
�

�

�

�

? ? ? ? ?

? ?

email smolcs@disi.unige.it

The Reference Manual for the SMoLCS

Methodology

Version 4.2 { 2/20/95

G. Reggio { D. Bertello { A. Morgavi

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a di Genova { Italy

This work has been supported by a grant ENEL/CRA (Milano Italy) and by \Progetto Finalizzato

SistemiInformatici e Calcolo Parallelo" of C.N.R. (Italy).

SMoLCS is a formal algebraic speci�cation methodology for dynamic systems, i.e. for

systems evolving along the time. This reference manual for SMoLCS is intended for

users of di�erent training as could be found in an industrial environment; thus it is \self-

su�cient", i.e. it contains all notions needed for understanding such methodology. The

principles and the fundamental ideas of SMoLCS are formally introduced in [, , , , ,

,], here such ideas are presented in a more immediate form trying to isolate the most

formal parts.

In the �rst section we introduce the algebraic speci�cations of data type, starting

from the concept of concrete data type formalized as algebra on a signature, until to the

speci�cation at di�erent levels of abstraction throughout the formalization always more

precise of the properties of the data type.

In the second section we illustrate the use of labelled transition systems for modelling

dynamic systems, also structured ones.

In the third section we introduce the speci�cations of dynamic systems, starting from

the dynamic algebras integrating the concept of abstract data type with that of labelled

transition system, using also temporal combinators for formalizing abstract properties

on the activity of the systems and the concept of entity for formalizing the structural

properties of dynamic systems.

The document is organized as follows:

the fundamental concepts are introduced using simple examples, for allowing a more

easy understanding;

the precise de�nitions formalizing them are reported in �gures, for isolating them

in the text and for allowing to exclude them at a �rst reading, moreover

1

�

�

�

n

n

n

partial

n

n

n

n

Version 4.2 { 2/20/95

0

0

+

1

1

1

1

1 2

1 2

1 2

1 2 1 2

1 2

1 2 1 2

?

Mathematical notations

{

{

{

{

{

{

{

�

�

2

[

�

2 2

[

f g � � �

� f g

�

f g

f g

! !

� � � !

� !

�

� ^ _ : � ^

_

:

�

A B

A A

A B A B

A B

A B

A B

A A A

A A A A

A A

S A A

M A A

A B A B

A B

A A B

A A

B

A A B

a a

a; b a b

n : : : n

; ; ; ;

; ; ; ;

F : : :

F x ; : : : ; x e

: : :

x : : : x

e

x x e

b b

b b b b

b b b b

b b b b

2

there are more complex complete examples, for clarifying and further depthening

such concepts.

The examples are given using the speci�cation language associated with the method-

ology presented in [].

In the following we briey report the main mathematical

notations used in this manual.

Let and be two sets:

means that belongs to the set ;

denotes the union between the set and the set , i.e. the set whose

elements belong either to or to ;

denotes the cartesian product of the two sets in such order, i.e. the set

of the pairs () s.t. and ;

denotes the set of all streams (�nite sequences) on , i.e., the set ,

where = � (� is said empty stream) and for 1 = ,

times; moreover the set of nonempty streams � is denoted by and

the stream concatenation is denoted by \ ";

() denotes the set of the �nite sets of elements of ;

() denotes the set of the �nite multisets of elements of , i.e., �nite sets

with possible multiple occurrences of the same element (formally de�ned by

means of a molteplicity function). For example, 1 1 4 1 4 is a multiset with

3 occurrences of 1 and 2 occurrences of 4 and is equal to 1 1 1 4 4 ;

() [()] denotes the set of the total [partial] functions from

into .

:

() =

denotes the function from the cartesian product of the sets , , into the set

, de�ned by the law associating with each tupla , , the value represented

by the expression .

Notice that it is possible to denote also functions with mix�x syntax; for example

the in�x binary function \@" is denoted by @ : and its association

law is given in the form @ = .

IN denotes the set of the natural numbers (with their structure, when it is needed).

, , , denote the logic combinators: conjunction (is true whether

both and are true), nonexclusive disjunction (is true whether either

or is true, also both), negation (is true whether is false) and implication

(is true whether either is false or is true).

{

{

{

{

{

{

{

{

�

�

� �

� �

0 0

Version 4.2 { 2/20/95

1.1 Concrete data types as algebras

1 Algebraic speci�cations of data types

concrete data type

SUCC

SUCC

PUT

PUT

GET

GET

�

[f g

[f g

�

2 [f g

2 [f g

�

[f g ! [f g

[f g � [f g ! [f g

[f g � [f g ! [f g

�

[f g ! [f g

�

nat

stack

nat

stack

nat nat

n nat n nat n

nat nat nat

n m nat n nat m nat n m

nat stack stack

n; s stack n nat s stack n s

stack stack

s stack s stack s s s n s

3

A consists of a family of sets, one of constants, one of functions and

one of predicates (functions returning truth values) on such sets; recall, indeed, that a

concrete data type is not de�ned only by the sets of elements composing it, but also

describing how such elements are handled. Moreover recall also that not all handlings

of the elements of a data type are admissible, some have as result \non-good" elements,

corresponding to errors; an immediate example for the naturals is the division by zero.

Consider now the well-known case of the stack of naturals; it is not su�cient to de�ne

the set of the stacks as the set of all streams of naturals, we also need to specify as such

streams are handled for characterizing a stack. Indeed, if we specify that the elements

of the streams, the naturals, are put and taken from the head of the streams we get the

data type concrete stack, otherwise it is possible to get di�erent data types, as the queue

in the case we put the elements on the head of the streams and take them from the tail.

A concrete way for de�ning the data type stack is to consider it as made by:

the sets

IN # , the natural numbers together a symbol corresponding to the error

for naturals;

IN # , the streams of naturals together a symbol corresponding to

the error for the stacks;

(notice that here and in the following the elements corresponding to\errors" are

denoted by symbols starting with \#")

the constants

0 IN # ;

� IN # , the empty stack;

the functions

: IN # IN # (successor)

() = # if = # , + 1 otherwise;

+: IN # IN # IN # (addition)

+ = # if either = # or = # , + otherwise;

: IN # IN # IN # (puts a natural on a

stack)

() = # if either = # or = # , otherwise;

: IN # IN # (takes away from a stack the element

on the top)

() = # if either = # or = �, if = ;

1 1

1 1

�

0

�

�

Version 4.2 { 2/20/95

{

{

{

{

1.1.1 Signatures

?

nat

nat

stack

stack

n n

n n

s

[f g ! [f g

�

�

[f g ! f g

[f g ! f g

[f g ! f g

!

S Stack

sortnat stack

cn Zero: nat

cn Empty: stack

op Succ: nat -> nat

stack nat

s nat s stack s n s n s

stack ;

s s

nat ;

n n nat

stack ;

s s stack

Cn s Cn

s

Op s : : : s s Op s : : : s ; s

Pr s : : : s Pr s : : : s

s Ok

s

FIRST

FIRST

IS EMPTY TRUE FALSE

IS EMPTY TRUE FALSE

OK TRUE FALSE

OK FALSE TRUE

OK TRUE FALSE

OK FALSE TRUE

signature sorts

constants operations predicates

4

: IN # IN # (returns the element on the top of a

stack) () = # if either = # or = �, if = ;

and the predicates

: IN # (checks whether a stack is

empty)

() = if = �, otherwise;

: IN # (determines the \good" values of the

naturals, i.e. those that do not correspond to an \error")

() = if = # , otherwise

: IN # (determines the \good" values

of the stacks)

() = if = # , otherwise.

The above de�nition of the concrete data type stack may be given more precisely as an

algebra, i.e. a pair consisting of a signature and of the interpretation of the symbols ap-

pearing in the signature; the signature gives in a certain sense the syntax for representing

and handling the values of the type (i.e., the symbols of the di�erent kinds of values of the

type and the symbols of the constants, operations and predicates of the type) while the

interpretations associated with such symbols (sets, elements, functions and predicates)

are the components of the data type.

Formally a is a 4-uple made by four sets of symbols said respectively ,

, and . Each constant symbol has associated an arity (the

symbol of the type of the constant) and we write : for denoting that has arity

. Each operation symbol has associated an arity (a pair made by a stream of sorts [the

symbols of the types of the arguments] and by a sort [the symbol of the type of the

result]) and we write : for denoting that has arity (). Each

predicate symbol has associated an arity (a stream di sorts, the symbols of the types of

the arguments) and we write : for denoting that has arity ; indeed

a predicate symbol represents a function returning boolean a values of whom we consider

implicitly the result sort.

We require that all signatures for each sort include a special predicate symbol

which determines the \good" elements of sort .

The formal de�nition of signature is reported in Fig. 1.

For example the signature, , for the data type stack expressed using the spec-

i�cation language associated to our methodology METAL (see []) is the following:

+

+

S

S S

S

2

2 2

2

�

f g

f g

f g

2 2

f g

[f g [f g

; ; ;

s

w; s

w Ok s

s s

;

nat stack

1.1.2 Algebras

Version 4.2 { 2/20/95

s s s

w;s

w ;s

w;s

w

w

w

s s

nat stack

signature S CN OP PR

S

CN CN CN

OP OP OP

PR PR PR

PR S

algebra

carrier

TRUE FALSE

PUT GET FIRST

IS EMPTY OK OK

op + : nat nat -> nat ** operation with mixfix syntax

op Put: nat stack -> stack

op Get: stack -> stack

op First: stack -> nat

pr Is Empty: stack

pr OKnat: nat

pr OKstack: stack

S Stack

nat stack

Zero

Empty

Put Get First

Is Empty OKnat OKstack

A is a 4-uple � = (), where

{ is a set, the sorts;

{ = are the constant symbols (the elements of are the symbols of

the constants with arity);

{ = are the symbols of the operations (the elements of ,

are the operation symbols with arity ());

{ = are the predicates symbols (the elements of are the symbols

of the predicates with arity) s.t. for each .

5

Figure 1: Signature.

An on a signature is a family of interpretations of the symbols of sorts, constants,

operations and predicates of the signature. The interpretation of a symbol of sort is a

set, said the associated with the sort; the interpretation of a constant symbol

of arity is an element of the carrier associated with the sort ; the interpretation of

an operation symbol is a function between the carriers associated with the sorts of the

arguments and that of the result; analogously the interpretation of a predicate symbol is

a function between the carriers associated with the sorts of the arguments and the set of

the truth values and is representable also with a subset of the cartesian

product of the carriers associated with the sorts of the arguments.

In the case of the stacks we call STACK the algebra on the signature in

which the carriers associated with the sorts and are respectively the sets

IN # and IN # ; the interpretation of the constant symbols and

are respectively the natural 0 and the empty stack �; the interpretation of the

operation symbols , , are respectively the functions , ,

and the interpretation of the predicate symbols , , are respectively

, , .

The formal de�nition of algebra is reported in Fig. 2.

Notice that the conditions which must be satis�ed by the elements of the carriers of

an algebra A on a signature � correspond to our ideas about the errors, in particular

{

{

n

n

n

n

1

1

1

1

S CN OP PR2 2 2 2

0 0 0

0

0

Version 4.2 { 2/20/95

Put: nat stack -> stack

S Stack

f g f g f g f g 2

2

2 2

2 2 � � !

2

2 � � ! f g � � �

2

�

�

�

!

S CN OP PR algebra algebra

S

S

CN

OP

PR

TRUE FALSE

s Cn Op Pr

n

s

w;s

n

w

A A

n

A A

n

s s

s

s

n

s s

n

n

s s

n

s

n

s

n

s s

n

n n

s

s

n

A A A A

1

+

A

A A

A A

1

A A

A

1

A

1

A A A

A A

A A

1

A

1

A

A

1

A

1

A

A

1

A A

1

A

1

A

1

A

1

A

1

A

; ; ;

s ; Cn ; Op ; Pr s ;w

s : : : s

s

Cn Cn s

Op Op s : : : s s

Pr

Pr s : : : s ; P r s : : : s

a; a s Ok a Ok a a a

Ok Cn

Ok Op a ; : : : ; a Ok a : : : Ok a

Pr a ; : : : ; a Ok a : : : Ok a

s a a s

a a

Cn sa Ok Cn

Op s : : : s s Ok Op a ; : : : ; a

Ok a : : : Ok a

Pr s : : : s Pr a ; : : : ; a Ok a

: : : Ok a

6

we want that there is only one element corresponding to error for each carrier, that the

constants are always \good" and that the functions and the predicates are \strict". More

in details:

Given a signature � = (), an on �, or �- , is a 4-uple

A = (), where for all =

{ is a set;

{ for each constant symbol , ;

{ for each operation symbol , ();

{ for each predicate symbol

() or equivalently ;

{ if , () and (), then = ;

{ ()

{ if (()), then), , ();

{ if (()), then), , ().

Figure 2: Algebra.

for each sort , if , belong to the carrier of and are not good elements, then

must be equal to ; i.e. there is at most an element corresponding to error (or if

there are several ones they are considered equivalent);

for each constant symbol : () is true;

the functions must be \strict", i.e. if the interpretation of an operation symbol

applied to some arguments returns a good element, then also the arguments are

good elements and analogously for the predicates, if the interpretation of a predicate

symbol applied to some arguments is true, then the arguments are good elements:

for each operation symbol : , if (()) is true,

then (), , () are true;

for each predicate symbol : , if () is true, then (),

, () are true.

Consider the operation symbol belonging to the signa-

ture , whose interpretation is the function

� �

�

�

1 1

1 1

1 1

1 1

1 2 1 2

Version 4.2 { 2/20/95

1.1.3 Terms and atoms

stack

nat stack

n n

n n

n n

n n

[f g � [f g ! [f g

[f g

[f g [f g

2

2

! 2

2

2

PUT

PUT OK PUT

OK OK

IS EMPTY

IS EMPTY

S CN OP PR terms

atoms

X

S

X

CN

OP

PR

S

Is Empty:

stack

Get(Put(0,Empty))

stack

Is Empty(Empty)

Empty

First(Empty)

nat

Get(Put(0,Empty)) Empty

Is Empty(Put(x,Empty))

x

nat stack stack

n; s stack n; s

n s nat stack

n s

s s

s

; ; ;

x s x s

Cn s Cn s

Op s : : : s s t : : : t

s : : : s Op t ; : : : ; t s

Pr s : : : s t : : : t

s : : : s Pr t ; : : : ; t

s t t s t t

s

s

nat

7

: IN # IN # IN # ;

it is easy to check that if () is a good element of IN # , i.e. if (())

is true, then also and are good elements respectively of IN # and IN # ,

i.e. () and () are true. Consider now the predicate symbol

belonging to the same signature, whose interpretation, , is true only

on �; also in this case is trivial to see that if is true on , then is a good

element, since may be only �. These considerations are examples of the fact that the

algebra STACK satis�es the conditions of strictness of the functions and of the predi-

cates. Moreover in STACK the error elements are unique and the constants represent

good elements.

