
A Graphic Speci�cation of a High-Voltage Station

Gianna Reggio

DISI

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a di Genova

Via Dodecaneso, 35 { Genova 16146 { Italy

reggio @ disi.unige.it

http://www.disi.unige.it

In this report we present the development of an industrial case study using the SMoLCS

formal method, see [Reg98, LR97], precisely the high-voltage stations for the distribution of

the electric power used by ENEL, the Italian National Company of Electricity. The stations

are the nodes of the electric high-voltage net. They allow: the setting of energy coming from

the production centers and/or from other nodes, the transformation of the levels of voltage and

the distribution to other nodes where the energy is used, for example transformation cabins.

We have organized the development of such case study in the following phases.

Capture and speci�cation of the requirements Determination and speci�cation the fun-

damental requirements on the high-voltage stations considered by ENEL.

First development step Re�nement of such stations by considering only those managed by

a software automatism: the components of the station that constitute the plant are com-

pletely designed. We give a functional description of the automatism, without structuring

it, so that we leave as much freedom as possible to its implementation.

Second development step Speci�cation of the particular automatism designed by ENEL.

This speci�cation has to be interfaced with those already de�ned at the second level, to

obtain the complete speci�cation of the ENEL stations. The most relevant di�culty found

at this level has been to understand correctly the concurrent activity of the components

of the automatism, starting from the informal description provided by ENEL. It has been

possible to overcome this di�culty thanks to a constant veri�cation with the designers of

the automatism.

In this report we present both the formal and the informal speci�cations of the stations

produced at the various steps using for both of them a graphic notation; sometimes we report

the informal speci�cation as comments within the formal one.

Acknowledgements. I thank V. Filippi of ENEL for her cooperation to the development

of this case study and A. Morgavi that has given a very preliminary speci�cation of these

stations in hers master thesis.

1

STATION.PHASE 1

In this phase we specify the high-voltage stations (shortly stations from now on) consid-

ered by ENEL by giving the fundamental properties of their interactions with their external

environment.

STATION.PHASE 1: Natural Description

The stations are the nodes of the electric high-voltage net. They allow: the setting of en-

ergy coming from the production centers and/or from other nodes, the transformation of the

levels of voltage; and the distribution to other nodes where the energy is used, for example

transformation cabins.

In this case study we consider stations formed by a double bar (i.e., a pair of wires) and by

a set of devices, breakers and isolators connected to the bars and to lines reaching the station.

The connections between lines and bars are realized with the opening and closing of devices

suitable to this kind of connections.

The problem of automatizing the management of these stations has brought to an analysis

of their structure to permit a classi�cation of the devices composing them in sets accordingly

to their di�erent functionalities; every identi�ed set, called functional unit, performs a precise

duty for what concerns the automation of the station, at a higher level of abstraction with

respect to the simple opening and closing of a single device. Thus we can see a station as

formed by a set of functional units, each belonging to an identi�ed typology.

The class of stations considered is de�ned by the set of types of functional units associated

with constraints on their possible topological combinations.

In this case study we consider only stations with two bars denoted by \A" and \B", respec-

tively, and with three kinds of functional units: Ae, Dd and Fa.

Fig. 1 presents the kinds of functional units with their positions.

An Fa is a functional unit that makes the electric connection between the pair of bars and

a line either for one bar or for the other; it can be in three positions:

� open, when the line is not electrically connected to any bar;

� closed on bar A, when the line is electrically connected to bar A;

� closed on bar B, when the line is electrically connected to bar B.

A Dd is a functional unit which electrically connects the two bars equalizing their actual

tensions; the possible positions are:

� open, when the two bars are not connected;

� closed, when the two bars are connected.

2

Fa:

A

'

&

$

%

P

P

P

P

P

PP

line

�

��

B

Closed on B

A

'

&

$

%

P

P

P

P

P

PP

line

@

@@

B

Closed on A

A

'

&

$

%

P

P

P

P

P

PP

line

B

Open

Dd:

A

'

&

$

%

B

Closed

A

'

&

$

%
@

@@

B

Open

Ae:

(on bar A)

'

&

$

%

A

Closed

'

&

$

%

@

@@

A

Open

Figure 1: The kinds of the functional units and their positions

3

An Ae is a functional unit which allows to isolate electrically sections of a bar to permit

upkeep; it is closed (open) when the two bar sections are connected (not connected).

Every station can be represented with a combination of elements belonging to such types.

The elements are placed down on bars, with the following bounds:

� Ae's are always in pairs (one for each bar);

� bars can be sectioned by any number of pairs of Ae's (also none);

� there must exist at least one Fa and

� there must exist at least one Dd.

Below we graphically present an example of an admissible station.

�

�

�

�

Ae

�

�

�

�

Ae A

�

�

�

�

Fa

�

�

�

�

Dd

�

�

�

�

Ae

�

�

�

�

Ae B

The operator can require operations on the functional units of a station by using non-detailed

commands, remitting to the station the task of managing other possible functional units and

in particular of managing the composing devices. The request of an operation consists in the

selection of a functional unit, by means of an identi�er, and of the �nal position that the unit

has to reach. The possible �nal positions are: for units of kind Fa, closed on bar A, closed on

bar B and open; while for units of kind Ae and Dd are closed and open.

If the execution of an operation is going on, the station does not accept requests of other

operations.

Moreover, if the required operation is useless (the position of the unit required by that

operation is already reached), then it must not be executed and the operator has to be informed.

Before of executing any operation, the station has to verify that the bars involved are under

tension; on the contrary an error rises, treated as a generic failure.

Below we brie
y explain how to perform the various operations on the functional units.

The functional unit of kind Ae and Dd can be opened and closed, and those of kind Fa

opened.

To close on bar A an Fa closed on bar B, or converse, is called \bar exchange"; to execute

this operation it is necessary that the two bars are connected each other at least by a Dd.

The station has to identify a closing path and to operate on the corresponding Dd without the

operator, if necessary.

We identify the closing path using the following rules in decreasingly order of priority:

� if there exists one closed Dd s.t. every Ae, which possibly separates it from the Fa, is

closed, the operation can take place;

4

A

Dd1

'

&

$

%

Ae

'

&

$

%

'

&

$

%

Ae

Fa

'

&

$

%

@

@@

C

C

C

C

Dd2

'

&

$

%

B

Figure 2: Either Dd1 or Dd2 may be chosen for building the closing path for Fa.

A

Dd

'

&

$

%
@

@@

Ae

'

&

$

%

'

&

$

%

Ae

Fa

'

&

$

%

@

@@

C

C

C

C

Ae

'

&

$

%

'

&

$

%

Ae

B

Figure 3: Dd must be closed for building the closing path for Fa.

� otherwise, if there exists some open Dd s.t. every Ae, which possibly separates it from the

Fa, is closed, it is necessary to close one of them and after the operation can take place

� otherwise, the station has to signal to the operator that it is impossible to execute the

operation (an Ae has to be closed).

Fig. 2, 3 and 4 show examples of such three cases.

5

A

Dd

'

&

$

%
@

@@

Ae

'

&

$

%

�

��

'

&

$

%

�

��

Ae

Fa

'

&

$

%

@

@@

C

C

C

C

Ae

'

&

$

%

'

&

$

%

Ae

B

Figure 4: No closing path for Fa is possible, some Ae must be closed.

6

STATION.PHASE 1: Border Determination

A station is an open system, because it may interact with the external environment consisting

of an operator and of the other nodes of the high-voltage electric net. There are no hypotheses

on the behaviour of the nodes and of the operator, so they are considered outside the speci�ed

system.

STATION.PHASE 1: Shadow Spots

The Natural Description does not say what to do when the station receives a wrong operation

request, for example to operate on a non-existing unit. We have assumed that the station will

receive only correct operation requests.

STATION.PHASE 1: Speci�cation

Structure & Interactions

Data about functional units; precisely identifiers, positions and kinds

STATION

to have bar B put KO

to receive an operation request

to signal the outcome of an operation request

to signal that it is going to halt

A station is a node of the electric high-voltage net.
It allows the setting of energy coming from the
production centers and from other nodes and the
distribution to other nodes.

MESSAGE

Messages about the outcome of an operation request

OPERATION

Operation requests

FUNCTIONAL UNITS

. . .

PLANT

Status of the plant (electro-mechanical part of the station)

to have bar A put KO

7

STATION

KO_BAR_A

KO_BAR_B

RECEIVE_REQ(operation)

SIGNAL(message)

HALT

. . .

FUNCTIONAL UNITS MESSAGE PLANTOPERATION

STATION.PHASE 1: Basic Data Structures

Operation requests, consisting of the identifier of the unit on which to operate and of
the position to reach.

OPERATION

FUNCTIONAL UNITS

MESSAGE

Messages about the result of an operation request: Completed, Useless, Impossible.

Data about functional units; precisely identifiers, positions (Open, Close, Close on)show
grestore
gsave
99 178 translate 1 -1 scale 0 0 moveto
0 setgray
(bar A, Close on bar B, Broken) and kinds (Ae, Dd, Fa)

FUNCTIONAL UNITS

8

unit_identifier = NAT
unit_kind ::= Ae | Dd | Fa
unit_position ::= Open | Close | Close_On_A | Close_On_B | Broken

operation ::= Opr(unit_ident,unit_position)

OPERATION

FUNCTIONAL UNITS

MESSAGE

message ::= Completed | Useless | Impossible

FUNCTIONAL UNITS

PLANT

FUNCTIONAL_UNIT_STATUS

The electrical status of a bar: in tension and not in tension.

BAR_STATUS

The status of a functional unit, characterized by the identity, the kind and the position. A unit of kind AE or
Dd may beopen, closed or broke; and one of kind Fa may be open, closed on A, closed on B or broken.

The status of a plant is given by the status of the two bars and of the functional units connected to each bar. In
each case Fa’s and Dd’s are connected to both bars, while Ae’s are connected only to one bar, but there is one Ae
on a bar iff there is another Ae on the other bar.

In the plants of the adimissible stations there is at least one Dd and one Fa.

