
Casl-Ltl

A Casl EXTENSION FOR DYNAMIC SYSTEMS

Summary

CoFI Document: CASL/Summary
Version: 1.0 8 August 2003

G. Reggio - E. Astesiano - C. Choppy
E-mail address for comments: reggio@disi.unige.it

CoFI: The Common Framework Initiative
http://www.brics.dk/Projects/CoFI

This document is available on WWW∗, and by FTP†.

Abstract

Casl the basic language developed within CoFI, the Common Frame-
work Initiative for algebraic specification and development, cannot be
used for specifying the requirements and the design of dynamic software
systems. Casl-Ltl is an extension to overcome this limit, allowing to
specify dynamic system by modelling them by means of labelled tran-
sition systems and by expressing their properties with temporal formu-
lae. It is based on LTL, the Labelled Transition Logic, that is a logic-
algebraic formalism for the specification of dynamic systems, mainly
developed by E.Astesiano and G. Reggio (see [AR01] and [CR97]).
This document gives a detailed summary of the syntax and intended
semantics of Casl-Ltl. It is intended for readers who are already
familiar with Casl ([Mos03]).
Four short examples are given in the appendix, and extended case stud-
ies using Casl-Ltl are given in [CR00, CR03]. An extensive compan-
ion user method is given in [CR03] (while [CR00] gives a first attempt
to rely on structuring concepts). Casl-Ltl was also used to present
the semantics of some parts of UML in [RACH00, RCA01].

∗...
†.....

i

Chapter 1

Casl-Ltl

[ABR99] present different ways of exploiting algebraic methods in concur-
rency. The Casl-Ltl extension (A3 “algebraic specifications of dynamic-
data types” approach of [ABR99]) uses dynamic sorts, the elements of which
correspond to concurrent systems. It is based on LTL, the Labelled Transi-
tion Logic, that is a logic-algebraic formalism for the specification of dynamic
systems, mainly developed by E.Astesiano and G. Reggio (see [AR01] and
[CR97]). While [CR97] explains the differences with the temporal logics de-
veloped in [MP89, MP92] (e.g., LTL is branching-time instead of linear), the
connectors and formula of LTL are close to those of CTL* [Eme90], and LTL
is anchored (cf. footnote 1 page 4), first-order many-sorted and provides
also edge formulas.

1.1 Basic Concepts

Casl-Ltl is an extension of Casl for the specification of what we call in a
general way dynamic systems, as processes, concurrent, reactive, distributed,
parallel, . . . systems. The basic idea behind Casl-Ltl is to model a dynamic
system by using a labelled transition system.

A labelled transition system (shortly lts) is a triple (STATE,LABEL,→),
where STATE and LABEL are two sets, and→⊆ STATE×LABEL×STATE
is the transition relation. A triple (s, l , s ′) ∈→ is said to be a transition and
is usually written s l−−→ s ′.

Given an lts we can associate with each s0 ∈ STATE the tree (transition
tree) whose root is s0 , where if it has a node n decorated with s and s l−−→ s ′,
then it has a node n ′ decorated with s ′ and an arc decorated with l from

1

1.1. BASIC CONCEPTS 2

n to n ′, the order of the branches is not considered, and two identically
decorated subtrees with the same root are considered as a unique subtree.

We model a dynamic system S with a transition tree determined by an lts

(STATE,LABEL,→)

and an initial state s0 ∈ STATE; the nodes in the tree represent the inter-
mediate (interesting) situations of the life of S, and the arcs of the tree the
possibilities of S of passing from one situation to another. It is important
to note here that an arc (a transition) s l−−→ s ′ has the following meaning:
S in the situation s has the capability of passing into the situation s ′ by
performing a transition, where the label l represents the interaction with
the environment during such a move; thus l contains information on the
conditions on the environment for the capability to become effective, and
on the transformation of such environment induced by the execution of the
transition.

An lts may be specified by an algebraic specification having two sorts,

State and Label,

whose elements are the states and the labels of the lts respectively, and a
ternary predicate

-- --> : State× Label× State

corresponding to the transition relation.

