
Casl-Ltl

A Casl EXTENSION FOR DYNAMIC SYSTEMS

Summary

CoFI Doument: CASL/Summary

Version: 1.0 8 August 2003

G. Reggio - E. Astesiano - C. Choppy

E-mail address for omments: reggio�disi.unige.it

CoFI: The Common Framework Initiative

http://www.bris.dk/Projets/CoFI

This doument is available on WWW

�

, and by FTP

y

.

Abstrat

Casl the basi language developed within CoFI, the Common Frame-

work Initiative for algebrai spei�ation and development, annot be

used for speifying the requirements and the design of dynami software

systems. Casl-Ltl is an extension to overome this limit, allowing to

speify dynami system by modelling them by means of labelled tran-

sition systems and by expressing their properties with temporal formu-

lae. It is based on LTL, the Labelled Transition Logi, that is a logi-

algebrai formalism for the spei�ation of dynami systems, mainly

developed by E.Astesiano and G. Reggio (see [AR01℄ and [CR97℄).

This doument gives a detailed summary of the syntax and intended

semantis of Casl-Ltl. It is intended for readers who are already

familiar with Casl ([Mos03℄).

Four short examples are given in the appendix, and extended ase stud-

ies using Casl-Ltl are given in [CR00, CR03℄. An extensive ompan-

ion user method is given in [CR03℄ (while [CR00℄ gives a �rst attempt

to rely on struturing onepts). Casl-Ltl was also used to present

the semantis of some parts of UML in [RACH00, RCA01℄.

�

...

y

.....

i



Chapter 1

Casl-Ltl

[ABR99℄ present di�erent ways of exploiting algebrai methods in onur-

reny. The Casl-Ltl extension (A3 \algebrai spei�ations of dynami-

data types" approah of [ABR99℄) uses dynami sorts, the elements of whih

orrespond to onurrent systems. It is based on LTL, the Labelled Transi-

tion Logi, that is a logi-algebrai formalism for the spei�ation of dynami

systems, mainly developed by E.Astesiano and G. Reggio (see [AR01℄ and

[CR97℄). While [CR97℄ explains the di�erenes with the temporal logis de-

veloped in [MP89, MP92℄ (e.g., LTL is branhing-time instead of linear), the

onnetors and formula of LTL are lose to those of CTL* [Eme90℄, and LTL

is anhored (f. footnote 1 page 4), �rst-order many-sorted and provides

also edge formulas.

1.1 Basi Conepts

Casl-Ltl is an extension of Casl for the spei�ation of what we all in a

general way dynami systems, as proesses, onurrent, reative, distributed,

parallel, . . . systems. The basi idea behindCasl-Ltl is to model a dynami

system by using a labelled transition system.

A labelled transition system (shortly lts) is a triple (STATE;LABEL;!),

where STATE and LABEL are two sets, and!� STATE�LABEL�STATE

is the transition relation. A triple (s; l ; s

0

) 2! is said to be a transition and

is usually written s

l

��! s

0

.

Given an lts we an assoiate with eah s

0

2 STATE the tree (transition

tree) whose root is s

0

, where if it has a node n deorated with s and s

l

��! s

0

,

then it has a node n

0

deorated with s

0

and an ar deorated with l from

1



1.1. BASIC CONCEPTS 2

n to n

0

, the order of the branhes is not onsidered, and two identially

deorated subtrees with the same root are onsidered as a unique subtree.

We model a dynami system S with a transition tree determined by an lts

(STATE;LABEL;!)

and an initial state s

0

2 STATE; the nodes in the tree represent the inter-

mediate (interesting) situations of the life of S, and the ars of the tree the

possibilities of S of passing from one situation to another. It is important

to note here that an ar (a transition) s

l

��! s

0

has the following meaning:

S in the situation s has the apability of passing into the situation s

0

by

performing a transition, where the label l represents the interation with

the environment during suh a move; thus l ontains information on the

onditions on the environment for the apability to beome e�etive, and

on the transformation of suh environment indued by the exeution of the

transition.