PLANT

FUNCTIONAL_UNIT_STATUSBAR_STATUS

FUNCTIONAL UNITS

9

op Kind: functional_unit -> unit_kind

op Position: functional_unit -> unit_position

op Id: functional_unit -> unit_ident

if Kind(fu) = Ae or Kind(fu) = Dd then
 (Position(fu) = Open or Position(fu) = Closed or Position(fu) = Broken)

if Kind(fu) = Fa then
 Position(fu) = Open or Position(fu) = Close_On_A or
 Position(fu) = Close_On_B or Position(fu) = Broken

FUNCTIONAL_UNIT_STATUS

fu: functional_unit

FUNCTIONAL UNITS

bar ::= OK | KO

BAR_STATUS

10

plant ::=
 < bar bar > |
 < functional_unit functional_unit > & plant |
 < functional_unit > & plant

** The status of the plant consists either
** of just the status of the two bars,
** or of the status of two functional units (one for each bar) plus the status of
** the remain plant,
** or of the status of a functional unit (connected to both bars) plus the status
** of the remaining plant

** checks if a functional unit is connect to bar A (B)
pr On_A, On_B: functional_unit plant

ax On_A(fu,<fu> & pl)
ax On_A(fu,<fu1> & pl) if On_A(fu,pl)
ax On_A(fu,<fu fu1> & pl)
ax On_B(fu,<fu> & pl)
ax On_B(fu,<fu1> & pl) if On_B(fu,pl)
ax On_B(fu,<fu1 fu> & pl)

** checks if a functional unit is present in the plant
pr Is_In: functional_unit plant

ax if On_A(fu,pl) or On_B(fu,pl) then Is_In(fu,pl)

** checks whether the connections of the functional units on the bars are
** admissible, i.e. if each one of kind either Fa or Dd is connected to both
** the bars and those of kind Ae are present in pairs
pr Ok_Con: plant

ax Ok_Con(<ba bb>)
ax if Ok_Con(pl) and Kind(fu1) = Ae and Kind(fu2) = Ae then
 Ok_Con(<fu1 fu2> & pl)
ax if Ok_Con(pl) and Kind(fu) = Dd then Ok_Con(<fu> & pl)
ax if Ok_Con(pl) and Kind(fu) = Fa then Ok_Con(<fu> & pl)

** checks whether a station is admissible, i.e. if the connections are admissible
** and there is at least a functional unit of kind Fa and one of kind Dd
pr Ok_Plant: plant

ax Ok_Plant(pl) iff
 Ok_Con(pl) and
 (exists fu: Is_In(fu,pl) and Kind(fu) = Fa) and
 (exists fu: Is_In(fu,pl) and Kind(fu) = Dd)

** returns the status of bar B (B)
op Bar_A, Bar_B: plant -> bar

ax Bar_A(<ba bb>) = ba
ax Bar_A(<fu> & pl) = Bar_A(pl)
ax Bar_A(<fu1 fu> & pl) = Bar_A(pl)
ax Bar_B(<ba bb>) = bb
ax Bar_B(<fu> & pl) = Bar_B(pl)
ax Bar_B(<fu1 fu> & pl) = Bar_B(pl)

PLANT

pl : plant fu fu1: functional_unit ba bb: bar

FUNCTIONAL_UNIT_STATUSBAR_STATUS

11

STATION.PHASE 1: States

** returns the status of the physical components of the station (the plant)
op Plant: station -> plant

** checks whether the station is executing an operation
pr Executing: station

** checks whether the station is in a initial state
pr Initial: station

FUNCTIONAL UNITS MESSAGE PLANTOPERATION

STATION1 (states)

12

STATION.PHASE 1: Activity

** checks wether a functional unit is a closing path in a station for a given Fa
pr _ Is_Closing_Path_For _ In _: unit_ident unit_ident station

** If the the functional unit fid is a closing path for idfa, then fid is a
** Dd on the same bar section of idfa and either is closed or open and in such
** case there does not exist a closed Dd on the same bar section of idfa
if fid Is_Closing_Path_For fa In st then
 - Kind(st,uid) = Dd
 - SameSection(Plant(st),fa,uid)
 - Position(st,uid) = Closed or
 (Position(st,uid) = Open and not exists uid’: Kind(st,uid’) = Dd and)
 (Position(st,uid’) = Closed and SameSection(Plant(st),fa,uid’))

** If there exists a functional unit that is a Dd and on the same bar section
** of fa, then there exists a functional unit that is a closing path for fa
if exists uid: Kind(st,uid) = Dd and SameSection(Plant(st),fa,uid) then
 exists uid’: fid’ Is_Closing_Path_For fa In st

** checks whether two functional units are on the same bar section in a plant
pr SameSection: plant unit_ident unit_ident

if On_Bar_A(fu,pl) and On_Bar_A(fu’,pl) then SameSection(pl,Id(fu),Id(fu’))
if On_Bar_B(fu,pl) and On_Bar_A(fu’,pl) then SameSection(pl,Id(fu),Id(fu’))

uid, uid’, fa: unit_ident fu, fu’: fun
k: kind st: station up: unit_position

(auxiliary)

** checks if there is a failure in station
pr Failure: station

** If there exists a broken functional unit, then there is a failure in station
if exists uid: Position(st,uid) = Broken then Failure(st)

** If the station has received a request to perform an operation on a functional
** unit connected to a failed bar, then there is a failure in station
if exists uid, st’, up: st’ -- RECEIVE_REQ(Opr(uid,up)) --> st and
 On_Failed_Bar(uid,Plant(st)) then
 Failure(st)

** checks if a functional unit is connected to a failed bar
pr On_Failed_Bar: unit_ident plant

if On_Bar_A(fu,pl) and Bar_A(pl) = KO then On_Failed_Bar(Id(fu),pl)
if On_Bar_B(fu,pl) and Bar_B(pl) = KO then On_Failed_Bar(Id(fu),pl)

** returns the kind of a functional unit
op Kind: station unit_ident -> kind

Kind(st,uid) = k iff (exists fu: fu Is_In Plant(st) and Kind(fu)=k and Id(fu)=uid)

** returns the position of a functional unit
op Position: station unit_ident -> unit_position

Position(st,uid) = up iff
 (exists fu: fu Is_In Plant(st) and Position(fu) = up and Id(fu) = uid)

13

Kind

** A functional unit cannot change its kind
if st -- ls --> st’ then Kind(st,fid) = Kind(st’,fid)

Plant

Ok_Plant(Plant(st))

Executing

Initial

** In the initial state each unit is open and the bars are OK
if Initial(st) then
 - forall fu: if Is_In(pl,fu) then Position(fu,pl) = Open
 - Bar_A(Plant(st)) = OK
 - Bar_B(Plant(st)) = OK

Failure

st

Failure(st)

in any case st
HALT

not exists x’,l:
x -- l --> x’

st’exists opr: st

st’st

Executing(st)

RECEIVE_REQ(opr)

not Executing(st)

st’exists m: st

st’st

not Executing(st)

SIGNAL(m)

Executing(st)

st

Executing(st)

in any case st
ls

forall opr:
ls =/= RECEIVE_REQ(opr)

14

RECEIVE_REQ RECEIVE_REQ(opr)
st’st

not Executing(st) Executing(st)

st’st

Failure(x)

RECEIVE_REQ(Opr(uid,up))
st’st

Position(st,uid)=up

in any case st’

or

SIGNAL(Useless)

x

RECEIVE_REQ(Opr(uid,Open))
st’st

Position(st,uid) =/=
Open

in any case st’

or

SIGNAL(Completed)

x

Failure(x)

x

Position(x,uid)=Open

RECEIVE_REQ(Opr(uid,Close))
st’st

(Kind(st,uid) = Ae or)show
grestore
gsave
29 774 translate 1 -1 scale 0 0 moveto
0 setgray
(Kind(st,uid) = Dd) and

Position(st,uid)=Open

in any case st’

or

SIGNAL(Completed)

x

Failure(x)

x

Position(x,uid)=Close

15

RECEIVE_REQ

RECEIVE_REQ(Opr(uid,Close_On_A))
st’st

Kind(st,fa) = Fa and
Position(st,fa)=Open

in any case st’

or

SIGNAL(Completed)

x

Failure(x)

x

Position(x,uid)=Close_On_A

RECEIVE_REQ(Opr(uid,Close_On_A))
st’st

Kind(st,fa) = Fa and
Position(st,fa)=Close_On_B and not

exists uid’:
uid’ Is_Closing_Path_For uid In st

in any case st’
or

SIGNAL()show
grestore
gsave
395 356 translate 1 -1 scale 0 0 moveto
0 setgray
(Impossible)show
grestore
gsave
455 356 translate 1 -1 scale 0 0 moveto
0 setgray
()

x

Failure(x)

RECEIVE_REQ(Opr(uid,Close_On_A))
st’st

Kind(st,fa) = Fa and
Position(st,fa)=Close_On_B and

Is_Closing_Path(uid,st,fa)

in any case st’

or

x

Failure(x)

SIGNAL(Completed)
x

Position(x,uid)=
Close

x

Position(x,fa)=
Close_On_A

16

SIGNAL

HALT

m: message ls: lab_station opr: operation
st st’ x x’: station uid, uid’, fa: unit_ident up: unit_position

KO_BAR_B

KO_BAR_A

st st’

KO_BAR_A
st’st

Bar_A(Plant(st’)) = OK

st’st
KO_BAR_A

st

st st’

KO_BAR_B
st’st

Bar_B(Plant(st’)) = OK

st’st
KO_BAR_B

st

SIGNAL(m)
st’st

Executing(st) not Executing(st)

st’st

HALT
st’st

Failure(st)

st’st

17

STATION.PHASE 2.step 1

In this phase we specify the class of the stations handled by an automatism; clearly they

are a subclass of those speci�ed in PHASE 1.

STATION.PHASE 2.step 1: Natural Description

A unique operator manages sets of stations and power plants. Thus the absence of local

operators in the stations, due to the installation of an automatic system, raises the necessity

for the system to satisfy security requirements of command and control; besides, to make easy

the tasks of the operator, the command of the operations has to take place by means of orders

to the automatism, which ensures also a continual caretaking of the devices of the plant.

The automatism has to be adaptable to di�erent stations, which can be modi�ed and

widened also after the installation. To realize its own task, the automatism has to know the

topology of the station on which it works, so we can assume that during the installation phase

the diagram of the station topology is provided.

The automatism has the task of checking the position of the devices of the plant and of

operating them accordingly to operator requests. So it has to collect continually information

coming from such devices about their own positions (reading the signals from an interface with

the �eld) and it has to be able to transmit (by means of the same interface) operating orders.

The interface is connected to the automatism by a set of channels, one for each device of

the station. Each channel can contain one of the following symbols:

{ OP if the device communicates \open";

{ CL if the device communicates \closed";

{ XX, if \open" and \closed" are communicated simultaneously or if a failure of the device

is detected by the interface;

{ it can be empty if none of the previous conditions is satis�ed (for example when the

device is moving). Indeed we assume that, as the operation time of the devices is faster

than the reading one (order of hundreds of milliseconds), the automatism can read several

times the value of a channel before it can �nd the \closed" symbol. Please notice that

the channel keeps no memory of the position left from the device.

Moreover, every bar transmits its state, analogously to devices, through an appropriate

channel, which can contain either the symbol \OK" if the corresponding bar works correctly,

or the symbol \KO" if the tension is down (breakdown or earth-wire).

In the same way, orders given from the automatism to each device of the plant are symbols

transmitted on such channels: CL for \close" and OP for \open".

To verify the correct execution of an order, it is necessary for the automatism to check the

position reached by the used device.

18

The operation of opening and closing a device has to be executed within a certain time from

the sending of the command. If the automatism does not receive within that time the signal

that the required state has been reached, the device has to be considered damaged.

The operator must have a self-starting key of the automatism. This key works also as a

\reset hardware" key; when the system reaches an irrecoverable error state, due, for example, to

the reading of symbol XX transmitted from a device of the plant through the interface towards

the �eld.

The automatism performs two fundamental tasks: monitoring and management of the

station components.

The monitoring has to be performed continuously, from system starting to its stopping and

during every operation. It consists in verifying:

{ that the devices remain in the positions required by the operator and

{ the rising of failures and abnormal situations.

In case of failure the system has to signal that to the operator and to stop its own activity.

In this case study we do not distinguish the di�erent kinds of failure and we do not perform

recover activity. The automatism has to be able to recognize, when starting, an inconsistent

state of the station.

The management activity consists in verifying the feasibility of the operations required by

the operator and in executing these operations and checking their results.