The basic idea behind Casl-Ltl is to add to Casl a special construct to
declare such two sorts and the associate predicate that correspond to an lts;
precisely the declaration of dynamic sort

dsort Ds label Label Ds

where Ds is called a dynamic sort and Label Ds is its label sort. This termi-
nology wants to remind that the elements of Ds are dynamic, indeed they
correspond to a dynamic system in a particular initial situation.

dsort Ds label Label Ds corresponds to the following declarations

sorts Ds, Label Ds
pred -- --> : Ds × Label Ds ×Ds.

The Casl formulae (many sorted first order logic) built by using the tran-
sition predicate (-- -->) allows to express some properties on the be-
haviour of a dynamic system, but they are not sufficient. For example, using
such formulae we cannot state liveness properties as, “eventually the system

1.2. DYNAMIC SIGNATURES 3

will send out some value” (i.e., eventually it will perform a transition whose
label correspond to send out such value). Instead such properties could be
easily expressed by using some kind of temporal logic. Thus Casl-Ltl in-
cludes temporal logic combinators, and precisely those of the many-sorted
first-order temporal logic of [CR97]. Clearly, the temporal formulae are
sensible only when referring to elements of dynamic sorts.

1.2 Dynamic Signatures

A dynamic many-sorted signature DΣ = (S ,DS ,TF ,PF ,P) consists of:

• a set S of sorts;

• a set DS of dynamic sorts s.t. DS ⊆ S and for all Ds ∈ DS there
exists Label Ds ∈ S −DS ;

• sets TFw ,s , PFw ,s , of total function symbols, respectively partial func-
tion symbols, such that TFw ,s ∩ PFw ,s = ∅, for each function profile
(w , s) consisting of a sequence of argument sorts w ∈ S ∗ and a result
sort s ∈ S ;

• sets Pw of predicate symbols, for each predicate profile consisting of a
sequence of argument sorts w ∈ S ∗, s.t. for each Ds ∈ DS -- --> ∈
PDs Label Ds Ds .

A dynamic many-sorted signature morphism

σ : (S,DS ,TF ,PF , P) → (S′,DS ′TF ′,PF ′, P ′)

consists of a mapping from S to S ′, and for each w ∈ S ∗, s ∈ S , a mapping
between the corresponding sets of function, resp. predicate symbols, s.t.
dynamic sorts are sent into dynamic sorts, and the associated label sort and
transition predicate are sent into the corresponding label sort and transition
predicate. Precisely:

σ(Label Ds) = Label σ(Ds) and

σ(-- --> : Ds × Label Ds ×Ds) = -- --> : σ(Ds)× Label σ(Ds)×
σ(Ds).

1.3 Models

Assume that DΣ = (S ,DS ,TF ,PF ,P) is a dynamic many-sorted signature.

A dynamic many-sorted model for DΣ M ∈ Mod(DΣ) is defined as for the
basic Casl.

1.4. SENTENCES 4

A (weak) dynamic many-sorted homomorphism h from M1 to M2 , with
M1 ,M2 ∈ Mod(DΣ) is defined as for the basic Casl.

However, the explicit presence of the dynamic sorts allows us to equip a dy-
namic model M with a set of “paths” for each dynamic sort Ds representing
the possible behaviours of the elements of sort Ds in M .

Paths are defined precisely as follows. For each M ∈ Mod(DΣ) and Ds ∈
DS , the set of the paths on M of sort Ds, denoted by PATH(M ,Ds), is the
set of all the sequences of transitions having the form either (1) or (2) below:

(1) s0 l0 s1 l1 s2 l2 . . . (infinite path)
(2) s0 l0 s1 l1 s2 l2 . . . sn n ≥ 0

where for all i ≥ 0 , si ∈ DsM , li ∈ Label DsM , (si , li , si+1) ∈→M , and there
do not exist l , s ′ such that (sn , l , s ′) ∈→M .

