
Casl-Ltl

A Casl EXTENSION FOR DYNAMIC SYSTEMS

Summary

CoFI Do
ument: CASL/Summary

Version: 1.0 8 August 2003

G. Reggio - E. Astesiano - C. Choppy

E-mail address for
omments: reggio�disi.unige.it

CoFI: The Common Framework Initiative

http://www.bri
s.dk/Proje
ts/CoFI

This do
ument is available on WWW

�

, and by FTP

y

.

Abstra
t

Casl the basi
 language developed within CoFI, the Common Frame-

work Initiative for algebrai
 spe
i�
ation and development,
annot be

used for spe
ifying the requirements and the design of dynami
 software

systems. Casl-Ltl is an extension to over
ome this limit, allowing to

spe
ify dynami
 system by modelling them by means of labelled tran-

sition systems and by expressing their properties with temporal formu-

lae. It is based on LTL, the Labelled Transition Logi
, that is a logi
-

algebrai
 formalism for the spe
i�
ation of dynami
 systems, mainly

developed by E.Astesiano and G. Reggio (see [AR01℄ and [CR97℄).

This do
ument gives a detailed summary of the syntax and intended

semanti
s of Casl-Ltl. It is intended for readers who are already

familiar with Casl ([Mos03℄).

Four short examples are given in the appendix, and extended
ase stud-

ies using Casl-Ltl are given in [CR00, CR03℄. An extensive
ompan-

ion user method is given in [CR03℄ (while [CR00℄ gives a �rst attempt

to rely on stru
turing
on
epts). Casl-Ltl was also used to present

the semanti
s of some parts of UML in [RACH00, RCA01℄.

�

...

y

.....

i

Chapter 1

Casl-Ltl

[ABR99℄ present di�erent ways of exploiting algebrai
 methods in
on
ur-

ren
y. The Casl-Ltl extension (A3 \algebrai
 spe
i�
ations of dynami
-

data types" approa
h of [ABR99℄) uses dynami
 sorts, the elements of whi
h

orrespond to
on
urrent systems. It is based on LTL, the Labelled Transi-

tion Logi
, that is a logi
-algebrai
 formalism for the spe
i�
ation of dynami

systems, mainly developed by E.Astesiano and G. Reggio (see [AR01℄ and

[CR97℄). While [CR97℄ explains the di�eren
es with the temporal logi
s de-

veloped in [MP89, MP92℄ (e.g., LTL is bran
hing-time instead of linear), the

onne
tors and formula of LTL are
lose to those of CTL* [Eme90℄, and LTL

is an
hored (
f. footnote 1 page 4), �rst-order many-sorted and provides

also edge formulas.

1.1 Basi
 Con
epts

Casl-Ltl is an extension of Casl for the spe
i�
ation of what we
all in a

general way dynami
 systems, as pro
esses,
on
urrent, rea
tive, distributed,

parallel, . . . systems. The basi
 idea behindCasl-Ltl is to model a dynami

system by using a labelled transition system.

A labelled transition system (shortly lts) is a triple (STATE;LABEL;!),

where STATE and LABEL are two sets, and!� STATE�LABEL�STATE

is the transition relation. A triple (s; l ; s

0

) 2! is said to be a transition and

is usually written s

l

��! s

0

.

Given an lts we
an asso
iate with ea
h s

0

2 STATE the tree (transition

tree) whose root is s

0

, where if it has a node n de
orated with s and s

l

��! s

0

,

then it has a node n

0

de
orated with s

0

and an ar
 de
orated with l from

1

1.1. BASIC CONCEPTS 2

n to n

0

, the order of the bran
hes is not
onsidered, and two identi
ally

de
orated subtrees with the same root are
onsidered as a unique subtree.

We model a dynami
 system S with a transition tree determined by an lts

(STATE;LABEL;!)

and an initial state s

0

2 STATE; the nodes in the tree represent the inter-

mediate (interesting) situations of the life of S, and the ar
s of the tree the

possibilities of S of passing from one situation to another. It is important

to note here that an ar
 (a transition) s

l

��! s

0

has the following meaning:

S in the situation s has the
apability of passing into the situation s

0

by

performing a transition, where the label l represents the intera
tion with

the environment during su
h a move; thus l
ontains information on the

onditions on the environment for the
apability to be
ome e�e
tive, and

on the transformation of su
h environment indu
ed by the exe
ution of the

transition.