The operator can guide the functional unit operations using not detailed commands, remit-

ting to the automatism the task of managing other possible functional units and in particular

of managing their devices. The request of an operation consists in the selection of a functional

unit, by means of an identi�er, and of the �nal state that the functional unit has to reach.

The possible �nal states are: closed on bar A (CA), closed on bar B (CB) and open (OP); for

functional units like Ae and Dd, the commands CA and CB stand for the \closed" command.

If the execution of an operation is going on, the automatism does not accept request of

other operations.

Moreover, if the operation ordered has already been executed (the position of the functional

unit required by that operation is already reached) it must not be executed and the operator

has to be informed.

Before of executing any operation, the automatism has to verify that bars involved are under

tension; on the contrary an error rises, treated as a generic failure.

Below we brie
y explain how the functional units are made of devices and how the various

operations are performed on them.

The devices present in the station (breakers, isolators) can be in two positions: on and o�

(open and close in the following).

The breakers can be put on/o� under tension and have operation time of the order of

hundreds of milliseconds; isolators cannot be used undertension (except bar isolators) and have

operation time of the order of some seconds. The result is that functional units own a breaker

for opening the whole unit, before using isolators and for closing it at the end of the operation.

In this case study we have analyzed three kinds of functional units:

� Ae made by a bar isolator;

19

Ae:

L

�

�

�

Dd:

B

B

B

B

B

B

B

B

�

�

�u

A B

I

Fa:

B

B

B

B

B

B

B

B

u

B

B

B

B

B

B

B

B

A B

I

L

�

�

�

: isolator

�

�

�

u : breaker

Figure 5: Schemas of the functional units

� Dd made by a breaker, a bar isolator connected to bar A and a bar isolator connected to

bar B;

� Fa made by a line isolator, a breaker, a bar isolator connected to bar A and a bar isolator

connected to bar B.

The schemas of the various functional unit kinds are presented in Fig. 5.

An Fa is a functional unit that makes the electric connection between the pair of bars and

a line either for one bar or for the other; it can be in three positions:

� open, when the three isolators are open (thus the line is not electrically connected to any

bar);

� closed on bar A, when the isolator on bar A, the line isolator L and the breaker I are

closed, while the isolator on bar B is open (thus the line is electrically connected to bar

A);

� closed on bar B, when the isolator on bar B, the line isolator and the line breaker are

closed, while the bar isolator A is open (thus the line is electrically connected to bar B).

A Dd is a functional unit which electrically connects the two bars equalizing the two actual

tensions; the possible positions are:

� \open", when the two isolators and the breaker are open (thus the two bars are not

connected);

� \closed", when the two isolators and the breaker are closed (thus the two bars are con-

nected).

20

An Ae is a functional unit, consisting simply of a bar isolator, which allows to isolate

electrically sections of bar to permit upkeep; it is open/closed when its isolator is open/closed.

AE operations The functional unit Ae is composed by a single device (an isolator); so its

closing/opening corresponds to the opening/closing of its isolator.

Dd operations The functional unit Dd is composed by a breaker S and two isolators A and

B; it can be closed or open. The opening operation consists of opening, in the following

order, S, A and B; and the closing operation consists of closing, in the following order, S,

A and B.

Fa operations The functional unit Fa is composed by a breaker S and three isolators L, A,

B; it can be closed on bar A, or on bar B, or open.

The opening operation consists of opening S, then A and then B. The closing operation on

bar A of an Fa open consists of closing A, then closing L and then closing S, analogously

for closing on bar B.

Closing operation on bar A of an Fa closed on bar B, or converse, is called \bar exchange";

to execute this operation it is necessary that the two bars are connected each other by a

Dd. The automatism has to identify a closing path and to operate the corresponding Dd

without the operator, if necessary.

We identify the closing path with the rules already presented in the natural description

of PHASE 1.

21

STATION.PHASE 2.step 1: Speci�cation

Structure & Interactions

STATION

BAR

Electrical status of bar A

BAR

Electrical status of bar B

AUTOMATISM

It checks the device positions and operates
them accordingly to the received requests

DEVICES

Electromechanic elementary components of
the station

STATION SCHEMA

Description of the station topology and of the correspondence between
the functional units and the composing devices

ORDER

Orders that the automatism sends to the devices

MESSAGE

Messages about the outcome of an
operation request

OPERATION

Operation requests

to have bar B put KO

to receive an operation request

to signal the outcome of an operation request

to signal that it is going to halt

to have bar A put KO

Data about functional units; precisely identifiers, positions and kinds

FUNCTIONAL UNITS

Data about devices; precisely identifiers, positions and kinds

DEVICE_INFO

B: BAR

DEVICES

AUTOMATISM

STATION

STATION SCHEMAORDERMESSAGEOPERATION

A: BAR

KO_BAR_A

KO_BAR_B

RECEIVE_REQ(operation)

SIGNAL(message)

HALT

FUNCTIONAL UNITS DEVICE_ INFO

22

STATION.PHASE 2.step 1: Basic Data Structures

MESSAGE

Messages about the resulkt of an operation request: Completed, Useless, Impossible.

Orders sent from the automatism to the device, consisting of the identifier of the interested devices and of the
position that it must reach.

ORDER

DEVICE_INFO

Data about functional units; precisely identifiers, positions (Open, Close, Close on bar A, Close on bar B, Broken)
and kinds (Ae, Dd, Fa)

FUNCTIONAL UNITS

Operation requests, consisting of the identifier of the unit on which to operate and of the position to reach.

OPERATION

FUNCTIONAL UNITS

Data about devices; precisely identifiers, positions (open, close and broken [XX]) and kinds (breaker and isolator).

DEVICE_INFO

23

ORDER

order ::= Open: device_ident | Close: device_ident

DEVICE_INFO

MESSAGE

message ::= Completed | Useless | Impossible

unit_identifier = NAT
unit_kind ::= Ae | Dd | Fa
unit_position ::= Open | Close | Close_On_A | Close_On_B | Broken

FUNCTIONAL UNITS

operation ::= Opr(unit_ident,unit_position)

OPERATION

FUNCTIONAL UNITS

device_ident = NAT
device_kind ::= Br | Is
device_position ::= OP | CL | XX

DEVICE_INFO

STATION SCHEMA

DEVICE SCHEMA

DEVICE_INFO

The schemas of the devices composing a functional unit. Each device is represented by its identifier. An Ae has just an
isolator; a Dd has an isolator on bar A, one on bar B and a breaker; an Fa has a line isolator, a breaker and an isolator
on bar A and one on bar B.

UNIT SCHEMA

DEVICE SCHEMA

The schemas of the functional units, characterized by their identifiers and by the schema of their devices.

FUNCTIONAL UNIT

STATION SCHEMA

The station schemas describe the station topology and the correspondence between the functional units and the
composing devices.

UNIT SCHEMA

24

DEVICE SCHEMA

devices_schema ::=
 Ae(device_ident) |
 Dd(device_ident,device_ident,device_ident) |
 Fa(device_ident,device_ident,device_ident,device_ident)

** The device schema of a functional unit is either the identifier of the
** isolator (Ae), or the identifiers of the isolator on bar A, of that on bar B
** and of the breaker (Dd), or the identifiers of the line isolator, of the
** breaker and of the isolator on bar A and of that on bar B (Fa)

UNIT SCHEMA

unit_schema ::= Fu(unit_ident,devices_schema)

DEVICE_INFO

DEVICE SCHEMA FUNCTIONAL UNIT

25

** given a station schema and a functional unit identifier, returns its kind
op Kind: station_schema unit_ident -> kind

ax Kind(<Fu(uid,Ae(id1)) Fu(fid2,Ae(id2))> & sch,uid)=Ae
ax Kind(<Fu(uid1,Ae(id1)) Fu(uid,Ae(id2))> & sch,uid)=Ae
ax if uid=/=uid1 and uid=/=fid2 then
 Kind(<Fu(uid1,Ae(id1)) Fu(uid2,Ae(id2))> & sch,uid)=Kind(sch,uid)
ax Kind(<Fu(uid,Dd(id1,id2,id3))> & sch,uid)=Dd
ax Kind(<Fu(uid,Fa(id1,id2,id3,id4))> & sch,uid)=Fa
ax if uid=/=uid’ then Kind(<Fu(uid’,dsch)> & sch,uid)=Kind(sch,uid)

STATION SCHEMA (continues)

station_schema ::=
 E |
 < unit_schema > & station_schema |
 < unit_schema unit_schema > & station_schema

** The station is either empty or consists of a functional unit (an Fa or a Dd)
** plus the reamining of the station or consists of two functional units
** (two Ae’s) plus the reamining of the station

** given a station schema, checks if a functional unit is connected to bar A/B
pr On_BarA, On_BarB: unit_ident station_schema

ax On_BarA(uid,<Fu(uid,dsch)> & sch)
ax if On_BarA(uid,sch) then On_BarA(uid,<Fu(uid1,dsch)> & sch)
ax On_BarA(uid1,<Fu(uid1,dsch1) Fu(uid2,dsch2)> & sch)
ax if On_BarA(uid,sch) then On_BarA(uid,<Fu(uid1,dsch1) Fu(uid2,dsch2)> & sch)

ax On_BarB(uid,<Fu(uid,dsch)> & sch)
ax if On_BarB(uid,sch) then On_BarB(uid,<Fu(uid1,dsch)> & sch)
ax On_BarB(uid1,<Fu(uid1,dsch1) Fu(uid2,dsch2)> & sch)
ax if On_BarB(uid,sch) then On_BarB(uid,<Fu(uid1,dsch1) Fu(uid2,dsch2)> & sch)
ax if On_BarB(uid,sch) then On_BarB(uid,<Fu(uid1,dsch1) Fu(uid2,dsch2)> & sch)

sch: station_schema uid uid’ uid1 uid2: unit_ident
dsch dsch1 dsch2: device_schema id1, id2, id3, id4: device_ident

 UNIT SCHEMA

26

** given a station schema and a functional unit identifier return respectively
** the identifier of its isolator on bar A/on bar B, if any, i.e. if it is
** either a Dd or an Fa, of its breaker, if any, i.e. if it is either a Dd or
** an Fa, of its isolator, if any, i.e. if it is an Ae

op Isolator_On_A, Isolator_On_B, Breaker, Isolator:
 station_schema unit_ident -> device_ident partial

ax Isolator_On_A(<us1 us2> & sch,uid)=Isolator_On_A(sch,uid)
ax Isolator_On_A(<Fu(uid,Dd(id1,id2,id3))> & sch,uid)=id1
ax Isolator_On_A(<Fu(uid,Fa(id1,id2,id3,id4))> & sch,uid)=id3
ax if uid =/= uid’ then
 Isolator_On_A(<Fu(uid’,dsch)> & sch,uid)=Isolator_On_A(sch,uid)

ax Isolator_On_B(<us1 us2> & sch,uid) = Isolator_On_B(sch,uid)
ax Isolator_On_B(<Fu(uid,Dd(id1,id2,id3))> & sch,uid)=id1
ax Isolator_On_B(<Fu(uid,Fa(id1,id2,id3,id4))> & sch,uid)=id3
ax if uid=/=uid’ then
 Isolator_On_B(<Fu(uid’,dsch)> & sch,uid) = Isolator_On_B(sch,uid)

ax Breaker(<us1 us2> & sch,v) = Breaker(sch,uid)
ax Breaker(<Fu(uid,Dd(id1,id2,id3))> & sch,uid)=id3
ax Breaker(<Fu(uid,Fa(id1,id2,id3,id4))> & sch,uid)=id2
ax if uid=/=uid’ then Breaker(<Fu(uid’,dsch)> & sch,uid)=Breaker(sch,uid)

ax Isolator(<Fu(uid,Ae(id1)) Fu(uid’,Ae(id2))> & sch,uid)=id1
ax Isolator(<Fu(uid’,Ae(id1)) Fu(uid,Ae(id2))> & sch,uid)=id2
ax if uid=/=uid1 and uid=/=uid2 then
 Isolator(<Fu(uid1,Ae(id1)) Fu(uid2,Ae(id2))> & sch,uid)=Isolator(sch,uid)
ax Isolator(<us1> & sch,uid)=Isolator(sch,uid)

STATION SCHEMA (end)

sch: station_schema uid uid’ uid1 uid2: unit_ident
dsch dsch1 dsch2: devices_schema us1 us2: unit_schema
id1,id2,id3,id4: device_ident

27

BAR: Speci�cation

BAR

** Electrical status of the bar: in tension and not in tension
bar ::= OK | KO

DEVICES: Speci�cation

Structure & Interactions

DEVICE1

.

