A Middleware-Oriented Visual Notation for
Distributed Mobile Systems*

G. Reggio, M. Cerioli, and E. Astesiano

DISI, Universita di Genova - Italy
{reggio,cerioli,astes }@disi.unige.it

Abstract. We are witnessing a growing demand for applications char-
acterized by decentralization and mobility for which the peer-to-peer
paradigm seems to have some clear advantages. The use of a middle-
ware, encapsulating the treatment of distribution and mobility and pro-
viding appropriate abstractions for handling them in a transparent way,
improves and simplifies the development of such applications.

In this paper we present a visual notation supporting the development
of software based on such middleware. Our notation is characterized by
the integration of the middleware into an OO paradigm, as an object
whose operations correspond to the middleware primitives, and is UML-
based, in the sense that, following the official UML [12] terminology, we
propose a new UML profile. The models in our profile include diagrams
to describe the software and the data on each kind of peer, the required
cooperations among peers, the architecture of the overall system and the
deployment on an actual network.

Introduction

Motivations The role and the importance of the middleware in the development
of distributed systems is now well recognized (J. Charles, [2]). Indeed “mid-
dleware enables application engineers to abstract from the implementation of
low-level details” (W. Emmerich in [4]). However there is a danger in the cur-
rent success of the use of middleware in the industry; namely, the direct use of
middleware products at the programming level without an appropriate software
engineering support for the other development phases. On the other hand, as it
is argued in [4], the software engineering support, at the design level at least,
has to take middleware explicitly into account. Thus, “the software engineering
community needs to develop middleware-oriented design notations, methods and
tools ...”.

The main aim of this paper is to show how well-established software engineer-
ing design techniques can be tailored to provide support for middleware-oriented
design.

We propose a visual object-oriented notation to support the development of
software for a mobile distributed environment. Due to its large diffusion, and to

* Partially supported by Murst - Programma di Ricerca Scientifica di Rilevante Inte-
resse Nazionale Saladin.

its visual and object-oriented nature, we base our notation on UML. Technically,
we will present such notation as a UML profile [8]. A profile provides some
mechanisms for specializing its reference metamodel in specific domains, e.g., to
handle real-time systems. Our profile will be targeted to build applications using
peer-to-peer middleware. Indeed, our work has originated from a national project
(Saladin) aimed at providing support for distributed and mobile applications. In
that area the peer-to-peer paradigm seems to have some clear advantages over
some more traditional approaches, such as the client-server one. The very recent
appearance in the market of peer-to-peer middlewares by commercial giants
(Microsoft and Sun) can be seen as a confirmation.

Our work is based on and inspired by PeerWare [3], a middleware model de-
veloped within Saladin, though there are some differences w.r.t. the middleware
model considered here.

A peer-to-peer middleware In the peer-to-peer paradigm the network underlying
a distributed system consists of hosts at the same hierarchical level (peers).

A basic assumption in the middleware we consider is that mobility and dis-
tribution are encapsulated by the middleware, which provides to its users an
abstract view of the current state of the network where all the details about
the actual location of the resources and about the access modalities have been
hidden. Thus, the user perceives the network as a collection of (passive or active)
entities and the network changes as modifications of this community. Technically
both PeerWare and our variation are in the stream of well-known coordination
models based on shared data, like Linda, that have been recently adopted by
middlewares for the distributed case, both in the client-server [6,13] and in the
peer-to-peer [3,7] paradigm. The nature of the shared entities ranges from un-
detailed tuples in Lime [7] to documents, classified by nodes, in PeerWare [3].
Since we want to integrate this approach to handle mobility and distribution
within an object-oriented paradigm, it is most natural to consider, as entities
to be shared, standard objects. The object community of the overall system is
distributed among the peers, so that we have several local object communities.
The peers may be members of groups, that are communities of peers with the
capability of reaching each other. Objects may be shared among the members
of a group and their visibility is, hence, limited to the connected peers of that
group. This provides means for dealing with privacy (only members of the group
may access a visible object of that group) and for limiting the search space (a
query for objects of some group does not involve the objects of the other groups).

Besides the shared objects, a distributed system consists also of communities
of active and passive objects local to each peer that for privacy and security
reasons should not be visible to the other peers.

UML-P2P: a middleware-oriented profile To help the designer of a distributed
system based on the proposed coordination model, we provide a notational sup-
port, in the form of a UML profile, that we call UML-P2P, where the middleware
will play the role of be the unique interface of each peer toward the external world
and will take care of the visible object management.

Technically, in UML-P2P, we represent the middleware as an object of a
predefined class, offering as operations the middleware primitives (see Sect. 1).
More precisely, the middleware will be represented as a UML “interface”, namely
a class with only operations and without instances. Besides that interface, a
UML-P2P model (see Sect. 2) will consists of three structural diagrams describ-
ing the architecture of the overall system at increasing level of detail.

— The Peer Diagram shows the types of the peers used in the system and the
cooperations needed among them to share the resources.

— The Architecture Diagram gives the peers and their organization in groups.
Each cooperation between peer types stated in the Peer Diagram has to be
matched in the Architecture Diagram by a common group between instances
of those types.

— The Network Deployment Diagram describes the actual physical network,
with the deployment of the instances of peers and their (possibly changing)
connections. Of course, for the cooperation among members of each group to
take place, appropriate physical connections have to be available. Thus, we
will have to (statically) check the requirements from the Architecture Dia-
gram against the network architecture as stated by the Network Deployment
Diagram.

Then, for each type of peer present in the Peer Diagram the system designer
must provide one Peer Model describing the part of the system resident on the
peer of that type.

Semantic issues The “static semantics” requirements imposed by the profile
on a UML-P2P model, that are partly informally discussed in Sect. 2, may be
expressed as OCL constraints on the corresponding metamodel and hence are
directly automatically checkable, e.g., by using a tool as USE [11], providing a
valuable methodological help.

As for the semantics, we provide the definition of the middleware class in
terms of UML. Thus the overall semantics relies on the semantics of (a restricted
subset of) UML. Tt is well-known that this is a somewhat open issue; what we
have done here is consistent with the standard way of proposing profiles in
the UML community. We could have taken a more direct approach, giving the
semantics for the proposed models following a formal approach, like the one
outlined in [10].

To illustrate in a concrete way the use of the proposed profile UML-P2P, we
use some parts of a running example.

1 The Middleware

1.1 Middleware in an OO World

The first key idea of our approach is that we represent the middleware as an
object of a class predefined by the profile, offering as operations the middleware

primitives. In this way the access to the middleware primitives is uniformly
disciplined by the standard mechanism of operation call.