If σ = s0 l0 s1 l1 s2 l2 . . . and σ ∈ PATH(M ,Ds)
- given h ≥ 0 , if there exists sh , then σ|h denotes the path sh lh sh+1 lh+1 sh+2 . . .
and is referred to as “σ at point h”, otherwise it is undefined,
- first state(σ) denotes s0 , the first state of σ, and first label(σ) denotes l0 ,
the first label of σ, if exists, i.e., if σ is not just a state.

1.4 Sentences

For a dynamic many-sorted signature DΣ = (S ,DS ,TF ,PF ,P) the dy-
namic many-sorted sentences in TSen(DΣ) are the usual closed many-
sorted first-order logic formulae, built from atomic formulae using quantifi-
cation (over sorted variables) and logical connectives plus temporal formulae
anchored to the elements of the dynamic sorts.

The temporal formulae of Casl-Ltl express properties of the elements of
a dynamic sort Ds (dynamic elements) in terms of their paths, i.e., of their
possible behaviours. Such temporal formulae have form

either in any case(t , π) or in one case(t , π)

where t is a term of sort Ds, and π a path formula. The first formula can be
read as “for every path σ starting in the state denoted by t , π holds on σ”,
while the second means “there exists a path σ starting in the state denoted
by t s.t. π holds on σ”.1 The path formulae for the elements of a dynamic

1We anchor these formulae to states, following the ideas in [MP89]. The major differ-
ence with the classical temporal logic is that we do not specify a single system but, in
general, one or many types of systems, so there is not a single initial state but several,
hence the need for an explicit reference to states (through terms) in the formulae built
with in any case.

1.4. SENTENCES 5

sort Ds express properties on its paths, i.e., on the possible behaviours of
the elements of Ds.

The dynamic sentences in TSen(DΣ) and the path formulae for the elements
of the various dynamic sorts of DΣ (PSen(DΣ ,Ds)Ds∈DS) are defined as
follows:

TSen(DΣ) contains all the atomic formulae of the basic Casl, all those
built with the logic combinator of the basic Casl, and the following temporal
formulae: for each Ds ∈ DS

in any case(t , π) and in one case(t , π)

with t term of sort Ds and π ∈ PSen(DΣ ,Ds).

The path formulae over DΣ for the elements of sort Ds, PSen(DΣ ,Ds), are
defined as follows

– [x • F] x variable of sort Ds, F ∈ TSen(DΣ)

This formula holds on a path σ whenever F holds at the first state of
σ.

– < x • F > x variable of sort Label Ds, F ∈ TSen(DΣ)

This formula holds on a path σ whenever σ is not just a single state
and F holds at the first label of σ.

– π1 until π2 π1 , π2 ∈ PSen(DΣ ,Ds)

This formula holds on a path σ whenever there exists a point in σ s.t.
π2 holds at such point and π1 holds until before it.

– next π π ∈ PSen(DΣ ,Ds)

This formula holds on a path σ whenever π holds at σ at point 1 if it
exists or whenever σ at point 1 does not exist.

– eventually π π ∈ PSen(DΣ ,Ds)

This formula holds on a path σ whenever there exists a point in σ s.t.
π holds at such point.

– always π π ∈ PSen(DΣ ,Ds)

This formula holds on a path σ whenever π holds at any point in σ.

– ¬ π, π ⇒ π′, ∀ y • π

y variable of whatever sort, π, π′ ∈ PSen(DΣ ,Ds)

with the usual meaning

1.5. SATISFACTION 6

1.5 Satisfaction

Let M be a dynamic model over DΣ and v a variable evaluation, then we
define by multiple induction:

• the validity of a dynamic formula F ∈ TSen(DΣ) in M w.r.t. v (writ-
ten M , v |= F),

• the validity of a path formula π ∈ PSen(DΣ ,Ds) on a path σ ∈
PATH(DΣ ,Ds) in M w.r.t. v (written M , v , σ |= π),

as follows:

