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Abstract. Modelling nonpurely-reactive systems, such as agents and
autonomous processes, does not find a direct support in the UML nota-
tion as it stands, and it is questionable whether it is possible and sensible
to provide it in the form of a lightweight extension via stereotypes.
Thus we propose to extend the UML notation with a new category of dia-
grams, “behaviour diagrams”, which are, in our opinion, complementary
to statecharts for nonpurely-reactive processes (active objects). The pro-
posed diagrams, to be used at the design level, also enforce localization/
encapsulation at the visual level. Together with motivating and present-
ing the notation, we also discuss the various possibilities for presenting
its semantics in a palatable way, depending on the reader.

1 Introduction

The Unified Modeling Language (UML), see [21]and [18], is an industry standard
visual notation widely used for specifying software systems. UML incorporates
in an integrated way several notations for object-oriented modelling, covering
different aspects of a system also at different points of its development process.

Concerning the modelling of the dynamic behaviour of a system UML offers
many different notations, as sequence, collaboration, activity, and statechart
diagrams. Furthermore, we can attach constraints to the various parts of a UML
description, and thus implicitly constraining the system behaviour, and define
methods for the class operations, thus modelling parts of such behaviour.

Because of the richness and the abundance of the notations provided by
UML, someone may object to the introduction of further notations. But UML
is intended to be extensible, adaptable, and modifiable. From the preface of the
proceedings of the <<UML>>99 conference [6]:

Flexibility is needed if the UML 1is to be used in a variety of application
domains. Tailoring of UML syntar and adaptation of UML semantics
to system domains is highly desiderable. Incorporating domain-specific
concepts into the language will yield modelling languages that more ef-
fectively support system development in these domains. Tailoring may
wmvolve determining a subset of the UML that s applicable to the do-
main, extending or modifying existing language elements, or defining
new language elements.



Furthermore, UML itself provides the mechanisms, summarized in [12], to
define its variants. UML Real Time [20] is an example of a variant for modelling
embedded real-time systems.

In this paper we consider the case of using UML for modelling systems con-
taining processes whose behaviour is not purely-reactive, and this is a relevant
field including many widespread applications. Consider, for example,

— agent systems

— distributed systems made by autonomous processes, as a special case we have
processes that cooperate by using tuple spaces (as those supported by the
JavaSpaces™ technology, see [10]). The basic paradigm for describing their
behaviour is absolutely nonreactive, indeed they go on by adding tuples to
the spaces, and by reading or taking tuples matching some patterns from the
same spaces, and so they act and test the external environment (the tuples)
and do not react to its changes (tuple spaces are fully passive)

— (mobile) processes travelling over a net doing maintenance and monitoring

activity. A concrete instance is the following process monitoring the dead
links of a web site.
It downloads the pages of the web site following some order one after another,
thus for each page it checks whether it contains some dead links; if the answer
is positive, then it replaces such links with some text; moreover if the dead
links are more than two, it informs the web master. At each moment it can
receive the order to follow for visiting the pages by the webmaster.

We have analysed UML and think that it does not offer direct means to
describe the nonpurely-reactive behaviour of active objects (objects of active
classes), which is the UML word for processes. Here, we sketchy present the
result of our analysis.

Sequence, and similarly collaboration diagrams, allow to present possible
sequences of stimuli' exchanged among some of the objects of the system.

Activity diagrams are used to describe causal relationships among internally-
generated actions in classes instances or in an operation implementation, that
is, following [21] p. 3.151, procedural flow of control.

Constraints attached to a class or to the whole model? (as invariants), oper-
ations and to signal receptions (as pre-post conditions) may indirectly constrain
the dynamic behaviour of the systems or of some of the composing active objects.

Methods attached to operations may only describe parts of the behaviour of
the system or of some of its components.

Thus, the constructs listed above cannot be used to model the behaviour of
active objects, whereas statecharts® are the canonical candidates for this task.
However, they are strongly biased towards reactivity, and below we try to cor-
roborate this statement.