Now we see how a signature gives the syntax for handling the elements of an algebra

(representing elements and elementary conditions on them). For each signature � =

() we can consider the set of the expressions, usually called (that

represent elements of the algebras) and (that represent elementary conditions on

the elements of the algebras) on the signature and on a family of sets of variables

indexed on ; notice that the variables are needed for representing generic elements of

the algebras. Such expressions are inductively de�ned as follows:

i) for each variable of sort , is a term of sort ;

ii) for each constant : , is a term of sort ;

iii) for each operation symbol : , if , , are terms respec-

tively of sorts , , , then () is a term of sort ;

iv) for each predicate symbol : , if , , are terms respectively of

sorts , , then () is an atom;

v) for each , if , are both terms of sort , then = is an atom.

The intuitive meaning is that each term of sort given a value to the variables ap-

pearing in it (we require that to the variables are always assigned good values) is a

syntactic representation of an element of the carrier associated with ; for example the

term represents the element � of the carrier associated with the sort

; while each atom represents the truth of elementary conditions (atomic) on the

elements of the various carriers; for example the atom represents the

truth of the condition \the stack represented by is empty".

Is important to note that a term may represent also the error element; for example

the term , the �rst element of the empty stack, represents # , the error

of sort .

It should be clear that in general an element in a particular algebra may be represented

by di�erent terms; for example the terms and represent the

same stack �.

Consider the atom with variables ; it represents the truth

of the condition \for each values assigned to the variable the stack represented by

V

V

2

�

;

;

Example 1.1

1 2 1 2

1 2

1 1 2

2

A

A

Version 4.2 { 2/20/95

s s s

t t s t t

t t

t t t

t

t

t

t �

� �

S

V interpretation of in

w.r.t. V

V

interpretation of in w.r.t. V

Put(x,Empty) x

Put(x,Empty)

First(Put(x,Empty)) = y

x y First(Put(1,Empty))

First(Put(1,Empty))

x y First(Put(x,Empty) = y

First(Put(2,Empty))

Get(Put(0,Empty)) = Empty

Empty stack

Get(Put(0,Empty))

First(Get(Put(0,Empty))) = First(Empty)

First(Empty)

First(Get(Put(0,Empty)))

S Set

sortnat set

cn Zero: nat

cn Empty: set

op Succ: nat -> nat

op Singleton: nat -> set

op Union: set set -> set

pr Is In: nat set

pr OKnat: nat

pr OKset: set

S Set

8

is empty", that is false whatever is the value assigned to , since the term

represents a stack having exactly one element.

The equality among terms; it is a kind of implicit predicate, = : for each ;

thus if , are both terms of sort , then = is an atom that, for an appropriate

assignment of values to the variables, represents the truth of the condition \ , represent

the same element".

The atom with variables , assigned the values to the two

variables and , say 1 and 3, represents the condition \does

represent 3?", that is false since represents the natural 1. If instead

the values of and are respectively 2 and 2, then the atom

represents the condition \does represent 2?" that is true.

We know that since there is a unique error element, i.e. we have that assigned the

values to the variables appearing in the two terms, if represents the error and if =

is true, then also represents the error.

The equality that is true since both the terms represent

the same stack �; notice that it is su�cient to know that one of the two terms is not

error, for example which is a constant of sort , for concluding that also the

other term, , is not error.

Consider now the equality that is true

and represents the error on the stacks, since we cannot get the �rst element

from an empty stack, then also represents the error on the

stacks.

The element of an algebra A represented by a term , after having assigned values

to the variables by means of a variable evaluation , is said A

and is written ; analogously the truth value represented by an atom , after

having assigned some values to its variables by means of a variable evaluation , is said

A and is written .

The formal de�nition of terms and atoms on a signature and a family of sets of variables

and their interpretations is reported in Fig. 3.

Concrete data types �nite sets and �nite multisets of naturals

The signature for the data type �nite sets of naturals is:

The data type �nite set of naturals is represented by the -algebra SET de�ned

by:

Carriers

2

2

1

1

n

n

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

S

S

V V

V

V

V

V

V

V

V

V

V

V V

Version 4.2 { 2/20/95

nat

set

Zero

Empty

Succ nat nat

Succ

f g

� f g

2

�

�

! 2 2 2

2

�

2 2 2

2

2 2 2

�

2

2 2

2

[f g

[f g

�

;

�

!

s s

s s

s s

s s

n s n s

n s

n s n s

n

s

s

s

; ;

;

;

n

;

;

;

n

n

;

;

;

n

;

; ;

�

�

�

1 1 � �

1 �

�

1 1 � �

1 �

1 2 � 1 2 �

A

� �

� �

A A

A

A A

1

A A

A

1

A

1

A

A

1

A A

1 2

A

A

1

A

2

SET

SET

SET

SET

SET SET SET

SET

S CN OP PR X X S

X terms X

S

X X

CN X

OP X X

X

X atoms X

PR X X

X

S X X

V X X

V X interpretation

X X V

X X

V

V

TRUE FALSE

TRUE FALSE

S

; ; ;

T

s

T

T

Op s : : : s s t T : : : t T

Op t ; : : : ; t T

A

Pr s : : : s t T : : : t T

Pr t ; : : : ; t A

s t ; t T t t A

Ok x x

T A

t T � A

t � t �

x x

Cn Cn

Op t ; : : : ; t Op t ; : : : ; t

P r t ; : : : ; t t ; : : : ; t P r

t t t t

nat

set

n nat n nat n

9

Let � = () be a signature, = a family indexed on of sets

of variables and A a �-algebra.

() the family of the sets of on � and is inductively de�ned

as follows; for each :

() ;

() ;

for each : , () , , () ,

() () .

() the set of the on � and is inductively de�ned as follows:

for each : , () , , () ,

() ();

for each , () , = ().

Given an evaluation of the variables of in A (i.e. a function from into

A respecting the sorts and s.t. (()) for each), the

of the terms of () and of the atoms of () in A w.r.t. is inductively

de�ned as follows, (if () and (), the interpretations in A w.r.t.

of and are denoted respectively by and):

= ();

= ;

() = ();

() = if () , otherwise;

(=) = if = , otherwise.

Figure 3: Terms and atoms on a signature and their interpretation.

= IN #

= (IN) #

Interpretation of constant symbols

= 0

=

Interpretation of operation symbols

:

() = # if = # , + 1 otherwise

1

{

{

{

{

{

{

{

{

{

{

{

{

Version 4.2 { 2/20/95

!

f g

� !

[

�

� ! f g

2 6 6

! f g

6

! f g

6

�

[f g

[f g

�

; ; ! ;

�

!

!

!

6

� !

!

�

See the mathematical notations at the beginning of the manual.

TRUE FALSE

TRUE FALSE

TRUE FALSE

TRUE FALSE

TRUE FALSE

TRUE FALSE

M

M

n set n nat n

s ; s set s set s set s s

;

n; s n s n nat s set

;

n n nat

OKset ;

OKset s s set

nat

set

n n

n nat n nat n

n set n nat f

f n f h h n

s ; s set s set s set

s s

s s n s n s n n

SET SET SET

SET

SET SET SET SET

SET

1 2 1 2 1 2

SET SET SET

SET

SET SET

SET

SET SET

SET

MSET

MSET

1

MSET

MSET

MSET MSET MSET

MSET

MSET MSET MSET

MSET

MSET MSET MSET MSET

MSET

1 2 1 2

1 2

1 2 1 2

Singleton nat set

Singleton

Union set set set

Union

Is In nat set

Is In

OKnat nat

OKnat

set

S Set

nat

set

Zero

Empty

Succ nat nat

Succ

Singleton nat set

Singleton

Union set set set

Union

10

:

() = # if = # , otherwise

:

() = # if either = # or = # , otherwise

Interpretation of predicate symbols

:

() = if , = # and = # , otherwise

:

() = if = # , otherwise

:

() = if = # , otherwise

The algebra SET thus represents the data type �nite sets of naturals. But the same

signature may be used also for another data type: the �nite multisets of naturals, as the

following algebra MSET shows.

Carriers

= IN #

= (IN) # ,

where (IN) denotes the set of all the �nite multisets of naturals , i.e., �nite

sets with possible multiple occurrences of the same element

Interpretation of constant symbols

= 0

= , where : IN IN is the function s.t. () = 0 for each

Interpretation of operation symbols

:

() = # if = # , + 1 otherwise

:

() = # if = # , : IN IN otherwise,

where () = 1 and () = 0 for each =

:

() = # if either = # or = # ,

+ : IN IN otherwise

where (+)() = () + () for each

Interpretation of predicate symbols

0

{

{

{

End example

� ! f g

6 6 6

! f g

6

! f g

6

Version 4.2 { 2/20/95

1.2 Abstract data types

MSET MSET MSET

MSET

MSET MSET

MSET

MSET MSET

MSET

Is In nat set

Is In

OKnat nat

OKnat

set

nat

Succ(n) n

;

n; s s n n nat s set

;

n n nat

OKset ;

OKset s s set

n; s s n

TRUE FALSE

TRUE

FALSE

TRUE FALSE

TRUE FALSE

TRUE FALSE

TRUE FALSE

abstract de�nition

isomorphic

abstract data type

11

:

() = if () = 0, = # and = # ,

otherwise

:

() = if = # , otherwise

:

() = if = # , otherwise

The de�nition of the data type stack given in Sect. 1.1, the algebra STACK, corresponds

to the our intuition but it is concrete in the sense that we have chosen a particular model

of the stacks. In the algebra STACK the stacks are realized concretely as streams, but

we can also imagine another algebra STACK de�ned analogously to STACK, where the

stacks are sets of pairs (), position of in the stacks; also the carrier of the sort

may be the naturals as either binary, decimal or hexadecimal streams.

Now we want to give an of the same data type so that several

di�erent models may be all considered as concrete realizations of such abstract structure.

To do that we identify the algebras that have exactly the same structure, i.e. which are

isomorphic, and then we choose one as their representative. (Informally, two algebras are

i� for each sort there exists a bijective correspondence between the carriers of

such sort in the two algebras, and the constants, operations and the truth of the predicates

preserve this correspondence). Thus with we mean a class algebras on

the same signature closed by isomorphism (i.e. including each algebra isomorphich to one

of its elements).

De�ning an abstract data type directly, i.e. as class of isomorphic algebras, is not very

convenient. Indeed it is su�cient to consider the simple case of the sets and multisets (see

Ex. 1.1) for imagining what means to repeat this procedure for more complex structures.

The idea is to specify the abstract data type by giving:

{ the syntax for representing/handling its elements as a signature and

{ the properties that the interpretations of the syntactic symbols (symbols of con-

stants, of operations and of predicates) should satisfy.

For example we may want to express that:

{ the addition between naturals is commutative,

{ there exists the neutral element w.r.t. addition,

{ the term represents a positive natural for all ,

{ the stack with an element is not empty,

{ the addition of a positive natural with each other natural is still a positive natural,

; ;V V

Example 1.2

�

�

:

�

�

� ^ � �

_ � �

8 9

j

Version 4.2 { 2/20/95

1 2 2 1 1 2

STACK STACK STACK

Is Empty(Empty)

Is Empty(Empty) Is Empty Empty

model holds model of a set of formulae

V

V

IS EMPTY TRUE

n n n n n n nat

n n n nat

Succ n > n n

Is Empty Put n; s n nat s stack

n > n m > n m nat

n m m n n m n m nat

n m n

m

n m n > m n M n m nat

n : m : m > n

� �

;

12

{ if two naturals are one bigger than or equal of the other and vice versa, then they

are equal,

{ and so long.

As it is possible to express such properties in a precise way? We have to use:

equalities between terms for expressing that some terms represent the same element;

addition is commutative: + = + , with and of sort ;

0 is the neutral element of addition: + 0 = , with of sort ;

truth of predicates for expressing that some conditions hold on the elements of the

carriers;

each successor of a natural is positive: () 0, with of sort ;

the stack with at least an element is not empty:

(()), with of sort and of sort ;

relationships among equalities of terms and/or truth of atoms;

if a natural is positive, adding it to another natural still gives a positive natural:

0 + 0, with , of sort ;

if a natural is bigger or equal to another one and vice versa, then they are equal:

= , with , of sort ;

if a natural is either equal or bigger of another one , then 4 is bigger or equal

to :

= , with , of sort ;

for each natural there exists a bigger one: ().

The properties, as the ones listed above, are formalized by axioms, i.e. logic formulae,

for which the �rst-order logic is appropriate.

In Fig. 4 is reported the precise de�nition of �rst-order formulae.

Now we have to make precise when a concrete data type represented by an algebra

satis�es a property expressed by a formula, i.e. when a formula holds on an algebra. In

Fig. 5 is reported the precise de�nition of validity in an algebra of the �rst-order formulae.

An algebra A is a of a formula if in A, if

A is model of each formula belonging to the set.

Evaluation of �rst-order formulae

Let STACK be the algebra given in Sect. 1.1 representing the data type of the stacks. We

show the evaluation of some formulae.

{ STACK =

since for each = () =

(�) = .

V

V

;

;

0 0 0 0

End example

Version 4.2 { 2/20/95

�

^ 2 2

_ 2 2

� 2 2

: 2 2

8 2 2

9 2 2 2

j

6j

�

� � �

1 2 � 1 2 �

1 2 � 1 2 �

1 2 � 1 2 �

� �

�

� �

STACK

STACK

; ; ;

F

A F A

� � F � ; � F

� � F � ; � F

� � F � ; � F

� F � F

x : � � F x

x : � F � F x

;

; ;

;

;

First(Put(x,Empty)) = y x y

First(Put(x,Empty)) x

y

First(Put(x,Empty)) = y x y

S CN OP PR X

S X �rst-order logic formulae on and X

X X X

X X

X X

X X

X X

X X

X X X

V V V V

FIRST PUT V FIRST PUT

V V V V

AX

algebraic

speci�cation

AX

AX models of the

speci�cation

AX AX

logically follow from the axioms

AX

13

Let � = () be a signature, a family of sets of variables indexed on

. The set () of the � is inductively de�ned

as follows.

{ () () ((), the set of the atoms, is de�ned in Fig. 2)

{ () for each () (conjunction)

{ () for each () (disjunction)

{ () for each () (implication)

{ () for each () (negation)

{ for each () and (universal quanti�cation)

{ () for each () and (existential quanti�cation)

Figure 4: Formulae of the �rst-order logic.

{ STACK = with s.t. () = 2 and () = 2

since = ((() �)) = ((2 �))

= 2 and = 2

{ STACK = with s.t. () = 1 and () = 2

since otherwise, analogously to the previous case, we would get 1 = 2.

An abstract data type is speci�ed by giving a signature and a set of axioms

(�rst-order formulae) representing the properties of the interpretations of the constant,

operation and predicate symbols. The pair signature and set of axioms is said

.

An algebraic speci�cation (�) determines a set of concrete data types (�-algebras),

all that which are models of the set of axioms ; such algebras are said

.