An lts may be spe
i�ed by an algebrai
 spe
i�
ation having two sorts,

State and Label,

whose elements are the states and the labels of the lts respe
tively, and a

ternary predi
ate

-- --> : State� Label� State

orresponding to the transition relation.

The basi
 idea behind Casl-Ltl is to add to Casl a spe
ial
onstru
t to

de
lare su
h two sorts and the asso
iate predi
ate that
orrespond to an lts;

pre
isely the de
laration of dynami
 sort

dsort Ds label Label Ds

where Ds is
alled a dynami
 sort and Label Ds is its label sort. This termi-

nology wants to remind that the elements of Ds are dynami
, indeed they

orrespond to a dynami
 system in a parti
ular initial situation.

dsort Ds label Label Ds
orresponds to the following de
larations

sorts Ds, Label Ds

pred -- --> : Ds � Label Ds �Ds.

The Casl formulae (many sorted �rst order logi
) built by using the tran-

sition predi
ate (-- -->) allows to express some properties on the be-

haviour of a dynami
 system, but they are not suÆ
ient. For example, using

su
h formulae we
annot state liveness properties as, \eventually the system

1.2. DYNAMIC SIGNATURES 3

will send out some value" (i.e., eventually it will perform a transition whose

label
orrespond to send out su
h value). Instead su
h properties
ould be

easily expressed by using some kind of temporal logi
. Thus Casl-Ltl in-

ludes temporal logi

ombinators, and pre
isely those of the many-sorted

�rst-order temporal logi
 of [CR97℄. Clearly, the temporal formulae are

sensible only when referring to elements of dynami
 sorts.

1.2 Dynami
 Signatures

A dynami
 many-sorted signature D� = (S ;DS ;TF ;PF ;P)
onsists of:

� a set S of sorts;

� a set DS of dynami
 sorts s.t. DS � S and for all Ds 2 DS there

exists Label Ds 2 S �DS ;

� sets TF

w ;s

, PF

w ;s

, of total fun
tion symbols, respe
tively partial fun
-

tion symbols, su
h that TF

w ;s

\ PF

w ;s

= ;, for ea
h fun
tion pro�le

(w ; s)
onsisting of a sequen
e of argument sorts w 2 S

�

and a result

sort s 2 S ;

� sets P

w

of predi
ate symbols, for ea
h predi
ate pro�le
onsisting of a

sequen
e of argument sorts w 2 S

�

, s.t. for ea
h Ds 2 DS -- --> 2

P

Ds Label Ds Ds

.

A dynami
 many-sorted signature morphism

� : (S;DS ;TF ;PF ; P)! (S

0

;DS

0

TF

0

;PF

0

; P

0

)

onsists of a mapping from S to S

0

, and for ea
h w 2 S

�

; s 2 S , a mapping

between the
orresponding sets of fun
tion, resp. predi
ate symbols, s.t.

dynami
 sorts are sent into dynami
 sorts, and the asso
iated label sort and

transition predi
ate are sent into the
orresponding label sort and transition

predi
ate. Pre
isely:

�(Label Ds) = Label �(Ds) and

�(-- --> : Ds � Label Ds �Ds) = -- --> : �(Ds)� Label �(Ds)�

�(Ds).

1.3 Models

Assume that D� = (S ;DS ;TF ;PF ;P) is a dynami
 many-sorted signature.

A dynami
 many-sorted model for D� M 2Mod(D�) is de�ned as for the

basi
 Casl.

1.4. SENTENCES 4

A (weak) dynami
 many-sorted homomorphism h from M

1

to M

2

, with

M

1

;M

2

2 Mod(D�) is de�ned as for the basi
 Casl.

However, the expli
it presen
e of the dynami
 sorts allows us to equip a dy-

nami
 modelM with a set of \paths" for ea
h dynami
 sort Ds representing

the possible behaviours of the elements of sort Ds in M .

Paths are de�ned pre
isely as follows. For ea
h M 2Mod(D�) and Ds 2

DS , the set of the paths on M of sort Ds, denoted by PATH(M ;Ds), is the

set of all the sequen
es of transitions having the form either (1) or (2) below:

(1) s

0

l

0

s

1

l

1

s

2

l

2

: : : (in�nite path)

(2) s

0

l

0

s

1

l

1

s

2

l

2

: : : s

n

n � 0

where for all i � 0 , s

i

2 Ds

M

, l

i

2 Label Ds

M

, (s

i

; l

i

; s

i+1

) 2!