.

.

DEVICE n

REC(order) & TAKEN(devices)

ORDER

TAKEN(devices)

DEVICES

28

DEVICE: Speci�cation

DEVICE

REC(Open(id))

R
E
C
(
O
p
e
n
(
i
d
)
)

REC(Close(id))

Open(id,knd)

Closed(id,knd)

XX(id,knd)

R
E
C
(
C
l
o
s
e
(
i
d
)
)

TAKEN(device)

REC(order)

id: device_ident knd: device_kind

ORDER

TAK
EN(

Clo
sed

(id
,kn

d))

TAKEN(Open(id,knd)) TAKEN(XX(id,knd))

TAKEN(Open(id,knd))

TAKEN(Close(id,knd))

DEVICE_INFO

29

DEVICES: Activity

o: ORDER

ds1: DEVICE 1

dsn: DEVICEn

ds2: DEVICE2

REC(o) &
TAKEN(ds2|...|dsn)

.

.

.

TAKEN(ds1)

TAKEN(ds2)

TAKEN(dsn)

REC(o)

TAKEN(ds2)

TAKEN(dsn)

TAKEN(ds1|...|dsn)
. . .

. . .

Initial States

Initial

.

.

.

ORDER

Initial

DEVICES (initial states)

30

AUTOMATISM.PHASE 2.step 1: Speci�cation

Structure & Interactions

Ta receive the request to perform an operation and to monitor the
station components

To send an order to a device and to monitor the station components

ORDERDEVICES MESSAGE

STATION SCHEMA OPERATION BAR

To signal the result of the execution of an operation (a message)
and to monitor the station components

To monitor the station components
(the bars and the devices componing the units)

To halt the station

The automatism checks
the device positions and

operates them
accordingly to the

operation requests that it
has received.

AUTOMATISM2

ORDERDEVICES MESSAGE

STATION SCHEMA OPERATION BAR

SIGNAL(message) & MONITOR(devices,bar,bar)

RECEIVE_REQ(operation) & MONITOR(devices,bar,bar)

SEND(order) & MONITOR(devices,bar,bar)

MONITOR(devices,bar,bar)

HALT

AUTOMATISM2

31

AUTOMATISM.PHASE 2.step 1: States

** checks if the automatism is in an initial state
pr Initial: automatism

** given an automatism returns the schema of the handled station
op Schema: automatism -> station_schema

** checks if the automatism is executing an operation
pr Executing: automatism

** returns the recorded position of a device, if any
op Device_Position: device_ident automatism -> position partial

** checks if the automatism has detected a failure in the station
pr Failure: automatism

STATION_SCHEMADEVICES

AUTOMATISM2 (states)

32

AUTOMATISM.PHASE 2.step 1: Activity

** The station schema does not change
if a -- l --> a’ then Schema(a)=Schema(a’)

On_Failed_Bar(uid,Schema(a),ba,bb)

RECEIVE_REQ(Opr(uid,up)) & MONITOR(ds,ba,bb)

a’

a’a’

Failure(a)

Failure

Schema

if Initial(a) then
 - if OK(Device_Position(id,a)) then Device_Position(id,a)=OP
 - not Executing(a)

Initial

Device_Position(id,a) =/= OP

SEND(Open(id))

a

in a case a

Failure(a)

(not Send_Order(al,Open(id)))
and

(not Send_Order(al,Close(id)))
Device_Position(id,a’)

=/=
Device_Position(id,a)

al

a’

a’a’

Failure(a)

a

in any case a
HALT

not exists x’,l: x -- l --> x’

Failure(a)

SEND(Close(id))

a

in a case a

Failure(a)

Device_Position(id,a) =/= OP

33

Failure(x)

RECEIVE_REQ(Opr(uid,up))
& MONITOR(ds,ba,bb)

a’a

Unit_Position(Schema(a),ds,uid)=up

in any case a’

or

x

Signal(l,Useless)

l

a’
RECEIVE_REQ(Opr(uid,Open)) & MONITOR(ds,ba,bb)

a

Kind(Schema(a),uid) = Ae and
Unit_Position(Schema(a),ds,uid) = Closed

Failure(x)

in any case a’

or

Send_Order(l,)show
grestore
gsave
156 381 translate 1 -1 scale 0 0 moveto
0 setgray
(Open(Isolator(Schema(a),uid)))

x

l l

Signal(l,Completed)

RECEIVE_REQ

34

R
E
C
E
I
V
E
_
R
E
Q

in any case a’

or

l

 Send_Order(l,Open())
((Isolator_On_A(Schema(a),uid)))

a’
RECEIVE_REQ(Opr(uid,Open)) & MONITOR(ds,ba,bb)

a

Kind(Schema(a),uid) = Dd and
Unit_Position(Schema(a),ds,uid) = Closed

x

Failure(x)

l

 Send_Order(l,Open())
((Breaker(Schema(a),uid’))) Send_Order(l,Open())

((Isolator_On_B(Schema(a),uid)))

l

Signal(l,Completed)

l

3
5

l

Signal(l,Completed)

RECEIVE_REQ(Opr(uid,Close_On_A)) &
MONITOR(ds,ba,bb)

Send_Order(l,Open()show
grestore
gsave
230 273 translate 1 -1 scale 0 0 moveto
0 setgray
(Isolator_On_B(Schema(a),uid)))

l

a’

or

in any case a’

a

Kind(Schema(a),uid) = Fa and
Unit_Position(Schema(a),ds,uid) =

Close_On_B and
Find_Closing_Path(Schema(a),uid,ds) =

ClosedDd

Failure(x)

x

RECEIVE_REQ

Failure(x)

RECEIVE_REQ(Opr(uid,Close_On_A))
& MONITOR(ds,ba,bb) a’a

in any case a’

or

x

Signal(l,Impossible)

l

Kind(Schema(a),uid) = Fa and
Unit_Position(Schema(a),ds,uid) =

Close_On_B and
Find_Closing_Path(Schema(a),uid,ds) =

None

36

R
E
C
E
I
V
E
_
R
E
Q

in any case a’

or

l

 Send_Order(l,Close())
((Isolator_On_A(Schema(a),uid’)))

a’
RECEIVE_REQ(Opr(uid,Close_On_A)) & MONITOR(ds,ba,bb)

a

Kind(Schema(a),uid) = Fa and
 Unit_Position(Schema(a),ds,uid) =

Close_On_B and
Find_Closing_Path(Schema(a),uid,ds) =

OpenDd(uid’)

x

Failure(x)

l l l

Signal(l,Completed)

ll

 Send_Order(l,Close())
((Isolator_On_B(Schema(a),uid’)))

 Send_Order(l,Close())
((Isolator_On_A(Schema(a),uid)))

 Send_Order(l,Close())
((Isolator_On_B(Schema(a),uid)))

 Send_Order(l,Close())
((Breaker(Schema(a),uid’)))

3
7

** checks whether an automatism interaction includes to send an order
pr Send_Order: lab_automatism order

ax Send_Order(al,o) iff exists ds,ba,bb: al = SEND(o) & MONITOR(ds,ba,bb)

** checks whether an automatism interaction includes to signal a message
pr Signalling: lab_automatism message

ax Signalling(al,m) iff exists ds,ba,bb: al = SIGNAL(m) & MONITOR(ds,ba,bb)

** Given a station schema, the states of the devices and a functional unit
** identifier returns the position of such unit
op Unit_Position: station_schema devices unit_ident -> unit_position

ax Unit_Position(E,ds,fid)=OO
ax Unit_Position(<FU(uid,dsch)> & sch,ds,uid)=Position(dsch,ds)
ax if uid =/= uid’ then
 Unit_Position(<FU(uid’,dsch)> & sch,ds,uid)=Unit_Position(sch,ds,uid)
ax Unit_Position(<FU(uid,dsch1) FU(uid2,dsch2)> & sch,ds,uid)=
 Position(dsch1,ds)
ax Unit_Position(<FU(uid1,dsch1) FU(uid,dsch2)> & sch,ds,uid)=
 Position(dsch2,ds)
ax if uid =/= uid1 and uid =/= uid2 then
 Unit_Position(<FU(uid1,dsch1) FU(uid2,dsch2)> & sch,ds,uid)=
 Unit_Position(sch,ds,uid)

AUTOMATISM2 (auxiliary)

38

If the automatism has detected a failure in the station, then in any case it signals that the station is going to halt and
after stops

If a device is in position XX, then the automatism detects a failure in the station

If the automatism has sent the open order to a device id and sees that id is not open, then it detects a failure in the
station

If the automatism has sent the close order to a device id and sees that id is not closed, then it detects a failure in the
station

If a device changes position without receiving an order, then the automatism detects a failure in the station

If the automatism receives an operation request for an unit connected to afailed bar, then it detects a failure in the station

Checks whether a functional unit is connected to a failed bar

The station schema never does not change

Failure

If the automatism monitors the plant seeing that a device id has position p, then the recorded position of id is p

Device_Position

Schema

If the automatism is in in an initial situaion, then all devices are open and it is not executing.

