A Graphic Specification of a High-Voltage Station

Gianna Reggio
DISI
Dipartimento di Informatica e Scienze dell’Informazione
Universita di Genova
Via Dodecaneso, 35 — Genova 16146 — Italy

reggio @ disi.unige.it

http://www.disi.unige.it

In this report we present the development of an industrial case study using the SMoLCS
formal method, see [Reg98, LRI7], precisely the high-voltage stations for the distribution of
the electric power used by ENEL, the Italian National Company of Electricity. The stations
are the nodes of the electric high-voltage net. They allow: the setting of energy coming from
the production centers and/or from other nodes, the transformation of the levels of voltage and
the distribution to other nodes where the energy is used, for example transformation cabins.

We have organized the development of such case study in the following phases.

Capture and specification of the requirements Determination and specification the fun-
damental requirements on the high-voltage stations considered by ENEL.

First development step Refinement of such stations by considering only those managed by
a software automatism: the components of the station that constitute the plant are com-
pletely designed. We give a functional description of the automatism, without structuring
it, so that we leave as much freedom as possible to its implementation.

Second development step Specification of the particular automatism designed by ENEL.
This specification has to be interfaced with those already defined at the second level, to
obtain the complete specification of the ENEL stations. The most relevant difficulty found
at this level has been to understand correctly the concurrent activity of the components
of the automatism, starting from the informal description provided by ENEL. It has been
possible to overcome this difficulty thanks to a constant verification with the designers of
the automatism.

In this report we present both the formal and the informal specifications of the stations
produced at the various steps using for both of them a graphic notation; sometimes we report
the informal specification as comments within the formal one.

Acknowledgements. I thank V. Filippi of ENEL for her cooperation to the development
of this case study and A. Morgavi that has given a very preliminary specification of these
stations in hers master thesis.

STATION.PHASE 1

In this phase we specify the high-voltage stations (shortly stations from now on) consid-
ered by ENEL by giving the fundamental properties of their interactions with their external
environment.

STATION.PHASE 1: Natural Description

The stations are the nodes of the electric high-voltage net. They allow: the setting of en-
ergy coming from the production centers and/or from other nodes, the transformation of the
levels of voltage; and the distribution to other nodes where the energy is used, for example
transformation cabins.

In this case study we consider stations formed by a double bar (i.e., a pair of wires) and by
a set of devices, breakers and isolators connected to the bars and to lines reaching the station.
The connections between lines and bars are realized with the opening and closing of devices
suitable to this kind of connections.

The problem of automatizing the management of these stations has brought to an analysis
of their structure to permit a classification of the devices composing them in sets accordingly
to their different functionalities; every identified set, called functional unit, performs a precise
duty for what concerns the automation of the station, at a higher level of abstraction with
respect to the simple opening and closing of a single device. Thus we can see a station as
formed by a set of functional units, each belonging to an identified typology.

The class of stations considered is defined by the set of types of functional units associated
with constraints on their possible topological combinations.

In this case study we consider only stations with two bars denoted by “A” and “B”, respec-
tively, and with three kinds of functional units: Ae, Dd and Fa.

Fig. 1 presents the kinds of functional units with their positions.

An Fa is a functional unit that makes the electric connection between the pair of bars and
a line either for one bar or for the other; it can be in three positions:

e open, when the line is not electrically connected to any bar;
o closed on bar A, when the line is electrically connected to bar A;
o closed on bar B, when the line is electrically connected to bar B.

A Dd is a functional unit which electrically connects the two bars equalizing their actual
tensions; the possible positions are:

e open, when the two bars are not connected;

o closed, when the two bars are connected.

Fa:

line
B
Closed on B
A A
line line
B B
Closed on A Open
A A
Dd:
B B
Closed Open

Ae: m
(on bar A) U A A
Closed Open

Figure 1: The kinds of the functional units and their positions

An Ae is a functional unit which allows to isolate electrically sections of a bar to permit
upkeep; it is closed (open) when the two bar sections are connected (not connected).

Every station can be represented with a combination of elements belonging to such types.
The elements are placed down on bars, with the following bounds:

e Ae’s are always in pairs (one for each bar);
e bars can be sectioned by any number of pairs of Ae’s (also none);
o there must exist at least one Fa and

e there must exist at least one Dd.

Below we graphically present an example of an admissible station.

— A

) ()

i

?

The operator can require operations on the functional units of a station by using non-detailed
commands, remitting to the station the task of managing other possible functional units and
in particular of managing the composing devices. The request of an operation consists in the
selection of a functional unit, by means of an identifier, and of the final position that the unit
has to reach. The possible final positions are: for units of kind Fa, closed on bar A, closed on
bar B and open; while for units of kind Ae and Dd are closed and open.