It is quite common in practice the case of middlewares built out from different
components in a hierarchy of types, each encapsulating some part of the system
and offering an access to it at a higher-level of abstraction. This is, indeed,
our case where the middleware consists of two layers: the first handling the
connection and the disconnection of peers to groups and the other offering the
primitives for accessing the local and the virtual global object communities of
any group.

<<interface>> <<interface>>
DOM CM
make(G:String, T:OcIType):OclAny 4D '!s.Connect.ed(G:String):Boolean
rm(0:OclAny) join(G:String)
(G:Stri ‘Fi . . leave(G:String)
q&eG(G:String, F:Filter, C:Code):Set(OclAny)

q&el (G:String,F:Filter, C:Code):Set(OclAny)
executeOn(0:0OclAny,C:Code):Set(OclAny)

subscribe(G:String, EF:Filter,0:OclAny) Event
unsubscribe(G:String, EF:Filter,0:OclAny) Stri
publish(G:String, E:Event) ename:String

Fig. 1. The Middleware Interfaces

In a more general setting, for instance building profiles for software devel-
opment based on a commercial middleware, like Corba, Jini or DCom, we will
have a much larger class hierarchy, where each class will represent a simplified
interface to the middleware offering only a part of the available services. Then
the profile user will be able to select the minimal interface required by the ap-
plication under development and will not have to understand (to pay for) and
take into account the middleware features not needed in that specific case.

Technically, any variant is introduced by defining a UML interface, say I,
whose operations are the primitives offered by such variant. Moreover, UML-P2P
complements each of these interfaces with a UML class realizing it, say |-Class,
with the constraint that in each peer there is always exactly one instance of
I-Class. The UML description of the operations of I-Class (pre-post conditions,
activity diagrams, ...), which is part of the profile definition, gives an abstract
description of the middleware primitives; whereas the attributes of I-Class will
give an abstract view of the information on the network managed by the mid-
dleware and on the current activities of the middleware itself.

In Fig. 1! we present the interfaces CM and DOM of the two levels, while the
corresponding classes can be found in Sect. 1.2 and 1.3.

We want to stress that such classes are not intended to be actually imple-
mented, but are only a precise description of the middleware interfaces. There-
fore, we do not have any efficiency requirement to satisfy here, as this is not
part of a modeling process. In particular, there are attributes whose values cor-
respond to distributed computations and that would be, hence, too demanding
on performances, if we had to actually implement them.

1.2 Connection Manager (CM)

The connection manager provides primitives for connection and disconnection
to/from groups. Groups are logical communities of cooperating peers that have
to be realized on some physical network. We consider two network paradigms:

— wired networks, that are characterized by the fact that, disregarding failures,
each host is connected to the network till it explicitly disconnects.

— wireless networks, e.g., implemented via radio or infrared connections; changes
in the physical distribution of the machines in the space may cause the con-
nectivity to change without need for a conscious action from the involved
peers.

Correspondingly, we distinguish groups in wired and wireless and hence the
parameter of a (dis)connection implicitly determines the kind of connection.
The primitives of CM are the obvious ones:

join connects to the given group.
leave disconnects from the given group.
isConnected checks if there is an active connection to the given group.

The CM-Class In Fig. 2, we give the CM-Class extending the CM interface
from Fig. 1, where attributes and operations have been added to describe the
semantics of the operations of the interface. Note that all the added features are
protected (keyword #), that is they are accessible only from the class and its
specializations. This will be true also at the next level. We will use objects of
the auxiliary class GroupData to store the information on the kind of a group.
Thus, we also include such class in the picture.

For each group there is, obviously, a unique object of class GroupData corre-
sponding to it.

context GroupData inv:
GroupData.alllnstances -> forAll(GD|GD <> self implies GD.name <> self.name)

so that we can get the kind of a group from its name.

! The UML types OclType and OclAny correspond respectively to the set of all types
of a UML model and to the type of generic objects.

CM-Class

GroupData

connGr:Set(String)

wired:Boolean{frozen}
isWired(G:String):Boolean name:String
connMemb(G:String):Set(CM-Class)

Fig. 2. The Connectivity Class

context CM-Class::isWired(G:String):Boolean
pre: GroupData.alllnstances-> exists(GD|GD.name = G)
post: result = GroupData.alllnstances -> select(GD|GD.name = G).wired

The attribute connGr contains all the groups to whom the self is connected.

context CM-Class::join(G:String)
post: connGr = connGr@pre -> including(G)

context CM-Class::leave(G:String)
post: connGr = connGr@pre -> excluding(G)

The operation connMemb yields for each group the set of peers currently con-
nected; in particular the result is empty if the peer is not connected to that
group. For the wired groups the result corresponds to all the peers currently
connected to the group (that is, we assume wired groups to be deployed on a
connected network), while for the wireless case the result corresponds to all the
peers currently connected to the group within the range of the wireless connect-
ing device. The latter condition cannot be expressed in OCL, at this level of
abstraction, as we do not want to deal directly with data like distribution of
hosts in the space or power of the connecting signal. So we use natural language
to describe the result of connMemb(G) in the case when isWired(G) = false.

context CM-Class::connMemb(G:String):Set(CM-Class)
post: if connGr-> includes(G)
then
if isWired(G)
then result =
CM-Class.alllnstances-> select(P|P.connGr -> includes(G)) -> excluding(self)
else “result is the set of all the peers P in the connecting range of self s.t.
P.connGr->includes(G)"
endif
else result ->isEmpty
endif

We can state a few properties that we know to hold for connMemb in the case of
wireless groups: symmetry and the fact that each peer is visible on some group
only if it is connected to 1t. The same properties hold also for the wired case,
and, indeed, can be deduced from the definition of the operation.

context CM-Class inv:
connGr -> forAll(G| connMemb(G) -> forAll(P|
P.connGr-> includes(G) and P.connMemb(G)-> includes(self)))

Note that

P.connMemb(G) -> includes(P")
implies that

P.connMemb(G) = P'.connMemb(G)
only if

isWired(G)
holds. Indeed, in that case both P.connMemb(G) and P'.connMemb(G) are the
set of all the peers currently connected to G. But, if isWired(G) = false, then
the physical distribution of the peers may be such that for instance P’ 1s in the
range of both P and some other peer P” connected to the G, but P” is not in
the range of P. Therefore, in general, two peers connected to the same wireless
group may have different views of the group state.