! In the UML terminology, a stimulus is a communication between two objects.
2 In the UML terminology, a model is the description/specification of a system.
3 Statecharts are the diagrams that visually present the state machines.



UML statecharts have been originated by Harel statecharts [7], though they
have many new advanced features and their semantics for what concerns the
treatment of the received events is different.

The UML documentation explicitly states that statecharts are for reactivity.

A statechart diagram can be used to describe the behavior of a model
element such as an object or an interaction. Specifically, it describes
possible sequences of states and actions through which the element can
proceed during its lifetime as a result of reacting to discrete events (e.g.,
signals, operation invocations). [21] p. 3-131
State machine may be used to describe user interface, device controllers,
and other reactive subsystems. [18] p. 30
A class .... It may have a state machine that specifies its reactive be-
haviour - that is, its response to the reception of events. [18] p. 186

The purely reactive nature of statecharts is shown by the following example.

E1 [condl] / actl

E'l

En [condn] / actn

An active object whose behaviour is described by such chart will never move
in the case the context is not generating an event corresponding to one of El,
..., En, for example an empty environment.

Moreover, there is another aspect of statecharts that is often unnoticed and
whose possible negative effect is understimated. The statecharts visually model
only when and to what the active objects react, while the content of the reaction
is presented textually. Indeed, each transition visually models a possible way of
the object to react to some external stimulus, but the activity corresponding to
the reaction is not depicted; however, in some cases it may be quite complex
and consisting of several atomic interactions with many other objects. Consider,
for example, the statechart in Fig. 1, there the reaction to event E consists of
calling several operations of several objects, and of creating and destroying other
objects, but the diagram is not suggesting it. For a common,i.e., not very skilled,
user the result may well be a misunderstanding of the semantic implications of
what s/he depicts and sees, since apparently everything should be clear from the
visual notation.

Thus, we propose in this paper to extend UML by introducing a new kind
of diagrams for modelling in general the behaviour of active objects, named
“behaviour diagrams”*. The basic ideas behind are the following.

* In the UML terminology (see [12]) this would be a heavyweight extension, because
such diagrams would be defined by introducing a new syntactic category and not as
a stereotype (a variation) of an existing one. However, the question whether these
diagrams can be obtained by the existing ones via stereotypes is still unanswered.
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if(a =4)
begin
01.0p1(3); ...; OK.Opk(4,Y);
Oilf Y =0 then 0.0p(Y+1) else O.Op’(0);
end;

else begin destroy O2; OX = create(C); end
' DS g y © >@
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Fig. 1. A very complex reaction

— We keep the state-transition paradigm for modelling behaviour as for state-
charts.

— However, differently from statecharts,

e the transitions correspond to perform “atomic interactions” (atomic ac-
tivities made by the object in cooperation) with the external environ-
ment, as to receive/send a call, to receive/send a signal, to create/destroy
an object®.

e we enforce localization: the attributes of the object modelled by be-
haviour diagrams cannot be visible outside the object (except than in
the diagram) and the operations appearing in the diagram cannot have
an associated method behavior.

Thus the fundamental difference with statecharts is double: describe (possi-
ble autonomous) atomic interactions instead of just reactions; make visible on
the diagram all the interactions with the external environment. For those who
are acquainted with CCS [11] and CSP [8], the first difference would roughly
correspond to allow on the transitions also the output operations (denoted by !)

and not only the input ones (denoted by ?).
The paper is organized as follows.

We present in Sect. 2 in a detailed way the kernel of behaviour diagrams
(that is the simplest diagrams) to introduce the new “interactive paradigm”;in
Sect. 3 we shortly present some of the advanced features; in Sect. 4 we discuss
some sensible ways to present the semantics of the behaviour diagrams; finally
in the conclusions we put our work into perspective with other work and current

UML.

