal formulae of Casl-Ltl express properties of the elements of

a dynami
 sort Ds (dynami
 elements) in terms of their paths, i.e., of their

possible behaviours. Su
h temporal formulae have form

either in any 
ase(t ; �) or in one 
ase(t ; �)

where t is a term of sort Ds, and � a path formula. The �rst formula 
an be

read as \for every path � starting in the state denoted by t , � holds on �",

while the se
ond means \there exists a path � starting in the state denoted

by t s.t. � holds on �".

1

The path formulae for the elements of a dynami


1

We an
hor these formulae to states, following the ideas in [MP89℄. The major di�er-

en
e with the 
lassi
al temporal logi
 is that we do not spe
ify a single system but, in

general, one or many types of systems, so there is not a single initial state but several,

hen
e the need for an expli
it referen
e to states (through terms) in the formulae built

with in any 
ase .
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sort Ds express properties on its paths, i.e., on the possible behaviours of

the elements of Ds.

The dynami
 senten
es inTSen(D� ) and the path formulae for the elements

of the various dynami
 sorts of D� (PSen(D� ;Ds)

Ds2DS

) are de�ned as

follows:

TSen(D� ) 
ontains all the atomi
 formulae of the basi
 Casl, all those

built with the logi
 
ombinator of the basi
Casl, and the following temporal

formulae: for ea
h Ds 2 DS

in any 
ase(t ; �) and in one 
ase(t ; �)

with t term of sort Ds and � 2 PSen(D� ;Ds).

The path formulae over D� for the elements of sort Ds , PSen(D� ;Ds), are

de�ned as follows

{ [ x � F ℄ x variable of sort Ds, F 2 TSen(D� )

This formula holds on a path � whenever F holds at the �rst state of

�.

{ < x � F > x variable of sort Label Ds, F 2 TSen(D� )

This formula holds on a path � whenever � is not just a single state

and F holds at the �rst label of �.

{ �

1

until �

2

�

1

; �

2

2 PSen(D� ;Ds)

This formula holds on a path � whenever there exists a point in � s.t.

�

2

holds at su
h point and �

1

holds until before it.

{ next � � 2 PSen(D� ;Ds)

This formula holds on a path � whenever � holds at � at point 1 if it

exists or whenever � at point 1 does not exist.

{ eventually � � 2 PSen(D� ;Ds)

This formula holds on a path � whenever there exists a point in � s.t.

� holds at su
h point.

{ always � � 2 PSen(D� ;Ds)

This formula holds on a path � whenever � holds at any point in �.

{ : �, � ) �

0

, 8 y � �

y variable of whatever sort, �; �

0

2 PSen(D� ;Ds)

with the usual meaning
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1.5 Satisfa
tion

Let M be a dynami
 model over D� and v a variable evaluation, then we

de�ne by multiple indu
tion:

� the validity of a dynami
 formula F 2 TSen(D� ) inM w.r.t. v (writ-

ten M ; v j= F ),

� the validity of a path formula � 2 PSen(D� ;Ds) on a path � 2

PATH(D� ;Ds) in M w.r.t. v (written M ; v ; � j= �),

as follows:

{ M ; v j= in any 
ase(t ; �) i� for ea
h � 2 PATH(M ;Ds) su
h that

�rst state(�) = t

M ;v

, M ; v ; � j= �

{ M ; v j= in one 
ase(t ; �) i� there exists � 2 PATH(M ;Ds) su
h that

�rst state(�) = t

M ;v

and M ; v ; � j= �

{ M ; v ; � j= [ x � F ℄ i� M ; v [�rst state(�)=x ℄ j= F

{ M ; v ; � j=< x � F > i�

�rst label(�) is de�ned and M ; v [�rst label(�)=x ℄ j= F

{ M ; v ; � j= �

1

until �

2

i� there exists j � 0 su
h that for all h,

0 < h < j , M ; v ; �j

h

j= �

1

and M ; v ; �j

j

j= �

2

{ M ; v ; � j= next � i� �j

1

unde�ned or �j

1

de�ned and M ; v ; �j

1

j= �

{ M ; v ; � j= eventually � i� there exists j � 0 su
h that M ; v ; �j

j

j= �

{ M ; v ; � j= always � i� for all j � 0 su
h that �j

j

is de�ned,M ; v ; �j

j

j=

�

{ : F , F ) F

0

, 8 x � F , : �, � ) �

0

, 8 x � � as usual.