The operation isConnected is true if and only if the peer is connected to the

group.

context CM-Class::isConnected(G:String):Boolean
post: result = connGr-> includes(G)

1.3 Distributed Object Middleware (DOM)

The DOM interface (see Fig. 1) is a specialization of CM, where the operations
to deal with the shared distributed object communities have been added. The
key point of our model is that each local object community is partitioned into
a private and, for each group G, a (possibly empty) local G-visible part (shortly
LVOC(G)). Then, the G-visible object communities local to P and to all the
other peers connected to P on some group G are ideally merged together in a
G-wirtual global object community (shortly VGOC(G)), representing the shared
data reachable by P as member of G at a given moment. A visual representation
of the partition of the object community of a sample system 1s presented in
Fig. 3. The system consists of 4 peers organized in 3 groups. The VGOC(C) is
different for peer 2 and peers 3 and 4, because the former is at the moment not
connected with such group.

The middleware has the absolute control of the visible object communities;
in particular it creates and destroys such objects through the primitives:

make adds a new object of the given type to the local community of visible
objects of the given group.
rm removes a given object from the local communities of visible objects.

VGOC (A) VGOC (B) VGOC (C) VGOC (C)

Y P ~ Y
) \ \ N4 N \ N
LVOC (A) LVOC (B) LVOC (A) Lvoc B)| [|Lvoc () LVOC (C) LVOC (C)
Private | | Private | | Private | Private
PEER1 PEER2 PEER3 PEER4

Fig. 3. Object Communities in a System

Visible objects can be accessed only through the middleware primitives, which
are variations on the notion of filtering a collection of visible objects to get a
set of objects of interest, apply some code to each of them and giving back the
resulting objects to the caller. Thus, they are based on the auxiliary classes of
Filter and Code that are both specializations of the (meta)class of the methods.

The elements of Code are the methods without parameters?. s.t., in their
body only public attributes, operations and methods of the owner class may
appear. Filter is a specialization of Code corresponding to those methods where
the result type is Boolean and that cannot have side-effects?.

Note that since Code and Filter elements must be statically correct in the
context of their owner class (that, in any use of a Code in a search, will be the
accessed visible object), in particular no references to the caller environment
may appear in them. This on one side allows (efficient) remote evaluation, and
on the other bans interlinks between private and visible communities (of different
groups) and among the communities local to different peers, as the users cannot
exploit (private) local object identities when assigning values to the attributes
of (possibly remote) visible objects through code execution.

The primitives to access visible objects are the following:

q&eG (for query&execute Globally) given a group g, a filter f and a code c first
selects the objects o in VGOC (g) for which the call o.f yields true. Then, it
collects the results of o.c for all such objects o, producing an object collection
oc. It yields as result a deep copy of all the objects in oc, in order to prevent
remote referencing.

q&el (for query&execute Locally) given a group g, a filter f and a code c first
selects the objects o in LVOC (g) for which the call o.f yields true. Then, it
collects the results of o.c for all such objects o, producing an object collection
oc, and yields oc (without making copies).

executeOn given a local visible object o and a code ¢ yields o.c (without making
copies).

2 Technically, it is a specialization of the Method metaclass of the UML metamodel,
where the unique parameter has kind out.
% Precisely, they are UML queries.

The middleware provides also tools to manage a publish and subscribe event
mechanism. The local private objects may subscribe to some event with their
middleware instance, that will provide to propagate the subscription to the other
instances. If an event is raised, then the middleware instance will notify it to all
subscribers (both in the same and in other peers).

In the UML-P2P setting an event is just a special data, characterized by a
name (a string). Technically, the events are defined by means of the stereotype
<<event>> that is any class specializing Event, given in Fig. 1. The subscrip-
tions to events are actually described in terms of event filters, that are filters
whose owner class is an <<event>>, and correspond to subscriptions to all the
events satisfying the filter. Let us briefly describe the primitives of DOM for the
event mechanism:

subscribe given a group g, an event filter ef and an object o registers the interest
of o to be notified whenever an event satisfying ef raises in the group g. The
effect of the notification of e is to produce the call o.handle(e).

unsubscribe given a group g, an event filter ef and an object o nullifies the effect
of the call subscribe(g,ef,0), if any, from that moment on.

publish given an event e and a group g raises e in g.

The DOM-Class Class It is a specialization of CM-Class and DOM, where the
(private) attributes and operations to deal with the shared distributed object
community have been added (see Fig. 4).

DOM-Class

#eventNot:Set(Notification)
#visltem:Set(Visible)

#Locltems, Globltems(G:String):Set(OclAny)
#locSub(G:String):Set(Subscription)
#globSub(G:String):Set(Subscription)
#q&e(F:Filter,C:Code, OC:Set(OclAny)):Set(OclAny)

Notification Subscription
Visible l -
theEvent:Event eventFilter:Filter
theGroup:String group:String theGroup:String
to:OclAny item:OclAny who:OclAny

Fig. 4. The Distributed Object Class and its Auxiliary Classes

10

The Visible Object Communities The middleware is responsible for the man-
agement of the local visible objects, providing primitives to create, destroy and
modify the objects in the local visible object community of each group. Each
peer, that is each instance of DOM-Class, contributes a set of objects to the
object community of each group, stored in the attribute visltem. Technically, the
visible objects are objects enriched by the information of their owning group, as
defined in class Visible.

The operation make(G:String, T:OclType):OclAny is defined by the following
method.

{ o = create(T);
v = create(Visible);
v.item = o;
v.group = G;
visltem = visltem-> including(v);
return(o);}

The operation rm instead is qualified by the following constaints.

context DOM-Class::rm(0O:OclAny)

pre: visltem.item-> includes(O)

post: O.oclType.alllnstances -> excludes(O) and
visltem.item = visltem@pre.item-> excluding(O)

The operation Locltems yields for each group the set of objects corresponding to
the visible objects of that group.

context DOM-Class::Locltems(G:String):Set(OclAny)
post: result = visltem-> select(l|l.group = G).item

For each group, the union of the sets of visible objects local to all the peers
currently connected is given by the operation Globltems®.

context DOM-Class::Globltems(G:String):Set(OclAny)
post: result = connMemb(G) -> iterate(P:CM-Class;
acc:Set(OclAny) = Locltems(G)| acc-> union(P.Locltems(G)))

The above constraint is an idealized description and we can expect it to hold in
practice only in those cases where the state of the group (both the connections

* In the constraint for operation Globltems, the OCL operation iterate is used. Its
general syntax is

collection->iterate(elem :Type; acc:Type = <expression> |
expression-with-elem-and-acc)

When the iterate is evaluated, first the accumulator acc gets an ini-
tial value <expression>; then elem iterates over the collection, the
expression-with-elem-and- acc is evaluated for each elem and after each
evaluation of expression-with-elem-and-acc, its value is assigned to acc.