® Notice that in the UML terminology interaction is used for something different:
“A collaboration of objects interacts to accomplish a purpose (such as performing
an Operation) by exchanging Stimuli. These may include both sending Signals and
invocations of Operations, as well as more implicit interaction through conditions
and time events. A specific patltern of communication exchanges to accomplish a
specific purpose is called an interaction.” [21] p. 3-117



2 Behaviour Diagrams: the Kernel

2.1 The notation

The behaviour notation is based, similarly to the UML statecharts, on the state-
transition paradigm; thus a behaviour diagram in its simplest form is just a
graph with nodes decorated by a name (the states), with oriented arcs among
nodes (the transitions). The fundamental difference with the statecharts is the
form of the inscriptions decorating the transitions and their meaning. In a state-
chart transitions are triggered by events raised by the external environment and
in some special cases by the past activities of the object itself; whereas in be-
haviour diagrams transitions correspond to atomic interactions with the external
environment.

Below is an example of a behaviour diagram belonging to the kernel. Notice
that we consider only the case of a behaviour diagram whose context is an active
class®, say AC.

The modelling paradigm is quite simple. During the life of an active object
of class AC exactly one state is “active”, and only the transitions from an active
state are eligible for execution. When the object is created exactly one state will

be active, the one marked by w; clearly it 1s required to be unique. When
the final state, the one marked by @, becomes active, the object activity ends.

The modelled behaviour consists of executing eligible transitions, as a run-
to-completion-steps, one after another; in the meantime events (only call, signal
and destroy) may be added to the event queue as soon as the corresponding call
(or signal, or destroy indication) arrives.

Now we present the generic form of (the inscription decorating) the transi-
tions and describe which eligible transitions will be picked up for execution and
what does it mean to execute a transition, i.e., the run-to-completion-step for
behaviour diagrams.

{ pre-guard(self,0) }
inter(O,l)
[ post-guard(self,O,l) ]

@ / act(self,0,1) @

where

6 In the UML terminology, the context is the element whose behaviour is modelled by
the diagram.



— pre-guard, the static guard, is a boolean expression (written using OCL7).

— inter, the atomic interaction, is defined by the fragment of the metamodel in
the UML metamodel® in Fig. 2 may be either a simple action requiring an
interaction with some other object, or an event that is the result of an inter-
action by some other object or null that is no interaction with any object,
1.e., an activity purely internal to the object. Input atomic interactions may
have parameters, denoted in the above picture by I, that are just variables,
output atomic interaction may have arguments, denoted in the above picture
by O, that are just ground expressions, whereas the null atomic interaction
has neither parameters nor arguments.

— post-guard, the dynamic guard, is a boolean expression (written using OCL).

— act, the action, is an UML action.

The intuitive meaning of a transition of a behaviour diagram is that the
object may perform (whenever possible) some interaction with some other object
possibly followed by some local activity when some guard conditions are satisfied.

In this case the “Well-Formedness Rules” are quite important and are as
follows

— O, pre-guard and post-guard cannot have any side effect, as already required
by statecharts

— O, pre-guard, post-guard and action cannot contain references to other objects
neither to associations (roughly, it must be possible to evaluate/execute them
without accessing anything outside the context object). For example, this
means that, differently from statecharts, any call to other objects cannot
appear in the action part

— |, the parameters of input atomic interactions, may appear in post-guard and
action

— any operation of class AC appearing in the behavior diagram cannot have
an associated method, while any one not appearing in such diagram should
have an associated method and should be visible only inside the class and
the behaviour diagram

— all the attributes of the context active class are visible only inside the class
itself and the behaviour diagram, thus no other objects may access or modify
them indirectly, they can do that only explicitly by calling operations or
sending signals to the object.

— there cannot be two transitions with the same atomic interaction part (this
is not restrictive, because of the presence of the null atomic interaction).

Notice that when we speak of objects, we do not consider instances of UML
datatypes.

" The Object Constraint Language to specify constraints and other expressions at-
tached to UML models, see [21][chapter 7].

8 The abstract syntax of UML is given by means of an object-oriented description, a
class diagrams, called metamodel, whose classes corresponds to the abstract syntactic
categories.
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Fig.2. The metamodel definition of behaviour diagrams (kernel)




The precise meaning of a behaviour diagram transition is given by describing
a run-to-completion step (RTC) as for statechart.