M

, and there

do not exist l , s

0

su
h that (s

n

; l ; s

0

) 2!

M

.

If � = s

0

l

0

s

1

l

1

s

2

l

2

: : : and � 2 PATH(M ;Ds)

- given h � 0 , if there exists s

h

, then �j

h

denotes the path s

h

l

h

s

h+1

l

h+1

s

h+2

: : :

and is referred to as \� at point h", otherwise it is unde�ned,

- �rst state(�) denotes s

0

, the �rst state of �, and �rst label(�) denotes l

0

,

the �rst label of �, if exists, i.e., if � is not just a state.

1.4 Senten
es

For a dynami
 many-sorted signature D� = (S ;DS ;TF ;PF ;P) the dy-

nami
 many-sorted senten
es in TSen(D�) are the usual
losed many-

sorted �rst-order logi
 formulae, built from atomi
 formulae using quanti�-

ation (over sorted variables) and logi
al
onne
tives plus temporal formulae

an
hored to the elements of the dynami
 sorts.

The temporal formulae of Casl-Ltl express properties of the elements of

a dynami
 sort Ds (dynami
 elements) in terms of their paths, i.e., of their

possible behaviours. Su
h temporal formulae have form

either in any
ase(t ; �) or in one
ase(t ; �)

where t is a term of sort Ds, and � a path formula. The �rst formula
an be

read as \for every path � starting in the state denoted by t , � holds on �",

while the se
ond means \there exists a path � starting in the state denoted

by t s.t. � holds on �".

1

The path formulae for the elements of a dynami

1

We an
hor these formulae to states, following the ideas in [MP89℄. The major di�er-

en
e with the
lassi
al temporal logi
 is that we do not spe
ify a single system but, in

general, one or many types of systems, so there is not a single initial state but several,

hen
e the need for an expli
it referen
e to states (through terms) in the formulae built

with in any
ase .

1.4. SENTENCES 5

sort Ds express properties on its paths, i.e., on the possible behaviours of

the elements of Ds.

The dynami
 senten
es inTSen(D�) and the path formulae for the elements

of the various dynami
 sorts of D� (PSen(D� ;Ds)

Ds2DS

) are de�ned as

follows:

TSen(D�)
ontains all the atomi
 formulae of the basi
 Casl, all those

built with the logi

ombinator of the basi
Casl, and the following temporal

formulae: for ea
h Ds 2 DS

in any
ase(t ; �) and in one
ase(t ; �)

with t term of sort Ds and � 2 PSen(D� ;Ds).

The path formulae over D� for the elements of sort Ds , PSen(D� ;Ds), are

de�ned as follows

{ [x � F ℄ x variable of sort Ds, F 2 TSen(D�)

This formula holds on a path � whenever F holds at the �rst state of

�.

{ < x � F > x variable of sort Label Ds, F 2 TSen(D�)

This formula holds on a path � whenever � is not just a single state

and F holds at the �rst label of �.

{ �

1

until �

2

�

1

; �

2

2 PSen(D� ;Ds)

This formula holds on a path � whenever there exists a point in � s.t.

�

2

holds at su
h point and �

1

holds until before it.

{ next � � 2 PSen(D� ;Ds)

This formula holds on a path � whenever � holds at � at point 1 if it

exists or whenever � at point 1 does not exist.

{ eventually � � 2 PSen(D� ;Ds)

This formula holds on a path � whenever there exists a point in � s.t.

� holds at su
h point.

{ always � � 2 PSen(D� ;Ds)

This formula holds on a path � whenever � holds at any point in �.