Initial

On_Failed_Bar

Executing

If the automatism is executing and becomes not executing, then it signals the end of an operation

If the automatism is not executing and become executing, then it receives an operation request

If the automatism monitors the plant and receives the request of putting a unit in the actual position, then in any case
either eventually it will signal that the required operation is useless or eventually it will detect a failure in the station

If the automatism monitors the plant and receives the request of opening a closed Ae, then in any case either
eventually it will order to the Ae’s isolator of opening and after will signal that the operation has been completed or
eventually it will detect a failure in the station

If the automatism monitors the plant and receives the request of opening a closed Dd uid, then in any case either
eventually it will order to the uid’s breaker of opening, after to the uid’s isolator on the bar A of opening, after to the
uid’s isolator on bar B of opening and after it will signal that the operation has been completed or eventually it will
detect a failure in the station

If the automatism monitors the plant and receives the request of closing on bar A an Fa uid closed on bar B, and there
exists a closing path made by a closed Dd, then in any case either eventually it will order to the uid’s isolator on A of
closing, after to the uid’s isolator on B of opening, and after it will signal that the operation has been completed or
eventually there will be a failure in the station

If the automatism monitors the plant and receives the request of closing on bar A an Fa uid closed on bar B and there
exists a closing path made by the open Dd uid’, then in any case either eventually it will order to the breaker of uid’ of
closing, after to the isolator on bar A of uid’ of closing, after to the isolator on bar B of uid’ of closing, after to the
isolator on A of uid of closing, after to the isolator on B of uid of opening and after it will signal that the operation
has been completed or eventually there will be a failure in the station

If the automatism monitors the plant and receives the request of closing on bar A an Fa uid, sees that it is closed on
bar B and there exists no closing path, then in any case either eventually it will signal that the required operation is
impossible or eventually it will detect a failure in the station

RECEIVE_REQ

39

** given the schema of the devices of a functional unit and the states of its
** devices, returns the functional unit position
op Position: devices_schema devices -> unit_position

** The position of an Ae is equal to that of its isolator
ax if Open(id,Is) In ds then Position(Ae(id),ds) = Open
ax if Closed(id,Is) In ds then Position(Ae(id),ds) = Close
ax if XX(id,Is) In ds then Position(Ae(id),ds) = Broken

** The position of a Dd whose devices are all open is open
ax if Open(id1,Br)|Open(id2,Is)|Open(id3,Is) SubEq ds then
 Position(Dd(id1,id2,id3),ds) = Open

** The position of a Dd whose devices are all closed is closed
ax if Closed(id1,Br)|Closed(id2,Br)|Closed(id3,Is) SubEq ds then
 Position(Dd(id1,id2,id3),ds) = Close

** If a device is broken then the position of a Dd is broken
ax if XX(id1,Br) In ds then Position(Dd(id1,id2,id3),ds) = Broken
ax if XX(id2,Is) In ds then Position(Dd(id1,id2,id3),ds) = Broken
ax if XX(id3,Is) In ds then Position(Dd(id1,id2,id3),ds) = Broken

** In any other case the position of a Dd is moving
ax if Open(id1,Br)|Closed(id2,Br) SubEq ds then Position(Dd(id1,id2,id3),ds) = OO
ax if Open(id1,Br)|Closed(id3,Is) SubEq ds then Position(Dd(id1,id2,id3),ds) = OO
ax if Closed(id1,Br)|Open(id2,Is) SubEq ds then Position(Dd(id1,id2,id3),ds) = OO
ax if Closed(id1,Br)|Open(id3,Is) SubEq ds then Position(Dd(id1,id2,id3),ds) = OO

** The position of an Fa whose devices are all open is open
ax if Open(id1,Is)|Open(id2,Br)|Open(id3,Is)|Open(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = Open

** The position of an Fa whose isolator is closed, the breaker is closed, the
** isolator on bar A is closed and that on bar B is open, is closed on bar A
ax if Closed(id1,Is)|Closed(id2,Br)|Closed(id3,Is)|Open(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = Closed_On_A

** The position of an Fa whose isolator is closed, the breaker is closed, the
** isolator on bar B is closed and that on bar A is open, is closed on bar B
ax if Closed(id1,Is)|Closed(id2,Br)|Open(id3,Is)|Closed(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = Closed_On_B

** If a device is broken then the position of an Fa is broken
ax if XX(id1,Is) In ds then Position(Fa(id1,id2,id3,id4),ds) = Broken
ax if XX(id2,Br) In ds then Position(Fa(id1,id2,id3,id4),ds) = Broken
ax if XX(id3,Is) In ds then Position(Fa(id1,id2,id3,id4),ds) = Broken
ax if XX(id4,Is) In ds then Position(Fa(id1,id2,id3,id4),ds) = Broken

ax if Open(id1,Is)|Closed(id3,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = OO
ax if Open(id1,Is)|Closed(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = OO
ax if Open(id2,Br)|Closed(id3,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = OO
ax if Open(id2,Br)|Closed(id3,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = OO
ax if Closed(id1,Is)|Open(id3,Is)|Open(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = OO
ax if Closed(id2,Br)|Open(id3,Is)|Open(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = OO
ax if Closed(id1,Is)|Closed(id2,Br)|Closed(id3,Is)|Closed(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = OO

AUTOMATISM2 (auxiliary)

40

** Find_Closing_Path given a station schema, a devices state and the identifier
** of an Fa uid says whether either for uid there exists no closing path, or
there exists a closing
** path made by an open or closed Dd
op Find_Closing_Path: station_schema unit_ident devices -> answer

** Find_Closing_Path returns closed Dd iff there exists a closed Dd	on the same
** bar section of the FA
ax Find_Closing_Path(sch,fa,ds)=ClosedDd iff
 exists fid: Position(sch,ds,fid)=Open and Kind(sch,fid)=Dd and
		 SameSection(sch,fa,fid,ds)

** Find_Closing_Path returns an open Dd uid iff uid is an open
** Dd on the same bar section of fa and there does not exist a closed Dd on
** the same bar setion of fa
ax Find_Closing_Path(sch,fa,ds)=OpenDd(uid) iff
 (Position(sch,ds,uid)=Open and Kind(sch,uid)=Dd and)
 SameSection(sch,fa,uid) and
 not exists fid’:
 (Position(sch,ds,uid’)=Open and Kind(sch,uid’) and)
 ((SameSection(Schema(st),fa,uid’)))

** Find_Closing_Path returns that no closing path exist iff there does not exist
** a Dd on the same bar setion of fa
ax Find_Closing_Path(sch,fa,ds)=None iff
 not exists fid’: (Is_Dd(st,fid’) and SameSection(Schema(st),fa,fid’))

answer ::= None | ClosedDd | OpenDd(unit_ident)

** checks whether two units are on the same bar section in a station
pr SameSection: station_schema unit_ident unit_ident

ax if uid =/= uid1 and uid =/= uid2 and SameSection(sch,uid1,uid2,ds) then
 SameSection(Fu(uid,dsch) & sch,uid1,fid2,ds)
ax if Connect(sch,uid,ds) then
 SameSection(<Fu(uid,dsch)> & sch,uid,uid’,ds)
ax if Connect(sch,uid,ds) then
 SameSection(<Fu(uid,dsch)> & sch,uid’,uid,ds)
ax if SameSection(sch,uid1,uid2,ds) then
 SameSection(<fus1 fus2> & sch,uid1,uid2,ds)

** checks whether there is no cut before a given functional unit in a
** station
pr Connect: station_schema fun_unit_ident devices

ax if uid =/= uid’ and Connect(sch,uid’,ds) then
 Connect(<Fu(uid,dsch)> & sch,uid’,ds)
ax Connect(<Fu(uid,dsch)> & sch,uid,ds)
ax if Position(Ae(id1),ds)=Open and Position(Ae(id2),ds)=Open and
 Connect(sch,uid,ds) then
 Connect(<Fu(uid1,Ae(id1)) Fu(uid2,Ae(id2))> & sch,uid,ds)

AUTOMATISM2 (auxiliary)

41

STATION.PHASE 2.step 1: Activity

bb: BAR

DEVICES

AUTOMATISM

ba: BAR

H
A
L
T

TAKEN(ds)

MONITOR(ds,ba,bb)

REC(o) & TAKEN(ds)

SEND(o) &
MONITOR(ds,ba,bb)

SIGNAL(m)

SIGNAL(m) &
MONITOR(ds,ba,bb)

TAKEN(ds)

RECEIVE_REQ(opr)

RECEIVE_REQ(opr) &
MONITOR(ds,ba,bb)

TAKEN(ds)

KO_BAR_A

KO_BAR_B

K
o

K
o

H
A
L
T

STATION SCHEMAo: ORDERm: MESSAGEopr: OPERATION

FUNCTIONAL UNITS DEVICE_ INFO

42

STATION.PHASE 2.step 2

At this level we specify the stations handled by the automatism designed by ENEL, because

the automatism was the only part given by a requirement speci�cation in PHASE 2.step 1, in

this step we just give its design speci�cation.

STATION.PHASE 2.step 2: Natural Description

Task of the automatism The automatism has the task of collecting information from the

devices, of interpreting them for determining the positions of the corresponding functional

units and of managing such devices to perform the operations required by the operator. The

automatism must have a representation of the situation of the station, which evolves dynami-

cally following the variations of situations of the physical system. Such representation contains

information on the station topology and on the composing functional units.

Structure of the automatism The automatism is made by the console, the coordinator,

the bar managers and the functional unit managers.

The console is the interface of the automatism towards the operator, while the bar and

functional unit managers are those towards the station components; each functional unit man-

ager is associated with a functional unit, of whom memorizes the current position depending

on the positions of the component devices, and to whom sends the operations required by the

operator.

The coordinator supervises the management activity, verifying the practicability of the

operations; to do that it analyses the topology of the station and the positions of the functional

units (information present in the functional unit managers).

Activity of the automatism When the automatism starts, each functional unit manager

begins to monitor the devices of the associate functional unit; if it detects a failure, then it

informs the console and the station stops. The failures of the bars have no immediate e�ect: the

station stops when someone attempts to perform an operation on a functional unit connected

to a failed bar.

If the operator requires an operation, the console sends it to the manager of the selected

functional unit, which, if the functional unit is not already in the required position, requires the

authorization to the coordinator and, if it receives an a�rmative answer, translates the opera-

tion in orders for the single devices composing the functional unit; afterwards it communicates

to the coordinator the result of the operation.

Since the operations must be done in sequential way, the console cannot receive a request

from the moment of sending an operation until it receives the message about the result of the

same.

In the case of bar exchange operation, the coordinator after having looked for the closing

path, if the operation is impossible, then it informs directly the console and denies the autho-

rization to the involved Fa; if it is needed to close a path, then it sends the closing operation

43

to the manager of the Dd to be used for such operation, and when it receives the message that

the operation has been successfully completed, it gives the authorization to the execution of

the bar exchange to the Fa that have required it.

Components

Console The console is the interface of the automatism towards the operator; it �lters the

requests of operations from the operator and sends them to the functional unit managers. More-

over it receives from the coordinator and from the functional unit managers messages about the

station functioning and communicates them to the operator. To perform its activity the console

needs some information; in particular it must know: which operation request has received from

the operator and the messages received by the other components of the automatism.

Managers Each functional unit present in the station is controlled by a manager that is

the interface between the functional unit itself and the automatism. These managers have two

tasks:

{ to check that the devices of the associate functional unit keep their positions, sending a

failure signal to the coordinator and to the console otherwise;

{ to interpret the operations received either from the console or from the coordinator and

managing the devices of the associate functional unit to reach the required position.

When a manager receives an operation, it checks the positions of the devices of the associate

functional unit obtaining by them the position of the functional unit itself; if this is equal to

that required it informs the console that the operation is useless, otherwise, if the operation

arrives from the console, it requires to the coordinator the authorization for its execution and,

if it receives an a�rmative answer, it translates the operation into a sequence of orders for the

single devices realizing it; at the end it checks the position reached by the functional unit and

communicates the result to the coordinator.

For the managers of functional unit of kind Fa, the operation close on bar A (respectively

on bar B) has di�erent interpretation depending on the functional unit position: if it is open,

then there is the simple closing, if it is closed on bar B (respectively on bar A), there is the bar

exchange.

Coordinator The coordinator has the task of managing the activity of the functional

units (through their managers), depending on the operation required by the operator by means

of the console, and on the information on the situation of the station obtained by combining

those known from the managers (current situations of the various units and bars), with those

contained in the schema (topology of the station). Moreover it transmits to the console the

messages about to the result of the operation. Another task of the coordinator is the control

of the situation of the station: if it �nds a failure, then it orders to all managers and to the

console the end of the activity.