An lts may be spei�ed by an algebrai spei�ation having two sorts,

State and Label,

whose elements are the states and the labels of the lts respetively, and a

ternary prediate

-- --> : State� Label� State

orresponding to the transition relation.

The basi idea behind Casl-Ltl is to add to Casl a speial onstrut to

delare suh two sorts and the assoiate prediate that orrespond to an lts;

preisely the delaration of dynami sort

dsort Ds label Label Ds

where Ds is alled a dynami sort and Label Ds is its label sort. This termi-

nology wants to remind that the elements of Ds are dynami, indeed they

orrespond to a dynami system in a partiular initial situation.

dsort Ds label Label Ds orresponds to the following delarations

sorts Ds, Label Ds

pred -- --> : Ds � Label Ds �Ds.

The Casl formulae (many sorted �rst order logi) built by using the tran-

sition prediate ( -- --> ) allows to express some properties on the be-

haviour of a dynami system, but they are not suÆient. For example, using

suh formulae we annot state liveness properties as, \eventually the system



1.2. DYNAMIC SIGNATURES 3

will send out some value" (i.e., eventually it will perform a transition whose

label orrespond to send out suh value). Instead suh properties ould be

easily expressed by using some kind of temporal logi. Thus Casl-Ltl in-

ludes temporal logi ombinators, and preisely those of the many-sorted

�rst-order temporal logi of [CR97℄. Clearly, the temporal formulae are

sensible only when referring to elements of dynami sorts.

1.2 Dynami Signatures

A dynami many-sorted signature D� = (S ;DS ;TF ;PF ;P) onsists of:

� a set S of sorts;

� a set DS of dynami sorts s.t. DS � S and for all Ds 2 DS there

exists Label Ds 2 S �DS ;

� sets TF

w ;s

, PF

w ;s

, of total funtion symbols, respetively partial fun-

tion symbols, suh that TF

w ;s

\ PF

w ;s

= ;, for eah funtion pro�le

(w ; s) onsisting of a sequene of argument sorts w 2 S

�

and a result

sort s 2 S ;

� sets P

w

of prediate symbols, for eah prediate pro�le onsisting of a

sequene of argument sorts w 2 S

�

, s.t. for eah Ds 2 DS -- --> 2

P

Ds Label Ds Ds

.

A dynami many-sorted signature morphism

� : (S;DS ;TF ;PF ; P )! (S

0

;DS

0

TF

0

;PF

0

; P

0

)

onsists of a mapping from S to S

0

, and for eah w 2 S

�

; s 2 S , a mapping

between the orresponding sets of funtion, resp. prediate symbols, s.t.

dynami sorts are sent into dynami sorts, and the assoiated label sort and

transition prediate are sent into the orresponding label sort and transition

prediate. Preisely:

�(Label Ds) = Label �(Ds) and

�( -- --> : Ds � Label Ds �Ds) = -- --> : �(Ds)� Label �(Ds)�

�(Ds).

1.3 Models

Assume that D� = (S ;DS ;TF ;PF ;P) is a dynami many-sorted signature.

A dynami many-sorted model for D� M 2Mod(D� ) is de�ned as for the

basi Casl.



1.4. SENTENCES 4

A (weak) dynami many-sorted homomorphism h from M

1

to M

2

, with

M

1

;M

2

2 Mod(D� ) is de�ned as for the basi Casl.

However, the expliit presene of the dynami sorts allows us to equip a dy-

nami modelM with a set of \paths" for eah dynami sort Ds representing

the possible behaviours of the elements of sort Ds in M .

Paths are de�ned preisely as follows. For eah M 2Mod(D� ) and Ds 2

DS , the set of the paths on M of sort Ds, denoted by PATH(M ;Ds), is the

set of all the sequenes of transitions having the form either (1) or (2) below:

(1) s

0

l

0

s

1

l

1

s

2

l

2

: : : (in�nite path)

(2) s

0

l

0

s

1

l

1

s

2

l

2

: : : s

n

n � 0

where for all i � 0 , s

i

2 Ds

M

, l

i

2 Label Ds

M

, (s

i

; l

i

; s

i+1

) 2!