– M , v |= in any case(t , π) iff for each σ ∈ PATH(M ,Ds) such that
first state(σ) = tM ,v , M , v , σ |= π

– M , v |= in one case(t , π) iff there exists σ ∈ PATH(M ,Ds) such that
first state(σ) = tM ,v and M , v , σ |= π

– M , v , σ |= [x • F] iff M , v [first state(σ)/x] |= F

– M , v , σ |=< x • F > iff

first label(σ) is defined and M , v [first label(σ)/x] |= F

– M , v , σ |= π1 until π2 iff there exists j ≥ 0 such that for all h,
0 < h < j , M , v , σ|h |= π1 and M , v , σ|j |= π2

– M , v , σ |= next π iff σ|1 undefined or σ|1 defined and M , v , σ|1 |= π

– M , v , σ |= eventually π iff there exists j ≥ 0 such that M , v , σ|j |= π

– M , v , σ |= always π iff for all j ≥ 0 such that σ|j is defined, M , v , σ|j |=
π

– ¬ F , F ⇒ F ′, ∀ x • F , ¬ π, π ⇒ π′, ∀ x • π as usual.

1.6 Basic Constructs

This section indicates the abstract and concrete syntax of the new con-
structs introduced by Casl-Ltl to the basic specifications, and describes
their intended interpretation.

1.6.1 Dynamic Sort

SORT-ITEM ::= dsort-item SORT-ITEM SORT-ITEM

A dynamic sort declaration is written:

1.7. AXIOMS 7

dsort Ds label Label Ds

and implicitely corresponds to the following declarations

sorts Ds, Label Ds
pred -- --> : Ds × Label Ds ×Ds.

1.7 Axioms

FORMULA ::= TEMPORAL

A Casl-Ltl formula may be also a temporal formula.

1.7.1 Temporal Formulae

TEMPORAL ::= temporal PATH-QUANTIFIER TERM PATH-FORMULA

PATH-QUANTIFIER ::= anycase | onecase

A temporal formula with the anycase quantifier is written:

in any case(T,PF)

A temporal formula with the onecase quantifier is written:

in one case(T,PF)

The first case is the universal path quantification, holding when PF holds for
all paths starting from the element represented by the term T ; the second
case is the existential path quantification, holding when PF holds for at
least one path starting from the element represented by T.

1.7.2 Path Formulae

These formulae represent properties on the paths, i.e., on the possible be-
haviours of the dynamic elements.

PATH-FORMULA ::= STATE-COND | LABEL-COND |

UNTIL | NEXT | EVENTUALLY | ALWAYS |

P-QUANTIFICATION |

P-CONJUNCTION | P-DISJUNCTION |

P-IMPLICATION | P-EQUIVALENCE | P-NEGATION

1.7. AXIOMS 8

1.7.2.1 State Condition

STATE-COND ::= state-cond VAR-DECL FORMULA

A state condition is written:

[VD • F]

1.7.2.2 Label Condition

LABEL-COND ::= label-cond VAR-DECL FORMULA

A label condition is written:

< VD • F >

1.7.2.3 Until

UNTIL ::= until PATH-FORMULA PATH-FORMULA

An until formula is written:

PF 1 until PF 2

1.7.2.4 Next

NEXT ::= next PATH-FORMULA

A next formula is written:

next PF

1.7.2.5 Eventually

EVENTUALLY ::= eventually PATH-FORMULA

An eventually formula is written:

eventually PF

1.8. STRUCTURED SPECIFICATIONS 9

1.7.2.6 Always

ALWAYS ::= always PATH-FORMULA

An always formula is written:

always PF

1.7.2.7 First order combinators on path formulae

P-QUANTIFICATION ::= pquantification QUANTIFIER VAR-DECL+ PATH-FORMULA

P-CONJUNCTION ::= pconjunction PATH-FORMULA+

P-DISJUNCTION ::= pdisjunction PATH-FORMULA+

P-IMPLICATION ::= pimplication PATH-FORMULA PATH-FORMULA

P-EQUIVALENCE ::= pequivalence PATH-FORMULA PATH-FORMULA

P-NEGATION ::= pnegation PATH-FORMULA

These formulae are written as the corresponding one of the basic Casl.