11

and the local states of the individual peers) is sufficiently stable for the compu-
tation time to be irrelevant w.r.t. the changes. Indeed, the value of Globltems
corresponds to (and abstract from) a distributed computation: a visit of the con-
nected peers in any order collecting their local visible objects. The constraint
describe an ideal atomic computation at zero time, a view of the visible objects
at one instant of the network life, while the result in practice could be the union
of the views of the local visible objects of all peers taken in different points in
time. The possible discrepancy between the value of Globltems and the actual
global state of the network will be reflected at the user level by the results of
the global query operation, that is expressed in terms of Globltems, but will be
computed in all realistic implementation as a serialization of local queries on all
the connected peers. However, we argue that in most cases this abstraction is
close enough to the reality for the standard designer to be able to work on it.
We also plan to provide a further extension of the middleware hierarchy with a
“more realistic” DOM-Class class where the global queries are described directly
in terms of the local ones.

context DOM-Class::executeOn(0O:OclAny,C:Code):Set(OclAny)
pre: visltem.item-> includes(O)
post: result = O.C

Searching Object Communities Let us first see the q&e primitive, that is pri-
vate and instrumental to the description of both local and global query. A call
q&e(f,c,oc) is statically correct iff the owner of ¢ has a type conforming to the
type of the owner of f, i.e., iff c.owner.ocllsKindOf (f.owner.oclType) holds.

context DOM-Class::q&e(F:Filter,C:Code, OC:Set(OclAny)):Set(OclAny)
post: result =
OC-> select(ocllsKindOf (F.owner.ocl Type)) -> select(O]O.F()).C()

Using q&e, we can describe the searches operations offered by the interface.

context DOM-Class::q&eG(G:String, F:Filter, C:Code):Set(OclAny)
post: result = q&e(F,C,Globltems(G)).deepCopy()

where we assume each user defined class to have an operation, deepCopy, creating
a copy of the recipient and, recursively, of its object attributes, if any.

context DOM-Class::q&el (G:String, F:Filter,C:Code):Set(OclAny)
post: result = q&e(F,C Locltems(G))

The Event Mechanism We will use the auxiliary class Subscription, presented in
Fig. 4. The elements of Subscription must satisfy the static requirement that the
owner type of eventFilter is an <<event>>.

The sets of currently active local and global subscriptions are stored in the
protected attributes locSub and globSub. If a peer P has an active local subscrip-
tion for an event, then any other connected peer must have a subscription for
the same event and P, and vice versa, as stated by the following constraint.

12

context P:DOM-Class inv:

P.locSub-> forAll(ls|P.connMemb(ls.theGroup) -> forAll(P'| P'.globSub->

exists(gs| gs.eventFilter = Is.eventFilter and gs.theGroup = Is.theGroup and gs.who = P)))
and

P.globSub -> forAll(gs|P.connMemb(gs.theGroup) -> includes(gs.who) implies
gs.who.locSub-> exists(Is| gs.eventFilter = Is.eventFilter and gs.theGroup = Is.theGroup))

This condition abstractly describes the subscription propagation among the con-
nected peers without imposing a particular reconciliation policy.
The local effect of a subscription is adding a new local subscription to locSub.

context DOM-Class::subscribe(G:String, EF:Filter,0:OclAny)
post: locSub-> select(ls|ls.eventFilter = EF and Is.theGroup = G).who-> includes(O)

The effect of an unsubscribe call is to remove the caller from the list of the local
subscribers.

context DOM-Class::unsubscribe(G:String, EF:Filter,0:OclAny)
post: locSub = locSub®@pre-
(locSub@pre -> select(ls|ls.theGroup = G and Is.eventFilter = EF and Is.who = O))

Due to the class invariant requiring a synchronization among the lists of local
and global subscriptions of the connected peers, the above constraint has also the
effect of removing the peer where the unsubscriber is resident from the list of the
global subscriber of all currently connected peers (if this is the only subscription
for that event filter) and of all the other peers as soon as they get connected.

Analogously to the subscription, the middleware is also storing a list of no-
tification messages, eventNot, with events that have been raised and subscribers
(both local objects and other middleware instances) not yet delivered, using the
auxiliary class Notification, presented in Fig. 4. The effect of publishing an event
e is changing the state of eventNot, by adding a Notification, n, having e as
theEvent for each subscriber. To get the set of the subscribers, we have to find
the set of subscriptions for the event filters that are satisfied by e.

context DOM-Class::publish(G:String, E:Event)

post: eventNot-> select(n|n.theEvent = E and n.theGroup = G).to-> includesAll
(locSub -> select(ls|E.(Is.eventFilter)() and Is.theGroup = G).who-> union
(globSub -> select(gs|E.(gs.eventFilter)() and gs.theGroup = G).who

Thus, each event raising creates a set of elements in eventNot. Then, we have to
state that each of them is eventually dispatched to its addressee, corresponding
to a call of the predeclared operation handle, and removed from the list or, if
the addressee is a local object that’s not anymore interested in such events just
dropped from the list. Unfortunately this condition requires temporal logic and
cannot, hence, be stated as an OCL constraint. At a greater level of detail, we
could describe this requirement through the statemachine of an active object,
part of the middleware, but here we prefer to state its abstract properties.

for each n in eventNot

13

global dispatch
If connMemb(n.theGroup) -> includes(n.to)
then eventually
n.to.eventNot ->includes(n) and
not eventNot -> includes(n)

local dispatch
If locSub -> select(Is|n.theEvent.(Is.eventFilter)() and
n.theGroup = Is.theGroup).who -> includes(n.to)
then eventually
“the call n.to.handle(n.theEvent) will be issued”
and not eventNot -> includes(n)

unwanted notifications
If Locltems-(locSub -> select(Is|n.theEvent.(Is.eventFilter)() and
n.theGroup = Is.theGroup).who) ->includes(n.to)
then eventually
not eventNot -> includes(n)

2 UML-P2P: a Middleware-Oriented Profile

So far we have discussed the nature of the middleware on which the applica-
tion under development will be based and its description in our profile. In this
section, we present the structure of a UML-P2P model. As stated in the intro-
duction, such a model consists of one Peer Diagram, one Architecture Diagram,
one Network Deployment Diagram and, for each peer type present in the Peer
Diagram, one Peer Model.

In the following sections we will use as running example to present the use of
UML-P2P the design of a distributed mobile application for handling the orders
of a manufacture company: DORDERS. Such company stores the products in
a few different warehouses, and handles the orders in some different branches.
To send the invoices to the clients the company uses special mail centers that
generate paper mail starting from electronic data. So far, the company network
is wired, so that all the nodes are always available. But, the orders are collected
by travelling salesmen, each of them equipped with a portable computer that
may be connected to the company network by means of a modem. The salesmen
are expected to occasionally connect to the network to transmit the orders, to
download the updated catalogs, and to verify the availability of the products in
some warehouses and the state of old orders. Moreover, salesmen may exchange
documents about their trade union, when they meet, by setting up an ad hoc
network by using the infrared port of their computers.