{ : �, �) �

0

, 8 y � �

y variable of whatever sort, �; �

0

2 PSen(D� ;Ds)

with the usual meaning

1.5. SATISFACTION 6

1.5 Satisfa
tion

Let M be a dynami
 model over D� and v a variable evaluation, then we

de�ne by multiple indu
tion:

� the validity of a dynami
 formula F 2 TSen(D�) inM w.r.t. v (writ-

ten M ; v j= F),

� the validity of a path formula � 2 PSen(D� ;Ds) on a path � 2

PATH(D� ;Ds) in M w.r.t. v (written M ; v ; � j= �),

as follows:

{ M ; v j= in any
ase(t ; �) i� for ea
h � 2 PATH(M ;Ds) su
h that

�rst state(�) = t

M ;v

, M ; v ; � j= �

{ M ; v j= in one
ase(t ; �) i� there exists � 2 PATH(M ;Ds) su
h that

�rst state(�) = t

M ;v

and M ; v ; � j= �

{ M ; v ; � j= [x � F ℄ i� M ; v [�rst state(�)=x ℄ j= F

{ M ; v ; � j=< x � F > i�

�rst label(�) is de�ned and M ; v [�rst label(�)=x ℄ j= F

{ M ; v ; � j= �

1

until �

2

i� there exists j � 0 su
h that for all h,

0 < h < j , M ; v ; �j

h

j= �

1

and M ; v ; �j

j

j= �

2

{ M ; v ; � j= next � i� �j

1

unde�ned or �j

1

de�ned and M ; v ; �j

1

j= �

{ M ; v ; � j= eventually � i� there exists j � 0 su
h that M ; v ; �j

j

j= �

{ M ; v ; � j= always � i� for all j � 0 su
h that �j

j

is de�ned,M ; v ; �j

j

j=

�

{ : F , F) F

0

, 8 x � F , : �, �) �

0

, 8 x � � as usual.

1.6 Basi
 Constru
ts

This se
tion indi
ates the abstra
t and
on
rete syntax of the new
on-

stru
ts introdu
ed by Casl-Ltl to the basi
 spe
i�
ations, and des
ribes

their intended interpretation.

1.6.1 Dynami
 Sort

SORT-ITEM ::= dsort-item SORT-ITEM SORT-ITEM

A dynami
 sort de
laration is written:

1.7. AXIOMS 7

dsort Ds label Label Ds

and impli
itely
orresponds to the following de
larations

sorts Ds, Label Ds

pred -- --> : Ds � Label Ds �Ds.

1.7 Axioms

FORMULA ::= TEMPORAL

A Casl-Ltl formula may be also a temporal formula.

1.7.1 Temporal Formulae

TEMPORAL ::= temporal PATH-QUANTIFIER TERM PATH-FORMULA

PATH-QUANTIFIER ::= any
ase | one
ase

A temporal formula with the any
ase quanti�er is written:

in any
ase(T;PF)

A temporal formula with the one
ase quanti�er is written:

in one
ase(T;PF)

The �rst
ase is the universal path quanti�
ation, holding when PF holds for

all paths starting from the element represented by the term T ; the se
ond

ase is the existential path quanti�
ation, holding when PF holds for at

least one path starting from the element represented by T.

1.7.2 Path Formulae

These formulae represent properties on the paths, i.e., on the possible be-

haviours of the dynami
 elements.

PATH-FORMULA ::= STATE-COND | LABEL-COND |

UNTIL | NEXT | EVENTUALLY | ALWAYS |

P-QUANTIFICATION |

P-CONJUNCTION | P-DISJUNCTION |

P-IMPLICATION | P-EQUIVALENCE | P-NEGATION

1.7. AXIOMS 8

1.7.2.1 State Condition

STATE-COND ::= state-
ond VAR-DECL FORMULA

A state
ondition is written:

[VD � F ℄

1.7.2.2 Label Condition

LABEL-COND ::= label-
ond VAR-DECL FORMULA

A label
ondition is written:

< VD � F >

1.7.2.3 Until

UNTIL ::= until PATH-FORMULA PATH-FORMULA

An until formula is written:

PF

1

until PF

2

1.7.2.4 Next

NEXT ::= next PATH-FORMULA

A next formula is written:

next PF

1.7.2.5 Eventually

EVENTUALLY ::= eventually PATH-FORMULA

An eventually formula is written:

eventually PF

1.8. STRUCTURED SPECIFICATIONS 9

1.7.2.6 Always

ALWAYS ::= always PATH-FORMULA

An always formula is written:

always PF

1.7.2.7 First order
ombinators on path formulae

P-QUANTIFICATION ::= pquantifi
ation QUANTIFIER VAR-DECL+ PATH-FORMULA

P-CONJUNCTION ::= p
onjun
tion PATH-FORMULA+

P-DISJUNCTION ::= pdisjun
tion PATH-FORMULA+

P-IMPLICATION ::= pimpli
ation PATH-FORMULA PATH-FORMULA

P-EQUIVALENCE ::= pequivalen
e PATH-FORMULA PATH-FORMULA

P-NEGATION ::= pnegation PATH-FORMULA

These formulae are written as the
orresponding one of the basi
 Casl.