Notice that in the models of also formulae not belonging to hold; indeed

the property of the algebras and the de�nition of validity of the formulae are such that

the equalities between terms and the truth of the atoms that hold in the models of the

speci�cation are not only that explicitly expressed by the axioms, but also other implicitly

implied by them, i.e. that . In other words it is as if the

set of the axioms includes also all that formulae which are logical consequences of

them. This allow to express the properties of the abstract data type represented by the

speci�cation in a syntectic way without any redundancy, with a set of formulae which is

not too much complex and more readable.

V

V

V

;

s

s

s

;

s

A;

s s s s

Version 4.2 { 2/20/95

�

A

1 2 1 2

1 2 1 2

1 2 1 2

1 2

1

A

A

1

2

A

2

1 2

2 1

1 2 2 3

1 3

X S

holds V X

V

V

V V V

V V V

V V V

V V

V V

V V

V V V

V

V

V V

V V

2

j !

j

j

j ^ j j

j _ j j

j � 6j j

j : 6j

j 8 2 j

j 9 2 j

6

�

^ � ^ �

�

�

�

�

^ �

� F X

� �

� V ; �

; � �

; � � ; � ; �

; � � ; � ; �

; � � ; � ; �

; � ; �

; x : � v A s x ; v=x �

; x : � v A s x ; v=x �

v=x v=x x v y x v=x y

y

t t

t s Ok t

t Ok t

x y Ok x Ok y x y Ok y Ok x

t t

x x

t t

t t

x y y x

t t t t

t t

x y y z x z

14

Let � be a signature, a family of sets of variables indexed on , () and A

a �-algebra.

We say that in A (and write A =) i� for each variable evaluation : A

A satis�es w.r.t. (we write A =). The inductive de�nition of satis�ability

is as follows.

{ A = i� is true

{ A = i� A = and A =

{ A = i� either A = or A = (also both)

{ A = i� either A = or A =

{ A = i� A =

{ A = i� for each , with sort of , A [] =

{ A = i� there exists , with sort of , s.t. A [] =

where [] is the evaluation s.t. []() = and for each = []() =

()

Figure 5: Validity of the �rst-order formulae.

Given an algebraic speci�cation, for each algebra A model of such speci�cation, we

have that:

the equality symbol is intended in strong sense, i.e. if = holds in A for a variable

evaluation and the interpretation of is a good element of sort (() is

true), then also the interpretation of is a good element (() is true) and

vice versa, as already seen (since there is a unique error element). It is as if among

the axioms of the speci�cation there are the formulae

= () () and = () ();

the equality symbol is reexive, i.e. = holds in A for each variable evaluation; it

is as if among the axioms of the speci�cation there is the formula = ;

the equality symbol is symmetric, i.e. if = holds in A for a variable evaluation

, then = holds in A for ; it is as if among the axioms of the speci�cation

there is the formula = = ;

the equality symbol is transitive, i.e. if = and = hold in A for a variable

evaluation , then = holds in A for ; it is as if among the axioms of the

speci�cation there is the formula = = = ;

1
n

i

i

V

V

V

Example 1.3

0

0 0

0 0

0 0 0 0

0 0 0 0

Version 4.2 { 2/20/95

�

� !

^ ^ �

^ ^ � �

�

^ ^ �

�

�

�

�

�

1

1

1

1

1

1

1

1

1

1

1

1

1

1

A

1 1

1

1

i

i

n

n

n

n

n

n

n

n

n

n

n

n

n

n

s

s s n n

s

s

s n s i

n s i

t t i

: : : n Op t ; : : : ; t Op t ; : : : ; t

P r t ; : : : ; t P r t ; : : : ; t Op s : : : s s

Pr s : : : s

x x : : : x x Op x ; : : : ; x Op x ; : : : ; x

x x : : : x x Pr x ; : : : ; x Pr x ; : : : ; x

V

Ok x x s

Ok x : : : Ok x x ; : : : ; s

Ok Cn V

Cn s Ok Cn

Cn

Op Pr

Ok Op x ; : : : ; x Ok x i ; : : : ; n

Pr x ; : : : ; x Ok x i ; : : : ; n

n

n

Get(Put(y,x)) = x First(Put(y,x)) = y

OKnat(Succ(x)) not Is Empty(Puty,x)) Is Empty(Empty)

stack OKstack(Empty)

OKstack(Empty) Empty

stack

x OKstack(x)

y OKnat(y)

Put(y,x) stack

Get(Put(y,x)) = x

OKstack(x) Get(Put(y,x))

OKstack(Get(Put(y,x)))

OKstack(Get(Put(y,x))) Put(y,x))

OKstack(Put(y,x)))

15

the equality symbol respects the operations and the predicates, i.e. if = , for =

1, , hold in A for a variable evaluation , then () = ()

and () () hold in A for , with : and

: . It is as if among the axioms of the speci�cation there are the formulae

= = () = (),

= = (() ());

always good values are assigned to the variables, i.e. for all variable evaluation ,

(()), with variable of sort ; this allows to avoid to explicitly writing in

the set of axioms that a variable is de�ned. It is as if each axiom of the speci�cation

is pre�xed by () () , for all variables appearing

in the axiom;

the constants represent always good values, i.e. () holds in A w.r.t. with

: it is as among the axioms of the speci�cation there are the formulas (),

for all constants ;

the functions and the predicates are strict as already required in the de�nition of

algebra given in Fig. 1; i.e. if a symbol of either operation or of predicate applied to

some arguments is de�ned, i.e. represents a good element, then also the arguments

are good elements. It is as if among the axioms of the speci�cation there are the

formulae, for all and

(()) () with = 1 and

() () with = 1 .

Properties of the data type stack

The axioms characterizing the stacks are:

We see that in this case the above formulae are su�cient for expressing all the required

properties. For example, we show how to verify which are the good elements of the carrier

of the sort , using the only explicit property given by the formula .

We use the properties of strictness of the functions and of the predicates, the fact that

equality is strong, the de�nedness of the variables and also the formulae in the set of

axioms. The proof is by induction:

{ The implicit axiom , asserts that represents a good element,

belonging to the carrier of the sort ;

{ assuming that represents a stack of 1 good elements () and that

represents a good element (), we show that the stack of elements

represented by is a good element of the carrier of the sort , using the

axiom ; indeed, for the strong equality and the de�nedness of

the variables, by we have that represents a good stack,

i.e. logically follows from the axioms; for the strictness

of the functions by we get that represents a

good stack, i.e. that logically follows from the axioms.

x x

x x

[f g

�

�

� �

� �

1 2 0

1 2 0

Version 4.2 { 2/20/95

;

stack

x

x

: : : : : :

: : : x

x

End example

Initial approach

AX

AX

initial model the abstract data type de�ned by the

algebraic speci�cation

S Stack

stack

stack

Put(n ,Put(n , Put(n ,Empty)))

n n n nat

stack

Get(Put(Zero,Empty)) Empty

16

Given an algebraic speci�cation (�), we have seen which are its models, i.e. the

algebras on the signature � satisfying the axioms . Now we have the problem: which

abstract data type is determined by such speci�cation? As �rst thing we have to recall

that an abstract data type is an isomorphism class of models and when we speak of a

particular model we intend a representative of the class to whom it belongs.

The initial approach chooses among the models of an algebraic spec-

i�cation a particular model, said the , as

. An initial model is characterized by the following properties:

1. each element in the algebra is represented by a closed term (i.e. in which no variable

appear) on the signature; this means that all the elements are representable, i.e.

each element may be represented syntactically by a term.

2. only the identi�cations between elements forced by the axioms hold (i.e. the inter-

pretations of two terms are equal if and only if the equality between them logically

follows from the axioms);

3. an atom is true i� it is forced to be true by the axioms (i.e. i� its truth logically

follows from the axioms).

It may be useful to synthetise the above properties with the slogan:

\only what it is said by the axioms holds".

We esemplify the property 1) with reference to the example of the algebra STACK on

the signature : each element of the algebra belonging to the carrier IN #

is represented syntactically by a term without variables of sort . Consider the

simplest form that a closed term of sort which represents a stack of naturals

(0) may have:

,

with , , , terms without variables of sort representing natural num-

bers; this is an example of term without variables of sort which represents syntac-

tically the stack with such natural numbers. But recall that such term is not the unique

possible, since several closed terms on the signature may have the same interpretation

in the algebra, i.e. they may be the syntactic representation of the same element of the

algebra, for example and represent both the empty stack.

Notice that, given a speci�cation, the conditions 1), 2), 3) make automatically false

in the initial model everything that is not logic consequence of the axioms; indeed since

all elements are representable, all identi�cations between terms logically follow from the

axioms and the truth of all conditions on the elements logically follow from the axioms.

In conclusion, only the formulae that logically follow from the axioms hold; thus during

the development of an initial speci�cation we have to formalize all and only the properties

that we want to hold in the data type.

It may happen that the initial model does not exist, as it is shown in the following

example.

2

n

i

i

0

00

0 00

0 0

0 0 0

00 00 00

M M M

M M M

M M M

2

1

1 2

1 2 1 2

Version 4.2 { 2/20/95

f g

f g

f g

^ ^ �

� � � ^ ^

2 ^ 2 � 2 [

2

Example 1.4

End example

Example 1.5

sorts

cn A, B, C: s

ax A = B or A = C

A B C

A B C A B

A C B A C

;

;

� : : : � �;

n i i n � Ok t Ok t t t

�

n

�

n s s

n s n s n s s

� �

Notice that the positive conditional formulae in the �rst-order logic are just the Horn clauses used

by the logic programming language Prolog.

17

The possible models of the above speci�cation for which 1) holds, i.e. the algebras on

its signature in which the axiom holds and where all the elements are representable, are

isomorphic to one of the following:

{ the algebra M whose only carrier is 1 and the interpretation of the constants is

= = = 1, i.e. the algebra in which all the constants are identi�ed;

{ the algebra M whose only carrier is 1 2 and the interpretation of the constants is

= = 1, = 2, i.e. the algebra in which the constants and are identi�ed

and

{ the algebra M whose only carrier is 1 2 and the interpretation of the constants

is = = 1, = 2, i.e. the algebra in which the constants and are

identi�ed.

These algebras are the unique, modulo isomorphism, satisfying the axiom, i.e. which

are models of the speci�cation; indeed the axiom requires that there are at most two

elements in the carrier, i.e. that the three constants represent either a unique element or

at most two.

The initial model does not exist, indeed there is not a unique (modulo isomorphism)

model in which the number of identi�cations among the terms is minimum, since we have

two models M and M with the same number of identi�cations which are not isomorphic.

A way for ensuring the existence of the initial model is to use axioms of particular

form, precisely positive conditional formulae in the �rst-order logic , i.e. formulae having

form:

where 0, for s.t. 1 has either form () () = or it is an

atom built by a predicate symbol and is either an atom or the negation of an atom.

Note that when = 0 the premises of such axioms are always satis�ed, thus in these

cases we simply write .

Positive conditional formulae and not

{ If a natural belongs to the sets and , then it belongs to their union, i.e.:

;

this formula is positive conditional since each and also are atoms built by the

predicate symbol \ ".

i

0 0

1 2

1 2 1 2

at least

2 _ 2 � 2 [

^ ^

Version 4.2 { 2/20/95

n s s

n s n s n s s

�

Ok t Ok t t t

End example

?

Loose approach

Example 1.6

18

{ If a natural belongs at least to a set between and , then it belongs to their

union, i.e.:

;

this formula is not positive conditional, indeed it is not of the right form since each

may be not a disjunction between formulae, but only either an atom or a formula

of the form () () = .

In general it is convenient to de�ne the speci�cations of data types in a modular way

using appropriate constructs for structuring the speci�cations. In this way it is possible

to reuse speci�cations appearing in several parts of the global speci�cation and to get

a better clarity and understandability of the structure of the de�ned data type. The

common constructs for structuring the speci�cations are reported in the user manual [].

In the loose approach an algebraic speci�cation determines a class of

abstract data types: all that satisfying all the axioms of the speci�cation. In this

case a speci�cation expresses the general properties of a data type, and thus in general the

axioms are not conditional formulae but more complex formulae of the �rst-order logic.

The loose approach is di�erent from the initial one since, in the initial approach we

require that in the abstract data type determined by the speci�cation:

{ the elements are representable and

{ the truth of atoms and of equalities between terms should logically follow from the

axioms;

this implies that:

everything which does not logically follow from the axioms is false in the

abstract data type determined by the speci�cation.

To the contrary, in the loose approach the abstract data types determined by the speci�-

cation should not satisfy particular requirements, this implies that:

the interpretation of all formulae that do not logically follow from the axioms

is free, i.e. one abstract data type may satisfy the formula and another no.

In conclusion the point of view of the loose approach is di�erent, since we have no

conditions on all that it is neither explicitly expressed by the axioms, nor logically follow

from them, to the contrary the explicit formulae of the speci�cation, i.e. the axioms, and

those which logically follow are used for expressing the properties that we want that are

surely satis�ed.

The abstract data type semigroup

We want to represent the abstract data type semigroup characterized by having a binary

and associative operation on the elements of the data type, i.e. an operation that taken

A

A A

B

B

B B B B

End example

� !

f g

f g � f g ! f g

=

= = = x y x y

;

; ; ;

; ; ;

Version 4.2 { 2/20/95

SEMIGROUP =

requirement

sort s

op @ : s s -> s

ax (x @ y) @z = x @(y @z)

end

s

s

s

19

two elements returns an element of the data type and such that the result of several ap-

plications of the operation to several arguments is independent by the order in which they

are performed. Since the required properties are very general and we are not interested

into the structure of the elements of the data type the adequate approach in this case is

the loose one.

Consider the following speci�cation:

With the loose approach the speci�cation represents the class of abstract data types

(also non isomorphic between them), that satisfy at least the property required by the

axiom.

Such speci�cation requires that the algebra has one carrier and that there is an as-

sociative operation on the elements of the carrier which taken two elements returns a

element of such carrier. In conclusion each algebra with a carrier and a binary associative

operation on the elements of such carrier, i.e. satisfying the axiom, is, modulo isomor-

phism, an abstract data type belonging to the class, whatever are the other properties

satis�ed by the algebra; thus this speci�cation represents the class of all semigroups.

Now we show two algebras which are, modulo isomorphism, two abstract data types

belonging to the class; the �rst algebra A is de�ned by:

Carrier = Z

Interpretation of the operation symbol

@ : Z Z Z @ = + ;

The second algebra B is de�ned by:

Carrier = 0 1

Interpretation of the operation symbol

@ : 0 1 0 1 0 1

0@ 0 = 0 0@ 1 = 1 1@ 0 = 1 1@ 1 = 0.

The algebras A, B are, modulo isomorphism, two abstract data types of the class, but

they are not the same abstract data type since they are not isomorphic.

Notice that if we follow the initial approach for determining the abstract data type

represented by the above speci�cation, we �nd that it is the empty algebra. Indeed the

carrier associated with the sort is the empty set, since each element of the carrier must

be representable by a term, but the set of the closed terms, i.e. without variables, on

the signature is empty, since there are neither constant terms nor terms built on them.

�

�

.

.

.

?

?

?