1.6 Basi
 Constru
ts

This se
tion indi
ates the abstra
t and 
on
rete syntax of the new 
on-

stru
ts introdu
ed by Casl-Ltl to the basi
 spe
i�
ations, and des
ribes

their intended interpretation.

1.6.1 Dynami
 Sort

SORT-ITEM ::= dsort-item SORT-ITEM SORT-ITEM

A dynami
 sort de
laration is written:
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dsort Ds label Label Ds

and impli
itely 
orresponds to the following de
larations

sorts Ds, Label Ds

pred -- --> : Ds � Label Ds �Ds.

1.7 Axioms

FORMULA ::= TEMPORAL

A Casl-Ltl formula may be also a temporal formula.

1.7.1 Temporal Formulae

TEMPORAL ::= temporal PATH-QUANTIFIER TERM PATH-FORMULA

PATH-QUANTIFIER ::= any
ase | one
ase

A temporal formula with the any
ase quanti�er is written:

in any 
ase(T;PF)

A temporal formula with the one
ase quanti�er is written:

in one 
ase(T;PF)

The �rst 
ase is the universal path quanti�
ation, holding when PF holds for

all paths starting from the element represented by the term T ; the se
ond


ase is the existential path quanti�
ation, holding when PF holds for at

least one path starting from the element represented by T.

1.7.2 Path Formulae

These formulae represent properties on the paths, i.e., on the possible be-

haviours of the dynami
 elements.

PATH-FORMULA ::= STATE-COND | LABEL-COND |

UNTIL | NEXT | EVENTUALLY | ALWAYS |

P-QUANTIFICATION |

P-CONJUNCTION | P-DISJUNCTION |

P-IMPLICATION | P-EQUIVALENCE | P-NEGATION
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1.7.2.1 State Condition

STATE-COND ::= state-
ond VAR-DECL FORMULA

A state 
ondition is written:

[ VD � F ℄

1.7.2.2 Label Condition

LABEL-COND ::= label-
ond VAR-DECL FORMULA

A label 
ondition is written:

< VD � F >

1.7.2.3 Until

UNTIL ::= until PATH-FORMULA PATH-FORMULA

An until formula is written:

PF

1

until PF

2

1.7.2.4 Next

NEXT ::= next PATH-FORMULA

A next formula is written:

next PF

1.7.2.5 Eventually

EVENTUALLY ::= eventually PATH-FORMULA

An eventually formula is written:

eventually PF
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1.7.2.6 Always

ALWAYS ::= always PATH-FORMULA

An always formula is written:

always PF

1.7.2.7 First order 
ombinators on path formulae

P-QUANTIFICATION ::= pquantifi
ation QUANTIFIER VAR-DECL+ PATH-FORMULA

P-CONJUNCTION ::= p
onjun
tion PATH-FORMULA+

P-DISJUNCTION ::= pdisjun
tion PATH-FORMULA+

P-IMPLICATION ::= pimpli
ation PATH-FORMULA PATH-FORMULA

P-EQUIVALENCE ::= pequivalen
e PATH-FORMULA PATH-FORMULA

P-NEGATION ::= pnegation PATH-FORMULA

These formulae are written as the 
orresponding one of the basi
 Casl.

1.8 Stru
tured Spe
i�
ations

The stru
turing 
onstru
ts of Casl-Ltl are exa
tly the same of the basi


Casl, 
learly de�ned using the new signature morphisms, whi
h preserve

dynami
ity of sorts, and the asso
iated labels sorts and transition predi
ates

(see [CR97℄ for the pre
ise de�nitions).

1.9 Ar
hite
tural Spe
i�
ations

The relationship of the new 
onstru
ts of Casl-Ltl with the ar
hite
tural

spe
i�
ations need further investigations.