2.1 Peer Diagram

Usually peer-to-peer distributed systems consist of several peers (hosts) coop-
erating and sharing the common data, with different capabilities, that is, peers
are typed. Typing the peers by means of a user-defined class-hierarchy, hence,
allows the user to focus on each kind of peers at a time.

14

The Peer Diagram presents the types of peers used in the system and the
needed cooperations among peers of the various types. The intuition behind the
notion of cooperation is that each peer type needs (may need) some resources,
made available by some other peer type sharing some group membership. We
make explicit this dependency by the cooperation relation.

We will use two stereotypes:

<<peer>> (stereotype of Class) A <<peer>> is a class without attributes
and operations.

<<coop>> (stereotype of Association) A <<coop>>> is an association whose
ends must both be of the stereotype <<peer>>, that must be navigable
in both directions and that has no multiplicity constraints. It is visually
depicted by a thick line.

In a Peer Diagram only classes that are of the stereotype <<peer>>, and asso-
ciations that are of stereotype <<coop>> may be used.

We present in Fig. 5 the Peer Diagram of our running example. The peers
of type Branch represent branches, those of type WareHouse the locations where
the products are kept, those of type MailCenter the locations where paper mail
is generated and sent, and finally those of type Seller the travelling salesmen.
The cooperation connection between Seller and Branch, for instance, captures
our intuition that salesmen need the branches to get the product catalog and,
vice versa, the branches collect the orders to be processed from the salesmen.

<<peer>>
Branch

| <<peer>> <<peer>> <<peer>>

1 Seller WareHouse MailCenter

Fig.5. DORDERS: Peer Diagram

2.2 Peer Model

A Peer Model describes the software required by the designed system on the
peers of a given type. Hence, in a UML-P2P model there will be a Peer Model
for each peer type present in the Peer Diagram.

Form of a Peer Model A Peer Model for a type of peers belonging to groups
G1, ..., Gk consists of the following parts, see Fig. 6:

15

G1: kind1 Gk: kindk
1 1
Visiblel Visiblek
1V 1V
. Middleware) .
GlobalViewl GlobalViewk
1 \ \4
Private

Fig. 6. Structure of a Peer Model

— a denotation of the used middleware, that is a ClassifierRole for one of the
interfaces defined in Sect. 1. This choice, fixing the used middleware version,
affects the static correctness of the calls to the middleware primitives in the
other parts of the model.

— for each group in G1, ..., Gk, a package named as the group itself with the
qualification of the group kind (which may be either wd for wired or wless
for wireless).

Each such package, corresponding to a group G, contains:

e a package Visible that is a self-consistent class diagram describing the
local visible object community LVOC(G).

e a package GlobalView that is a class diagram describing a view of the
virtual global object community VGOC (G). Since the local visible object
community is part of the virtual global object community, the package
Visible is imported by GlobalView (visually depicted by a dashed arrow)?).

— a package Private that describes the part of the system resident on the peers
of that type. As the (local and global) visible communities are there to be
used in the private part, the packages corresponding to the various groups
are imported by Private. The class diagram in Private may contain active
classes and statecharts to model their behaviour.

Peer Model for Seller As an example we present in Fig. 7 the Peer Model for
the peer type Seller corresponding to the portable computers of the travelling
salesmen. We will also take advantage of the example to illustrate some syntactic
sugar provided by our profile.

We have collected in Appendix A the models of some of the other peer types
of our running example.

Here we use a simplified notation to present the visible and the global view
packages of a group: we depict their contents in two compartments within the

5 Here for simplicity we drop the decoration <<import>> over it.

16

icon of the group, instead of enclosing them in the package icon, with the visible
package above and the global view below.

Moreover, we will use the following simplified notation to write filters, codes
and events. A filter F is textually written filter on T: cond where T is F.owner and
cond is F.body. Analogously a code C is textually written do A on T returning RT
where A is C.body, T is C.owner, and RT is the return type of C. Whenever T is
equal to RT, the latter is omitted, and so the code is simply written do A on T.
Finally, an event E is textually written E.ename(E.Al,... E.An) where AL, ...,
An are the attributes different from ename of the class of E.

Firm: wd

New_Order : DOM

handled: Boolean = False
{True when the order has been handled.}

ﬁ‘let crds = Store_Card.Allinstances@GV(Firm) in Trade: wless

crds ->forall{ sc, sc’| sc <>sc’ <=>sc.code <> sc'.code }}

Memo
Store_Card Product text: String
code:_Stlring code: String Order when: Date
quantity: Integer updateDate: Date | | ... | | | e

Sell(sold_q: Integer) | |

Private v/ Vi

Activities
last_Cat_Update: Date

update_Catalog()
replace_Cat(pColl:collection(Product))
make_Order(...)

check_Order(...)

""""" check_Product_Availability(P:Product): Boolean
browse_Catalog()

get_news()

produce_new(M: Memo)

Fig. 7. Seller Peer Model

The sellers are members of two groups: Firm (wired) for cooperating with
the other parts of the company, and Trade (wireless) used for cooperation with
members of the trade union.

An object of the active class Main takes care to interact with the salesman
through a visual interface and to call the operations of Activities corresponding
to the most relevant activities, which are defined and commented below.

17

“update_Catalog” is defined by the method described below, which uses the
primitives of the middleware, from both the connectivity layer (as join) and the
higher-level (as q&eG) to retrieve the up-to-date information on the products
from the network. In this paper we simply define a method by giving its body,
as a UML note, by using UML actions.

{ if not DOM .isConnected(Firm) then DOM join(Firm);
pColl = DOM.q&eG(Firm,
filter on Product: self.updateDate > [[self.last_Cat_Update]],
do return(self) on Product);
if pColl -> notEmpty then replace_Cat(pColl);
self last_Cat_Update = today;}

Notice that in the filter above the expression self.last_Cat_Update is enclosed
by double square brackets. The meaning of such notation is that the enclosed
expression will be evaluated by the caller, that is an object of class Activities,
instead than being remotely evaluated on some object of class Product, as it is
the case for self.updateDate. This notational facility is provided by the UML-P2P
profile to allow in the body of a filter some subexpressions that have to be
evaluated in the caller environment before moving the code (or the filter) to the
possibly remote object for execution (filtering). The only restrictions are that
such subexpressions are enclosed by [[double square brackets]] and that their type
must be a datatype. Technically, this just corresponds to replacing in each call
of the middleware primitives the local subexpression with another expression
with the same value, say V, but without any reference to the caller state. If the
type of the expression is a predefined type this is trivial; instead if it is a user
defined datatype, then it is sufficient to create a copy of V. Obviously, the same
notation will be used for the codes and the events as well.