M

, and there

do not exist l , s

0

suh that (s

n

; l ; s

0

) 2!

M

.

If � = s

0

l

0

s

1

l

1

s

2

l

2

: : : and � 2 PATH(M ;Ds)

- given h � 0 , if there exists s

h

, then �j

h

denotes the path s

h

l

h

s

h+1

l

h+1

s

h+2

: : :

and is referred to as \� at point h", otherwise it is unde�ned,

- �rst state(�) denotes s

0

, the �rst state of �, and �rst label(�) denotes l

0

,

the �rst label of �, if exists, i.e., if � is not just a state.

1.4 Sentenes

For a dynami many-sorted signature D� = (S ;DS ;TF ;PF ;P) the dy-

nami many-sorted sentenes in TSen(D� ) are the usual losed many-

sorted �rst-order logi formulae, built from atomi formulae using quanti�-

ation (over sorted variables) and logial onnetives plus temporal formulae

anhored to the elements of the dynami sorts.

The temporal formulae of Casl-Ltl express properties of the elements of

a dynami sort Ds (dynami elements) in terms of their paths, i.e., of their

possible behaviours. Suh temporal formulae have form

either in any ase(t ; �) or in one ase(t ; �)

where t is a term of sort Ds, and � a path formula. The �rst formula an be

read as \for every path � starting in the state denoted by t , � holds on �",

while the seond means \there exists a path � starting in the state denoted

by t s.t. � holds on �".

1

The path formulae for the elements of a dynami

1

We anhor these formulae to states, following the ideas in [MP89℄. The major di�er-

ene with the lassial temporal logi is that we do not speify a single system but, in

general, one or many types of systems, so there is not a single initial state but several,

hene the need for an expliit referene to states (through terms) in the formulae built

with in any ase .



1.4. SENTENCES 5

sort Ds express properties on its paths, i.e., on the possible behaviours of

the elements of Ds.

The dynami sentenes inTSen(D� ) and the path formulae for the elements

of the various dynami sorts of D� (PSen(D� ;Ds)

Ds2DS

) are de�ned as

follows:

TSen(D� ) ontains all the atomi formulae of the basi Casl, all those

built with the logi ombinator of the basiCasl, and the following temporal

formulae: for eah Ds 2 DS

in any ase(t ; �) and in one ase(t ; �)

with t term of sort Ds and � 2 PSen(D� ;Ds).

The path formulae over D� for the elements of sort Ds , PSen(D� ;Ds), are

de�ned as follows

{ [ x � F ℄ x variable of sort Ds, F 2 TSen(D� )

This formula holds on a path � whenever F holds at the �rst state of

�.

{ < x � F > x variable of sort Label Ds, F 2 TSen(D� )

This formula holds on a path � whenever � is not just a single state

and F holds at the �rst label of �.

{ �

1

until �

2

�

1

; �

2

2 PSen(D� ;Ds)

This formula holds on a path � whenever there exists a point in � s.t.

�

2

holds at suh point and �

1

holds until before it.

{ next � � 2 PSen(D� ;Ds)

This formula holds on a path � whenever � holds at � at point 1 if it

exists or whenever � at point 1 does not exist.

{ eventually � � 2 PSen(D� ;Ds)

This formula holds on a path � whenever there exists a point in � s.t.

� holds at suh point.

{ always � � 2 PSen(D� ;Ds)

This formula holds on a path � whenever � holds at any point in �.