1.10 Spe
i�
ation Libraries

As for the basi
 Casl.
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.1. ABSTRACT SYNTAX 1

.1 Abstra
t Syntax

The abstra
t syntax of Casl-Ltl is given by extending with the following


lauses the part 
on
erning basi
 spe
i�
ations of that the basi
 Casl (see

[Mos03℄).

SORT-ITEM ::= dsort-item SORT-ITEM SORT-ITEM

FORMULA ::= TEMPORAL

TEMPORAL ::= temporal PATH-QUANTIFIER TERM PATH-FORMULA

PATH-QUANTIFIER ::= any
ase | one
ase

PATH-FORMULA ::= STATE-COND | LABEL-COND |

UNTIL | NEXT | EVENTUALLY | ALWAYS |

P-QUANTIFICATION | P-CONJUNCTION | P-DISJUNCTION |

P-IMPLICATION | P-EQUIVALENCE | P-NEGATION

STATE-COND ::= state-
ond VAR-DECL FORMULA

LABEL-COND ::= label-
ond VAR-DECL FORMULA

UNTIL ::= until PATH-FORMULA PATH-FORMULA

NEXT ::= next PATH-FORMULA

EVENTUALLY ::= eventually PATH-FORMULA

ALWAYS ::= always PATH-FORMULA

P-QUANTIFICATION ::= pquantifi
ation QUANTIFIER VAR-DECL+ PATH-FORMULA

P-CONJUNCTION ::= p
onjun
tion PATH-FORMULA+

P-DISJUNCTION ::= pdisjun
tion PATH-FORMULA+

P-IMPLICATION ::= pimpli
ation PATH-FORMULA PATH-FORMULA

P-EQUIVALENCE ::= pequivalen
e PATH-FORMULA PATH-FORMULA

P-NEGATION ::= pnegation PATH-FORMULA

.2 Abbreviated Abstra
t Syntax

The abbreviated abstra
t syntax of Casl-Ltl is given by extending with

the following 
lauses the part 
on
erning basi
 and subsorted spe
i�
ations

of that the basi
 Casl (see [Mos03℄).

SIG-ITEM ::= dsort-item SORT-ITEM SORT-ITEM

FORMULA ::= temporal PATH-QUANTIFIER TERM PATH-FORMULA

PATH-QUANTIFIER ::= any
ase | one
ase

PATH-FORMULA ::= state-
ond VAR-DECL FORMULA |

label-
ond VAR-DECL FORMULA |

until PATH-FORMULA PATH-FORMULA |

next PATH-FORMULA |

eventually PATH-FORMULA |
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always PATH-FORMULA |

pquantifi
ation QUANTIFIER VAR-DECL+ PATH-FORMULA |

p
onjun
tion PATH-FORMULA+ |

pdisjun
tion PATH-FORMULA+ |

pimpli
ation PATH-FORMULA PATH-FORMULA |

pequivalen
e PATH-FORMULA PATH-FORMULA |

pnegation PATH-FORMULA

.3 Con
rete Syntax

The 
on
rete syntax of Casl-Ltl is given by extending with the following


lauses the part 
on
erning basi
 spe
i�
ations with subsorts of that the

basi
 Casl (see [Mos03℄).

SIG-ITEM ::= dsort SORT-ITEM label SORT-ITEM ;

FORMULA ::= PATH-QUANTIFIER "(" TERM "." PATH-FORMULA ")"

PATH-QUANTIFIER ::= in any 
ase | in one 
ase

PATH-FORMULA ::= "[" VAR-DECL "." PATH-FORMULA "℄"

| "<" VAR-DECL "." PATH-FORMULA ">"

| PATH-FORMULA until PATH-FORMULA

| next PATH-FORMULA

| eventually PATH-FORMULA

| always PATH-FORMULA

| QUANTIFIER VAR-DECL ;...; VAR-DECL "." PATH-FORMULA

| PATH-FORMULA /\ PATH-FORMULA /\.../\ PATH-FORMULA

| PATH-FORMULA \/ PATH-FORMULA \/...\/ PATH-FORMULA

| PATH-FORMULA => PATH-FORMULA

| PATH-FORMULA if PATH-FORMULA

| PATH-FORMULA <=> PATH-FORMULA

| not PATH-FORMULA

| true | false

.4 Disambiguation

The 
ontext-free grammar given in Se
tion .3 for input syntax is quite am-

biguous. This se
tion explains various pre
eden
e rules for disambiguation,

and the intended grouping of mix�x formulae and terms (whi
h are to be

re
ognized in a separate phrase, dependent on the de
lared symbols and

parsing annotations).