The auxiliary operation replace_Cat, substituting the new for the old product
information in the local mirror of the catalog, is instead abstractly modelleld by
the following postcondition.

context replace_Cat::pColl:Collection(Product))
post: Product.alllnstances@P = pColl -> union(
Product.alllnstances@P@pre ->> select(p | pColl.code -> excludes(p.code)))

Notice that above we needed to qualify the OCL operation alllnstances to
refer to those in the local private object community. Indeed, since the object
community of a distributed system is partitioned by our coordination model into
a plethora of communities, all the UML (OCL) constructs referring to “the object
community” could intuitively become ambiguous in this context. Consider, as
above, the construct alllnstances. It could be interpreted as “all the instances in
the distributed system”, or “all the visible instances of some group”, or “all the
private instances” . To avoid any possible ambiguity, we introduce postfix markers
(analogously to @pre in OCL postconditions) to qualify on which community
we are operating. Thus, we will have that alllnstances@U are all the instances
in the universe (that is in the distributed system disregarding their physical

18

location), alllnstances@GV(G) are all the (currently) visible instances in group
G, alllnstances@LV(G) are all the local visible instances of group G, and finally
alllnstances@P are all the local private instances. In UML-P2P model we require
each occurrence of a construct referring to the object community to be qualified
by one of the above. Of course, not all the qualifications do have sense.

The GlobalView package relative to the group Firm says that the information
on the products (i.e., the catalog) are made available by other peers. In general,
catalogs are provided by peers of type Branch, but, following the peer-to-peer
philosophy, the actual location of an external resource is irrelevant. Indeed, our
notation does not require to put this info in the model of Seller. The consistency
verification of the overall model will successfully check that the peers of type
Branch, belonging to the group Firm, make available objects of class Product,
whose definition matches the one present in the global view package of Firm.

The operation make_Order(...) is defined by the following method

{ NO = make(Firm,new_Order);
executeOn(NO ,do self.handled = false; ... on new_Order}

and corresponds to add a new element to LVOC(Firm), describing the order
collected by the salesman (the values of its attributes are set by using the prim-
itive executeOn, and it would be incorrect, though harmless, to use the direct
assignment NO.handled = false); such object is available to all the members of
the group Firm.

The sellers belong also to the wireless group Trade, that they will use to
exchange information about the trade union activity, when they meet, by setting
up an ad hoc network, using the infrared port of their computers.

The operation get_News is realized by the following method, and just corre-
sponds to copy all the available memos on the salesman portable computer.

{ if not DOM.isConnected(Trade) then DOM join(Trade);
ms = q&eG(Trade,
filter on Memo: self.date > ..., do return(self) on Memo);
.. save ms on the private community ...;

bOM.Ieave(Trade)}

The operation produce_New simply corresponds to create a copy of a private
object of class Memo in LVOC (Trade).

The definition of the other operations of the class Activities can be found in
Appendix A, together with the Peer Models of the other types.

Static correctness of a Peer Model in isolation Following the intuition
that the objects in the visible communities are data manipulated by the system
through the middleware, all the classes in the packages Visible and GlobalView,
must be passive, and no calls of the middleware primitives are allowed in Glob-
alView, nor in Visible for some group G, but those for the publish primitive, with
G as first parameter.

19

Analogously, since we have the intuition that the event mechanism provided
by the middleware is to be used by the local activity only to monitor the visible
and the global virtual object communities, the objects of the classes in Private
may use all the operations of the picked middleware variant, except publish. They
may subscribe to all events of classes listed in the package of some group and
event classes may appear only in the Visible and in the GlobalView, to describe
which are the events that may be published by the visible objects.

The calls to the middleware primitives have to satisfy some quite obvious
static correctness as well. For instance subscribe(g,ef,0) is correct only if the
owner of ef is of event type, o is the caller and the class of o has a handle
operation with one parameter of type Event. Analogously, unsubscribe(g,ef,0) is
correct only if the owner of ef is of event type and o is the caller. Since the
last argument of any subscribe (unsubscribe) call made by some object will be
the objet identity (i.e., we do not allow an object to subscribe the interest of
another object), such calls will be written in any UML-P2P model without the
(un)subscriber argument and will be expanded in calls with the self as object
argument.

Queries as well have to satisfy some consistency requirement among their
parameters; that is, q&eG(g,f,c) (q&el(g,f,c)) is statically correct only if the
class of the owner of f is a specialization of the class of owner of ¢ (so that
the filtered objects are able to execute the code) and both classes are in the
GlobalView (Visible) package of g. Moreover, executeOn(o,c) is statically correct
only if the class of o is a specialization of the class of the owner of c.

Obviously, the calls of the middleware primitives present in the private part
acting on the local visible or on the global community of some group must be
correct w.r.t. their descriptions given in the respective packages. For example,
it is possible to subscribe to some event in a group G only if the event class is
present in the G package, and to leave and to join only the groups, for whom a
package belongs to the model.

Notice that the designer has to explicitly mention in the GlobalView only
those classes and constraints that (s)he is going to use. But, in most of the
cases, the VGOC will be larger than it could be inferred from the GlobalView.

Static correctness of the Peer Model family The Visible packages of all
the Peer Models, disregarding their group, must be pairwise consistent, that is,
classes, associations and events with the same name appearing in two of them
must be defined exactly in the same way in both. This condition allows us to
define a “class diagram for the global virtual object community”, say GVCD.
Hence, for each group G, the restriction of the GVCD to those elements present
in at least one Visible package for G of some Peer Model yields a “class diagram
for the global virtual object community of group G”, say GVCD(G).

For each group G, the GlobalView of each Peer Model must be consistent with
the GVCD(G) defined above, that is all classes, associations and event in the first
must be present in the latter and defined exactly in the same way. Moreover,
the matching class (association, event) in the GVCD(G) must be reachable from

20

a peer of such type by using the <<coop>> association. In this way we can
check, at least at the peer type level, that the assumptions of any peer on the
cooperative effort of the other peers are valid.

2.3 Architecture Diagram

The Architecture Diagram describes the structure of the designed system by
saying which are the peers composing it and how they are organized in groups.
The peers, which are instances of the peer classes presented in the Peer Diagram,
are represented as ClassifierRole.

A group G is represented by a line to whom its members are connected. If G is
wired, then the line is a black segment, else a shadowed rectangle with rounded

angles, as in the following picture.

G

B1.Q Bm: Q

2] 7—F
L?l

in

wired group wireless group

Whenever we know that a peer is permanently connected to a group G (i.e.,
it joins G immediately after being created and never leaves G), we make thick
the line connecting it to the group. For example, in the above pictures, all peers
of type Q will never leave the group G.