1.8 Stru
tured Spe
i�
ations

The stru
turing
onstru
ts of Casl-Ltl are exa
tly the same of the basi

Casl,
learly de�ned using the new signature morphisms, whi
h preserve

dynami
ity of sorts, and the asso
iated labels sorts and transition predi
ates

(see [CR97℄ for the pre
ise de�nitions).

1.9 Ar
hite
tural Spe
i�
ations

The relationship of the new
onstru
ts of Casl-Ltl with the ar
hite
tural

spe
i�
ations need further investigations.

1.10 Spe
i�
ation Libraries

As for the basi
 Casl.

Bibliography

[ABR99℄ E. Astesiano, M. Broy, and G. Reggio. Algebrai
 Spe
i�
ation

of Con
urrent Systems. In E. Astesiano, B. Krieg-Br�u
kner, and

H.-J. Kreowski, editors, IFIP WG 1.3 Book on Algebrai
 Foun-

dations of System Spe
i�
ation. Springer Verlag, 1999.

[AR01℄ E. Astesiano and G. Reggio. Labelled Transition Logi
: An

Outline. A
ta Informati
a, 37(11-12), 2001.

[CR97℄ G. Costa and G. Reggio. Spe
i�
ation of Abstra
t Dynami
 Data

Types: A Temporal Logi
 Approa
h. T.C.S., 173(2), 1997.

[CR00℄ C. Choppy and G. Reggio. Using Casl to Spe
ify the Require-

ments and the Design: A Problem Spe
i�
 Approa
h. In D. Bert

and C. Choppy, editors, Re
ent Trends in Algebrai
 Development

Te
hniques, Sele
ted Papers of the 14th International Workshop

WADT'99, number 1827 in Le
ture Notes in Computer S
ien
e.

Springer Verlag, Berlin, 2000. A
omplete version is available at

ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio99a.ps.

[CR03℄ C. Choppy and G. Reggio. Towards a Formally Grounded

Software Development Method. Te
hni
al Report DISI{TR{

03{35, DISI, Universit�a di Genova, Italy, 2003. Available at

ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio03a.pdf.

[Eme90℄ A.E. Emerson. Temporal and Modal Logi
. In J. van Leeuwen,

editor, Handbook of Theoret. Comput. S
i., volume B. Elsevier,

1990.

[Mil80℄ R. Milner. A Cal
ulus of Communi
ating Systems. Number 92

in Le
ture Notes in Computer S
ien
e. Springer Verlag, Berlin,

1980.

[Mos03℄ P.D. Mosses, editor. CASL, The Common Algebrai
 Spe
i�-

ation Language - Referen
e Manual. Le
ture Notes in Com-

puter S
ien
e. Springer-Verlag, 2003. To appear. Available at

http://www.
ofi.info/CASL RefManual DRAFT.pdf.

10

BIBLIOGRAPHY 11

[MP89℄ Z. Manna and A. Pnueli. The An
hored Version of the Temporal

Framework. In J.W. de Bakker, W.-P. de Roever, and G. Rozem-

berg, editors, Linear Time, Bran
hing Time and Partial Order

in Logi
s and Models for Con
urren
y, number 354 in Le
ture

Notes in Computer S
ien
e. Springer Verlag, Berlin, 1989.

[MP92℄ Z. Manna and A. Pnueli. The Temporal Logi
s of Rea
tive and

Con
urrent Systems. Springer Verlag, New York, 1992.

[RACH00℄ G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann.

Analysing UML A
tive Classes and Asso
iated State Ma
hines {

A Lightweight Formal Approa
h. In T. Maibaum, editor, Pro
.

FASE 2000, number 1783 in Le
ture Notes in Computer S
ien
e.

Springer Verlag, Berlin, 2000.

[RCA01℄ G. Reggio, M. Cerioli, and E. Astesiano. Towards a Rigorous Se-

manti
s of UML Supporting its Multiview Approa
h. In H. Huss-

mann, editor, Pro
. FASE 2001, number 2029 in Le
ture Notes

in Computer S
ien
e. Springer Verlag, Berlin, 2001.