1.8 Structured Specifications

The structuring constructs of Casl-Ltl are exactly the same of the basic
Casl, clearly defined using the new signature morphisms, which preserve
dynamicity of sorts, and the associated labels sorts and transition predicates
(see [CR97] for the precise definitions).

1.9 Architectural Specifications

The relationship of the new constructs of Casl-Ltl with the architectural
specifications need further investigations.

1.10 Specification Libraries

As for the basic Casl.

Bibliography

[ABR99] E. Astesiano, M. Broy, and G. Reggio. Algebraic Specification
of Concurrent Systems. In E. Astesiano, B. Krieg-Brückner, and
H.-J. Kreowski, editors, IFIP WG 1.3 Book on Algebraic Foun-
dations of System Specification. Springer Verlag, 1999.

[AR01] E. Astesiano and G. Reggio. Labelled Transition Logic: An
Outline. Acta Informatica, 37(11-12), 2001.

[CR97] G. Costa and G. Reggio. Specification of Abstract Dynamic Data
Types: A Temporal Logic Approach. T.C.S., 173(2), 1997.

[CR00] C. Choppy and G. Reggio. Using Casl to Specify the Require-
ments and the Design: A Problem Specific Approach. In D. Bert
and C. Choppy, editors, Recent Trends in Algebraic Development
Techniques, Selected Papers of the 14th International Workshop
WADT’99, number 1827 in Lecture Notes in Computer Science.
Springer Verlag, Berlin, 2000. A complete version is available at
ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio99a.ps.

[CR03] C. Choppy and G. Reggio. Towards a Formally Grounded
Software Development Method. Technical Report DISI–TR–
03–35, DISI, Università di Genova, Italy, 2003. Available at
ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio03a.pdf.

[Eme90] A.E. Emerson. Temporal and Modal Logic. In J. van Leeuwen,
editor, Handbook of Theoret. Comput. Sci., volume B. Elsevier,
1990.

[Mil80] R. Milner. A Calculus of Communicating Systems. Number 92
in Lecture Notes in Computer Science. Springer Verlag, Berlin,
1980.

[Mos03] P.D. Mosses, editor. CASL, The Common Algebraic Specifi-
cation Language - Reference Manual. Lecture Notes in Com-
puter Science. Springer-Verlag, 2003. To appear. Available at
http://www.cofi.info/CASL RefManual DRAFT.pdf.

10

BIBLIOGRAPHY 11

[MP89] Z. Manna and A. Pnueli. The Anchored Version of the Temporal
Framework. In J.W. de Bakker, W.-P. de Roever, and G. Rozem-
berg, editors, Linear Time, Branching Time and Partial Order
in Logics and Models for Concurrency, number 354 in Lecture
Notes in Computer Science. Springer Verlag, Berlin, 1989.

[MP92] Z. Manna and A. Pnueli. The Temporal Logics of Reactive and
Concurrent Systems. Springer Verlag, New York, 1992.

[RACH00] G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann.
Analysing UML Active Classes and Associated State Machines –
A Lightweight Formal Approach. In T. Maibaum, editor, Proc.
FASE 2000, number 1783 in Lecture Notes in Computer Science.
Springer Verlag, Berlin, 2000.

[RCA01] G. Reggio, M. Cerioli, and E. Astesiano. Towards a Rigorous Se-
mantics of UML Supporting its Multiview Approach. In H. Huss-
mann, editor, Proc. FASE 2001, number 2029 in Lecture Notes
in Computer Science. Springer Verlag, Berlin, 2001.

.1. ABSTRACT SYNTAX 1

.1 Abstract Syntax

The abstract syntax of Casl-Ltl is given by extending with the following
clauses the part concerning basic specifications of that the basic Casl (see
[Mos03]).