When the coordinator receives from a manager the authorization request for executing an

operation on a functional unit, then this is ready for such execution, i.e., it is not already in

the required position and there are not failures in the station.

44

The coordinator manages in di�erent way the three kinds of operations: opening, closing

and bar exchange.

In each case it checks that the operation is valid, i.e., that the bars connected to the

functional unit to be used are not failed; to do that it reads in the corresponding managers

the situations of the involved bars and if one of them is failed, it informs the console and all

managers that there is a failure.

In the case of closing on a bar of a functional unit of kind Fa, the coordinator must determine

if the operation is either of bar exchange or of closing; to do that it checks the situation of such

Fa (reading it in the corresponding manager).

For the bar exchange operation, it must analyze the schema for determining the closing

path:

{ if there is already a closed Dd, it allows the operation;

{ if it is needed to close a proper or not proper Dd but electrically connected, i.e., such that

the isolators that divides the pieces of bar of the Fa and of the Dd are closed, it orders

to the Dd to close and, after that, allows the operation of the Fa;

{ if it is needed to close a not proper Dd and not electrically connected, it does not allow

the operation of the Fa and informs the console that it is needed to close an Ae.

45

AUTOMATISM.PHASE 2.step 2: Speci�cation

Structure & Interactions

Ta receive an operation request and to monitor the
station components

To send an order to a device and to monitor the
station components

ORDERDEVICES MESSAGE

STATION SCHEMA OPERATION BAR

To signal the result of the execution of an operation
(a message) and to monitor the station components

To monitor the station components
(the bars and the devices componing the units)

To halt the station

The coordinator has the task of managing the activity of
the functional units (through their managers), depending
on the operation required by the operator by means of the
console, and on the information on the situation of the
station obtained by combining those known by the
managers (current situations of the various units and)show
grestore
gsave
44 475 translate 1 -1 scale 0 0 moveto
0 setgray
(bars), with those contained in the schema (station)show
grestore
gsave
44 487 translate 1 -1 scale 0 0 moveto
0 setgray
(topology). Moreover it transmits to the console the

messages about to the results of the operations. Another
task of the coordinator is to control the situation of the
station: if it detects a failure, then it orders to all
managers and to the console to end the activity.

COORDINATOR

The console is the interface of the automatism
towards the operator; it filters the requests of
operations from the operator and send them to the
functional unit managers. Moreover it receives from
the coordinator and from the functional unit and bar
managers messages concerning the station
functioning and communicates them to the operator.

CONSOLE

The (functional units and bar) managers are the
interface of the automatism towards the functional
units and the bars.

MANAGERS

TOPOLOGY

A description of the station structure
in terms of functional units.

AUTOMATISM

46

TOPOLOGY

COORDINATOR

CONSOLE

MANAGERS

MONITOR(devices,bar,bar)

SEND(order) & MONITOR(devices,bar,bar)

RECEIVE_REQ(operation) &
MONITOR(devices,bar,bar)

HALT

ORDERDEVICES MESSAGE

STATION SCHEMA OPERATION BAR

SIGNAL(message) & MONITOR(devices,bar,bar)

AUTOMATISM

47

AUTOMATISM.PHASE 2.step 2: Basic Data Structures

** given a topology return the station parts on the right and on the left of a
** functional unit respectively
op RPart, LPart: topology unit_ident -> topology

ax RPart(Fa(fid) & tp,fid) = tp
ax RPart(Dd(fid) & tp,fid) = tp
ax RPart(Ae(fid1,fid) & tp,fid) = tp
ax RPart(Ae(fid,fid1) & tp,fid) = tp
ax if fid =/= fid1 then RPart(Fa(fid1) & tp,fid) = RPart(tp,fid)
ax if fid =/= fid1 then RPart(Dd(fid1) & tp,fid) = RPart(tp,fid)
ax if fid =/= fid1 and fid =/= fid2 then
 RPart(Ae(fid1,fid) & tp,fid) = RPart(tp,fid)
ax LPart(tp,fid) = LPart1(tp,fid,E)

 op LPart1: topology unit_ident topology -> topology
 ax LPart1(Dd(fid) & tp,fid,tp1) = tp1
 ax LPart1(Fa(fid) & tp,fid,tp1) = tp1
 ax LPart1(Ae(fid1,fid) & tp,fid,tp1) = tp1
 ax LPart1(Ae(fid,fid1) & tp,fid,tp1) = tp1
 ax if fid =/= fid1 then
 LPart1(Fa(fid1) & tp,fid,tp1) = LPart1(tp,fid,Fa(fid1) & tp1)
 ax if fid =/= fid1 then
 LPart1(Dd(fid1) & tp,fid,tp1) = LPart1(tp,fid,Dd(fid1) & tp1)
 ax if fid =/= fid1 and fid =/= fid2 then
 LPart1(Ae(fid1,fid2) & tp,fid,tp1) = LPart1(tp,fid,Ae(fid1,fid2) & tp1)

TOPOLOGY (continues)

FUNCTIONAL UNITS

** The station topology, i.e. a description of the station structure in terms of
** functional units

topology ::=
 E |
 Fa(_) & _: unit_ident topology |
 Dd(_) & _: unit_ident topology |
 Ae(_, _) & _: unit_ident unit_ident topology

** given a station topology and a functional unit identifier returns its kind,
** if it is part ofthe station
op Kind: topology unit_ident -> kind (partial)

ax Kind(Ae(fid,fid1) & tp,fid) = Ae
ax Kind(Ae(fid,fid1) & tp,fid1) = Ae
ax Kind(Dd(fid) & tp,fid) = Dd
ax Kind(Fa(fid) & tp,fid) = Fa
ax if fid =/= fid1 then Kind(Dd(fid) & tp,fid1) = Kind(tp,fid1)
ax if fid =/= fid1 then Kind(Fa(fid) & tp,fid1) = Kind(tp,fid1)
ax if fid =/= fid1 and fid =/= fid2 then
 Kind(Ae(fid1,fid2) & tp,fid) = Kind(tp,fid)

48

** given a station topology checks whether in such topology a functional unit
** is connected to a bar
pr On_BarA, On_BarB: unit_ident topology

ax On_BarA(uid,Fa(uid) & tp)
ax On_BarA(uid,Dd(uid) & tp)
ax On_BarA(uid,Ae(uid,uid1) & tp)
ax if On_BarA(uid,tp) then On_BarA(uid,Fa(uid1) & tp)
ax if On_BarA(uid,tp) then On_BarA(uid,Dd(uid1) & tp)
ax if On_BarA(uid,tp) then On_BarA(uid,Ae(uid1,uid2) & tp)

ax On_BarB(uid,Fa(uid) & tp)
ax On_BarB(uid,Dd(uid) & tp)
ax On_BarB(uid,Ae(uid1,uid) & tp)
ax if On_BarB(uid,tp) then On_BarA(uid,Fa(uid1) & tp)
ax if On_BarB(uid,tp) then On_BarA(uid,Dd(uid1) & tp)
ax if On_BarB(uid,tp) then On_BarA(uid,Ae(uid1,uid2) & tp)

TOPOLOGY (end)

tp tp1: topology uid uid1 uid2: unit_ident

49

CONSOLE: Speci�cation

receives a message
about a failure

To forward to the unit
managers an operation request

To receive a message about
the result of the execution of
an operation from the unit
managers

To receive the request of
executing an operation from
the operator

forw
ards an operation

request

To send to the opertor a
message about the result of
the execution of an operation

stopped

receives a request of executing
an operation

receives a m
essage about a failure in the station

in
fo

rm
s

ab
ou

t a
 f

ai
lu

re
 in

 th
e

st
at

io
n

receives a m
essage about the

result of an operation execution re
ce

iv
es

 a
 m

es
sa

ge
 a

bo
ut

 a
 fa

ilu
re

in
 th

e
sta

tio
n

sends a m
essage about the result of an operation

OPERATION MESSAGE

receives a message about a failure

in the station

To inform the operator of a
failure in the station

CONSOLE

50

Ready

Executing(opr)

Stop

Waiting
Failure

Forwarding(m)

R
E
C
E
I
V
E
_
R
E
Q
(
o
p
r
)

RECEIVE_MES(Failure)

F
A
I
L
U
R
E

F
O
R
W
A
R
D
(
o
p
r
)

R
E
C
E
I
V
E
_
M
E
S
S
A
G
E
(
m
) RE

CE
IV
E_
ME
S(
Fa
il
ur
e)

S
E
N
D
_
M
E
S
S
A
G
E
(
m
)

OPERATIONopr: MESSAGEm:

RECEIVE_MES(Failure)

RECEIVE_MES(Failure)

RECEIVE_REQ(operation)

FORWARD(operation)

RECEIVE_MES(message)

FAILURE

SEND_MESSAGE(message)

CONSOLE

51

MANAGERS: Speci�cation

To require the authorization to
execute the received operation and
monitor the devices and the bars

To inform about the result of the
execution of the received operation
and monitor the devices and the bars

To receive the negation to execute the
received operation and monitor the
devices and the bars

To receive the request to execute an
operation and monitor the devices and
the bars

To receive the authorization to
execute the received operation and
monitor the devices and the bars

To send an order to a device and
monitor the devices and the bars

BAR MANAGER

BAR MANAGER

 MANAGER

 MANAGER

.

.

.

1

n

To monitor the devices and the bars

ORDER DEVICES OPERATION BAR

Manager messages: there is a failure, the required operation is useless/has been executed.

M_MESSAGE

MANAGERS

52

NO_AUTHOR & MONITOR(devices,bar,bar)

BAR MANAGER

BAR MANAGER

 MANAGER

 MANAGER

.

.

.

1

n

MONITOR(devices,bar,bar)

SEND(order) & MONITOR(devices,bar,bar)

REC_OPER(operation) &
MONITOR(devices,bar,bar)

INFORM(m_message) & MONITOR(devices,bar,bar)

REQUIRE_AUTHOR(operation) &
MONITOR(devices,bar,bar)

ORDER DEVICES OPERATION BAR

m_message ::= Failure | Useless | Executed

M_MESSAGE

OK_AUTHOR & MONITOR(devices,bar,bar)

MANAGERS

53

MANAGER: Speci�cation

Structure & Interactions

To inform about the result of the execution
of the received operation and monitor the
unit devices

To require the authorization to execute the
received operation and monitor the unit devices

To receive the negation to the execution of the
received operation and monitor the unit devices

To receive the request to execute an operation
on the unit

To receive the authorization to execute the
received operation and monitor the unit devices

To send an order to a device and monitor the
unit devices

To monitor the unit devices

DEVICES SCHEMA DEVICES

OPERATION

ORDERS

Lists of orders.

M_MESSAGE
ORDER

The interface of the automatism
towards a functional units.