: : :

Version 4.2 { 2/20/95

SPEC1

SPEC2

SPECn-1

SPECn

SPEC1 SPECn-1 SPECn

SPECi

1.3 Speci�cations of data types at di�erent levels of abstrac-

tion

20

As we have seen in Sect. 1.2 the two approaches to the speci�cation, initial and loose,

di�er, since the �rst, determines only one abstract data type, in which only the properties

given by the axioms and those that logically follow from them hold, while the second

determines di�erent abstract data types, in which the properties given by the axioms and

those which logically follow from them hold and the interpretation of each other logic

formula is either true or false depending on the particular data type.

loose

initial

Figure 6: Top-down development of a speci�cation.

What said before suggests that the two approaches may be used for specifying a data

type at di�erent levels of abstraction:

using the loose approach, initially we specify only general properties, without inves-

tigating the structure of the data type; then we require that further properties are

satis�ed by the data type, by adding further requirements that �x the interpretation

of an increasing number of formulae and/or specify the structure of the data type

in a more detailed way;

using the initial approach, when we have speci�ed all the properties which have to

be satis�ed by the abstract date type, we are sure that everything which does not

logically follows from the axioms is false in the models of the speci�cation, i.e. we

determine only one abstract data type and not a class of abstract data types.

This development of the speci�cation of an abstract data type at di�erent levels of

abstraction, made by di�erent steps of re�ning, gives a sequence of loose speci�cations,

say , , and an initial speci�cation representing the data type (see

Fig. 6). Clearly the speci�cation given at the i-th step, , must re�ne, i.e. extend by

0

0

A

B

1

�

�

�

�

0 0

0

0

0 0

Example 1.7

implements

Version 4.2 { 2/20/95

SPECi

SPECi-1 SPECi SPECi-1 SPECi

SPECi-1

SPECi-1 SPECi

SPECi

SPECi-1

SPECi

INT1

INT2 INT1

INT2 INT1 N

x @ N = x N @ x = x

INT2 =

requirement

sort s

var x y z: s

op @ : s s -> s

ax (x @ y) @ z = x @(y @ z)

cn N: s

ax x @ N = x

ax N @ x = x

end

INT2

N

N

INT2

INT2 INT1 N

INT2

21

adding new requirements, to that given to the previous step; i.e. it must implement

. Formally, whenever all models of () are also

models of , where is a function between speci�cations which express how to

realize the parts of with the parts of and how to get everything that has

been added in ; in particular establishes the correspondence between the symbols

of the components of the two speci�cations (how the symbols of are changed in

its implementation).

Top-down development of the speci�cation of integers

We specify the integers in a top-down way, by adding step after step new requirements,

until we get a speci�cation with initial approach representing the integers with the addition

operation.

Consider the speci�cation of Ex. 1.6, with loose approach, which represents the class

of the data types semigroup, and call it .

We de�ne a speci�cation , always with loose approach, which implements ,

but restricts the set of the models since we want to determine the algebras in which the

interpretation of the binary operation has a neutral element, i.e. an element such that the

function applied to it and to whichever other element returns as result the other element.

Thus is de�ned enriching with a constant \ " representing the neutral

element and with the formulae and , describing its properties.

It is possible to extend the algebras A and B given in Ex. 1.6 to two models of ,

respectively A and B .

Consider indeed the algebra A with the same carrier and the same interpretation of

the operation symbol of A and with the interpretation of the constant symbol = 0.

Analogously the algebra B has the same carrier and the same interpretation of the

operation symbol of B and the interpretation of the constant symbol: = 0.

The algebras A , B are, modulo isomorphism, two abstract data types of the class

represented by the speci�cation , but they are not the same abstract data type since

they are not isomorphic.

Notice that in this case the function among speci�cations , used for showing that

implements , just hides the constant \ ".

We further re�ne since we want to determine only the algebras in which the

interpretation of the symbol of binary operation has the inverse, i.e. for each element of

the carrier we want that there exists an element such that the function applied to them

A

A

B

B B

2

!

�

f g ! f g

= =

x x

; ;

;

�

=

00

0

00 0

00 00

00

00

00

00 00

Version 4.2 { 2/20/95

INT3

INT2 Inv

x @ Inv(x) = N Inv(x) @ x = N

INT3 =

requirement

sort s

var x y z: s

op Inv: s -> s

op @ : s s -> s

ax (x @ y) @ z = x @(y @ z)

cn N: s

ax x @ N = x

ax N @ x = x

ax x @ Inv(x) = N

ax Inv(x) @ x = N

end

Inv

Inv

Inv

Inv

Inv

Inv Inv

INT3

INT2 Inv INT2

INT4 INT3

Pred Succ

22

gives as result the neutral element. In conclusion we want to represent the class of the

data types groups (semigroup with neutral element and inverse).

Thus we de�ne the speci�cation , always with loose approach, that implements

, obtained by adding an operation symbol, , whose interpretation is a function

which taken an element returns its inverse, whose properties are described by the formulae

and . Thus we get the following speci�cation:

Consider the algebra A with the same carrier and the same interpretations of constant

and operation symbols of A and the following interpretation of the operation symbol :

: Z Z

() = ;

and the algebra B similar to a B with the following interpretation of the operation

symbol :

: 0 1 0 1

(0) = 0 (1) = 1

The algebras A , B are, modulo isomorphism, two abstract data types of the class

groups, but they are not the same abstract data type since they are not isomorphic.

In this case the function between speci�cations , used for proving that imple-

ments , just hides the unary operation \ " added to .

Until now we have used the loose approach to the speci�cations, since we are interested

to representing all the abstract data types which are groups respect to an operation binary,

i.e. which have a non empty set of elements, an associative binary operation de�ned on the

elements of such set having a element neutral and the inverse. These general requirements

do not specify, for example, as the elements of the set aare made.

If we want to determine a unique abstract data type, for example the additive group

Z, we need to specify also which are the constructors of the elements and which conditions

are satis�ed by them and by the operations manipulating them and thus we have to use

the initial approach.

We de�ne the speci�cation , with initial approach, implementing , by adding

the constructors of the elements and , both unary operation symbols and the

formulae expressing their properties and these of the other operation symbols. Thus we

get the following speci�cation:

3

= ;

�

End example

Version 4.2 { 2/20/95

INT4 =

design

sort int

var x y: int

cn 0: int

op Succ, Pred: int -> int

ax Succ(Pred(x)) = x

ax Pred(Succ(x)) = x

op + : int int -> int

ax x + 0 = x

ax x + Succ(y) = Succ(x + y)

ax x + Pred(y) = Pred(x + y)

op - : int -> int

ax - 0 = 0

ax - Succ(x) = Pred(- x)

ax - Pred(x) = Succ(- x)

end

INT3 int s O N + -

Inv Pred Succ

INT3

INT4

23

The abstract data type represented by the speci�cation is the class of isomorphism

represented by (Z +) as required.

In this case the function between speci�cations , used for showing that INT4 im-

plements , changes the sort into the constant into , the operations and

respectively in @ and and hides and .

Note that in this speci�cation the axioms of are not given explicitly, since they

logically follow from those of .

l

0

0

0

0

2

� � �

2

�!

�

�

�

�

; ; ; s

s

s; l; s

s s

Version 4.2 { 2/20/95

2 Formal models of dynamic systems

2.1 Labelled transition systems for modelling dynamic sys-

tems

labelled transition system lts

STATE LABEL TRANS

STATE LABEL

STATE

TRANS STATE LABEL STATE

TRANS

capabilities

24

In the following we use the generic term \dynamic system" for denoting whatever system

evolving in the time; processes and concurrent programs, hardware processors, mechani-

cal/electric devices are concrete examples of dynamic systems.

The aim of this section is to introduce a method for specifying dynamic systems: to

do that we need a \model", i.e. some elements de�nable in precise and formal way which

represent such dynamic systems. Currently there are several models for dynamic systems,

the SMoLCS methodology uses the labelled transition systems.

A labelled transition system models the activity of a dynamic system by describing the

possible states (interesting situations) of the system and its possible transitions, i.e. its

capabilities of passing from a state to another, specifying, with the labels of the transitions

also the interaction of the system with the external (w.r.t. the system) environment during

each transition.

A (shortly) is a 4-uple

()

where and are two sets, whose elements are respectively the states and

the labels of the system, is the initial state, and

is the transition relation. A triple () represents a transition of the

system and it is usually written in the following way: , for suggesting the idea of

transition.

The activity of a dynamic system may be described by an lts where:

the states represent the \interesting" situations that may be reached by the system

during its life;

the transitions represent the of the system (note that we speak of capa-

bilities) of passing from a state (situation) to another one;

the label of a transition represents the \interaction" of the system with the external

(w.r.t. the system) environment while it passes from a state to another one; here

\interaction" means both the condition on the external environment for the capa-

bility to become e�ective and the transformation of the external environment due

to the execution of the transition;

the initial state represents the initial situation of the system.

1

2

0

0

l

p n p

p p

RECS FROM

SENDS TO

Version 4.2 { 2/20/95

1

2

0 1 1 2

0 1

1 2 2

0 0 1

2 1

0 1

0 1

1

1 2

1

3

2

2

2

�!

� [f g

f g

f j 2 g [f g

������������! 2

2

����������!

P STATE P COM undef

P COM

P LABEL SENDS TO RECS FROM NULL

NULL

SENDS TO

s s

s s

l

p

p

x

x p

x > p x x

p

p

x

;

c c ; c ; c

c x p

c x > p x x c

p ps c c ; undef

p

p n p ; p n p n

p ps p

ps c ; n n

p

n p

p n p

p c ; n n n > p

c ; n c ; n

p p

p p

Example 2.1

receive send

process

local var

begin

receive from

if then send to else or or

end

receive from

if then send to else or skip

25

Thus a transition of an lts has the following meaning: the system in the state

(situation) has the capability of passing in the state (situation) interacting with the

external environment as represented by the label .

A process modelled by an lts

We consider the particular dynamic system made by the following process , described

using a simple concurrent programming language CL, where the processes interact by

handshaking communications (by executing the and commands).

; - - each variable has type natural

;

0 3 (:= 4 := 5) - - nondeterministic choice

Now we try to get an lts formally describing the process .

The \interesting" situations occurring during the life of are characterized by the list

of the commands still to be executed and by the current value of the local variable

(which may be also unde�ned); thus

= (IN)

where = ; with

= ;

= 0 3 (:= 4 := 5) and = .

The initial situation of , is represented by the pair (;).

The possible interactions of with the external environment, consisting of the process

components of the program in parallel with it, are the exchange of natural numbers with

them; thus

= IN ;

correspond to no interaction with the external environment (internal activity).

The capabilities of in the state of receiving a value from the process are given

by the transitions:

() for each IN.

Note that in the initial state has in�nite capabilities of action and that the capability

corresponding to the natural number will become e�ective only when is put in an

environment in which there is a process ready to send to . For these transitions the

label represents a condition on the external environment.

The capability of in a state () with IN, 0, of sending 3 to is represented

by the transition

() ().

Also in this case the label \ 3 " represents a condition on the external

environment: \the process must be ready to receive the value 3 from ".

y;

. . .

. . .

. . .

. . .

NULL NULL

WRITES

Version 4.2 { 2/20/95

1

(1)

3

(1)

0

(0)

(4) (5)

()

3

()

���! ���!

2

f g � f g

f g

��������!

f g �

1

1 2 1 2

1

2

0

1

1

2

2

1

1

2 2

1

1

2

2

0

3

3

3

0

(4)

ps

p p

c ;

p p

c ;

p p

c ;

c ; c ;

p n p

c ; n

p p

c ; n

process

local var

shared var

begin end

skip

skip

skip

RECS FROM

SENDS TO

RECS FROM

NULL NULL

RECS FROM

SENDS TO

p c ;

c ; c ; c ; c ;

c ;

c ; n n

p

p

; ; ; ps :

p

p

x

y

y x

p

y x;

y;

ps y x;

y

y; y

y x; ;

y x x y

x y;

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�	

�

�

�

�

�

�

�

��

C

C

C

C

C

C

C

CW

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z~

?

P TRANS

P LTS P STATE P LABEL P TRANS

P STATE

P LABEL WRITES

WRITES

P STATE

26

While in the state (0) has two capabilities of action represented by the transitions:

(0) (4) and (0) (5).

These transitions do not require any kind of interaction with the external environment

and so have a null label; notice also that the state (0) represents a nondeterministic

situation since the choice between the two possible transitions is nondeterministic.

Moreover in the states (), IN, there are no transitions.

The set of transitions of the lts modelling are graphically represented by

the following labelled tree (transition tree):

Thus the lts modelling is

= ()

As further example, we consider the process with also shared variables expressed

in the same language CL:

:= 4;

; - - a variable shared with the other processes

:=

Analogously to the previous example, may be represented by an lts with

= := 4 ,

= (4) and

= (:= 4);

i.e. in this case the external environment includes the shared variable and the label

(4) represents a transformation of such environment (the value of is changed

into 4).

Moreover this lts has only a transition: (:= 4) (4).

If we replace the command \ := " with \ := ", then

= := IN,

READS

0

3

()

1

1

y;n

i i

n

m

partial

Version 4.2 { 2/20/95

f j 2 g

�������! 2

2

�

�

�

� � !

� 2

� 2 2 2

y; n n

ps x y;

y; n

y n p

x y; ; n n

; ; ; s

i I

p p

x : : : x n

y : : : y m

;

x e x e

P LABEL READS

READS

LTS STATE LABEL TRANS

STATE PID COMMAND VID

PID

VID

SVID

EXP VID

COMMAND

COMMAND

COMMAND VID EXP

skip End example

Example 2.2

process

local var

shared var

begin end

skip if while send receive write read

or

{

{

{

{

{

skip

27

= () IN and

= (:= 4),

where the label \ ()" represents a condition on the external environment (is

the value of equal to ?) and the process has in�nite transitions:

(:= 4) () for each IN.

We have seen how to model a dynamic system with an lts. Instead, when we want to

model a class of similar dynamic systems (for example all the processes of CL) that di�er

only for the initial state, described by the lts's = ()

with , we may forget the initial state and consider a unique lts without initial state,

which in the following will still call lts. We observe that in this case each state correspond

to a particular dynamic system, whose initial state is such state.

The processes of the language CL modelled by an lts

We represent all processes, which may be expressed by the simple concurrent programming

language CL introduced in Ex. 2.1 by an lts. Each process of the language CL has the

following form:

- - is the name of the process

, , ; - - local variables (0)

, , ; - - variables shared with the other processes (0)

- - each variable has type natural

list of commands

The possible commands are: , \:=", \;", , , , , , and

.

Now we have to de�ne an lts in which the \interesting" situations occurring during

the activity of the processes are characterized by the name of the process, the commands

still to be executed and the association of the values to the local variables (also no one).