SORT-ITEM ::= dsort-item SORT-ITEM SORT-ITEM

FORMULA ::= TEMPORAL

TEMPORAL ::= temporal PATH-QUANTIFIER TERM PATH-FORMULA

PATH-QUANTIFIER ::= anycase | onecase

PATH-FORMULA ::= STATE-COND | LABEL-COND |

UNTIL | NEXT | EVENTUALLY | ALWAYS |

P-QUANTIFICATION | P-CONJUNCTION | P-DISJUNCTION |

P-IMPLICATION | P-EQUIVALENCE | P-NEGATION

STATE-COND ::= state-cond VAR-DECL FORMULA

LABEL-COND ::= label-cond VAR-DECL FORMULA

UNTIL ::= until PATH-FORMULA PATH-FORMULA

NEXT ::= next PATH-FORMULA

EVENTUALLY ::= eventually PATH-FORMULA

ALWAYS ::= always PATH-FORMULA

P-QUANTIFICATION ::= pquantification QUANTIFIER VAR-DECL+ PATH-FORMULA

P-CONJUNCTION ::= pconjunction PATH-FORMULA+

P-DISJUNCTION ::= pdisjunction PATH-FORMULA+

P-IMPLICATION ::= pimplication PATH-FORMULA PATH-FORMULA

P-EQUIVALENCE ::= pequivalence PATH-FORMULA PATH-FORMULA

P-NEGATION ::= pnegation PATH-FORMULA

.2 Abbreviated Abstract Syntax

The abbreviated abstract syntax of Casl-Ltl is given by extending with
the following clauses the part concerning basic and subsorted specifications
of that the basic Casl (see [Mos03]).

SIG-ITEM ::= dsort-item SORT-ITEM SORT-ITEM

FORMULA ::= temporal PATH-QUANTIFIER TERM PATH-FORMULA

PATH-QUANTIFIER ::= anycase | onecase

PATH-FORMULA ::= state-cond VAR-DECL FORMULA |

label-cond VAR-DECL FORMULA |

until PATH-FORMULA PATH-FORMULA |

next PATH-FORMULA |

eventually PATH-FORMULA |

.3. CONCRETE SYNTAX 2

always PATH-FORMULA |

pquantification QUANTIFIER VAR-DECL+ PATH-FORMULA |

pconjunction PATH-FORMULA+ |

pdisjunction PATH-FORMULA+ |

pimplication PATH-FORMULA PATH-FORMULA |

pequivalence PATH-FORMULA PATH-FORMULA |

pnegation PATH-FORMULA

.3 Concrete Syntax

The concrete syntax of Casl-Ltl is given by extending with the following
clauses the part concerning basic specifications with subsorts of that the
basic Casl (see [Mos03]).

SIG-ITEM ::= dsort SORT-ITEM label SORT-ITEM ;

FORMULA ::= PATH-QUANTIFIER "(" TERM "." PATH-FORMULA ")"

PATH-QUANTIFIER ::= in any case | in one case

PATH-FORMULA ::= "[" VAR-DECL "." PATH-FORMULA "]"

| "<" VAR-DECL "." PATH-FORMULA ">"

| PATH-FORMULA until PATH-FORMULA

| next PATH-FORMULA

| eventually PATH-FORMULA

| always PATH-FORMULA

| QUANTIFIER VAR-DECL ;...; VAR-DECL "." PATH-FORMULA

| PATH-FORMULA /\ PATH-FORMULA /\.../\ PATH-FORMULA

| PATH-FORMULA \/ PATH-FORMULA \/...\/ PATH-FORMULA

| PATH-FORMULA => PATH-FORMULA

| PATH-FORMULA if PATH-FORMULA

| PATH-FORMULA <=> PATH-FORMULA

| not PATH-FORMULA

| true | false

.4 Disambiguation

The context-free grammar given in Section .3 for input syntax is quite am-
biguous. This section explains various precedence rules for disambiguation,
and the intended grouping of mixfix formulae and terms (which are to be
recognized in a separate phrase, dependent on the declared symbols and
parsing annotations).