Within a FORMULA, the use of the new path quanti�ers (in any 
ase and

in one 
ase) do not 
ause any problem, due to the fa
t that they have a

\fun
tional syntax".



.5. LEXICAL SYNTAX 3

Within a PATH-FORMULA, the use of pre�x and in�x notation for the logi
al


onne
tives gives rise to some potential ambiguities. These are resolved as

follows:

� the state and label 
ondition 
ombinators ([ . ℄ and < . >) do not


ause any problem, due to the fa
t that have a \fun
tional syntax".

� The �rst-order logi
al 
onne
tives have a pre
eden
e higher than any

temporal 
ombinator, and their relative pre
eden
es are as in basi


Casl (see [Mos03℄).

`PATH-FORMULA until PATH-FORMULA' has the highest pre
eden
e; and

when repeated, `until' groups to the right;

� `always PATH-FORMULA' has lower pre
eden
e;

� `eventually PATH-FORMULA' has even lower pre
eden
e.

For what 
on
erns the impli
it mix-�x predi
ates asso
iated with dynami


sorts ( -- --> ) have the lowest pre
eden
e.

.5 Lexi
al Syntax

The lexi
al syntax of Casl-Ltl is as for the basi
Casl, ex
ept that NO-BRACKET-SIGNS


annot be also one of the following reserved symbols:

-- --> < > [ ℄

.6 Display Format

The input symbols introdu
ed in Casl-Ltl in the following table are to be

displayed as the mathemati
al symbols shown below them.

in any 
ase in one 
ase eventually always until next -- -->

4 5 3 2 U Æ ��!

There exists also another possibility more text oriented, where we have only

-- -->

��!
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.7 Example 1: CCS

spe
 Channel =

free type Channel ::= � j � j 
 j � j : : :

spe
 CCS =

Channel then

free f

types Behaviour ::= nil j : (Label Behaviour ;Behaviour) j

+ (Behaviour;Behaviour) j jj (Behaviour;Behaviour);

Label Behaviour ::= !(Channel) j ?(Channel) j �

dsort Behaviour label Label Behaviour

ops + : Behaviour � Behaviour ! Behaviour asso
; 
omm; idem; unit: nil

jj : Behaviour � Behaviour ! Behaviour asso
; 
omm;

vars B ;B

1

;B

2

;B

0

1

;B

0

2

: Behaviour; C : Channel; L : Label Behaviour ;

� L:B

L

��! B

� B

1

L

��! B

0

1

) B

1

+ B

2

L

��! B

0

1

� B

1

L

��! B

0

1

) B

1

jjB

2

L

��! B

0

1

jjB

2

� B

1

C !

��! B

0

1

^ B

2

C ?

���! B

0

2

) B

1

jjB

2

�

��! B

0

1

jjB

0

2

g end

Note that, given the properties (asso
iativity, 
ommutativity, . . . ) de
lared

for the + and jj operations, fewer axioms are needed to des
ribe the

transition relation than in the original CCS des
ription [Mil80℄.

.8 Example 2: Fan
y pro
esses

spe
 Pro
 =

Int then

dsort Pro
 label Label Pro


preds re
?; send? : Int� Label Pro


%% 
he
ks whether a label 
orresponds to re
eive/send an integer

vars P;P' : Pro
; I : Int; L;Y : Label Pro


� P

L

��! P' ^ (: I = 0 ) ^ re
?(L; I ) )

in any 
ase(P'; eventually (< Y � send?(I + 1 ;Y ) > ^

eventually < Y � send?(I + 2 ;Y ) >))

%% if a pro
ess re
eives a non-zero integer I, then in any 
ase eventually

%% (it will send out I+1 and eventually also I+2)

� P

L

��! P' ^ re
?(L; 0 ) )

in any 
ase(P'; always < Y � (: send?(0 ;Y )) ^ (: re
?(0 ;Y )) >)