We call a transition of a kernel behaviour diagram eligible whenever its source
state is active; this definition will be more complex for the case of behaviour
diagrams not belonging to the kernel, but it can always be given by using just
the static structure of the diagram and the information of which states are active.

1. Picks up an eligible transition s.t. its pre-guard holds.
2. Execute inter (that can either be successful or fail). The meaning of executing
an atomic interaction is defined by cases.
call-action execute the call action; in the kernel we consider only asyn-
chronous calls, thus it cannot fail
call-event if there is matching call in the event queue, then take it instan-
tiating the parameters, otherwise fail
send-action execute the send action; sending signal is always asynchronous,
thus it cannot fail
signal-event if there is matching signal in the event queue, then take it
instantiating the parameters, otherwise fail
null inter do nothing, clearly it cannot fail
create-action execute the create action; it cannot fail
destroy-action execute the destroy action, that is considered as a special
kind of call-action; so it results in putting a destroy event in the queue
of the argument object; thus it cannot fail
destroy-event if there is a destroy event in the event queue, then take it,
otherwise fail
3. If the execution of inter is not failed and the post-guard holds, then act will be
executed, and, denoting respectively by S and S’ the source and the target
states of the transition, at the end S’ will be active and " will be inactive
(except if it is 8), else do nothing.
4. The RTC is finished.

The algorithm for picking up the transitions to be executed is as follows: all
transitions leaving a state are totally ordered in some way not further specified,
then they are picked up one after another following such order; if all of them fail,
the procedure starts again possibly ordering the transitions in some other way.
As a consequence we have that the nondeterministic capabilities corresponding
to the transitions leaving the same state will be tried in a quite fair way (it
cannot happen that the object goes on forever trying failing transitions while
another one can be executed); in the next section we will see another mechanism
for allowing the user to explicitly decide the order in which to pick up transitions.

2.2 An Example: the distributed buffer resetter

In this section we show a simple example of the use of behaviour diagrams to
model a nonpurely-reactive process, the distributed buffer resetter. This example
is quite simple but is paradigmatic of autonomous agents doing monitoring and
maintenance over distributed systems or Internet.



— It accesses some buffers one after another following some given order; thus
for each buffer if its contents is “wrong”, then it resets it.

— At each moment, it can receive from some manager the list of the buffers to
reset, and it can be stopped.

Using UML we model the buffer resetter using an active class with an asso-
ciated behaviour diagram.

Resetter <<active>>

List of buffers to
Contents of the buffer bl: Sequence(Buffer) = Sequence {} |~ be resetted ]|
currently examined | | cont: Integer

stops Receiving a new
recList(Sequence(Buffer) ) r--1 list of buffers o

The class has two attributes cont and bl, and two operations stops and recList.

The text enclosed by M is an UML comment.

We assume that all the OCL types, for example, Sequence and Integer are
UML datatypes, i.e., special classes whose instances have no identity (they are
pure values) and whose operations never change their states (they are pure
functions).

4 1

running \ checking
J { bl.notEmpty } N

bl first.read(X)
/cont =X

) { not cont.error }
stopping / bl = bl->excluding(bl.first)

{ cont.error } bl.first.write(0)
/ bl = bl->excluding(bl.first)

=br

recList(bl') / bl

stops \/.\/ { bLisEmpty }
stops
{ bl.notEmpty } Master.confirm

waiting

- J

The resetter in the running state has three possible moves:

— when bl is not empty, it may access the first buffer of the list getting its
content; if such content is or not an error (checked by the operation error) it
resets such buffer by writing 0



— it may receive a new list of buffers to be resetted by accepting a call of its
operation reclist

— it may receive a request to stop (by a call of its operation stops); in such cases
it passes in the state stopping. If bl is empty, it terminates by a transition
into the final state, whose atomic interaction 1s the null one, otherwise it
asks for a confirmation to its master by calling its operation confirm. Then,
if 1t receives it as a new call of the stops operation, it terminates.