Within a FORMULA, the use of the new path quantifiers (in any case and
in one case) do not cause any problem, due to the fact that they have a
“functional syntax”.

.5. LEXICAL SYNTAX 3

Within a PATH-FORMULA, the use of prefix and infix notation for the logical
connectives gives rise to some potential ambiguities. These are resolved as
follows:

• the state and label condition combinators ([.] and < . >) do not
cause any problem, due to the fact that have a “functional syntax”.

• The first-order logical connectives have a precedence higher than any
temporal combinator, and their relative precedences are as in basic
Casl (see [Mos03]).

‘PATH-FORMULA until PATH-FORMULA’ has the highest precedence; and
when repeated, ‘until’ groups to the right;

• ‘always PATH-FORMULA’ has lower precedence;

• ‘eventually PATH-FORMULA’ has even lower precedence.

For what concerns the implicit mix-fix predicates associated with dynamic
sorts (-- -->) have the lowest precedence.

.5 Lexical Syntax

The lexical syntax of Casl-Ltl is as for the basic Casl, except that NO-BRACKET-SIGNS
cannot be also one of the following reserved symbols:

-- --> < > []

.6 Display Format

The input symbols introduced in Casl-Ltl in the following table are to be
displayed as the mathematical symbols shown below them.

in any case in one case eventually always until next -- -->

4 5 3 2 U ◦ −−→

There exists also another possibility more text oriented, where we have only
-- -->

−−→

.7. EXAMPLE 1: CCS 4

.7 Example 1: CCS

spec Channel =
free type Channel ::= α | β | γ | η | . . .

spec CCS =
Channel then

free {
types Behaviour ::= nil | . (Label Behaviour ;Behaviour) |

+ (Behaviour;Behaviour) | || (Behaviour;Behaviour);
Label Behaviour ::= !(Channel) | ?(Channel) | τ

dsort Behaviour label Label Behaviour
ops + : Behaviour× Behaviour → Behaviour assoc; comm; idem; unit: nil

|| : Behaviour× Behaviour → Behaviour assoc; comm;
vars B ,B1 ,B2 ,B ′

1 ,B ′
2 : Behaviour; C : Channel; L : Label Behaviour ;

• L.B L−−→ B

• B1
L−−→ B ′

1 ⇒ B1 + B2
L−−→ B ′

1

• B1
L−−→ B ′

1 ⇒ B1 ||B2
L−−→ B ′

1 ||B2

• B1
C !−−→ B ′

1 ∧ B2
C ?−−−→ B ′

2 ⇒ B1 ||B2
τ−−→ B ′

1 ||B ′
2

} end

Note that, given the properties (associativity, commutativity, . . .) declared
for the + and || operations, fewer axioms are needed to describe the
transition relation than in the original CCS description [Mil80].

.8 Example 2: Fancy processes

spec Proc =
Int then
dsort Proc label Label Proc
preds rec?, send? : Int× Label Proc
%% checks whether a label corresponds to receive/send an integer
vars P,P’ : Proc; I : Int; L,Y : Label Proc

• P L−−→ P’ ∧ (¬ I = 0) ∧ rec?(L, I) ⇒
in any case(P’, eventually (< Y • send?(I + 1 ,Y) > ∧

eventually < Y • send?(I + 2 ,Y) >))
%% if a process receives a non-zero integer I, then in any case eventually
%% (it will send out I+1 and eventually also I+2)

• P L−−→ P’ ∧ rec?(L, 0) ⇒
in any case(P’, always < Y • (¬ send?(0 ,Y)) ∧ (¬ rec?(0 ,Y)) >)

%% if a process receive 0, then in any case forever it will never send out or receive 0

.9. EXAMPLE 3: A FANCY CONCURRENT SYSTEM 5

.9 Example 3: A Fancy Concurrent System

spec CSystem =
Proc then

free {
types System ::= ∅ | || (Proc;System)