MANAGER

54

DEVICES SCHEMA DEVICES

OPERATIONORDER

ORDERS

LIST

M_MESSAGE

NO_AUTHOR & MONITOR(devices)

MONITOR(devices)

SEND(order) & MONITOR(devices)

REC_OPER(operation)

INFORM(m_message) & MONITOR(devices)

REQUIRE_AUTHOR(operation) &
MONITOR(devices)

OK_AUTHOR & MONITOR(devices)

MANAGER

55

MANAGER: Activity

uid: unit_ident
up,up’: unit_position

Executing(fid,dsch,up,up’)
NoFailure(dsch,up,ds)
and up=/=up’

Failure(dsch,up,ds)

NoFailure(dsch,up,ds)
and up=up’

Ordering(fid,dsch,up,up’,ol) Position(dsch,ds)=Broken

Ordering(fid,dsch,up,up’,o ^ol) Position(dsch,ds)=/=Broken

Ready(fid,dsch,up)
NoFailure(dsch,up,ds)

Failure(dsch,up,ds)

MONITOR(ds)

INFORM(Useless) & MONITOR(ds)

Waiting_Author(fid,dsch,up,up’)
NoFailure(dsch,up,ds)

Failure(dsch,up,ds)

NO_AUTHOR & MONITOR(ds)
I
N
F
O
R
M
(
F
a
i
l
u
r
e
)

&

M
O
N
I
T
O
R
(
d
s
)

Ordering(fid,dsch,up,up’,OrderList(dsch,up,up’))

SEND(o) & MONITOR(ds)

Position(dsch,ds)=/=up’
Ordering(fid,dsch,up,up’,Empty)

Position(dsch,ds)=up’

ol: ORDERS

o: ORDER

dsch: DEVICES SCHEMAds: DEVICES

MONITOR(ds)

INFORM(Executed) & MONITOR(ds)

Stop

opr: OPERATION

M_MESSAGE

OK_AUTHOR & MONITOR(ds)

REC_OPER(Opr(fid,up’))

REQUIRE_AUTHOR(Opr(fid,up’)) & MONITOR(ds)

56

** given the schema of a functional unit and the set of the states of its
** devices returns its position
op Position: devices_schema devices -> unit_position partial

** The position of an Ae is equal to that of its isolator
ax if Open(id,Is) In ds then Position(Ae(id),ds) = Open
ax if Closed(id,Is) In ds then Position(Ae(id),ds) = Close
ax if XX(id,Is) In ds then Position(Ae(id),ds) = Broken

** The position of a Dd whose devices are all open is open
ax if Open(id1,Br) | Open(id2,Is) | Open(id3,Is) SubEq ds then
 Position(Dd(id1,id2,id3),ds) = Open

** The position of a Dd whose devices are all closed is closed
ax if Closed(id1,Br) | Closed(id2,Br) | Closed(id3,Is) SubEq ds then
 Position(Dd(id1,id2,id3),ds) = Close

** If a device is broken then the position of a Dd is broken
ax if XX(id1,Br) In ds then Position(Dd(id1,id2,id3),ds) = Broken
ax if XX(id2,Is) In ds then Position(Dd(id1,id2,id3),ds) = Broken
ax if XX(id3,Is) In ds then Position(Dd(id1,id2,id3),ds) = Broken

** The position of an Fa whose devices are all open is open
ax if Open(id1,Is) | Open(id2,Br) | Open(id3,Is) | Open(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds)=Open

** The position of an Fa whose isolator is closed, the breaker is closed, the
** isolator on bar A is closed and that on bar B is open, is closed on bar A
ax if Closed(id1,Is)|Closed(id2,Br)|Closed(id3,Is)|Open(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds)=Close_On_A

** The position of an Fa whose isolator is closed, the breaker is closed, the
** isolator on bar B is closed and that on bar A is open, is closed on bar B
ax if Closed(id1,Is)|Closed(id2,Br)|Open(id3,Is)|Closed(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds)=Close_On_B

** If a device is broken then the position of an Fa is broken
ax if XX(id1,Is) In ds then Position(Fa(id1,id2,id3,id4),ds)=Broken
ax if XX(id2,Br) In ds then Position(Fa(id1,id2,id3,id4),ds)=Broken
ax if XX(id3,Is) In ds then Position(Fa(id1,id2,id3,id4),ds)=Broken
ax if XX(id4,Is) In ds then Position(Fa(id1,id2,id3,id4),ds)=Broken

** checks if there is/is not a failure in the managed functional unit
pr Failure, No_Failure: devices_schema unit_position devices

ax	if Position(dsch,ds) =/= Broken then No_Failure(dsch,Position(dsch,ds),ds)
ax	if Position(dsch,ds) = Broken then Failure(dsch,up,ds)
ax	if Position(dsch,ds) =/= up then Failure(dsch,up,ds)

auxiliary (continues)

57

** given the schema a functional unit, its position and the position to reach,
** returns the list of the	orders to be sent to its devices
op Order_List: devices_schema unit_position unit_position -> orders

** The order corresponding to an operation on an Ae is go to the required
** position
ax Order_List(Ae(id),up,Open) = Open(id) Empty
ax Order_List(Ae(id),up,Close) = Close(id) Empty

** The orders corresponding to opening a Dd are: open the breaker, the isolator
** on bar A and then the isolator on bar B
ax Order_List(Dd(id1,id2,id3),up,Open) = Open(id1) Open(id2) Open(id3) Empty

** The orders corresponding to closing a Dd are: close the isolator on bar B,
** the isolator on bar A and then the breaker
ax Order_List(Dd(id1,id2,id3),up,Close) = Close(id3) Open(id2) Close(id1) Empty

** The orders corresponding to closing on a bar an open Fa are: close the
** isolator on the corresponding bar, the isolator and then the breaker
ax Order_List(Fa(id1,id2,id3,id4),Open,Close_On_A) =
 Close(id3) Close(id1) Close(id2) Empty
ax Order_List(Fa(id1,id2,id3,id4),Open,Close_On_B) =
 Close(id4) Close(id1) Close(id2) Empty

** The orders corresponding to the operation of bar exchange of an Fa are:
** close the isolator on the bar that is open and open the one that is closed
ax Order_List(Fa(id1,id2,id3,id4),Close_On_A,Close_On_B) =
 Close(id4) Open(id3) Empty
ax Order_List(Fa(id1,id2,id3,id4),Close_On_B,Close_On_A) =
 Close(id3) Open(id4) Empty

auxiliary (end)

58

BAR MANAGER: Speci�cation

M
O
N
I
T
O
R
(
O
K
) M

O
N
I
T
O
R
(
K
O
)

MONITOR(OK)

MONITOR(KO)

BAR

OK

KO

MONITOR(bar)

BAR_MANAGER

59

MANAGERS: Activity

MONITOR(ba)

.

.

.

MONITOR(ds,ba,bb)

MONIT
OR(ds

)

REC_OPER(opr)

INFORM(mm) &

MONITOR(ds)

REQUIRE_AUTHOR(opr) &

MONITOR(ds)
NO_AUTHOR &

MONITOR(ds)
S
E
N
D
(
o
)

&

M
O
N
I
T
O
R
(
d
s
)

MO
NI
TO
R(
ds
)

 MANAGER
1

REC_OPER(opr) &
MONITOR(ds,ba,bb)

INFORM(mm) &
MONITOR(ds,ba,bb)

REQUIRE_AUTHOR(opr) &
MONITOR(ds,ba,bb)

NO_AUTHOR &
MONITOR(ds,ba,bb)

 MANAGER
2

 MANAGER
n

MO
NI
TO
R(
ds
)

MONITOR(ds)

MONITOR(ds)

MONITOR(ds)

MO
NI
TO
R(
ds
)

MONITOR(ds)

SEND(o) &

MONITOR(d
s,ba,bb)

MO
NI
TO
R(
ds
)

M
O
N
I
T
O
R
(
d
s
)

BAR MANAGER

MONITOR(ba)

BAR MANAGER

ORDER DEVICES OPERATION BAR M_MESSAGE

M
O
N
I
T
O
R
(
d
s
)

M
O
N
I
T
O
R
(
d
s
)

M
O
N
I
T
O
R
(
d
s
)

NO_AUTHOR &
MONITOR(ds,ba,bb)

NO_AUTHOR

MONITOR
(ds)

MO
NI
TO
R(
ds
)

60

COORDINATOR: Speci�cation

The coordinator has the task of managing the activity of the functional units
(through their managers), depending on the operation required by the operator
by means of the console, and on the information on the situation of the
station obtained by combining those known from the managers (current)show
grestore
gsave
33 230 translate 1 -1 scale 0 0 moveto
0 setgray
(situations of the various units and bars), with those contained in the schema

(topology of the station). Moreover it transmits to the console the messages
about to the result of the operation. Another task of the coordinator is the
control of the situation of the station: if it finds a failure, then it orders to all
managers and to the console the end of the activity.
When the coordinator receives from a manager the authorization request for
executing an operation on a functional unit, then this is ready for such
execution, ie, it is not already in the required position and there are not
failures in the station.
The coordinator manages in different way the three kinds of operations:
opening, closing and bar exchange.
In each case it checks that the operation is valid, ie, that the bars connected to
the functional unit to be used are not failed; to do that it reads in the
corresponding managers the situations of the involved bars and if one of
them is failed, it informs the console and all managers that there is a failure.
In the case of closing on a bar of a functional unit of kind Fa, the coordinator
must determine if the operation is either of bar exchange or of closing; to do
that it checks the situation of such Fa (reading it in the corresponding)show
grestore
gsave
33 446 translate 1 -1 scale 0 0 moveto
0 setgray
(manager).

For the bar exchange operation, it must analyze the schema for determining
the closing path:
 - if there is already a closed Dd, it allows the operation;
 - if it is needed to close a proper or not proper Dd but electrically connected,
i.e., such that the isolators that divides the pieces of bar of the Fa and of the
Dd are closed, it orders to the Dd to close and, after that, allows the operation
of the Fa;
 - if it is needed to close a not proper Dd and not electrically connected, it
does not allow the operation of the Fa and informs the console that it is
needed to close an Ae.