The states of the lts are triples in which the �rst element is the name of the process,

the second is the list of the commands still to be executed and the third is the

association of the values to the local variables; thus:

= (IN)

with

set of the process names;

set of the local variable names;

set of the shared variable names;

set of the expressions with variables in and natural values;

set of the possible commands, de�ned as follows:

(null command);

:= , if and (assignment);

0 0 0

0 0

0

0 0

NULL

NULL

NULL

NULL

Version 4.2 { 2/20/95

partial

partial

partial

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1

1 2

1 2

1 2

1 2

1 2 1 2

� 2

2 2

� 2 2 2

� 2 2

� 2

� 2 2 2

� 2 2 2

!

� ! !

�

f j 2 2 g [

f j 2 2 g [f g

�

2 2 2 2 2

2 2 2 !

���! 2

���! 2

���! 2

�

���! 2

if then else

while do

or

receive from send to

write read

skip

{

{

{

skip

{

if then else

if then else

{

while do while do

COMMAND

EXP COMMAND

COMMAND EXP COMMAND

COMMAND COMMAND

COMMAND

COMMAND VID PID

COMMAND VID SVID

VID VID

EXP VID

LABEL SENDS TO RECS FROM PID

WRITES READS SVID NULL

TRANS

PID EXP VID SVID COMMAND

LABEL VID

TRANS

TRANS

TRANS

TRANS

e > e c c

e ; e ; c

e e c e ; e c

c c c ; c

c c c ; c

x p; x p x p

x; y ; x; y x y

c c c

c

Eval

p n p ; p n p n ; p; p

y; n ; y; n n ; y

p; p e; e ; e x y c; c ; c

l n lm

p; x e; lm p; ; lm Eval e; lm =x

p; e > e c c ; lm p; c; lm

Eval e ; lm > Eval e ; lm

p; e > e c c ; lm p; c ; lm

Eval e ; lm Eval e ; lm

p; e e c; lm p; c e e c; lm

28

,

if and c (conditional);

= , if and

(cycle);

; , if (concatenation);

, if (nondeterministic choice);

, if and

(receiving/sending a message);

() () , if e

(writing/reading a shared variable).

The nondeterministic choice is commutative and associative and the null com-

mand concatenated with whatever other command is the command (; =

).

(IN) is the set of all partial functions from the set of the

local variable names into that of the natural numbers and represents the states

of the local memory.

: (IN) IN expression evaluation function, given an

expression and a state of the local memory returns the expression value.

The possible interactions of the CL processes with the external environment, con-

sisting of the processes in parallel with them and of the shared variables to whom

they may access, are the exchange of natural numbers with other processes and the

reading and writing of the shared variables; thus

= IN

() () IN .

The set of transitions of the lts modelling the processes is given analogously to the

previous example, by considering all possible states and all possible interactions with

the external environment in such states. is inductively de�ned as follows:

for each ; ; ; ; ;

; IN and (IN)

assignment

(:=) ([()])

conditional

() () ,

if () ()

() () ,

if () ()

cycle

(=) (; =) ,

1
n

0

0

0 0 0 0

0 0 0 0

0

0

0 0

0 0 0 0

Version 4.2 { 2/20/95

1 2

1 2

1 2

1 1

1

()

()

(())

1

1

1

1

1

l l

l l

p n p

p lm x p

y;n

y;lm x

l

n

l

n

n

n

l

n

NULL

RECS FROM

SENDS TO

READS

WRITES

2.2 Concurrent systems (structured dynamic systems)

���! 2

6

�! 2 �! 2

�! 2 �! 2

�����������! 2

������������! 2

�������! 2

����������! 2

�! �!

�!

while do skip

{

{

or

{

receive from skip

send to skip

{

read skip

write skip

End example

if and and and and

then

TRANS

TRANS TRANS

TRANS TRANS

TRANS

TRANS

TRANS

TRANS

concurrent systems

active components or processes

passive

components

Eval e ; lm Eval e ; lm

p; e e c; lm p; ; lm

Eval e ; lm Eval e ; lm

p; c c ; lm p; c c ; lm p; c; lm p; c ; lm

p; c c ; lm p; c ; lm p; c; lm p; c ; lm

p; x p ; lm p; ; lm n=x

p; x p ; lm p; ; lm

p; x; y ; lm p; ; lm n=x

p; x; y ; lm p; ; lm

a a : : : a a cond syst; l ; : : : ; l

a : : : a syst

syst syst a : : : a syst

29

if () = ()

(=) () ,

if () = ()

concatenation

(;) (;) , if () ()

nondeterministic choice

() () , if () ()

reception /sending

() ([])

() ()

reading/writing a shared variable

(()) ([])

(()) ()

A particular class of lts's, said , may be used to represent structured

dynamic systems (i.e. groups of dynamic systems interacting among them). In this case

the states of the lts represent the various situations occurring during the life of the group

of systems and the transitions represent their whole capabilities of action.

For giving a concurrent system we have to specify the dynamic systems interacting

among them (said the of the system); these systems are

in turn represented by lts's.

In general these active components may also interact indirectly among them, for ex-

ample, writing and reading a shared memory, putting and taking messages from some

global bu�er and so long; thus we assume that the concurrent systems have also

. The di�erence between active and passive components is that the second

may change their states only as result of an action of some active component. The possible

states of the passive components are represented by a set of values.

A situation of a concurrent system is thus characterized by the situations of its compo-

nents (active and passive) and by how they are put together for giving the whole system.

The activity of a concurrent system consists of simultaneous executions of actions by

some of the active components (and of the corresponding transformations of the passive

components), thus its transitions are de�ned by rules having form

()

, , are components of

with , , components of

n

n

1

1

C LTS

0

0 0 0

0 0

0

0 0

0 0 0 0

Version 4.2 { 2/20/95

n

n

n

l

n

l

n

l

l

n

l

n

n h n

n h

l

n h

n

h

n

1

1

1

1

1

1

1

1 1 2 1 1 2 1

1 1 2 1 1 2

1

1 3

1

1 3

1

1 2 3

1

1 2 3

1

�! �!

�!

�! �!

j j j j j j j j j

j j j j j j j j j �!

j j j j j j j j j

� �

if and and and

then

Example 2.3

shared var

process

process

a : : : a

syst a : : : a

syst

l

a : : : a syst

syst

a a : : : a a

cond : : :

syst syst

a a : : : a a

cond a : : : a ma ma p : : : p mp mp ; l ; : : : ; l

a : : : a ma ma p : : : p mp mp

a : : : a ma ma p : : : p mp mp

n h

a : : : a

ma ma ma

p ; : : : ; p

mp mp mp

id : : : id

: : :

: : :

: : :

30

where:

{ , , are the states of the active components generating the transition,

{ is a state of the concurrent system, it contains , , and may contain

passive components and other active ones which do not take part in the transition,

{ is the state of the system after having executed the transition whose interaction

with the external environment is represented by the label , it should include the

active components , , , but in some components (active and passive)

of may have disappeared, some new one may be added and some passive one

may have changed their states.

The meaning of such rules should be clear: if , , are transitions

of the lts describing the active components and the boolean expression () is true,

then is a transition of the concurrent system.

Usually the states of the concurrent systems are represented as multisets of states of

the components; in such case the previous rules have the form:

()

where:

{ 1 and 0;

{ , , are the active components which perform a transition changing state;

{ , , are the multisets ofactive components that respectively stay idle,

are deleted and are created;

{ are the passive components which are modi�ed;

{ , and are the multisets of passive components which respectively are

unchanged, deleted and created.

The CL programs modelled by a concurrent lts

We give the concurrent system describing the programs of the simple concurrent

language CL introduced in Ex. 2.1 and 2.2; such programs have form

, , ;

;

;

0 0

0

0

0

0

0 0

0 0

0

0

0

0 0

0

0

Version 4.2 { 2/20/95

1

1

1

1

1 2

1

2

1

1

2

2

1 2 3

1 2

3

1

()

1

1 2

1

2

1

()

1

1 2

1

2

partial

partial

n n

p v p p v p

n n

y;v

n n

y;v

n n

if

then

if and

then

if

then

if and

then

End example

NULL

NULL

SENDS TO RECS FROM

NULL

WRITES

NULL

READS

NULL

P LTS P STATE P LABEL P TRANS

C LTS

SVID

C LTS

C STATE SET SVID

SET P STATE SET

C LTS

C LABEL NULL

C LTS PID

SVID P STATE SVID

� !

� P

f g

2 2

2 2 2 !

�

���!

j j j j ���! j j j j �

�

����������! �����������!

j j j j j ���! j j j j j �

�

��������!

j j j j ���! j j j j �

6

�

�������!

j j j j ���! j j j j �

; ;

p; p y

ps ; ps ; : : : v sm

ps ps

ps ps : : : ps sm ps ps : : : ps sm n

ps ps ps ps

ps ps ps : : : ps sm ps ps ps : : : ps sm n

ps ps

ps ps : : : ps sm ps ps : : : ps sm v=y n

sm v=y sm v=y y v y y

sm v=y y sm y

ps ps sm y v

ps ps : : : ps sm ps ps : : : ps sm n

31

The processes of a program perform their activity in interleaving way except when

they perform the handshaking communications.

Let = () be the lts describing the activity of

the CL processes de�ned in Ex. 2.2.

has several active components, one for each process in the program; and it

has a passive component: the shared memory, whose states are represented by partial

functions from variable identi�ers () into natural numbers. Thus, the set of the

states of is

= (IN)

with () and such that the elements of correspond to groups of

processes with distinct identi�ers.

The processes may only interact among them and with the shared memory, thus

has not interactions with the external (to the concurrent system) environment,

we say that it is a closed system, thus = .

The transitions of are given by the following rules, where ;

; ; IN; (IN) .

internal actions of a process

1

handshaking communication

2

writing a shared variable

[] 1

where [] denotes the function s.t. []() = and for each =

[]() = ()

reading a shared variable

() =

1

In general the number of components of a concurrent system is not �xed but it may

dynamically vary, i.e. new components may be created and/or other components may

terminate their activity and dissappear; creations and terminations are caused by the

execution of some action by some active component.

0

0

0

0

0

0

p ps

p

n n

ps

n n

Version 4.2 { 2/20/95

() ()

1

()

1

2

1 2

1

3

1

()

1

1 2

1

2

ABORTS CREATES

ABORTS

NULL

CREATES

NULL

2.3 A standard schema as a guide for de�ning concurrent sys-

tems

ABORTS CREATES PID P STATE

synchronization

parallelism

monitoring

f j 2 2 g

�������! ��������!

�������!

j j j j ���! j j j j �

��������!

j j j j ���! j j j j j �

Example 2.4 abort create

abort create

abort create

if and

then

if

then

End example

p ps

p ; ps p ; ps

p; p c; lm p; c; lm p; ps c; lm p; c; : : :

ps ps Name ps p

ps ps : : : ps sm ps ps : : : ps sm n

ps ps

ps ps : : : ps sm ps ps ps : : : ps sm n

32

Adding the commands and to CL

Assume to add to the programming language CL the commands for aborting a process

and for creating a new process; thus we need to add to the lts representing the processes:

{ the commands and ,

{ the labels () ()

{ the transitions

(;) (), (;) ();

and to the concurrent system representing the programs the transitions de�ned by:

() =

with 2

with 1.

The activity of a concurrent system consists in the simultaneous executions of actions by

some of the active components (and of the corresponding trasformations of the passive

components) modelled by the transitions, which are de�ned by rules having the general

form introduced in Sect. 2.2. In general the de�nition of the transitions of a concurrent

systems is very complex and it is advisable to proceed in a modular way starting from

description of partial actions which are, step after step, composed with other partial

actions until we get the global activity of the system.

Thus, we introduce a standard schema for specifying concurrent systems whose states

are characterized by a multiset of active components and by a unique passive component

(standard systems) and whose transitions are de�ned in three standard steps. In the

�rst step, , we de�ne which groups of actions of the components are syn-

chronous, i.e. which groups of actions must happen at the same time since in some way

complementary, as for example the sending and the reception of a message (handshaking

communication); in the second step, , we de�ne which synchronous actions

may happen together, i.e. may be executed in parallel and in the third step, ,

we de�ne which groups of synchronous actions in parallel (given in the previous step)

become �nal actions of the system respect to some global conditions on it.

The �rst two steps are formally de�ned by giving two auxiliary concurrent systems

with the same active and passive components of the �nal system.

The form of the rules for each step is as follows.

n

n

1

1

1 2

1

1 2

1

Version 4.2 { 2/20/95

1

1

1

1

1

1

1

1

1

1

1

2

2

1 2

1 2

1 2

1 2

1

1

2

2

1 2

1 2

1 2

l

n

l

n

n

n

sl

n

l

n

l

n

n

sl

n

sl

sl

pl pl

pl

pl pl

pl

pl

l

pl

l

0 0

0 0 0

0 0

0

0 0 0

0 0 0 0

0 0 0 00

0 0 000

0 0 0 00

0 0 000

000

0 0

0 0

0 0

0 0

Synchronization

if and and and

then

Parallelism

if then

if and and

then

Monitoring

if and

then

�! �!

j j j �! j j j �

�! �!

j j j) j j j

j) j j ��� j

j ��� j j ��� j

j j ��� j j

j ��� j j ��� j

j j ��� j j

j ��� j

j j �! j j

j ��� j

j j �! j j

a a : : : a a cond l ; : : : ; l ; p

a : : : a p a : : : a p n

cond : : :

a a : : : a a

sl

p p

a : : : a p a : : : a p :

ma p ma p ma p >ma p

ma p >ma p ma p >ma p cond pl ; pl

ma ma p >ma ma p

cond pl ; pl

ma p >ma p ; ma p >ma p

ma ma p >ma ma p

p p

pl pl

ma p >ma p cond pl;ma; p

ma ma p ma ma p

cond : : :

ma p >ma p

ma ma p ma ma p

ma

33

The rules for the synchronization step have the following form:

()

with 1

The intuitive meaning of a rule having such form is:

each time () holds, the actions of the active components

may be synchronized given a transition labelled by , where the passive component

is changed into :

=

The rules for the parallelism step have form:

1. =

The meaning of such rule is that each synchronous action is a parallel action.

2. ()

The meaning of a rule having such form is:

each time () holds, the two transitions

may be performed in parallel giving the transition

In general the transformation of the passive component from into depends

on the transformations made by the two transitions labelled by and .

The rules for the monitoring step have form:

()

The meaning of a rule having such form is:

each time the condition () holds, the parallel action

is allowed by the monitor and becomes an action of the system represented by the

transition

(is the multiset of active components which do not take part in the action).

�!

�!

�!

�!

Version 4.2 { 2/20/95

ds

l ds

ds l ds ds

ds

l ds

ds l ds ds

3 Speci�cations of dynamic systems

concrete dynamic data types

dynamic

sorts

labels

3.1 Concrete dynamic data types as dynamic algebras

34

The basic idea is that of combining the concepts introduced in Sect. 1 on the speci�cations

of the data types with that introduced in Sect. 2 to specify formally and to make more

abstract the lts's by representing states, labels and values as abstract data types.

We start by introducing dynamic data types, i.e. data types with sorts of dynamic

elements modelled by lts's: the elements of a dynamic sort represent the states of an

lts; there exists an associated sort of labels - for representing the labels of the lts and

a predicate \ : - " for representing the transition relation of the lts.