{ : �, � ) �

0

, 8 y � �

y variable of whatever sort, �; �

0

2 PSen(D� ;Ds)

with the usual meaning



1.5. SATISFACTION 6

1.5 Satisfation

Let M be a dynami model over D� and v a variable evaluation, then we

de�ne by multiple indution:

� the validity of a dynami formula F 2 TSen(D� ) inM w.r.t. v (writ-

ten M ; v j= F ),

� the validity of a path formula � 2 PSen(D� ;Ds) on a path � 2

PATH(D� ;Ds) in M w.r.t. v (written M ; v ; � j= �),

as follows:

{ M ; v j= in any ase(t ; �) i� for eah � 2 PATH(M ;Ds) suh that

�rst state(�) = t

M ;v

, M ; v ; � j= �

{ M ; v j= in one ase(t ; �) i� there exists � 2 PATH(M ;Ds) suh that

�rst state(�) = t

M ;v

and M ; v ; � j= �

{ M ; v ; � j= [ x � F ℄ i� M ; v [�rst state(�)=x ℄ j= F

{ M ; v ; � j=< x � F > i�

�rst label(�) is de�ned and M ; v [�rst label(�)=x ℄ j= F

{ M ; v ; � j= �

1

until �

2

i� there exists j � 0 suh that for all h,

0 < h < j , M ; v ; �j

h

j= �

1

and M ; v ; �j

j

j= �

2

{ M ; v ; � j= next � i� �j

1

unde�ned or �j

1

de�ned and M ; v ; �j

1

j= �

{ M ; v ; � j= eventually � i� there exists j � 0 suh that M ; v ; �j

j

j= �

{ M ; v ; � j= always � i� for all j � 0 suh that �j

j

is de�ned,M ; v ; �j

j

j=

�

{ : F , F ) F

0

, 8 x � F , : �, � ) �

0

, 8 x � � as usual.

1.6 Basi Construts

This setion indiates the abstrat and onrete syntax of the new on-

struts introdued by Casl-Ltl to the basi spei�ations, and desribes

their intended interpretation.

1.6.1 Dynami Sort

SORT-ITEM ::= dsort-item SORT-ITEM SORT-ITEM

A dynami sort delaration is written:



1.7. AXIOMS 7

dsort Ds label Label Ds

and impliitely orresponds to the following delarations

sorts Ds, Label Ds

pred -- --> : Ds � Label Ds �Ds.

1.7 Axioms

FORMULA ::= TEMPORAL

A Casl-Ltl formula may be also a temporal formula.

1.7.1 Temporal Formulae

TEMPORAL ::= temporal PATH-QUANTIFIER TERM PATH-FORMULA

PATH-QUANTIFIER ::= anyase | onease

A temporal formula with the anyase quanti�er is written:

in any ase(T;PF)

A temporal formula with the onease quanti�er is written:

in one ase(T;PF)

The �rst ase is the universal path quanti�ation, holding when PF holds for

all paths starting from the element represented by the term T ; the seond

ase is the existential path quanti�ation, holding when PF holds for at

least one path starting from the element represented by T.

1.7.2 Path Formulae

These formulae represent properties on the paths, i.e., on the possible be-

haviours of the dynami elements.

PATH-FORMULA ::= STATE-COND | LABEL-COND |

UNTIL | NEXT | EVENTUALLY | ALWAYS |

P-QUANTIFICATION |

P-CONJUNCTION | P-DISJUNCTION |

P-IMPLICATION | P-EQUIVALENCE | P-NEGATION



1.7. AXIOMS 8

1.7.2.1 State Condition

STATE-COND ::= state-ond VAR-DECL FORMULA

A state ondition is written:

[ VD � F ℄

1.7.2.2 Label Condition

LABEL-COND ::= label-ond VAR-DECL FORMULA

A label ondition is written:

< VD � F >

1.7.2.3 Until

UNTIL ::= until PATH-FORMULA PATH-FORMULA

An until formula is written:

PF

1

until PF

2

1.7.2.4 Next

NEXT ::= next PATH-FORMULA

A next formula is written:

next PF

1.7.2.5 Eventually

EVENTUALLY ::= eventually PATH-FORMULA

An eventually formula is written:

eventually PF



1.8. STRUCTURED SPECIFICATIONS 9

1.7.2.6 Always

ALWAYS ::= always PATH-FORMULA

An always formula is written:

always PF

1.7.2.7 First order ombinators on path formulae

P-QUANTIFICATION ::= pquantifiation QUANTIFIER VAR-DECL+ PATH-FORMULA

P-CONJUNCTION ::= ponjuntion PATH-FORMULA+

P-DISJUNCTION ::= pdisjuntion PATH-FORMULA+

P-IMPLICATION ::= pimpliation PATH-FORMULA PATH-FORMULA

P-EQUIVALENCE ::= pequivalene PATH-FORMULA PATH-FORMULA

P-NEGATION ::= pnegation PATH-FORMULA

These formulae are written as the orresponding one of the basi Casl.