To deny the authorization to the
execution of an operation

To be informed that the operation has
been completed

To require to close a Dd

To authorize the execution of an operation

To monitor the units and the bars
throughout their managers

To signal the completition of
an operation

To detect a failure in a unit

UNITS POSITIONS

TOPOLOGY

OPERATION

To receive an authorization request

To halt the station due to some failure

Unit positions allows to represent the positions
of the units as known by the coordinator

COORDINATOR

61

SIGNAL_COMPLETED_OPER

UNITS POSITIONS

TOPOLOGY

OPERATION

FAILURE_IN_UNIT

REC_AUTHOR_REQUEST(operation)

HALT

INFORM_IMPOSSIBLE_OPER

COMPLETED_OPER

REQ_CLOSE(fid)

MONITOR(managers)

MAP()show
grestore
/Courier findfont 10 scalefont setfont
gsave
151 142 translate 1 -1 scale 0 0 moveto
0 setgray
(unit_ident,unit_position)show
grestore
/Helvetica findfont 10 scalefont setfont
gsave
295 142 translate 1 -1 scale 0 0 moveto
0 setgray
()

 FUNCTIONAL UNITS

OK_OPER

COORDINATOR

62

COORDINATOR: Activity

NoOnFailedBar(fid,tp,ba,bb)
and Kind(fid,tp)=/=Fa

 Handling_Req(tp,Opr(fid,up),)
(ups,ba,bb)

 Handling_Req(tp,Opr(fid,CloseOnB),)
(ups,ba,bb)

 Handling_Req(tp,Opr(fid,Open),)
(ups,ba,bb)

Ready(tp)

Request_Received(tp,opr)

H
A
L
T

Handling_Req(tp,opr,FunsOf(ms),Bar(ms),Bar(ms))

Handling_Req(tp,opr,ups,ba,bb)

NoOnFailedBar(fid,tp,ba,bb)
and Kind(fid,tp)=Fa

NoOnFailedBar(fid,tp,ba,bb)
and Kind(fid,tp)=Fa and
ups[fid]=ClosedOnA and
FindClosingPath(tp,fid,ups)=OpenDd(fid’)

NoOnFailedBar(fid,tp,ba,bb)
and Kind(fid,tp)=Fa and
ups[fid]=ClosedOnA and
FindClosingPath(tp,fid,ups)=ClosedDd

NoOnFailedBar(fid,tp,ba,bb)
and Kind(fid,tp)=Fa and
ups[fid]=ClosedOnA and
FindClosingPath(tp,fid,ups)=
None

INFORM_IMPOSSIBLE_OPER

R
E
C
_
C
L
O
S
E
(
f
i
d
’
)

Failure_DetectedInform(tp)

S
I
G
N
A
L
_
C
O
M
P
L
E
T
E
D
_
O
P
E
R

Waiting(tp)

Waiting_ClosingDd(tp)

Authorizing(tp)

REC
_AU

THO
R_R

EQU
EST

(op
r)

M
O
N
I
T
O
R
(
m
s
)

Stop

F
A
I
L
U
R
E
_
I
N
_
U
N
I
T

CloseOnA

C
O
M
P
L
E
T
E
_
O
P
E
R

O
K
_
O
P
E
R

O
K
_
O
P
E
R

H
A
L
T

COMPLETED_OPER

FAILURE_IN_UNIT

FAILURE_IN_UNIT

OnFailedBar(fid,tp,ba,bb)

63

answer ::=
 None, ClosedDd: answer | OpenDd: unit_ident

** Find_Closing_Path given a station topology, the functional unit positions and
** the identifier of an Fa returns an answer saying whether for such unit no
** closing path exists, a closing path made by an open or by a closed Dd exists
op Find_Closing_Path: topology unit_ident units_positions -> answer

** If on the right of the functional unit fa there exists a proper closing path,
** then there exists a proper closing path for fa
ax if Path(RPart(tp,fa),ups,None) = ClosedDd then
 Find_Closing_Path(tp,fa,ups) = ClosedDd

** If on the left of the functional unit fa there exists a proper closing path,
** then there exists a proper closing path for fa
ax if Path(LPart(tp,fa),ups,None) = ClosedDd then
 Find_Closing_Path(tp,fa,ups) = ClosedDd

** If on the right of the functional unit fa there exists a non-proper closing
** path and on the left of fa there does not exist a proper closing path, then
** there exists a non-proper closing path for fa
ax if Path(RPart(tp,fa),ups,None) = Open(uid) and
 Path(LPart(tp,fa),ups,None) =/= ClosedDd then
 Find_Closing_Path(tp,fa,ups) = Open(uid)

** If on the left of the functional unit fa there exists a non-proper closing
** path and on the right of fa there does not exist a closing path, then there
** exists a non-proper closing path for fa
ax if Path(LPart(tp,fa),ups,None) = Open(uid) and
 Path(RPart(tp,fa),ups,None) = None then
 Find_Closing_Path(tp,fa,ups) = Open(uid)

** If on the left and on the right of the functional unit fa no closing path
** exist, then no closing path exists for fa
ax if Path(LPart(tp,fa),ups,None) = None and
 Path(RPart(tp,fa),ups,None) = None then
 Find_Closing_Path(tp,fa,ups) = None

** given a set of functional unit managers returns the positions of the
** associated functional units
op Positions_From: managers -> units_positions

ax Positions_From({})=[]
ax Positions_From(Ready(uid,dsch,up) | ms)= Positions_From(ms)[up / uid]
ax Positions_From(Executing(uid,dsch,up,up’)|ms)=Positions_From(ms)[up/uid]
ax Positions_From(Waiting_Authorization(uid,dsch,up,up’)|ms)=
 Positions_From(ms)[up/uid]
ax Positions_From(Ordering(fid,dsch,up,up’,ol)|ms)=Positions_From(ms)[up/uid]

auxiliary (continues)

64

** Path given the topology of one part of the station, the functional unit
** positions and the identifier of an Fa returns an answer saying whether in
** such part of the station for such unit no closing path exists, a closing
** path made by an open or by a closed Dd exists
op Path: topology units_positions answer -> answer

** If the station has been scanned until the end Path returns the recorded
** answer
ax Path(E,ups,a) = a

** If uid is a closed Dd then Path returns there is a closing path made by
** a closed Dd
ax if ups[uid] = Close then Path(Dd(uid) & tp,ups,a) = ClosedDd

** If uid is an open Dd and there is already recorded an open Dd, then the
** scanning of the bars goes on
ax if ups[uid] = Open then
 Path(Dd(uid) & tp,ups,OpenDd(uid’)) = Path(tp,ups,OpenDd(uid’))

** If uid is an open Dd and nothing is recorded, then the scanning of the
** bars goes on recording it
ax if ups[uid] = Open then
 Path(Dd(uid) & tp,ups,None) = Path(tp,ups,OpenDd(uid))

** If uid1 and uid2 are two closed Ae, then the scanning of the bars goes on
ax if ups[uid] = Close and ups[uid] = Close then
 Path(Ae(uid1,uid2) & tp,ups,a) = Path(tp,ups,a)

** If either uid1 or uid2 is open, then the recorded answer is returned
ax if (ups[uid] = Open or ups[uid] = Open) then
 Path(Ae(uid1,uid2) & tp,ups,a) = a

** If uid is an Fa, then the scanning of the bars goes on
ax Path(Fa(uid) & tp,ups,a) = Path(tp,ups,a)

** checks whether a functional unit is/is not connected to a failed bar
op No_On_Failed_Bar, On_Failed_Bar: unit_ident topology bar bar

ax if Non_On_BarA(uid,tp) then No_On_Failed_Bar(uid,tp,KO,bb)
ax if Non_On_BarB(uid,tp) then No_On_Failed_Bar(uid,tp,ba,KO)

op On_Failed_Bar: unit_ident topology bar bar
ax if On_BarA(uid,tp) then On_Failed_Bar(uid,tp,KO,bb)
ax if On_BarB(uid,tp) then On_Failed_Bar(uid,tp,ba,KO)

op Bar: bar_manager -> bar
ax Bar(OK) = OK
ax Bar(KO) = KO

opr: operation a: answer ups: unit_positions
uid, uid’, fa: unit_ident ms: set(manager) ba,bb: bar
tp: topology dsch: devices_schema ol: orders
up up’: unit_position

auxiliary (end)

65

AUTOMATISM: Activity

H
A
L
T

RECEIVE_MES
FORWARD
RECEIVE_REQ
SEND_MESSAGE

F
A
I
L
U
R
E REC_OPER & MONITOR

INFORM & MONITOR

MONITOR

IN
FO
RM
 &
 M
ON
IT
OR

RE
QU
IR
E_
AU
TH
OR
(o
pr
)&
 M
ON
IT
OR

RE
C_
OP
ER
 &
 M
ON
IT
OR

SEND(o) &

MONITOR(ds,ba,bb)

RECEIVE_MESSAGE

IN
FO
RM
_I
MP
OS
SI
BL
E_
OP
ER

SI
GN
AL
_C
OM
PL
ET
ED
_O
PE
R

FA
IL
UR
E_
IN
_U
NI
T

CONSOLE SEND(o) &
MONITOR(ds,ba,bb)

MANAGERS

COORD-
CONSOLE-
MANAGERS

MONITOR

NO_AUTHOR
 & MONITO

R

INFORM &
MONITOR

HALT

HALT

TOPOLOGYORDERDEVICES MESSAGE

STATION SCHEMA OPERATION BAR

CONSOLE-
MANAGERS

MONITOR

RECEIVE_REQ & MONITOR
SIGNAL & MONITOR
MONITOR

COORDINATOR
RECEIVE_AUTHOR_REQUEST
OK_OPER
COMPLETED_OPER
REQ_CLOSE
MONITOR

MONITOR
COORD-
MANAGERS

66

CONSOLE-MANAGERS

FO
RW
AR
D(
op
r) REC_OPER(opr) &

MONITOR(ds,ba,bb)

RECEI
VE_ME

S(Use
less)

INFORM(Useless) &
MONITOR(ds,ba,bb)

MONITOR(ds,ba,bb)

CONSOLE ms: MANAGERS
RECEIVE_REQ(opr)

MONIT
OR(ds

,ba,b
b)

RECEIVE_REQ(opr) &
MONITOR(ds,ba,bb)

MO
NI
TO
R(
ds
,b
a,
bb
)

SIGNAL(m) &
MONITOR(ds,ba,bb)

SEND_MESSAGE(m)

TOPOLOGYORDERds: DEVICES MESSAGE

STATION SCHEMA opr: OPERATION ba, bb: BAR

MONITOR(ds,ba,bb)

67

COORD-MANAGERS

fid: unit_ident
opr: OPERATION

RE
C_
OP
ER
(O
pr
(f
id
,C
lo
se
))
 &
 M
ON
IT
OR
(d
s,
ba
,b
b)

RE
C_
AU
TH
OR
_R
EQ
UE
ST
(o
pr
)

REQUIRE_AUTHOR(opr)&

MONITOR(ds,ba,bb)

REQ_CLOSE(fid)

OK_AUTHOR &
MONITOR(ds,ba,bb)

COMPLETED_OPER

INF
ORM

(Ex
ecu

ted
) &

 MO
NIT

OR(
ds,

ba,
bb)

MONITOR(ds,ba,bb)

MONITOR(ds,ba,bb)

MONITOR(ms)

ms: MANAGERS
COORDINATOR

MONITOR(ds,ba,bb)

OK_OPER

MONITOR(ds,ba,bb)

MONITOR(ds,ba,bb)

TOPOLOGYORDERds: DEVICES MESSAGE

STATION SCHEMA ba, bb: BAR

68

COORD-CONSOLE-MANAGERS

INFORM_
IMPOSSI

BLE_OPE
R

NO_AUTHOR & MONITOR(ds,ba,bb)

MONI
TOR(

ds,b
a,bb

)

SIGNAL_COMPLETED_OPER

MONITOR(ds,ba,bb)

RE
CE
IV
E_
ME
SS
(I
mp
os
si
bl
e)

MONITOR(ds,ba,bb)

RE
CE
IV
E_
ME
S(
Co
mp
le
te
d)

IN
FO
RM
(F
ai
lu
re
)
&
MO
NI
TO
R(
ds
,b
a,
bb
)

FAILURE_IN_UNIT

MONITOR(ds,ba,bb)RECEIVE_MES(Failure)

CONSOLE

ms: MANAGERS

COORDINATOR

TOPOLOGYORDERds: DEVICES MESSAGE

STATION SCHEMA OPERATION ba, bb: BAR

69

References

[LR97] M. Larosa and G. Reggio. A Graphic Notation for Formal Speci�cations of Dynamic

Systems. Technical Report DISI{TR{97{3, DISI { Universit�a di Genova, Italy, 1997.

Full Version.

[Reg98] G. Reggio. A Guide to the Use of the SMoLCS Methodology. Technical Report DISI{

TR{98{3, DISI { Universit�a di Genova, Italy, 1998.

70