Since the concrete/abstract dynamic data types are the natural extension of the static

concrete/abstract data types to include also dynamic elements, all concepts and consider-

ations of Sect. 1.2 are still valid; we emphasize only the di�erence of the two approaches

to the speci�cation of a dynamic system with respect to the activity of the same.

Analogously to Sect. 1.2, also for the speci�cation of a dynamic system there are two

kinds of approaches:

{ initial approach and

{ loose approach.

The initial approach determines a particular typology of dynamic system (an abstract

dynamic data type), whose activity is completely described by the axioms about the

predicate representing the transition relation of the lts.

The loose approach, instead, determines various typologies of dynamic system (classes

of abstract dynamic data types), which satisfy the properties on the system activity

expressed by the axioms about the predicate , representing the transition relation of

the lts. We use this kind of approach when we want to express very general properties on

the activity of the system, as already seen in Sect. 1.2.

Notice that for expressing very general dynamic properties, e.g.: eventually a certain

situation will be reached, a property holds until another one holds and so long, the �rst-

order logic is not more adequate instead we need to use temporal combinators, which will

be introduced in Sect. 3.3.

Finally, for expressing properties on the concurrent strucutre of the system we use a

subclass of the dynamic data types, the entity one, which will be introduced in Sect. 3.4.

The dynamic algebras are particular algebras (see Sect. 1.1) in which some sorts corre-

spond to dynamic elements and thus that may be considered .

We use special signatures which have, other than the usual static sorts, explicit

, of dynamic elements modelled by an lts. Moreover for each dynamic sorts the

signature has:

{ a sort - , for the of the transitions of the associate lts;

{ a predicate : - , for representing the transition relation of the associate

lts.

�!

�

�

2 2

�! 2

�

Version 4.2 { 2/20/95

{

{

{

dsort

?

Example 3.1

D ds

D ds l ds

ds

D ;

; ; ;

ds l ds

ds l ds ds

D D

dynamic signature DS

S CN OP PR

DS S DS dynamic sorts

DS S

PR

dynamic algebra algebra

BUF

sortnat

cn 0: nat

op Succ: nat -> nat

dsort buf: -- -->

cn Empty: buf

op Put: nat buf -> buf

op First: buf -> nat

op Get: buf -> buf

op I,O: nat -> lab buf

pr Is Empty: buf

nat buf

lab buf -- -->

I O

35

Finally a dynamic algebra on a dynamic signature is simply an algebra on such signature.

If DA is a dynamic algebra with dynamic signature � and is a dynamic sort of

�, then the elements of sort , the elements of sort - and the interpretation of the

predicate are respectively the states, the labels and the transition relation of an lts

which describes the dynamic elements of sort .

The formal de�nition of dynamic signature and algebra is given in Fig. 7.

A � is a pair (�) where:

� = () is a signature,

(the elements in are the),

for each there exist a sort - and a predicate

: - .

A DA on � (or �-) is an algebra on the signature

�.

Figure 7: Dynamic signature and algebra.

The speci�cation language for describing dynamic signatures is analogous to that

introduced in Sect. 1.1.1 for the static signatures, enriched with the key word

which must precede the symbols of the dynamic sorts (see []).

Bu�ers containing natural values organized as stacks (last in �rst out)

We give a formal model of the bu�ers by means of an lts formalized with a dynamic

algebra. Consider the following dynamic signature

is a static sort, while is a dynamic sort; thus implicitly we have also the sort

and the predicate . The interactions with the external, w.r.t. the

bu�er, environment, i.e. the reception and the returning of a value, are represented by

the two operations and .

The bu�ers are modelled by the � -dynamic algebra BUF, where:

[f gnat

k

k

k

BUF

BUF

BUF

Version 4.2 { 2/20/95

nat

buf Empty Put First Get

Is Empty

OKbuf OKnat

-- -->

Symb Symb Symb

b -- I(n) --> Put(n,b) n b

b -- O(First(b)) --> Get(b) b First(b)

-- -->

b -- I(n) --> Put(n,b) n b

b -- O(First(b)) --> Get(b) b First(b)

Empty

36

{ = IN # .

{ and the interpretation of the operations , , and are

respectively the set of the stacks of natural numbers (plus error) and the usual

operations empty stack, put an element at the top to the stack, the �rst element of

the stack and get the �rst element from the stack.

{ The interpretation of the predicate is the subset of the stacks consisting of

the unique element empty stack; and (always present in each signature)

are respectively the set of the stacks and of the natural numbers.

{ If we assume that the bu�ers are bounded and that may contain at most elements,

then the interpretation of in BUF is the relation consisting of the

following triples (here and in following the interpretation of a symbol of constant/

operation/predicate in BUF, , is simply denoted by):

for each and each with at most elements,

for each s.t. is not error.

{ If we assume that the bu�ers are not bounded, then consists of the

triples:

for each and each ,

for each s.t. is not error.

The activity of a bounded bu�er, with = 2, which is initially empty (represented by

the term) is given by the following tree.

End example

Version 4.2 { 2/20/95

3.2 Speci�cations of abstract dynamic data types

: : :

: : :

: : :

: : :

: : :

: : :

: : :

: : :

: : :

: : :

: : :

: : :

: : :

: : :

: : :

D

� �

ab-

stract dynamic data type

dynamic speci�cations

AX

AX

model valid

�

�

�

�

�

�

�

�/

�

�

�

�

�

�

�

�	

�

�

�

�

�

�

�

��

C

C

C

C

C

C

C

CW

?

?

�

�

�

�

�

�

�

��

C

C

C

C

C

C

C

CW

H

H

H

H

H

H

H

H

H

H

H

H

Hj

�

�

�

�

�

�

�

�	

�

�

�

�

�

�

�

��

C

C

C

C

C

C

C

CW

?

?

�

�

�

�

�

�

�

��

C

C

C

C

C

C

C

CW

Empty

I(0)

Put(0,Empty)

I(0)

Empty

I(0)

Put(0,Put(0,Empty))

I(0)

Put(0,Empty)

I(n)

Put(n,Empty)

O(n)

Empty

I(0)

Put(0,Put(n,Empty))

O(0)

Put(n,Empty)

37

Since we represent a particular dynamic system by a concrete dynamic data type, we

can represent a typology of dynamic systems, admitting di�erent realizations, as an

, i.e. as a class of isomorphic dynamic algebras which may all be

considered concrete realizations (models) of such abstract structure.

An abstract dynamic data type is represented, analogously to a static abstract data

type (see Sect. 1.2), with particular algebraic speci�cations called .

A dynamic speci�cation is a pair consisting of a dynamic signature � and a set of

axioms, i.e. logic formulae, which represent (the static, dynamic and about the concurrent

structure) properties of the dynamic data type. A dynamic speci�cation determines a set

of concrete structures (dynamic algebras), all that which satisfy the axioms, i.e. which

are models of .

A dynamic algebra DA is said of a formula if is in DA; moreover a

D

�!

Example 3.2

?

Version 4.2 { 2/20/95

model

abstract data type de�ned by the speci�cation

PROC

use

MAP

STATE PROC =

design

use PID, COMMAND, MAP(VID,NAT)

dsort proc: -- -->

op < >: pid com map(vid,nat) -> proc

end

VID PID

vid

pid

38

dynamic algebra DA is said of a set of formulae if DA is model of each formula

belonging to the set, analogously to the usual static algebras. In particular the de�nition

of �rst-order logic formulae relative to a dynamic signature � and of their validity

in a dynamic algebra DA are analogous to the corresponding static de�nitions given

respectively in Fig. 4 and 5 in Sect. 1.2.

Also for the dynamic algebras there are two kinds of approaches to the speci�cation:

the initial and the loose, fully analogous with that seen in Sect. 1.2.

Recall that the initial approach chooses among the models of a speci�cation a particu-

lar model, said the initial model, which is the ,

characterized by the following properties:

{ each element in the algebra is represented by a closed term;

{ only the identi�cations between elements induced by the axioms hold;

{ an atom is true if and only if its truth logically follows from the axioms.

Notice still that the above properties make that in the initial model only the formulae

which logically follow from the axioms hold; thus in the development of an initial speci�-

cation for a dynamic system we have to completely formalize the activity of the system.

In particular thus, the activity of the dynamic system described by the the set of axioms,

using the predicate (representing the transition relation of the lts modelling the

system) is the minimum one.

Speci�cation of the CL processes

We give the speci�cation , with initial semantic, of the dynamic system representing

the processes of the concurrent programming language CL used in the examples of Sect. 2.

Notice that, since it is a quite complex example, we use the construct for structuring

the speci�cations (see []), which allows to modularly de�ne a dynamic speci�cation,

using also parametric speci�cations as (�nite maps).

First we give the speci�cations of the states and of the labels.

The \interesting" situations occurring during the activity of the CL processes are

characterized by the commands still to be executed and by an association of values with

local variables (which may be also unde�ned); thus it is possible to represent them by

making dynamic the sort corresponding to such triples, i.e. with the speci�cation

where and , the speci�cations of the local variable and of the process identi�ers

respectively, are not further detailed (we only know that have respectively the sorts

and) and

3

3

Version 4.2 { 2/20/95

For the comments see Ex. 2.2.

COMMAND =

design

use VID, SVID, PID, EXP

sort com

var c c' c'': com

cn Skip: com

op := : vid exp -> com

op If > Then Else : exp exp com com -> com

op While = Do : exp exp com -> com

op ; : com com -> com

ax Skip ; c = c

op Or : com com -> com

ax c Or c' = c' Or c

ax (c Or c') Or c'' = c Or (c' Or c'')

op Receive From ,Send To : vid pid -> com

op Read, Write: vid svid -> com

end

SVID EXP

VID

EXP NAT

VID MAP(VID,NAT) exp

Eval: exp map(vid,nat) ->

nat

lab proc proc

LABEL PROC =

design

use NAT, PID

sort lab proc

cn NULL: lab proc ** internal action

** a process sends to (receive from) a process a natural

op SENDS TO , RECS FROM : pid nat pid -> lab proc

** a process assigns to (reads from) a shared variable a natural

op WRITES,READS: svid nat -> lab proc

end

-- --> : proc lab procproc

proc

PROC =

39

where and , the speci�cation of shared variable identi�ers and of the expressions

with variables in and natural values respectively, are not further detailed (we only

know that uses the speci�cation and the speci�cation of the partial maps from

into the natural , and that it has the sort and an operation corre-

sponding to the function of evaluation of the expressions

).

The possible interactions of the processes with the external environment, consisting

in the processes in parallel with them and the shared variables to whom they may access,

are modelled by the following speci�cation using operations which return elements of sort

i.e. belonging to the sort implicitly associated with the dynamic sort .

The transitions of the lts modelling the processes are de�ned by a set of axioms given

in the following about the predicate implicitly as-

sociated with the dynamic sort .

BUF

Version 4.2 { 2/20/95

End example

Example 3.3

design

use STATE PROC, LABEL PROC

var e e1 e2: exp

var n: nat

var c c' c'' c1: com

ax < p x := e lm > -- NULL --> < p Skip lm[Eval(e,lm)/x)]

ax if Eval(e1,lm) > Eval(e2,lm) then

< p If e1 > e2 Then c Else c' lm > -- NULL --> < p c lm >

ax if Eval(e1,lm) <= Eval(e2,lm) then

< p If e1 > e2 Then c Else c' lm > -- NULL --> < p c' lm >

ax if Eval(e1,lm) = Eval(e2,lm) then

< p While e1 = e2 Do c lm > -- NULL --> < p c ; While e1 = e2 Do c lm >

ax if Eval(e1,lm) =/= Eval(e2,lm) then

< p While e1 = e2 Do c lm > -- NULL --> < p Skip lm >

ax if < p c lm > -- l --> < p c' lm' > then

< p c ; c1 lm > -- l --> < p c' ; c1 lm' >

ax if < p c lm > -- l --> < p c' lm' > then

< p c Or c1 lm > -- l --> < p c' lm' >

ax < p Receive x From p' lm > -- p RECS n FROM p' --> < p Skip lm[n/x]

ax < p Send x To p' lm > -- p SENDS lm(x) TO p' --> < p Skip lm >

ax < p Read(x,y) lm > -- READS(y,n) --> < p Skip lm[n/x]

ax < p Write(x,y) lm > -- WRITES(y,lm(x)) --> < p Skip lm >

end

-- -->

40

Recall that the loose approach determines a class of dynamic abstract data types. In this

case a speci�cation expresses the general properties of a dynamic data type, in particular

it expresses the properties on the activity of the dynamic system by means of the predicate

, representing the transition relation of the lts modelling the system, but it

does not completely describe the activity of the system as in the initial approach.

Finally notice that for expressing general properties of the activity of a dynamic sys-

tem, frequently, the �rst-order logic is not adequate. Indeed, in general, we want to

express properties as: the system perform an action until a certain situation will be

reached, starting from a given situation eventually a certain action will be executed, the

system performs an action and immediately after it performs another one and so long.

This kind of properties may be expressed conveniently using the temporal combinators,

which will be introduced in Sect. 3.3.

Speci�cation of the bu�ers (continuation)

In this example we de�ne by appropriate dynamic speci�cations with loose semantics

various classes of bu�ers; we try to show which properties could easily expressed with the

�rst-order logic and which could not.

The speci�cation of a class of bu�ers is a pair made by the dynamic signature �

given in Ex. 3.1 and by the axioms given in the following.

�

�

�

� �

�

�

1 1

1

1

1 1

k

k k k

k

m

k m m

{

{

End example

: : :

: : : : : : : : :

: : :

: : :

Version 4.2 { 2/20/95

3.3 Temporal combinators for specifying the activity of dy-

namic systems

OKnat(Succ(n))

First

Get

not OKbuf(Get(Empty)) Get(Put(n,b)) = b First(Put(n,b)) = n

not OKbuf(First(Empty)) Is Empty(Empty) not Empty(Put(n,b))

b n n b

b

if b -- O(n) --> b' then n = First(b) and b' = Get(b)

b b

if b -- I(n) --> b' then b' = Put(n,b)

n

b n

n

n

b0 -- I(n) --> b1 b1 = Put(n,b0)

b

b1 -- l1 --> b2 b2 -- l2 --> b3 b -- l --> b

l1 l O() I()

O(n)

b' b'

b -- l'0 --> b' b -- O(n) --> b'

41

properties of the data contained in the bu�ers

static properties (organization of the bu�ers as stacks, the operations and

are not de�ned on the empty bu�er)

dynamic properties:

safety properties:

if the bu�er returns , then is the �rst element of and such element is

deleted from

if the bu�er receives an element, then this element is inserted in

liveness properties:

the bu�ers have the capability of returning whatever natural number which

have received and keep this capability until e�ectively return it; thus a bu�er

which receives performs input/output transitions in such a way that in

whatever state either has been returned or it is possible to reach another

state in which may be returned.

if [i.e.] then

for each such that

, and ,

where the labels , , are either or

either one of the above labels is ,

or there exist , , s.t.

and and .