Notice that, as a Presentation Option we have that it is possible to omit the
null atomic interactions (as in the transition from state waiting to running and
in the one from stopping to the final state).

3 Behaviour Diagrams: Advanced Features

In the previous section we have presented the kernel of the behaviour diagram
notation, showing its main differences with respect to UML basic statecharts.
Designing behaviour diagrams we followed the idea that their differences with
statecharts should be confined to the kernel part, while the advanced features
should be, as much as possible, the same, but trying to avoid some problematic
aspects of statecharts, as those found in the formally based analysis of [16,15].
Here, for lack of room we cannot consider all such features and so we briefly
present some of the most relevant. In Fig. 3 we present a new behaviour diagram
for the buffer resetter using some of the advanced features.

Sequential and concurrent hierarchical states and completion transitions as for
statecharts. In Fig. 3 we present a new resetter that can also be destroyed in an
uncontrolled way, by modifying the corresponding behaviour diagram by adding
a hierarchical state.

Internal transition, entry and exit actions as for statecharts.

State activity (do activity) We define a nonproblematic form of do activity for
behaviour diagrams as a derived construct, in the following way (that is possible
due to the presence of the null atomic interaction).

s [~
stands for |
/ act

Compound transitions UML is quite complex and truly unclear for what concerns
the compound transitions, state vertex and pseudo states (see the metamodel at
[21] p. 2.130); indeed many different features are introduced by vary combining
such ingredients. We think that only three of these features are relevant for
behaviour diagrams and that may be introduced quite simply as follows.
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Fig. 3. A buffer resetter (advanced notation)




Factorizing transitions into segments 1t is useful to visually present a
transition by joining many transition segments (that are not transitions) by a

special symbol, the junction visually presented by

Technically, a transition segment is an arc either between two junctions (we
prefer not to call them states) or a junction and a state or a state and a junction
decorated with a partial transition inscription (e.g., just a pre or a post-guard,
an atomic interaction, an action, or a pre-guard and an atomic interaction, ... ).
The meaning of junctions and segments is simply given by some replacement
rules: a junction may be eliminated by connecting any incoming arcs with any
outgoing arcs and decorating the resulting arc with the combination of the two
inscriptions (clearly, not all combination of segments are correct, e.g., a guard
cannot follow an action).

The factorization of transitions improves the readability of the diagrams, by
splitting in pieces complex transitions and by avoiding to depict many times the
same part of inscription.

In Fig. 3 we have factorized the following two transitions

{ not cont.error }
1 bl = bl->excluding(bl.first)

running 1> | checking

{ cont.error}
bl.first.write(0)
/ bl = bl->excluding(bl.first)

to avoid to write twice the segment containing the assignment action. Visu-
ally this helps to grasp that in any case the first buffer is eliminated from the
sequence.

Transitions with multiple source/target states Transitions with multiple
source/target states can be easily added to behaviour diagrams by changing in
the metamodel the arity of the source and target associations of transitions.
Visually they will be represented in the following way.

: \| ............. | :

o Ne

Dynamic choice A UML dynamic choice point allows to split a tran-
sitions in several outgoing fragments, each with its own guard; such guards are
evaluated dynamically, that is after the preceding part of the run to completion
step has been executed (recall the normal guards are instead evaluated before
deciding to take the transition). The presence of the postguards and of the null
interaction allows to realize this construct in behaviour diagrams as derived.




Time events Time events are the way of statecharts to react to some condi-
tions related to the time, as the reaching of some time or the elapsing of some
delay. It is not sensible to see these time-related conditions as special atomic
interactions, whereas in our opinion is convenient to consider them as special
conditions that may appear in pre-guards. Technically, we introduce them as
new OCL constructs: an operation returning the actual time and another one
returning the time elapsed since when the currently state has become active.
See in Fig. 3 an example of use of these new conditions in the transition from
waiting to running.