.1. ABSTRACT SYNTAX 1

.1 Abstra
t Syntax

The abstra
t syntax of Casl-Ltl is given by extending with the following

lauses the part
on
erning basi
 spe
i�
ations of that the basi
 Casl (see

[Mos03℄).

SORT-ITEM ::= dsort-item SORT-ITEM SORT-ITEM

FORMULA ::= TEMPORAL

TEMPORAL ::= temporal PATH-QUANTIFIER TERM PATH-FORMULA

PATH-QUANTIFIER ::= any
ase | one
ase

PATH-FORMULA ::= STATE-COND | LABEL-COND |

UNTIL | NEXT | EVENTUALLY | ALWAYS |

P-QUANTIFICATION | P-CONJUNCTION | P-DISJUNCTION |

P-IMPLICATION | P-EQUIVALENCE | P-NEGATION

STATE-COND ::= state-
ond VAR-DECL FORMULA

LABEL-COND ::= label-
ond VAR-DECL FORMULA

UNTIL ::= until PATH-FORMULA PATH-FORMULA

NEXT ::= next PATH-FORMULA

EVENTUALLY ::= eventually PATH-FORMULA

ALWAYS ::= always PATH-FORMULA

P-QUANTIFICATION ::= pquantifi
ation QUANTIFIER VAR-DECL+ PATH-FORMULA

P-CONJUNCTION ::= p
onjun
tion PATH-FORMULA+

P-DISJUNCTION ::= pdisjun
tion PATH-FORMULA+

P-IMPLICATION ::= pimpli
ation PATH-FORMULA PATH-FORMULA

P-EQUIVALENCE ::= pequivalen
e PATH-FORMULA PATH-FORMULA

P-NEGATION ::= pnegation PATH-FORMULA

.2 Abbreviated Abstra
t Syntax

The abbreviated abstra
t syntax of Casl-Ltl is given by extending with

the following
lauses the part
on
erning basi
 and subsorted spe
i�
ations

of that the basi
 Casl (see [Mos03℄).

SIG-ITEM ::= dsort-item SORT-ITEM SORT-ITEM

FORMULA ::= temporal PATH-QUANTIFIER TERM PATH-FORMULA

PATH-QUANTIFIER ::= any
ase | one
ase

PATH-FORMULA ::= state-
ond VAR-DECL FORMULA |

label-
ond VAR-DECL FORMULA |

until PATH-FORMULA PATH-FORMULA |

next PATH-FORMULA |

eventually PATH-FORMULA |

.3. CONCRETE SYNTAX 2

always PATH-FORMULA |

pquantifi
ation QUANTIFIER VAR-DECL+ PATH-FORMULA |

p
onjun
tion PATH-FORMULA+ |

pdisjun
tion PATH-FORMULA+ |

pimpli
ation PATH-FORMULA PATH-FORMULA |

pequivalen
e PATH-FORMULA PATH-FORMULA |

pnegation PATH-FORMULA

.3 Con
rete Syntax

The
on
rete syntax of Casl-Ltl is given by extending with the following

lauses the part
on
erning basi
 spe
i�
ations with subsorts of that the

basi
 Casl (see [Mos03℄).

SIG-ITEM ::= dsort SORT-ITEM label SORT-ITEM ;

FORMULA ::= PATH-QUANTIFIER "(" TERM "." PATH-FORMULA ")"

PATH-QUANTIFIER ::= in any
ase | in one
ase

PATH-FORMULA ::= "[" VAR-DECL "." PATH-FORMULA "℄"

| "<" VAR-DECL "." PATH-FORMULA ">"

| PATH-FORMULA until PATH-FORMULA

| next PATH-FORMULA

| eventually PATH-FORMULA

| always PATH-FORMULA

| QUANTIFIER VAR-DECL ;...; VAR-DECL "." PATH-FORMULA

| PATH-FORMULA /\ PATH-FORMULA /\.../\ PATH-FORMULA

| PATH-FORMULA \/ PATH-FORMULA \/...\/ PATH-FORMULA

| PATH-FORMULA => PATH-FORMULA

| PATH-FORMULA if PATH-FORMULA

| PATH-FORMULA <=> PATH-FORMULA

| not PATH-FORMULA

| true | false

.4 Disambiguation

The
ontext-free grammar given in Se
tion .3 for input syntax is quite am-

biguous. This se
tion explains various pre
eden
e rules for disambiguation,

and the intended grouping of mix�x formulae and terms (whi
h are to be

re
ognized in a separate phrase, dependent on the de
lared symbols and

parsing annotations).