This last property is expressed above informally, since for formalizing it we need

complex formulae of the in�nitary �rst-order logic (i.e. with either conjunctions

or disjunctions of in�nite sets of formulae); in the following section we will see

as such property may be conveniently expressed using temporal combinators.

We have seen from the last property of Ex. 3.3, that the �rst-order logic is not always

adequate for expressing properties on the dynamic activity; this has lead us to intro-

duce temporal combinators for the speci�cations of the dynamic systems. Now we see

how to extend the �rst-order logic on a dynamic signature with appropriate temporal

combinators.

d

d

0 1

PATH

PATH

PATH

Version 4.2 { 2/20/95

l l

n n

n

n ds n l ds n n n

n

n n n n n n n

�! �!

�

2 2 2 2 �!

2 �!

2 2

�

�

� j

4

4

5

5

0

DA

1

DA

2

0 0 1 1 2 2

0 0 1 1 2 2

+1

DA

DA

+1 +1 +2 +2

0

0 0

0

0

0

0

0

0

0

0

0

0 0

for each path from

there exists a path from

a certain property

holds on the path

D ds

ds

d d d : : :

; ds

ds ; ds

d l d l d l : : : d l : : :

d l d l d l : : : d n

n d l d ; l ; d

d l d ; l; d

� ; ds n

S � �

L � �

� d l d l d l : : :

d

ds d d

d

td ; : : :

td ; : : :

td : : :

td ; : : :

td ; : : :

td : : :

td d : : :

42

Given a �-dynamic algebra DA (see Sect. 3.1) and one of its dynamic sort, we

can represent the whole activity of the (dynamic) elements of sort with the maximal

labelled paths, i.e. with their maximal sequences of states and labels of the form

.

We denote by (DA) the set of such paths for the dynamic elements of sort

, i.e. (DA) is the set of all the sequences of type (1) o (2):

(1) (in�nite path)

(2) 0 (�nite path),

where for each IN: DA , DA

-

, () and in (2) for no

, and : () (i.e., if a path is �nite then there are not transitions starting

from its �nal state).

If (DA) and IN, then

() denotes the �rst element of ;

() denotes the second element of (if there exists);

denotes the path (if there exists).

Such considerations suggest to express the dynamic properties of an element of sort

, i.e. the properties of the activity of , as properties of the paths starting from , i.e.

in an equivalent way, as properties of the states and of the labels of the path. Thus, we

want a logic which allows to express the following properties.

The interesting various properties about the dynamic activity of an element may

be formulated following the schema below.

Thus the our logic should have the combinators:

{ ()

(() holds if for each path starting from the dynamic element represented

by holds);

{ ()

(() holds if there exists a path starting from the dynamic element repre-

sented by s.t. holds);

where is a term of dynamic sort representing and \ " stands for a formula

expressing a path property.

The path properties follow the schema:

�

2

3

l l

0 1

point

0 0 1 1

0

DA

1

DA

2

�! �!

WU

U

8 9 ^ _ :

U

Version 4.2 { 2/20/95

d ; l d ; l : : :

d d d : : :

: : :

: : : : : :

: : : : : :

: : : : : :

: : : : : :

: : :

� x : � x x

<� y : � y > y

�

dt ds

in the �rst point of the path

in the second point of the path

in each point of the path

[except the �rst]

there exists a point of the path

[di�erent from the �rst]

until a property become true

[surely it will become true]

a certain propety holds on that point

a certain property holds on the path

from that point

43

where means a pair state, next label (for example the pairs (), (), are

the points of the path); and point property means a property

of either the state or of the label of the point (or of both).

Thus our logic should have the combinators:

{ : in the second point of the path;

{ : in each point of the path (except the �rst);

{ : there exists a point of the path (except the �rst);

{ : the �rst property holds on the path until the second holds (moreover

surely the second one will hold);

where stands for path properties.

The properties of the �rst point of a path are simply expressed by formulae expressing

a point property.

While for the point properties we have:

{ [()], where is a variable of dynamic sort, for expressing a condition on the

state of a point and

{ () , where is a variable of sort label, for expressing a condition on the

label of a point,

where is a logic formula.

Clearly we also need the usual combinators of �rst-order logic (, , , ,)

also for combining formulae expressing conditions on the paths.

The formulae introduced for expressing the properties of the activity of a dynamic

element as properties of its paths are formally de�ned in Fig. 8 while their validity is

given in Fig. 9. Notice that the logic de�ned in Fig. 8 includes the �rst-order logic used

previously.

In the de�nitions of Fig. 8 and 9 we use only one temporal combinator, i.e. only the

combinator; since all other temporal combinators may be de�ned in term of it as it is

shown in Fig. 10.

Now we see some examples of properties of a dynamic element represented by the term

of dynamic sort , expressed using the combinators introduced above.

�

3

3

2

2

0

0

0

0

0

0

0

0

0

0

0

0

Version 4.2 { 2/20/95

4

4

5 6

5 6

5

5 ^

4 6 U

WU 4 6 WU

dt lt l ds

dt

lt

dt; <� y : y lt>

dt; <� y : y lt> :

dt

lt

dt

lt

dt; <� y : y lt>

lt

dt; <� y : y lt>

dt dt

dt

dt

dt; � x : x dt

dt lt

dt

dt

lt

dt

dt;<� y : y lt> � x : x dt

dt

lt dt

dt

dt

lt

dt

dt;<� y : y lt> � x : x dt

dt

dt;<� y : y lt> � x : x dt

44

{ eventually will perform the interaction represented by (term of sort -) with

the external environment, i.e.:

for each path from

there exists a point in the path s.t. its label is ;

formally: (=).

If we want that such action is not the �rst one we use the combinator ; formally:

(=)

{ It can happen that will never perform the interaction with the external environ-

ment represented by , i.e.:

there exists a path from s.t.

for each point in the path the label is di�erent from ;

formally: (=).

If we allow that at most the �rst action may be we use the combinator ;

formally: (=).

{ At least in a case after a step may be in the situation represented by ; i.e.

there exists a path from s.t.

the state of the second point is ;

formally: ([=]).

{ At least in a case , immediately performs the interaction represented by , and

passes the situation represented by ; i.e.:

there exists a path from s.t.

the label of the �rst point is and

the state of the successive point is ;

formally: (= [=]).

{ will never execute the interaction with the external environment represented by

until it will be in the situation represented by (we require that the situation

eventually will be reached); i.e.:

for each path from

on all the points of the path the label is di�erent from

until the state is not equal to ;

formally: (= [=]).

If we do not require that the situation is surely reached we use the combinator

; formally: (= [=]).

�

�

0

0

0

0

0

0 0 0

Example 3.4

Version 4.2 { 2/20/95

D D

D

D D

D D

D D

D ds D

D l ds D

D D

D D

D D

� �

� �

1 1 2 1 2 1 2 � 1 2 �

� �

� �

� �

� �

1 1 2 1 2 1 2 � 1 2 �

� �

1 2 � 1 2 �

5

4 5

2

� �

� : ^ _ � 2 2

� 8 2 2 2

� 4 2 2

� 2 2 2

� 2 2 2

� : ^ _ � 2 2

� 8 9 2 2 2

� U 2 2

DS S CN OP PR X

S

dynamic formulae path formulae DS X

X X

formulae

X X

X X

X X X

X X

path formulae

X X X

X X X

X X

X X X

X X

dt dt

dt

dt

dt; � x : x dt

dt dt

dt

x

x dt

dt; � x : x; � x : x dt

D ; ; ; ;

ds D

F P

A F

� � � � � � � F � ; � F

x : � F � F x

t; � F t ds � P

� x : � P x ; � F

� x : � P x � F

� � � � � � � P � ; � P

x : � x : � P � P x

� � P � ; � P

45

{ in at least a case will reach in�nite times the situation represented by ; i.e.:

there exists a path from s.t.

for in�nite points in the path the state is ;

formally: ([=]).

{ From each situation reachable from the situation represented by may reached;

i.e.

for each path from

for each state , on such path,

there exists a path from including the state ;

formally: ([([=])]).

Let � = (�) with � = () and a family of variables indexed

on .

The sets of and of of sort on � and ,

denoted respectively by () and (), are inductively de�ned as follows.

() ()

, , , () if ()

() if (),

() () if is term of sort , ()

[] () if ()

[] () if

-

, ()

, , , () if ()

, () if (),

() if ().

Figure 8: Formulae of temporal logic and path formulae.

Dynamic properties of the bu�ers

Consider again the example of the bu�ers (see Ex. 3.3), and the speci�cation made by

j

V V

V

V

End example

D

D

; ;

i

;

;

j j

i

D

Version 4.2 { 2/20/95

�

�

DA DA

DA

1 2 1 2 1 2

DA

1 2 1 2 1 2

1 2

2

1

�

!

2

j 2

2 j

j

: ^ _ � 8 9

j 4 2

j

j j

j j

: ^ _ � 8 9

j U

j j j

j j

2 j j

n

if b -- I(n) --> b' then

b' in each case

now and always ([x . x = O(n)] or [y . exists y: now or eventually

[x . x = O(n)]]

BUF AX

V X

X X holds in w.r.t.

V V X holds in on a path

PATH w.r.t. V V

V

formulae

V

V PATH

V

path formulae

V V

V V

V

V

V

X valid V V

D

� F

; � � P

� ; ds ; ; � �

t �

t � � S � L � �

; � �

� � � � � � � x : � x : �

; t; � t � ; ds

ds t S � t ; ; � �

; ; � � x : � ; S � =x �

; ; � � x : � ; L � =x � L �

� � � � � � � x : � x : �

; ; � � �

j > � ; ; � �

i < i < j ; ; � �

� F � ; �

46

the dynamic signature � and by the set of axioms previously de�ned; now we

can formalize the last property that before has been expressed only informally as follows.

The bu�ers have the capability of returning whatever natural number that they have

received and keep this capability until they do not e�ectively return it.

Let DA be a dynamic algebra on � and : DA an evaluation in DA of the

variables in . We inductively de�ne when a formula () DA

(written DA =) and when a formula () DA

(DA) (written DA =).

We recall that the interpretation of a term (atom) in DA respect to is denoted

by () and that, for a path , (), (), have been de�ned previously.

{ DA = i� holds

{ , , , , and analogously to what we

have seen in Fig. 3 of Sect. 1.2

{ DA = () i� is not error and for each (DA),

with sort of , such that () = DA =

{ DA = [] i� DA [()] =

{ DA = [] i� either DA [()] = or () is an error

{ , , , , and analogously to what we

have seen in Fig. 3 of Sect. 1.2

{ DA = i�

there exists 0 s.t. is de�ned, DA = and

for each s.t. 0 DA =

() is in DA (written DA =) i� DA = for each evaluation .

Figure 9: Interpretation of the formulae of the temporal logic and of the path formulae.

� �

i i

i i

X V X

V V

V V

V V

true

false

3

3

2 3

2

2 3

2 3

2

Version 4.2 { 2/20/95

def

def

def def

1 2 def 1 2 1

1 2

1 2

2

def

1 1

U

!

U

j j j j

: :

j j j j

^ _

WU U _

WU WU

U

 WU

j j j j

U

3.4 Entity speci�cations of dynamic systems

D

� �

�

; ; � � i > � ; ; � �

� � �

; ; � � ; ; � � i > �

� � � � � �

� � � � �

� � �

� �

�

� � �

; ; � � � ; ; � �

state id body

47

We de�ne the temporal combinators introduced in Sect. 3.3 in terms of the combinator

of Fig. 7 and give explicitly their interpretations w.r.t. a dynamic algebra DA on

� and an evaluation in DA of the variables in , : DA.

{ = (there exists a point in the path, except the �rst, in which

holds)

DA = i� there exists 0 s.t. is de�ned and DA =

{ = (for each point in the path, except the �rst, holds)

DA = i� DA = for each 0 s.t. is de�ned

{ = and = (and correspond, respectively,

to the combinators and including the initial point, or present)

{ =

(is the combinator weak until; holds on a path each time

that holds until holds; the di�erence with is that we do not require

that eventually holds)

{ = (either the path is made by only one point, or holds

on the second point of the path)

DA = i� either is not de�ned or DA =

Figure 10: Temporal combinators derived from .

Consider the problem of modelling dynamic concurrent systems (i.e. where di�erent com-

ponents interact among them), wanting to pointing out to structural properties, as in the

case in which the various components of the system are distinct by an \identity" and

where these components may share other components.

For example, if we want to specify a set of concurrent and communicating processes,

some of them may be in the same state and thus they are not distinguishable using it, or

object-oriented systems which share some components; in these cases the speci�cations

of dynamic systems seen in Sect. 3.3 are not adequate.

The idea is to consider a particular subclass of the dynamic speci�cations (and thus

of the dynamic signatures and dynamic algebras) such that: each dynamic element has

an \identity", i.e. the states of the dynamic elements are pairs = : , where

{ the identity is preserved by the transitions and

{ the identity is unique (two di�erent components have di�erent \names").

!

�!

�

� �

� 2 2 !

2 �! 2

2

Version 4.2 { 2/20/95

dsort esort

Nil .

+ ||

SC

3.4.1 Entity signatures

3.4.2 Entity algebras

entity signature ES

S CN OP PR

ES S ES

ES S

OP PR

ES

ES

s

e s s s

l s s

l s s e s

l s

e s l s e s e s

E ;

; ; ;

s e s l s l s l s s

e s e s l s e s

e s s

E ; E

48

The entity signatures are particular dynamic signatures which allow to represent dynamic

elements with identity, i.e. entity. In an entity signature, given a sort corresponding to

the bodies we have:

{ - , the sort of the entities with body of type (briey entities of type);

{ - , the sort of the identities of the entities of type ;

{ : : - - , the operation which given an identity and a body builds the corre-

sponding entity.

Moreover since the entity signatures are particular dynamic signatures we have:

{ the sort - of the labels and

{ the predicate : - - - describing the activity of the elements of - .

Thus we have the de�nition reported in Fig. 11.

An is a pair � = (�) where:

� = () is a signature,

, (the elements of are the sorts of the entity bodies),

for each there exist the sort - , - , - , an operation : : -

- and a predicate : - - - .

Figure 11: Entity signature.

The speci�cation language for describing the entity signatures is analogous to that

for the dynamic signatures, where the key words is replaced by . We know,

indeed, that each entity signature corresponds to a particular dynamic signature where

the dynamic sorts are the sorts - for each .

Given an entity signature � = (�), an �-entity algebra is a �-algebra in which

the interpretations of the special sorts, operations and predicates must respect some con-

ditions. For saying formally which �-algebras are entity algebras, we need some technical

de�nitions and for clarity we �rst illustrate them on an example.

Consider a very simple concurrent language in which sequential processes evolve in an

interleaving way and interact among them by handshaking communications; ,

and are the combinators for expressing the sequential processes and is the

parallel combinator.

We de�ne in the following the entity signature .

CD

CD

2

� jj � !