Synchronous calls In UML operation calls may be either synchronous or asyn-
chronous; in the kernel part of behaviour diagrams we have considered only
asynchronous calls. However, full behaviour diagrams should allow also atomic
interactions corresponding to synchronous calls. The problem is an old one and
consists of how handling nondeterministic choice among many possibilities of in-
teractions, where some of them are synchronous, and thus blocking, and others
asynchronous, and thus nonblocking. If a blocking interaction has been picked up,
should the object remain blocked, perhaps also forever, when another transition
may be executed? The behaviour diagrams of JTN (see [3]) solved this prob-
lem by restricting the allowed combinations of synchronous and asynchronous
interactions and by ordering them, precisely defining when the object should
remain blocked and when not. The behaviour diagram variant of [17] solved it
by abstractly handling asynchronous interactions by requiring the simultaneous
execution of the two matching interactions by the two partners of the communi-
cation; however this cannot be proposed for UML also because it is not consistent
with any form of distribution of the objects.

Our idea in handling this point is to mark the transitions as blocking or not;
a blocking transition will never fail and so once picked up the object will wait,
also forever, till it will be executed.

Furthermore, we think that it may be useful in some cases to attach to the
transitions a priority value (just a natural number) and thus the RTC step will
consider the transitions following such order till to find one whose execution is
not failing.

Consider the following example:

Op1l
Op2
P 5 (s2

Op3




if there is a call of Op2 in the queue, the object passes in state S2, otherwise if
there is a call of Op3, the object passes in state §3, otherwise it waits until there
will be a call of Opl, and in such case it will pass in S1. If we drop the blocking
decoration from the transition in S1, then it will go on forever by looking for a
call in the event queue following the order Op2, Op3, Opl.

01.0
(s) P ® s(s)

instead shows a blocking call to some object, that is a synchronous call.

Finally let us note that two features of statecharts, namely Deferrable and
Change Fuvents, lose their meanings for behaviour diagrams. The first because
there is no more the event dispatching. Indeed, the object activity is driven by
the object thread, which picks up events from the queue only when it is able to
handle them.

The second, which is a way to react to some boolean expression becoming
true, because the value of the object attributes cannot change implicitly, since
no other object may indirectly access them, and the expression controlled by the
change event should not contain references to other objects, as already strongly
suggested by the UML specification [21].

4 Semantics of Behaviour Diagrams

Up to now, in this paper, we have presented the pragmatic of the behaviour
diagrams trying to motivate them and to show what they are good for; now we
consider their “semantics”, providing an outline. The pair “UML - semantics”
has been quite debated, e.g., has been the topic of a long series of workshops at
OOPSLA, ECOOP and <<UML>> conferences and has even raised philosophic
discussions in many occasions. Behaviour diagrams have a semantics, which is
precise/rigorous/sound/well-founded (we have no semantic variation points).

However, as often happens in practice, the relevant point is how to present
such semantics, in a way that is well accepted by a wide UML audience. We think
that there are three different “Presentation options”, each one particularly apt
for a different kind of person, precisely for the

— UML practitioner (who reads at most the reference book and the specifica-
tion)

— formalist (who believes in the role of precise formal definition of any used
notation)

— metamodel lover (who thinks that the only viable way to propose a precise
semantics of UML is using UML itself)

4.1 UML practitioner semantics

This is exactly the kind of “informal” semantics given in the UML specification
document [21]. To complete??? it in the spirit and in the form of [21], we need
to give



— an extension of the metamodel with the new metaclass BehaviourDiagram
(see Fig. 2) with the appropriate well-formedness conditions precisely pre-
sented using OCIL

— a new chapter of UML specification ([21]) chapter on semantics similar to
that of the statecharts, but about behaviour diagrams and based on our RTC
step. Perhaps the only difference may be a new organization distinguishing
the basic constructs defined directly and the derived ones, defined by giv-
ing the corresponding combinations of basic constructs (see e.g., the state
activity defined in Sect. 3)

— no other modifications are needed, except the extension of OCL with the new
time related operations, because the newly introduced diagrams concern only
the behaviour of active objects.