We further assume that all peers composing the designed system must appear
in the Architecture Diagram. If their number is not determined a priori, we
can attach to the object icons multiplicity indicators limiting the number of
instances. Thus, we can express precisely the architecture of the system by means
of this diagram.

If the Peer Diagram states a cooperation between two peer types, say P1 and
P2, then for each instance of one of them there is an instance of the other in the
Architecture Diagram s.t. they are members of a common group. This condition
guarantees that the system architecture is able to support all the cooperations
required in the Peer Diagram.

In Fig. 8, we present the Architecture Diagram for the DORDERS system.
In this picture we use the multiplicity annotations to state that there are 98 mail
centers and from 1 to 1000 sellers.

2.4 Network Deployment Diagram

The Network Deployment Diagram is a stereotype of “instance level collabo-
ration diagram” describing which kind of network will be used to realize the
designed system, and how the peers composing the system (defined in the Ar-
chitecture Diagram) are deployed on such network. The objects correspond to

21

98
M(j): MailCenter

Mail | |
| B1: Branch | | B2: Branch | | B3: Branch | | B4: Branch | Trade
Firm |
Wi1: W2: W3: 1.. 1000
WareHouse WareHouse WareHouse S(i): Seller

Fig. 8. DORDERS: Architecture Diagram

the peers and are instances of the peer types, presented in the Peer Diagram. A
stimulus between two peers correspond to the existence of a network connection
between them. We consider three kinds of connections:

1. persistent during the life of the peers and unbreakable by them:;

2. persistent between an explicit connection and disconnection decision of a
peer;

3. possibly available, but not guaranteed, between an explicit connection and
disconnection decision of a peer, e.g., a wireless network.

Clearly, here we do not consider the fact that a connection may be always broken
due to a failure. Those three kinds correspond to three stereotypes of stimuli and
are visually depicted by a thick line, a normal line and a dashed line respectively.

We further assume that all peers composing the designed system must appear
in the Network Deployment Diagram. If their number is not determined a priori,
we can attach to the object icons multiplicity indicators, as in the Architecture
Diagram.

In Fig. 9, we present the Network Deployment Diagram for our running
example. The underlying network consists of stable connections among all the
branches and all the mail centers (e.g., by Internet). The branches are also
variously connected by some corporate net to the warehouses. Instead, the sellers
may dynamically connect to the branches, e.g., by a modem, and to other sellers
by an infrared connection.

to present in a

As a notational compact way a
shortcut, we draw completely con-
nected graph | &

as

For any group present in the Architecture Diagram, its members should be
connected in the Network Deployment Diagram by a chain of communication
links of the appropriate kinds. This condition guarantees that the deployment of

22

98 1..1000
M(j): MailCenter S(i): Seller |--

N

| B1: Branch | | B2: Branch | | B3: Branch | | B4: Branch

W1: W2: Wa3:
WareHouse WareHouse WareHouse

Fig. 9. Network Deployment Diagram

the system over some network is able to support all the groups activities required
in the Architecture Diagram.

For instance, in our example the branch B4 is connected to other members
of the group Firm, those of class Warehouse, by a chain of links going through
some other branch.

3 Conclusions and Future work

From the experience of some project dealing with significant case studies, we
have been impressed by the gap existing between the proposed rigorous software
development techniques and the use of the various kinds of middleware in the
industrial practice. The gap has been noted also in the literature ([4]), where the
use of middleware-oriented methods in software engineering has been advocated.
With that goal in mind, we have presented a UML profile, UML-P2P, for a visual
notation supporting the development of software for a distributed and mobile
environment based on the use of a specific peer-to-peer middleware, inspired by
PeerWare [3].

The idea of representing the middleware as an object is general and powerful
enough to be reused whenever designing a UML profile to support a development
process based on some middleware. Another benefit of this approach is that the
description of the middleware class plays for the profile user the role of a reference
manual, in the very language the user is familiar with.

We plan to investigate how to develop UML profiles for other middlewares
following the ideas of this paper, that require to find out

— the primitives provided by the middleware;

— a precise but quite abstract description of their arguments;

— a precise but quite abstract description of the network as perceived by the
middleware users.

23

For example, for the case of Jini, we should characterize and define using UML
the “Jini services” and the requests for a service of some kind.

In the literature there are already proposals of UML profiles for supporting
the use of a particular coordination model for distributed systems, see e.g., [1] for
the case of tuple spaces. Other attempts, in the literature, at developing UML
notations for supporting the use of a specific middleware concerns CORBA; cur-
rently an official proposal is under discussion at the OMG, see [9]. The main
difference of [9] with our approach is that it gives a UML way to define the
interfaces written using CORBA IDL, whereas the other aspects of the system
should be modelled as usual when using UML. We think that if we apply our ap-
proach to CORBA, perhaps we would get a more abstract view of the “CORBA
components” and a notation taking care of the design of the whole system; thus
we would consider also some methodological aspects of its use.

In the future we plan also to extend the UML-P2P notation by attaching some
information concerning the “quality of service”, as for instance the probability
that a peer is reachable from another one, thus allowing us to make performance
analysis of the designed system.

Acknowledgments We acknowledge the benefits of many discussions with the
colleagues of the Saladin project, and especially the designers of PeerWare, G.P.
Cugola and G.P. Picco.

References

1. E. Astesiano and G.Reggio. UML-SPACES: A UML Profile for Distributed Sys-
tems Coordinated Via Tuple Spaces. In Proc. ISADS 2001. IEEE Computer
Society Press, 2001. Available at ftp://ftp.disi.unige.it/person/ReggioG/
AstesianoReggioOOa.pdf.

2. J. Charles. Middleware Moves to the Forefront. Computer, 32(5), 1999.

3. G. Cugola and Gian P. Picco. PeerWare : Core Middleware Support for Peer-to-
Peer and Mobile Systems. Manuscript, submitted for publication, 2001.

4. W. Emmerich. Software Engineering and Middleware: A Roadmap. In A. Finkel-
stein, editor, The Future of Software Engineering. ACM Press, 2000.

5. G.Reggio, M. Cerioli, and E. Astesiano. UML-P2P: A Visual Notation
for the Development of Peer-to-Peer Mobile Applications. Technical Re-
port DISI-TR-01-54, DISI, Universita di Genova, Italy, 2001. Available at
ftp://ftp.disi.unige.it/person/ReggioG/ReggioEtA1101a.pdf.

6. Sun Microsystems. JavaSpaces Specification. Technical report, Sun, 1999.

7. A. Murphy, G. Picco, and G-C. Roman. Developing Mobile Computing Applica-
tions with Lime. In M. Jazayeri and A. Wolf, editors, Proceedings of the 22th In-
ternational Conference on Software Engineering (ICSE 2000), Limerick (Ireland).
ACM Press, 2000.