1.8 Strutured Spei�ations

The struturing onstruts of Casl-Ltl are exatly the same of the basi

Casl, learly de�ned using the new signature morphisms, whih preserve

dynamiity of sorts, and the assoiated labels sorts and transition prediates

(see [CR97℄ for the preise de�nitions).

1.9 Arhitetural Spei�ations

The relationship of the new onstruts of Casl-Ltl with the arhitetural

spei�ations need further investigations.

1.10 Spei�ation Libraries

As for the basi Casl.



Bibliography

[ABR99℄ E. Astesiano, M. Broy, and G. Reggio. Algebrai Spei�ation

of Conurrent Systems. In E. Astesiano, B. Krieg-Br�ukner, and

H.-J. Kreowski, editors, IFIP WG 1.3 Book on Algebrai Foun-

dations of System Spei�ation. Springer Verlag, 1999.

[AR01℄ E. Astesiano and G. Reggio. Labelled Transition Logi: An

Outline. Ata Informatia, 37(11-12), 2001.

[CR97℄ G. Costa and G. Reggio. Spei�ation of Abstrat Dynami Data

Types: A Temporal Logi Approah. T.C.S., 173(2), 1997.

[CR00℄ C. Choppy and G. Reggio. Using Casl to Speify the Require-

ments and the Design: A Problem Spei� Approah. In D. Bert

and C. Choppy, editors, Reent Trends in Algebrai Development

Tehniques, Seleted Papers of the 14th International Workshop

WADT'99, number 1827 in Leture Notes in Computer Siene.

Springer Verlag, Berlin, 2000. A omplete version is available at

ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio99a.ps.

[CR03℄ C. Choppy and G. Reggio. Towards a Formally Grounded

Software Development Method. Tehnial Report DISI{TR{

03{35, DISI, Universit�a di Genova, Italy, 2003. Available at

ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio03a.pdf.

[Eme90℄ A.E. Emerson. Temporal and Modal Logi. In J. van Leeuwen,

editor, Handbook of Theoret. Comput. Si., volume B. Elsevier,

1990.

[Mil80℄ R. Milner. A Calulus of Communiating Systems. Number 92

in Leture Notes in Computer Siene. Springer Verlag, Berlin,

1980.

[Mos03℄ P.D. Mosses, editor. CASL, The Common Algebrai Spei�-

ation Language - Referene Manual. Leture Notes in Com-

puter Siene. Springer-Verlag, 2003. To appear. Available at

http://www.ofi.info/CASL RefManual DRAFT.pdf.

10



BIBLIOGRAPHY 11

[MP89℄ Z. Manna and A. Pnueli. The Anhored Version of the Temporal

Framework. In J.W. de Bakker, W.-P. de Roever, and G. Rozem-

berg, editors, Linear Time, Branhing Time and Partial Order

in Logis and Models for Conurreny, number 354 in Leture

Notes in Computer Siene. Springer Verlag, Berlin, 1989.

[MP92℄ Z. Manna and A. Pnueli. The Temporal Logis of Reative and

Conurrent Systems. Springer Verlag, New York, 1992.

[RACH00℄ G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann.

Analysing UML Ative Classes and Assoiated State Mahines {

A Lightweight Formal Approah. In T. Maibaum, editor, Pro.

FASE 2000, number 1783 in Leture Notes in Computer Siene.

Springer Verlag, Berlin, 2000.

[RCA01℄ G. Reggio, M. Cerioli, and E. Astesiano. Towards a Rigorous Se-

mantis of UML Supporting its Multiview Approah. In H. Huss-

mann, editor, Pro. FASE 2001, number 2029 in Leture Notes

in Computer Siene. Springer Verlag, Berlin, 2001.