%% if a pro
ess re
eive 0, then in any 
ase forever it will never send out or re
eive 0
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.9 Example 3: A Fan
y Con
urrent System

spe
 CSystem =

Pro
 then

free f

types System ::= ; j jj (Pro
;System)

Label System ::= I (Int) j O(Int) j �

dsort System label Label System

g

vars P;P' : Pro
; I : Int; Y : Label Pro
; S : System; Z : Label System

� P jjP' jjS = P' jjP jjS

� in one 
ase(P; eventually < Y � send?(I ;Y ) >) )

in one 
ase(P jjS; eventually < Z � Z = O(I ) >)

%% if a pro
ess 
omponent of the system has at least in a 
ase the 
apability

%% to eventually send out I, then also the system has su
h 
apability

.10 Example 4: A Bu�er (The Bit example)

This example is a very simple 
on
urrent system 
onsisting of a bu�er and

a user. It is takem from [ABR99℄ and its spe
i�
ation is now expressed in

Casl-Ltl.

The system Bit (
alled Bit sin
e it is really very small) 
onsists of two


omponents in parallel: a user and a bu�er. The bu�er is organized as a

queue and 
ontains integers; it may obviously re
eive and return integer

values; it may break down, in whi
h 
ase its 
ontent will be 10

10

, and,

moreover, it may happen that the last element of its 
ontent is dupli
ated.

When the system is started by the environment, the bu�er is empty and the

user puts in sequen
e 0 and 1 on the bu�er; then it gets the �rst element

from the bu�er. If this element is the number 0 the user must inform the

environment of the 
orre
t working of the bu�er, otherwise it must signal

that there is an error.

Thus Bit is an intera
tive 
on
urrent system with 
omponents having both

autonomous a
tivities (as the bu�er failures) and 
ooperations (the user

writing/reading the bu�er), and using some stati
 data (integers); further-

more it also has some relevant stati
/fun
tional aspe
ts, as the queue orga-

nization of the bu�er.

Some relevant requirements on Bit are:

R0 The bu�er must always be able to re
eive any integer value.

R1 When the user is terminated, it 
annot perform an a
tivity again.

R2 In at least one 
ase, the system must behave 
orre
tly.
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R3 After being started, it will eventually signal ok or error

R4 ok and error are signaled at most on
e, and it 
annot happen that both

are signaled.

R5 The user puts integers on and gets integers from the bu�er.

We �rst spe
ify the two 
omponents of the system, the bu�er and the user,

and then how they 
ooperate.

spe
 Buffer =

Int Queue with sort Queue 7! Bu�er then

dsort Bu�er label Lab Bu�er

ops � :! Lab Bu�er

re
eive ; return : Int ! Lab Bu�er

vars B : Bu�er ; I : Int

� not empty(B)) B

return(�rst(B))

����������! remove(B)

� B

re
eive(I )

������! put(I ;B)

� B

�

��! put(10

10

; empty)

� not empty(B)) B

�

��! dup(B)

spe
 User Status =

Int then

sort User Status

ops initial ; putting 0 ; putting 1 ; reading ; terminated :! User Status

read : Int ! User Status

spe
 User =

User Status with sort User Status 7! User then

dsort User label lab User

ops start ; ok ; error :! lab User

put ; get : Int ! lab User

vars I : Int

� initial

start

���! putting 0

� putting 0

put(0 )

����! putting 1

� putting 1

put(1 )

����! reading

� reading

get(I )

����! read(I )

� read(0 )

ok

��! terminated

� not eq(I ; 0 )) read (I )

error

���! terminated

spe
 System =

Buffer and User then

dsort System label Lab System

ops j : Bu�er �User ! System

start ; ok ; error ; � :! Lab System

vars B ;B' : Bu�er ; U;U' : User

� U

start

���! U') empty j U

start

���! empty j U'

� B

re
eive(I )

������! B' ^ U

put(I )

����! U') B j U

�

��! B' j U'
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� B

return(I )

������! B' ^ U

get(I )

����! U') b j U

�

��! B' j U'

� U

ok

��! U') B j U

ok

��! b j U'

� U

error

���! U') B j U

error

���! B j U'

� B

�

��! B') B j U

�

��! B' j U