An interesting question arising at this point is “do we really need a new
metaclass for behaviour diagrams ?” or can they be obtained as a special subcase
or as a stereotype of some already existing model element 7 This is quite common
in UML; for example, activity diagrams are a specialization of statecharts, and
sequence diagrams are a variant of collaborations. At the moment we have not
an answer; this point needs to be further investigated.

4.2 Formalist semantics

It is possible to give a formal semantics to behaviour diagrams by using labelled
transition systems presented by means of an appropriate specification language,
for example CASL-LTL (see [14]) similarly to the lightweight semantics for stat-
echarts of [16].

The task in this case is simpler and easier because the definition of behaviour
diagrams is more precise than that of the statecharts, and because many prob-
lematic points of statecharts have been avoided.

Here we cannot present such the semantics, but it can be found in [13].

We would like to point out that the existence of this formal semantics of
behaviour diagrams will guarantee the quality of its informal presentation of
Sect. 4.1; indeed by defining it we have already made a throughly analysis of
such diagrams, preventing the presence of ambiguities, problematic points and
so on, or just of features whose semantics may be precisely formalized but that
it is too complex to be effectively used.

4.3 Metamodel lover semantics

It has been argued are persons that think that the only viable way to propose
a precise semantics of UML that can be effectively used by real people is to
present it by using UML itself (see e.g., the pUML group?; this viewpoint has
been strongly supported at the <<UML 2000>> conference in the invited talk
by Steve Cook [2].

® http://www.cs.york.ac.uk/puml/index.html



Naively this could be interpreted in a purely “translational way”, that is UML
is translated into UML1 (a subset of UML), that in turn is translated into UMTL2
and so till UML* (consisting more or less of passive class definitions plus OCL)
to whom a direct semantics will be given. Now, that approach is instead more
clearly understood in a different way; we give a semantics to UML by associating
to its parts some meanings in some domains, and we describe both domains and
associations with UML itself. Recall that the abstract syntax of UML is already
presented by using UML itself, and this is the so-called metamodel.

The key point of the formal semantics of Sect. 4.2 is the use of a labelled tran-
sition system to model the active object behaviour, whereas the use of CASL-LTL
is not mandatory; indeed such semantics may be presented also using, for exam-
ple, a plain mathematical notation for sets, functions and and predicates. Thus
there is no problem in using UML itself to present such labelled transition sys-
tem. States and labels could be presented as classes, and the transition predicate
by an association class'®, and its definition by conditional rules can be given by
an OCL constraint, as we can see in the following picture.

Label
State target
............. Arrow
source| LabelOf: Label

(a.source =s and a.target = s’ and a.LabelOf = Ilﬁ
iff

(condi(s,l,s’) or ... or condk(s,l,s) )

The proposed definition is technically ok, but perhaps not so convenient from
the notational point of view.

We can propose some appropriate “Presentation Option” in the pure UML
style.

For example, the OCL constraint may be equivalently presented in the fol-
lowing ways:

if condl (s,l,s') then s s f condk(s,l,s") then s BN

or more visually by a set of object diagrams of the form

10 An association class is an association that is also a class. It not only connects a set
of classifiers but also defines a set of features that belong to the relationship itself
and not any of the classifiers. [21]



a: Arrow
LabelOf: |

cond(s,l,s’)

Using the UML extension mechanism we can define a set of coordinate stereo-
types as a toolkit for specifying labelled transition systems, with associated nice
notations (one of package for the Its, one of association class for the transition
predicate and so on).

Now let us consider the problem of the “circularity” of such definition. UML
is defined in terms of itself, and also the semantics of the passive class diagrams
is quite problematic (e.g., aggregation [5]). But when proposing the <<LTS>>
stereotype we can also impose precise static restrictions, prohibiting the use
of some of the problematic features, and moreover the definition of a UML
stereotype may include also the refinement and the clarification of the semantics
[12]. Furthermore we can also give directly a formal semantics to thus subset.