Within a FORMULA, the use of the new path quanti�ers (in any
ase and

in one
ase) do not
ause any problem, due to the fa
t that they have a

\fun
tional syntax".

.5. LEXICAL SYNTAX 3

Within a PATH-FORMULA, the use of pre�x and in�x notation for the logi
al

onne
tives gives rise to some potential ambiguities. These are resolved as

follows:

� the state and label
ondition
ombinators ([. ℄ and < . >) do not

ause any problem, due to the fa
t that have a \fun
tional syntax".

� The �rst-order logi
al
onne
tives have a pre
eden
e higher than any

temporal
ombinator, and their relative pre
eden
es are as in basi

Casl (see [Mos03℄).

`PATH-FORMULA until PATH-FORMULA' has the highest pre
eden
e; and

when repeated, `until' groups to the right;

� `always PATH-FORMULA' has lower pre
eden
e;

� `eventually PATH-FORMULA' has even lower pre
eden
e.

For what
on
erns the impli
it mix-�x predi
ates asso
iated with dynami

sorts (-- -->) have the lowest pre
eden
e.

.5 Lexi
al Syntax

The lexi
al syntax of Casl-Ltl is as for the basi
Casl, ex
ept that NO-BRACKET-SIGNS

annot be also one of the following reserved symbols:

-- --> < > [℄

.6 Display Format

The input symbols introdu
ed in Casl-Ltl in the following table are to be

displayed as the mathemati
al symbols shown below them.

in any
ase in one
ase eventually always until next -- -->

4 5 3 2 U Æ ��!

There exists also another possibility more text oriented, where we have only

-- -->

��!

.7. EXAMPLE 1: CCS 4

.7 Example 1: CCS

spe
 Channel =

free type Channel ::= � j � j
 j � j : : :

spe
 CCS =

Channel then

free f

types Behaviour ::= nil j : (Label Behaviour ;Behaviour) j

+ (Behaviour;Behaviour) j jj (Behaviour;Behaviour);

Label Behaviour ::= !(Channel) j ?(Channel) j �

dsort Behaviour label Label Behaviour

ops + : Behaviour � Behaviour ! Behaviour asso
;
omm; idem; unit: nil

jj : Behaviour � Behaviour ! Behaviour asso
;
omm;

vars B ;B

1

;B

2

;B

0

1

;B

0

2

: Behaviour; C : Channel; L : Label Behaviour ;

� L:B

L

��! B

� B

1

L

��! B

0

1

) B

1

+ B

2

L

��! B

0

1

� B

1

L

��! B

0

1

) B

1

jjB

2

L

��! B

0

1

jjB

2

� B

1

C !

��! B

0

1

^ B

2

C ?

���! B

0

2

) B

1

jjB

2

�

��! B

0

1

jjB

0

2

g end

Note that, given the properties (asso
iativity,
ommutativity, . . .) de
lared

for the + and jj operations, fewer axioms are needed to des
ribe the

transition relation than in the original CCS des
ription [Mil80℄.

.8 Example 2: Fan
y pro
esses

spe
 Pro
 =

Int then

dsort Pro
 label Label Pro

preds re
?; send? : Int� Label Pro

%%
he
ks whether a label
orresponds to re
eive/send an integer

vars P;P' : Pro
; I : Int; L;Y : Label Pro

� P

L

��! P' ^ (: I = 0) ^ re
?(L; I))

in any
ase(P'; eventually (< Y � send?(I + 1 ;Y) > ^

eventually < Y � send?(I + 2 ;Y) >))

%% if a pro
ess re
eives a non-zero integer I, then in any
ase eventually

%% (it will send out I+1 and eventually also I+2)

� P

L

��! P' ^ re
?(L; 0))

in any
ase(P'; always < Y � (: send?(0 ;Y)) ^ (: re
?(0 ;Y)) >)

%% if a pro
ess re
eive 0, then in any
ase forever it will never send out or re
eive 0