.1. ABSTRACT SYNTAX 1

.1 Abstrat Syntax

The abstrat syntax of Casl-Ltl is given by extending with the following

lauses the part onerning basi spei�ations of that the basi Casl (see

[Mos03℄).

SORT-ITEM ::= dsort-item SORT-ITEM SORT-ITEM

FORMULA ::= TEMPORAL

TEMPORAL ::= temporal PATH-QUANTIFIER TERM PATH-FORMULA

PATH-QUANTIFIER ::= anyase | onease

PATH-FORMULA ::= STATE-COND | LABEL-COND |

UNTIL | NEXT | EVENTUALLY | ALWAYS |

P-QUANTIFICATION | P-CONJUNCTION | P-DISJUNCTION |

P-IMPLICATION | P-EQUIVALENCE | P-NEGATION

STATE-COND ::= state-ond VAR-DECL FORMULA

LABEL-COND ::= label-ond VAR-DECL FORMULA

UNTIL ::= until PATH-FORMULA PATH-FORMULA

NEXT ::= next PATH-FORMULA

EVENTUALLY ::= eventually PATH-FORMULA

ALWAYS ::= always PATH-FORMULA

P-QUANTIFICATION ::= pquantifiation QUANTIFIER VAR-DECL+ PATH-FORMULA

P-CONJUNCTION ::= ponjuntion PATH-FORMULA+

P-DISJUNCTION ::= pdisjuntion PATH-FORMULA+

P-IMPLICATION ::= pimpliation PATH-FORMULA PATH-FORMULA

P-EQUIVALENCE ::= pequivalene PATH-FORMULA PATH-FORMULA

P-NEGATION ::= pnegation PATH-FORMULA

.2 Abbreviated Abstrat Syntax

The abbreviated abstrat syntax of Casl-Ltl is given by extending with

the following lauses the part onerning basi and subsorted spei�ations

of that the basi Casl (see [Mos03℄).

SIG-ITEM ::= dsort-item SORT-ITEM SORT-ITEM

FORMULA ::= temporal PATH-QUANTIFIER TERM PATH-FORMULA

PATH-QUANTIFIER ::= anyase | onease

PATH-FORMULA ::= state-ond VAR-DECL FORMULA |

label-ond VAR-DECL FORMULA |

until PATH-FORMULA PATH-FORMULA |

next PATH-FORMULA |

eventually PATH-FORMULA |



.3. CONCRETE SYNTAX 2

always PATH-FORMULA |

pquantifiation QUANTIFIER VAR-DECL+ PATH-FORMULA |

ponjuntion PATH-FORMULA+ |

pdisjuntion PATH-FORMULA+ |

pimpliation PATH-FORMULA PATH-FORMULA |

pequivalene PATH-FORMULA PATH-FORMULA |

pnegation PATH-FORMULA

.3 Conrete Syntax

The onrete syntax of Casl-Ltl is given by extending with the following

lauses the part onerning basi spei�ations with subsorts of that the

basi Casl (see [Mos03℄).

SIG-ITEM ::= dsort SORT-ITEM label SORT-ITEM ;

FORMULA ::= PATH-QUANTIFIER "(" TERM "." PATH-FORMULA ")"

PATH-QUANTIFIER ::= in any ase | in one ase

PATH-FORMULA ::= "[" VAR-DECL "." PATH-FORMULA "℄"

| "<" VAR-DECL "." PATH-FORMULA ">"

| PATH-FORMULA until PATH-FORMULA

| next PATH-FORMULA

| eventually PATH-FORMULA

| always PATH-FORMULA

| QUANTIFIER VAR-DECL ;...; VAR-DECL "." PATH-FORMULA

| PATH-FORMULA /\ PATH-FORMULA /\.../\ PATH-FORMULA

| PATH-FORMULA \/ PATH-FORMULA \/...\/ PATH-FORMULA

| PATH-FORMULA => PATH-FORMULA

| PATH-FORMULA if PATH-FORMULA

| PATH-FORMULA <=> PATH-FORMULA

| not PATH-FORMULA

| true | false

.4 Disambiguation

The ontext-free grammar given in Setion .3 for input syntax is quite am-

biguous. This setion explains various preedene rules for disambiguation,

and the intended grouping of mix�x formulae and terms (whih are to be

reognized in a separate phrase, dependent on the delared symbols and

parsing annotations).