: : :

: : :

: : :

subentities

Version 4.2 { 2/20/95

ent prog

ent proc ent proc prog

esortproc: -- --> ** processes

esort prog [-- -->] ** programs

cn Tau, Alpha, Beta, : lab proc ** process actions

cn a, b, : ident proc

cn Nil: proc

op . : lab procproc -> proc

op + : proc proc -> proc

cn A, B, : ident prog

op : ent proc -> prog

op || : prog prog -> prog

op : lab proc -> label(prog)

SC

SC

+ ||

Nil id: Nil id

Symb

Symb Symb

t t

p: proc ep: ent proc id: ident proc l:lab proc pg: prog pid: ident prog

id: l . p -- l --> id: p

if id: p1 -- l --> id: p1' then id: p1+ p2 -- l --> id: p1'

if ep -- l --> ep' then pid: ep -- l --> pid: ep'

if pid:pg1 -- l --> pid:pg1' then

pid:pg1 || pg2 -- l --> pid:pg1' || pg2

if pid:pg1 -- l --> pid:pg1' and pid:pg2 -- l --> pid:pg2' then

pid:pg1 || pg2 -- Tau --> pid:pg1' || pg2' l =/= Tau

epg = A:(a: Tau . Nil || b: Beta . Nil)

prog A

a: Tau . Nil || b: Beta . Nil

proc

a: Tau . Nil b: Beta . Nil

epg

A:(||)(a: Tau . Nil,b: Beta . Nil),

49

Consider a -algebra CD such that:

{ its carriers are subsets of a quotient of the ground terms on module the con-

gruence generated by the equations corresponding to the fact that and are

commutative, associative and that and for each are their identities;

{ its constants and operations are de�ned in the obvious way;

{ the predicates corresponding to the transition relations for programs) are de�ned by

the following inductive rules, where interpretation in the algebra CD of a

symbol of either constant or operation or predicate is simply denoted by ;

analogously the interpretation of a ground term is simply denoted by ;

, , , , , .

Now we see how to determine the concurrent structure of an entity of CD.

CD

represents an entity of type with identity and body

,

which has two of type , represented respectively by

and

organized in parallel. Thus may be seen as

where the function

(1) : CD CD CD

ESs e s

proc

1 2 1 2

Example 3.5

2

0 00 0 00

0 00

jj ! jj

� !

�

� �

2 [

�

�

�

�

�

�

�

A

A

A

A

A

A

A

Version 4.2 { 2/20/95

e ; e e e

Tau:Nil;Beta:Nil

s

e s

E ;

e v

e id e id b b

v e e v e e

e e

com-

posed organized in parallel

structure view

entity composers

structure views of the entities

ES

identity

sound

a: Tau . Nil b: Beta . Nil

epg

a: Tau . Nil b: Beta . Nil

epg

epg

A: ||

a: Tau . Nil b: Beta . Nil

||

a: Tau . Nil b: Beta . Nil

a: Tau . Nil b: Beta . Nil

SC

50

represents the way in which the entities and are

(i.e.,) for building the structured entity .

The entities and are in some way \simple" (i.e.,

without components); thus the zero-ary functions

(2) : CD

denote that such entities are not given by composing other entities.

Graphically this way of seeing the dynamic structure of may be represented by

the of :

where the term with the holes \ " stands for the function (1). Note that

represent the structure views of the two entities and

(they have no components).

The functions like (1) and (2), describing how some entities are put together for

getting the body of compound entities, are called ; while the structures

graphically represented above by graphs are called .

Note that the entity composers are given at a \semantic level" and not at a \syntactic

level", i.e. they are compositions of interpretations of operations of the algebra and not

just syntactic terms.

Only the constants/operations having result sort contribute to de�ne the composers

for entities of sort - , i.e., the structure of the entities is determined by the operations

whose result sort is the body sort.

We need also the following terminology; let � = (�), and assume that A is a

�-algebra, A

-

and a structure view, then:

{ has i� = : for some .

{ is i� for each subentities and of , if and have the same identity,

then = .

The formal de�nition of entity algebra is reported in Fig. 12; note that the last prop-

erty requires that usually the interpretations in EA of some operations (e.g., the entity

composer :) are partial functions.

Examples of entity structures

Consider the entity signature and the algebra CD on it, previously introduced. We see

that:

EA

�

0 0

ent prog

e s l s s e s l s

s

e s

entity algebra ES2

� � � �

!

� j �! � ��

�

2

Version 4.2 { 2/20/95

E s

l s s e s id; x id; x

e l > e e e

�

�

�

�

�

�

�

A

A

A

A

A

A

A

�

�

�

�

�

�

�

A

A

A

A

A

A

A

Di�erent ways of composing some entities may be equivalent

Compositions of di�erent groups of entities may be equivalent

epg = A:(a: Tau . Nil || b: Beta . Nil)

epg

A:(b: Beta . Nil || a: Tau . Nil)

epg

A: ||

a: Tau . Nil b: Beta . Nil

A: ||

b: Beta . Nilb: Beta . Nila: Tau . Nil

epg' = A: a: Nil epg'

A:(a: Nil || b: Nil) A:(a: Nil || b: Nil || c: Nil)

Nil

id: Nil ||

epg'

51

An �- is a �-algebra EA such that for each

EA

-

EA

-

EA (more precisely EA

-

is isomorphic to a subset of EA

-

EA) and (: : - -) () = ();

if EA = , then and have the same identity;

all elements of EA

-

have only sound structure views.

Figure 12: Entity algebra.

CD

is an entity whose structure may be seen in two di�erent ways; indeed is also

equal to

;

the two structure views of are graphically represented by

and

This correspond to the fact that in the CD programs the order of the processes in

parallel is not relevant.

It is possible that di�erent structure views of an entity di�er also for the number

of subentities, as it is shown by the entity ; indeed is also

equal to

,

and to each number of processes put in parallel (recall that the processes having

form are identities for the operation).

Various structure views of are graphically represented by:

1

1

1

2

2

: : :

: : : i ; : : : ; n

Version 4.2 { 2/20/95

J

J

J

J

J

J

J

�

�

�

�

�

�

�

A

A

A

A

A

A

A

Not all operations contribute to the entity composers

Sharing of subentities

A:

a: Nil

A: ||

a: Nil b:

A: || (||)

a: Nil b: Nil c: Nil

id:

Nil

First: ent progident proc -> ent proc

First(pid:(id: p || ep1 || epn),id) = id: p

First(pid:(id1:p1 || || idn: pn),id) id =/= idi

SC2 SC

||

||| : ent progent prog -> prog

SC2

prog proc prog

epg'' = A:[B:(C:pg1 ||| D:pg2) ||| E:(C:pg1 |||F:pg3)]

C:pg1

B E

52

Thus in the CD programs the processes which cannot perform any action (

) are not semantically relevant.

(i.e. not all operations of the algebra are used for describing the structure of the

entities).

Consider a language CD di�ering from CD only since it has an operation for ex-

tracting from a program a process with a certain identity,

whose interpretation is given by

is error if for = 1 .

The set of entity composers on CD is the same of that on CD, i.e. the structure of

the entities in CD and in CD is the same.

Here we consider a language CD di�ering from CD only since it has a multilevel

parallelism instead of a simple one; we take a new signature obtained from

replacing the operation with

,

and give a -algebra CD in the same way of CD. In this case an entity of sort

has either a subentity of sort or two subentities of the same sort .

,

is an entity where the subentity represented by is shared among the suben-

tities identi�ed by and ; its structure is graphically represented by

3

3

3

Version 4.2 { 2/20/95

The entities may terminate and new entities may be created

End example

�

�

�

�

�

�

�

A

A

A

A

A

A

A

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

A

A

A

A

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

�

�

�

�

�

�

�

J

J

J

J

J

J

J

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

A

A

A

A

A

A

J

J

J

J

J

J

J

A: |||

B: ||| E: |||

C:pg1 D:pg2 F:pg3

SC3

SC

Terminates: -> lab proc Creates: proc -> lab proc

if ep -- Terminates --> ep' then pid:(ep || pg) -- Tau --> pid: pg

if ep -- Creates(p) --> ep' then

pid:(ep || pg) -- Tau --> pid:(ep' || id: p || pg)

id pg

A: ||

a: Nil

b: Create(Alpha . Nil) . Nil

-- Tau -->

A: || (||)

a: Nil b: Nil

c: Alpha . Nil

A: ||

a: Nil b: Teminate . Nil

-- Tau -->

A:

a: Nil

53

Here we consider a language CD di�erent from CD only since it allows the termi-

nation and the creation of processes. We take a new signature obtained from

by adding the operations

and ,

and CD is de�ned analogously to CD; the transitions due to the new actions are

given by

for each not in

Graphically an example of a creation and of a termination of a process of CD are

shown by:

n

n

1 2

1 2

�

j f g

9

�

f g

Version 4.2 { 2/20/95

entity speci�cation AX AX

3.4.3 Entity speci�cations

Example 3.6

SYST = esorts syst proc: -- -->

p set s

proc ent set syst

if set Are Sub p then set = p

Are Sub

Are Sub

E ; E

Are Sub set ente s s E

set ent

e ; e ; : : : ; e Are Sub e

v e e : : : e e

v

set ent

54

The dynamic systems which have particular structural properties may be abstractly spec-

i�ed using entity speci�cations.

The entity speci�cations are particular dynamic speci�cations characterized by:

{ entity signature;

{ formulae/predicates for investigating the concurrent structure (e.g. only parallelism

at one level, absence of deadlocks and so long).

Notice that for investigating the concurrent structure the formulae of the �rst order

logic on the signature are not su�cient; an idea is that of introducing a special predicate,

called , expressing the fact that a set of entities consists of all the subentities

w.r.t. a view of the structure of an entity. Moreover since we need to handle sets of entities,

other the predicate , we add also sorts/constants/operations/predicates of the

data type sets of entities.

Thus an is a pair (�), where is a set of formulae on �

enriched by:

the special predicates : - - , for each entity sort of �, where

- is the sort of the set of the entities of all sort and whose validity on an

algebra EA is de�ned by

EA = i�

a view of the structure s.t. , , , are all the subentities of w.r.t.

;

the sort - of the set of the entities of all sort and the constants/operations/

predicates on such �nite sets of entities.

Speci�cation of concurrent systems with structural properties

Consider the problem of specifying the concurrent systems consisting of 5 simple processes

(i.e. without internal parallelism) put in parallel where the deadlock situations may never

arise using an entity speci�cation.

The signature of the speci�cation is

Now we have to express then expressing the following properties:

1. the processes have not dynamic components (they are simple),

2. the systems have 5 dynamic components of type process,

3. if a systemmay not evolve, then also each of its components may not evolve (absence

of deadlocks).

We can express the above properties with the following axioms, where , , are

variables respectively of sorts , and :

1. (recall that each entity is a subentity of itself)

55

2.

3.

End example

Version 4.2 { 2/20/95

if set Are Sub s then Card(set) = 5

if set Are Sub s and x In set then exists p : p = x

if (not exists s', ls: s -- ls --> s') and set Are Sub s and p In set

then

(not exists p',lp: p -- lp --> p')

References

Version 4.2 { 2/20/95

Proc. TAPSOFT'85, Vol. 1

Mathematical Models for the Semantics of Parallelism,

Proc. Advanced School on Mathematical Models of Parallelism, Roma, 1986

System Development and Ada, Proc. of CRAI

Workshop on Software Factories and Ada, Capri 1986

Proc. TAPSOFT'87, Vol. 1

Proc. MFCS'91

Recent Trends in Data Type Spec-

i�cation

56

[AMRW85] E. Astesiano, G.F. Mascari, G. Reggio, and M. Wirsing. On the parame-

terized algebraic speci�cation of concurrent systems. In H. Ehrig, C. Floyd,

M. Nivat, and J. Thatcher, editors, , number

185 in Lecture Notes in Computer Science, pages 342{358. Springer Verlag,

Berlin, 1985.

[AR87a] E. Astesiano and G. Reggio. An outline of the SMoLCS approach. In M. Ven-

turini Zilli, editor,

,

number 280 in Lecture Notes in Computer Science, pages 81{113. Springer

Verlag, Berlin, 1987.

[AR87b] E. Astesiano and G. Reggio. The SMoLCS approach to the formal semantics

of programming languages { A tutorial introduction. In A.N. Habermann

and U. Montanari, editors,

, number 275 in Lecture

Notes in Computer Science, pages 81{116. Springer Verlag, Berlin, 1987.

[AR87c] E. Astesiano and G. Reggio. SMoLCS-driven concurrent calculi. In H. Ehrig,

R. Kowalski, G. Levi, and U. Montanari, editors, ,

number 249 in Lecture Notes in Computer Science, pages 169{201. Springer

Verlag, Berlin, 1987.

[AR92] E. Astesiano and G. Reggio. A structural approach to the formal modelization

and speci�cation of concurrent systems. Technical Report PDISI-92-01, Di-

partimento di Informatica e Scienze dell'Informazione, Universit�a di Genova,

Italy, 1992.

[CR91] G. Costa and G. Reggio. Abstract dynamic data types: a temporal logic

approach. In A. Tarlecki, editor, , number 520 in Lecture

Notes in Computer Science, pages 103{112. Springer Verlag, Berlin, 1991.

[PR94] F. Parodi and G. Reggio. Metal: a metalanguage for SMoLCS. Tech-

nical Report DISI{TR{94{13, Dipartimento di Informatica e Scienze

dell'Informazione { Universit�a di Genova, Italy, 1994.

[Reg91] G. Reggio. Entities: an institution for dynamic systems. In H. Ehrig, K.P.

Jantke, F. Orejas, and H. Reichel, editors,

, number 534 in Lecture Notes in Computer Science, pages 244{265.

Springer Verlag, Berlin, 1991.

Contents

Version 4.2 { 2/20/95

1 Algebraic speci�cations of data types 3

2 Formal models of dynamic systems 24

3 Speci�cations of dynamic systems 34

: :

: :

: :

: :

: :

: : : : : : : :

: : : : : : : : :

: : : : : : : : : : : : : :

: : : : : : :

: : : : : : : : : : : : : :

: : : : : : : : : : : : : : : :

: : :

: : : : : : : : : : : : : : : : : : :

: :

: :

: :

57

1.1 Concrete data types as algebras 3

1.1.1 Signatures 4

1.1.2 Algebras 5

1.1.3 Terms and atoms 7

1.2 Abstract data types 11

1.3 Speci�cations of data types at di�erent levels of abstraction 20

2.1 Labelled transition systems for modelling dynamic systems 24

2.2 Concurrent systems (structured dynamic systems) 29

2.3 A standard schema as a guide for de�ning concurrent systems 32

3.1 Concrete dynamic data types as dynamic algebras 34

3.2 Speci�cations of abstract dynamic data types 37

3.3 Temporal combinators for specifying the activity of dynamic systems 41

3.4 Entity speci�cations of dynamic systems 47

3.4.1 Entity signatures 48

3.4.2 Entity algebras 48

3.4.3 Entity speci�cations 54