A similar approach to metamodelling for UML has been proposed in [4],
where they use a variant of collaboration diagrams to visually depict SOS-like
rules for defining the operational semantics.

5 Conclusions

We have presented in brief a new kind of diagrams, called behaviour diagrams,
for modelling the behaviour of autonomous/active/proactive/interactive /... /
active processes (using the UML terminology instances of active classes, or active
objects) in the case they are not purely reactive.

From a methodological point of view behaviour diagrams should be used only
associated with active classes and in alternative to statecharts, when modelling
active objects, depending on the nature of their behaviour.

Behaviour diagrams are quite well incorporated in UML since in their def-
inition we have tried to depart from the UML style and philosophy as less as
possible. Clearly we have tried to avoid some of the problematic points of orig-
inal UML statecharts, that have been found during our previous analysis work
(see [16]). Among these points we would like to mention

— incomplete, ambiguous or methodological questionable semantics (the latter
is the case of a feature with precise semantics but easy to use in a wrong
way, for example the absence of any encapsulation of active classes)

— a quite complicated abstract syntax (the metamodel), where the attempt
to use very abstract syntactic categories (metaclasses) generalizing many
different cases results in something really complicated; that makes hard to
relate the semantics to the syntax (cfr. “transitions”, the basic syntactic
ingredient, and “compound transitions”, the basic semantic ingredient, in



statecharts) and perhaps makes unnecessarily rich the set of statically correct
UML models!!

At the moment we do not know whether behaviour diagrams may be recovered
from standard UML [21]by an appropriate use of stereotypes on existing model
elements; our attempts have been unsuccessful and we look for further investi-
gation. If the answer would be positive, that will be considered by someone as a
nice proof of the good properties of UML is extreme flexibility and richness and
adequacy, . ... But we should start to think if that is really positive, for users,
for tool developers, and so on.

The novelty of behaviour diagrams w.r.t. statecharts is the meaning of tran-
sition: in statechart a transition corresponds to a possible reaction to something
happened in the system (inside or outside the object) whereas in behaviour dia-
gram a transition corresponds to a possible atomic interaction of the object with
the external environment.

We would like to point out that the proposed extension is quite modular
w.r.t. the UML structure, the main reason is that the new diagram concerns
only the behaviour of active objects, and so no modifications of other parts are
needed. Only, to allow time guards on transitions we should introduce new time
conditions into OCL. Extensions in this direction of time features are required
also by others, for example to introduce a delay action.

Behaviour diagrams have a quite precise semantics that is expressed follow-
ing different presentation options depending on the prospective readers: normal
UML practitioner, formalist, and metamodel lover; but such semantics is precise/
rigorous/sound /well-founded/. .. because the difference is only in the presenta-
tion, and so it has always the “good” properties of a formal one.

Behaviour diagrams should be an alternative to statecharts for modelling the
behaviour of active objects, and that should be their main use. They could also
be used for modelling the behaviour of a method of an active or passive class,
while we do not know if they can be used for use cases, while surely they cannot
be used for modelling the behaviour of passive classes.

It is also interesting to analyse the relationships between the notation of
the statecharts and that of the behaviour diagrams at the level of the expres-
sive power. We can prove that under the encapsulation conditions of behaviour
diagrams, statecharts can be expressed in terms of those.

Finally we would like to cite some of the many current works to extend UML
for cope with particular kinds of dynamic systems.

For example, [9], presents an extension of UML for distribution that incor-
porates in UML a particular technique for developing distributed systems (meta
object protocol) with proper newly introduced notations. Instead, [1] propose a
UML profile, just lightweight extension, obtained by a few stereotypes for mod-
elling distributed systems made by autonomous processes interacting via tuple
spaces.

The extension proposed here is quite different from UML RT [20] with respect
to two aspects; first of all the latter 1s under the keywords “complex event-

' The UML terminology for specifications.



driven real-time systems” | where the former uses “autonomous, active, proactive,
...processes, agents”; the other point is that the latter is a set of coordinated
notations supporting a particular methodology, inspired by ROOM [19]),while
the former is just one new notation.
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