Within a FORMULA, the use of the new path quanti�ers (in any ase and

in one ase) do not ause any problem, due to the fat that they have a

\funtional syntax".



.5. LEXICAL SYNTAX 3

Within a PATH-FORMULA, the use of pre�x and in�x notation for the logial

onnetives gives rise to some potential ambiguities. These are resolved as

follows:

� the state and label ondition ombinators ([ . ℄ and < . >) do not

ause any problem, due to the fat that have a \funtional syntax".

� The �rst-order logial onnetives have a preedene higher than any

temporal ombinator, and their relative preedenes are as in basi

Casl (see [Mos03℄).

`PATH-FORMULA until PATH-FORMULA' has the highest preedene; and

when repeated, `until' groups to the right;

� `always PATH-FORMULA' has lower preedene;

� `eventually PATH-FORMULA' has even lower preedene.

For what onerns the impliit mix-�x prediates assoiated with dynami

sorts ( -- --> ) have the lowest preedene.

.5 Lexial Syntax

The lexial syntax of Casl-Ltl is as for the basiCasl, exept that NO-BRACKET-SIGNS

annot be also one of the following reserved symbols:

-- --> < > [ ℄

.6 Display Format

The input symbols introdued in Casl-Ltl in the following table are to be

displayed as the mathematial symbols shown below them.

in any ase in one ase eventually always until next -- -->

4 5 3 2 U Æ ��!

There exists also another possibility more text oriented, where we have only

-- -->

��!



.7. EXAMPLE 1: CCS 4

.7 Example 1: CCS

spe Channel =

free type Channel ::= � j � j  j � j : : :

spe CCS =

Channel then

free f

types Behaviour ::= nil j : (Label Behaviour ;Behaviour) j

+ (Behaviour;Behaviour) j jj (Behaviour;Behaviour);

Label Behaviour ::= !(Channel) j ?(Channel) j �

dsort Behaviour label Label Behaviour

ops + : Behaviour � Behaviour ! Behaviour asso; omm; idem; unit: nil

jj : Behaviour � Behaviour ! Behaviour asso; omm;

vars B ;B

1

;B

2

;B

0

1

;B

0

2

: Behaviour; C : Channel; L : Label Behaviour ;

� L:B

L

��! B

� B

1

L

��! B

0

1

) B

1

+ B

2

L

��! B

0

1

� B

1

L

��! B

0

1

) B

1

jjB

2

L

��! B

0

1

jjB

2

� B

1

C !

��! B

0

1

^ B

2

C ?

���! B

0

2

) B

1

jjB

2

�

��! B

0

1

jjB

0

2

g end

Note that, given the properties (assoiativity, ommutativity, . . . ) delared

for the + and jj operations, fewer axioms are needed to desribe the

transition relation than in the original CCS desription [Mil80℄.

.8 Example 2: Fany proesses

spe Pro =

Int then

dsort Pro label Label Pro

preds re?; send? : Int� Label Pro

%% heks whether a label orresponds to reeive/send an integer

vars P;P' : Pro; I : Int; L;Y : Label Pro

� P

L

��! P' ^ (: I = 0 ) ^ re?(L; I ) )

in any ase(P'; eventually (< Y � send?(I + 1 ;Y ) > ^

eventually < Y � send?(I + 2 ;Y ) >))

%% if a proess reeives a non-zero integer I, then in any ase eventually

%% (it will send out I+1 and eventually also I+2)

� P

L

��! P' ^ re?(L; 0 ) )

in any ase(P'; always < Y � (: send?(0 ;Y )) ^ (: re?(0 ;Y )) >)

%% if a proess reeive 0, then in any ase forever it will never send out or reeive 0