8. OMG. White paper on the Profile Mechanism - Version 1.0.
http://uml.shl.com/u2wg/default.htm, 1999.
9. OMG. UML Profile for CORBA, Version 1.0.

http://www.omg.org/cgi-bin/doc?ad/00-02-02.pdf, 2000.

24

10

11.

12.

13

. G. Reggio, M. Cerioli, and E. Astesiano. Towards a Rigorous Semantics of UML
Supporting its Multiview Approach. In H. Hussmann, editor, Proc. FASE 2001 -
Fundamental Approaches to Software Engineering, number 2029 in Lecture Notes
in Computer Science. Springer Verlag, Berlin, 2001.

M. Richters and M. Gogolla. Validating UMIL Models and OCIL Constraints. In
S. Kent A. Evans and B. Selic, editors, Proc. UMI 2000, Lecture Notes in Com-
puter Science. Springer Verlag, Berlin, 2000.

UML Revision Task Force. OMG UML Specification, 1999. Available at
http://uml.shl.com.

. P. Wyckoff. TSpaces. IBM Systems Journal, 37(3), 1998.

25

A Example DORDERS

Peer Model for Seller(completion) The operation check_Order is realized by
the following method, and just corresponds to search particular elements of the
global virtual object community, and to show them on the salesman portable
computer.

{ if not DOM.isConnected(Firm) then DOM join(Firm);
oColl = q&eG(
filter on Order: self.date = ... and self.code = ... and ...
do return(self) on Order);

.. show by a visual interface oColl ...}

The operation check_Product_Availability is quite similar and is defined by:

{ if not DOM.isConnected(Firm) then DOM join(Firm);
intColl = q&eG(Firm,
filter on StoreCard: self.code = [[P.code]],
do return(self.quantity) on StoreCard returning Integer);
return((intColl ->Sum) > 0);}

Peer Model for Branch The peers of type Branch correspond to the various
branches of the company. Each branch takes care of different kinds of products,
and must make available the current catalog of its products and to retrieve and
process the orders corresponding to them. The orders are retrieved from the
peers corresponding to the salesmen, when they are connected to the company
network. Then, if the products are available, they are sent to the client, and by
using the mail centers a paper invoice is generated and mailed to it.

Notice that these peers may handle events raised in the group Firm, and that
they may raises events for the members of the group Mail. Clearly the operation
handle needed to handle the events is implicitly defined for any class appearing
in the peer model; moreover on the transitions of the statecharts we simply write
the UML-P2P event E, and not the UML event handle(E). The peer model for
Branch is reported in Fig. 10. In this case, because the package Visible for the
group Mail is empty, the corresponding slot is empty.

We design the behaviour of the elements of the active class Order_Handler
by the statechart reported in Fig. 11, while we report and comment below the
operations of the auxiliary static classes Retriever and Invoicer. Instead we do
not further detail the class Catalog_Handler.

The operation retrieve_Orders is defined by the following method.

{ noColl = q&eG(Firm
filter on New_Order: self handled = false and
[[self.own_Products]] -> includes(self.code),
do self.handled = true; return(self) on new_Order);
while (noColl -> notEmpty) do

26

Firm: wd

Product
code: String
updateDate: Date

crds -> forall{ sc, sc’

dlet crds = Store_Card.Alllnstances@GV(Firm) in

sc <> sc’ <=> sc.code <> sc’.code } }

Sell(sold_qg: Integer)

New_Order

handled: Boolean = False
{True when the order has been handled.}{

Store_Card Changed_Quantity Mail: wd
code: String <<event>> o
quantity: Integer code: String coovents

zip_Codes: Collection(String)

Invoice

tooMany()

NO: New_Order;

retrieve_Orders(ZS: Collection(String))

Private \V \Y
Retriever Catalog_Handler Invoicer
noColl: Collection(New_Order); O: Order

oCll: Collection(Order)

invoice_Orders()

Order_Handler

ownProds: Collection(String)

Fig. 10. Branch Peer Model

Changed_Quantity(p)/
11.Invoice_Orders

e

/ R1 = create(Retriever);
11 = create(Invoicer);

subscribe(Changed_Quantity(p) and [[self.own_Prods]] -> includes p);

after 11 hours/R1.retrieve_Orders(ownProds)

Waiting

\E/aﬂer 12 hours/ 11.invoiceOrders

Fig. 11. Behaviour of Order_Handler

27

{NO = noColl first;

O = make(Order);

executeOn(O,do self.code = [[NO.code]], self.status = Pending, ... on Order);
noColl = noColl -> excludes(NO)}

and Invoice_Orders by

{ oColl = q&el(
filter on Order: self.status = Pending, do return(self) on Order);
while (oColl -> notEmpty) do
{ O = oColl first;
sc = q&eG(
filter on Store_Card: self.code = [[O.code]],
do if self.quantity > [[O.quantity]] then self.Send([[O.quantity]]) on Store_Card
| = make(Invoicer);
executeOn(l,do self.... = ...; ..., self.tooMany on Invoicer)}}

The method associated to the operation tooMany of Invoicer is defined as
follows, and takes care to raise the event Get_Mail(zips) whenever there are too
many invoices waiting to be mailed:

{ let invs = Invoice.alllnstances@GV(Mail) in
if invs ->select{ |I' | I'.handled = false } ->size > 1000 then
publish(Get_Mail(invs.zip));}

Get_Mail
<<event>>

zip_Codes: Collection(String)

: DOM

Invoice

tooMany()

Private Vi

Doer Mailer

retrieve_Invoices(Collection(String)) my_zips: Collection(String) § -

Fig. 12. MailCenterPeer Model

Peer Model for MailCenter A mail center is a plant of the Mail Service
able to generate paper mail starting from electronic documents; we present the
corresponding Peer Model in Fig. 12.

28

e N
D1 = create(Doer);
GetMail(zips)/ subscribe_G(EX = GetMail(zips) and my_zips -> includes zips)
D1.retriev_Invoices(my_zips)
Waiting
after 12 hours/ D1.retrieve_Invoices(my_zips)
N J

Fig. 13. Behaviour of Mailer

We design the behaviour of the elements of the active class Mailer by the

statechart reported in Fig. 13. The method associated with the operation re-
trieve_Invoices of the auxiliary class Doer is defined below.

{ iColl = q&eG(
filter on Invoice: self.handled = false and
[[Mailer.my_zips]] -> meet self.zip) -> notEmpty,
do self.handled = true; return(self) on Invoice
while (iColl -> notEmpty) do
{l = noColl first;
... generate paper invoice from | ..;

iColl = iColl -> excludes(1)}}