.9. EXAMPLE 3: A FANCY CONCURRENT SYSTEM 5

.9 Example 3: A Fan
y Con
urrent System

spe
 CSystem =

Pro
 then

free f

types System ::= ; j jj (Pro
;System)

Label System ::= I (Int) j O(Int) j �

dsort System label Label System

g

vars P;P' : Pro
; I : Int; Y : Label Pro
; S : System; Z : Label System

� P jjP' jjS = P' jjP jjS

� in one
ase(P; eventually < Y � send?(I ;Y) >))

in one
ase(P jjS; eventually < Z � Z = O(I) >)

%% if a pro
ess
omponent of the system has at least in a
ase the
apability

%% to eventually send out I, then also the system has su
h
apability

.10 Example 4: A Bu�er (The Bit example)

This example is a very simple
on
urrent system
onsisting of a bu�er and

a user. It is takem from [ABR99℄ and its spe
i�
ation is now expressed in

Casl-Ltl.

The system Bit (
alled Bit sin
e it is really very small)
onsists of two

omponents in parallel: a user and a bu�er. The bu�er is organized as a

queue and
ontains integers; it may obviously re
eive and return integer

values; it may break down, in whi
h
ase its
ontent will be 10

10

, and,

moreover, it may happen that the last element of its
ontent is dupli
ated.

When the system is started by the environment, the bu�er is empty and the

user puts in sequen
e 0 and 1 on the bu�er; then it gets the �rst element

from the bu�er. If this element is the number 0 the user must inform the

environment of the
orre
t working of the bu�er, otherwise it must signal

that there is an error.

Thus Bit is an intera
tive
on
urrent system with
omponents having both

autonomous a
tivities (as the bu�er failures) and
ooperations (the user

writing/reading the bu�er), and using some stati
 data (integers); further-

more it also has some relevant stati
/fun
tional aspe
ts, as the queue orga-

nization of the bu�er.

Some relevant requirements on Bit are:

R0 The bu�er must always be able to re
eive any integer value.

R1 When the user is terminated, it
annot perform an a
tivity again.

R2 In at least one
ase, the system must behave
orre
tly.

.10. EXAMPLE 4: A BUFFER (THE BIT EXAMPLE) 6

R3 After being started, it will eventually signal ok or error

R4 ok and error are signaled at most on
e, and it
annot happen that both

are signaled.

R5 The user puts integers on and gets integers from the bu�er.

We �rst spe
ify the two
omponents of the system, the bu�er and the user,

and then how they
ooperate.

spe
 Buffer =

Int Queue with sort Queue 7! Bu�er then

dsort Bu�er label Lab Bu�er

ops � :! Lab Bu�er

re
eive ; return : Int ! Lab Bu�er

vars B : Bu�er ; I : Int

� not empty(B)) B

return(�rst(B))

����������! remove(B)

� B

re
eive(I)

������! put(I ;B)

� B

�

��! put(10

10

; empty)

� not empty(B)) B

�

��! dup(B)

spe
 User Status =

Int then

sort User Status

ops initial ; putting 0 ; putting 1 ; reading ; terminated :! User Status

read : Int ! User Status

spe
 User =

User Status with sort User Status 7! User then

dsort User label lab User

ops start ; ok ; error :! lab User

put ; get : Int ! lab User

vars I : Int

� initial

start

���! putting 0

� putting 0

put(0)

����! putting 1

� putting 1

put(1)

����! reading

� reading

get(I)

����! read(I)

� read(0)

ok

��! terminated

� not eq(I ; 0)) read (I)

error

���! terminated

spe
 System =

Buffer and User then

dsort System label Lab System

ops j : Bu�er �User ! System

start ; ok ; error ; � :! Lab System

vars B ;B' : Bu�er ; U;U' : User

� U

start

���! U') empty j U

start

���! empty j U'

� B

re
eive(I)

������! B' ^ U

put(I)

����! U') B j U

�

��! B' j U'

.10. EXAMPLE 4: A BUFFER (THE BIT EXAMPLE) 7

� B

return(I)

������! B' ^ U

get(I)

����! U') b j U

�

��! B' j U'

� U

ok

��! U') B j U

ok

��! b j U'

� U

error

���! U') B j U

error

���! B j U'

� B

�

��! B') B j U

�

��! B' j U