.9. EXAMPLE 3: A FANCY CONCURRENT SYSTEM 5

.9 Example 3: A Fany Conurrent System

spe CSystem =

Pro then

free f

types System ::= ; j jj (Pro;System)

Label System ::= I (Int) j O(Int) j �

dsort System label Label System

g

vars P;P' : Pro; I : Int; Y : Label Pro; S : System; Z : Label System

� P jjP' jjS = P' jjP jjS

� in one ase(P; eventually < Y � send?(I ;Y ) >) )

in one ase(P jjS; eventually < Z � Z = O(I ) >)

%% if a proess omponent of the system has at least in a ase the apability

%% to eventually send out I, then also the system has suh apability

.10 Example 4: A Bu�er (The Bit example)

This example is a very simple onurrent system onsisting of a bu�er and

a user. It is takem from [ABR99℄ and its spei�ation is now expressed in

Casl-Ltl.

The system Bit (alled Bit sine it is really very small) onsists of two

omponents in parallel: a user and a bu�er. The bu�er is organized as a

queue and ontains integers; it may obviously reeive and return integer

values; it may break down, in whih ase its ontent will be 10

10

, and,

moreover, it may happen that the last element of its ontent is dupliated.

When the system is started by the environment, the bu�er is empty and the

user puts in sequene 0 and 1 on the bu�er; then it gets the �rst element

from the bu�er. If this element is the number 0 the user must inform the

environment of the orret working of the bu�er, otherwise it must signal

that there is an error.

Thus Bit is an interative onurrent system with omponents having both

autonomous ativities (as the bu�er failures) and ooperations (the user

writing/reading the bu�er), and using some stati data (integers); further-

more it also has some relevant stati/funtional aspets, as the queue orga-

nization of the bu�er.

Some relevant requirements on Bit are:

R0 The bu�er must always be able to reeive any integer value.

R1 When the user is terminated, it annot perform an ativity again.

R2 In at least one ase, the system must behave orretly.



.10. EXAMPLE 4: A BUFFER (THE BIT EXAMPLE) 6

R3 After being started, it will eventually signal ok or error

R4 ok and error are signaled at most one, and it annot happen that both

are signaled.

R5 The user puts integers on and gets integers from the bu�er.

We �rst speify the two omponents of the system, the bu�er and the user,

and then how they ooperate.

spe Buffer =

Int Queue with sort Queue 7! Bu�er then

dsort Bu�er label Lab Bu�er

ops � :! Lab Bu�er

reeive ; return : Int ! Lab Bu�er

vars B : Bu�er ; I : Int

� not empty(B)) B

return(�rst(B))

����������! remove(B)

� B

reeive(I )

������! put(I ;B)

� B

�

��! put(10

10

; empty)

� not empty(B)) B

�

��! dup(B)

spe User Status =

Int then

sort User Status

ops initial ; putting 0 ; putting 1 ; reading ; terminated :! User Status

read : Int ! User Status

spe User =

User Status with sort User Status 7! User then

dsort User label lab User

ops start ; ok ; error :! lab User

put ; get : Int ! lab User

vars I : Int

� initial

start

���! putting 0

� putting 0

put(0 )

����! putting 1

� putting 1

put(1 )

����! reading

� reading

get(I )

����! read(I )

� read(0 )

ok

��! terminated

� not eq(I ; 0 )) read (I )

error

���! terminated

spe System =

Buffer and User then

dsort System label Lab System

ops j : Bu�er �User ! System

start ; ok ; error ; � :! Lab System

vars B ;B' : Bu�er ; U;U' : User

� U

start

���! U') empty j U

start

���! empty j U'

� B

reeive(I )

������! B' ^ U

put(I )

����! U') B j U

�

��! B' j U'



.10. EXAMPLE 4: A BUFFER (THE BIT EXAMPLE) 7

� B

return(I )

������! B' ^ U

get(I )

����! U') b j U

�

��! B' j U'

� U

ok

��! U') B j U

ok

��! b j U'

� U

error

���! U') B j U

error

���! B j U'

� B

�

��! B') B j U

�

��! B' j U