Label System ::= I (Int) | O(Int) | τ
dsort System label Label System

}
vars P,P’ : Proc; I : Int; Y : Label Proc; S : System; Z : Label System
• P ||P’ ||S = P’ ||P ||S
• in one case(P, eventually < Y • send?(I ,Y) >) ⇒

in one case(P ||S, eventually < Z • Z = O(I) >)
%% if a process component of the system has at least in a case the capability
%% to eventually send out I, then also the system has such capability

.10 Example 4: A Buffer (The Bit example)

This example is a very simple concurrent system consisting of a buffer and
a user. It is takem from [ABR99] and its specification is now expressed in
Casl-Ltl.

The system Bit (called Bit since it is really very small) consists of two
components in parallel: a user and a buffer. The buffer is organized as a
queue and contains integers; it may obviously receive and return integer
values; it may break down, in which case its content will be 10 10 , and,
moreover, it may happen that the last element of its content is duplicated.

When the system is started by the environment, the buffer is empty and the
user puts in sequence 0 and 1 on the buffer; then it gets the first element
from the buffer. If this element is the number 0 the user must inform the
environment of the correct working of the buffer, otherwise it must signal
that there is an error.

Thus Bit is an interactive concurrent system with components having both
autonomous activities (as the buffer failures) and cooperations (the user
writing/reading the buffer), and using some static data (integers); further-
more it also has some relevant static/functional aspects, as the queue orga-
nization of the buffer.

Some relevant requirements on Bit are:

R0 The buffer must always be able to receive any integer value.

R1 When the user is terminated, it cannot perform an activity again.

R2 In at least one case, the system must behave correctly.

.10. EXAMPLE 4: A BUFFER (THE BIT EXAMPLE) 6

R3 After being started, it will eventually signal ok or error

R4 ok and error are signaled at most once, and it cannot happen that both
are signaled.

R5 The user puts integers on and gets integers from the buffer.

We first specify the two components of the system, the buffer and the user,
and then how they cooperate.

spec Buffer =
Int Queue with sort Queue 7→ Buffer then
dsort Buffer label Lab Buffer
ops τ :→ Lab Buffer

receive, return : Int → Lab Buffer
vars B : Buffer ; I : Int

• not empty(B) ⇒ B
return(first(B))−−−−−−−−−−→ remove(B)

• B
receive(I)−−−−−−→ put(I ,B)

• B τ−−→ put(10 10 , empty)
• not empty(B) ⇒ B τ−−→ dup(B)

spec User Status =
Int then
sort User Status
ops initial , putting 0 , putting 1 , reading , terminated :→ User Status

read : Int → User Status

spec User =
User Status with sort User Status 7→ User then
dsort User label lab User
ops start , ok , error :→ lab User

put , get : Int → lab User
vars I : Int
• initial start−−−→ putting 0

• putting 0
put(0)−−−−→ putting 1

• putting 1
put(1)−−−−→ reading

• reading
get(I)−−−−→ read(I)

• read(0) ok−−→ terminated
• not eq(I , 0) ⇒ read(I) error−−−→ terminated

spec System =
Buffer and User then
dsort System label Lab System
ops | : Buffer ×User → System

start , ok , error , τ :→ Lab System
vars B ,B’ : Buffer ; U,U’ : User
• U start−−−→ U’ ⇒ empty | U start−−−→ empty | U’

• B
receive(I)−−−−−−→ B’ ∧ U

put(I)−−−−→ U’ ⇒ B | U τ−−→ B’ | U’

.10. EXAMPLE 4: A BUFFER (THE BIT EXAMPLE) 7

• B
return(I)−−−−−−→ B’ ∧ U

get(I)−−−−→ U’ ⇒ b | U τ−−→ B’ | U’
• U ok−−→ U’ ⇒ B | U ok−−→ b | U’
• U error−−−→ U’ ⇒ B | U error−−−→ B | U’
• B τ−−→ B’ ⇒ B | U τ−−→ B’ | U