If the execution of an operation is going on, the station does not accept requests of other
operations.

Moreover, if the required operation is useless (the position of the unit required by that
operation is already reached), then it must not be executed and the operator has to be informed.

Before of executing any operation, the station has to verify that the bars involved are under
tension; on the contrary an error rises, treated as a generic failure.

Below we briefly explain how to perform the various operations on the functional units.

The functional unit of kind Ae and Dd can be opened and closed, and those of kind Fa
opened.

To close on bar A an Fa closed on bar B, or converse, is called “bar exchange”; to execute
this operation it is necessary that the two bars are connected each other at least by a Dd.
The station has to identify a closing path and to operate on the corresponding Dd without the
operator, if necessary.

We identify the closing path using the following rules in decreasingly order of priority:

o if there exists one closed Dd s.t. every Ae, which possibly separates it from the Fa, is
closed, the operation can take place;

N
5 0D
TN

Figure 2: Either Dd1 or Dd2 may be chosen for building the closing path for Fa.

@ = @ =
Ty,

Figure 3: Dd must be closed for building the closing path for Fa.

e otherwise, if there exists some open Dd s.t. every Ae, which possibly separates it from the
Fa, is closed, it is necessary to close one of them and after the operation can take place

e otherwise, the station has to signal to the operator that it is impossible to execute the
operation (an Ae has to be closed).

Fig. 2, 3 and 4 show examples of such three cases.

Ae Ae m \
N
N
Ae AeU

Figure 4: No closing path for Fa is possible, some Ae must be closed.

OO

STATION.PHASE 1: Border Determination

A station is an open system, because it may interact with the external environment consisting
of an operator and of the other nodes of the high-voltage electric net. There are no hypotheses
on the behaviour of the nodes and of the operator, so they are considered outside the specified
system.

STATION.PHASE 1: Shadow Spots

The Natural Description does not say what to do when the station receives a wrong operation
request, for example to operate on a non-existing unit. We have assumed that the station will
receive only correct operation requests.

STATION.PHASE 1: Specification

Structure & Interactions

Data about functional units; precisely identifiers, positions and kinds Operation requests
FUNCTIONAL UNITS OPERATION
M essages about the outcome of an operation request Status of the plant (electro-mechanical part of the station)
MESSAGE PLANT
4)
N

to have bar A put KO

h B K
A station is anode of the electric high-voltage net. o have bar B put KO

It allows the setting of energy coming from the to receive an operation request
production centers and from other nodes and the
distribution to other nodes. to signal the outcome of an operation request

to signal that it isgoing to halt

STATION

FUNCTIONAL UNITS OPERATION MESSAGE PLANT

4 \\
KO BAR A
KO BAR B
RECEI VE_REQ oper at i on)
S| GNAL(message)
HALT

K\)J

STATION

STATION.PHASE 1: Basic Data Structures

Data about functional units; precisely identifiers, positions (Open, Close, Close on)sijown

FUNCTIONAL UNITS

FUNCTIONAL UNITS

Operation requests, consisting of the identifier of the unit on which to operate and of
the position to reach.

OPERATION

M essages about the result of an operation request: Completed, Useless, Impossible.

MESSAGE

unit_identifier = NAT
unit_kind ::= Ae | Dd | Fa
unit_position ::= Open | Close | Cose_On_A| Close_On_B | Broken

FUNCTIONAL UNITS

FUNCTIONAL UNITS
operation ::= Qpr(unit_ident,unit_position)
OPERATION
message ::= Conpleted | Useless | Inpossible
MESSAGE
PLANT

FUNCTIONAL UNITS

The status of afunctional unit, characterized by the identity, the kind and the position. A unit of kind AE or
Dd may beopen, closed or broke; and one of kind Famay be open, closed on A, closed on B or broken.

FUNCTIONAL_UNIT_STATUS

The electrical status of abar: in tension and not in tension.

BAR_STATUS

BAR_STATUS FUNCTIONAL_UNIT_STATUS

The status of a plant is given by the status of the two bars and of the functional units connected to each bar. In
each case Fa's and Dd'’ s are connected to both bars, while Ae's are connected only to one bar, but thereis one Ae
on abar iff there is another Ae on the other bar.

In the plants of the adimissible stations there is at least one Dd and one Fa.

PLANT

FUNCTIONAL UNITS

op Kind: functional _unit -> unit_kind
op Position: functional _unit -> unit_position

op Id: functional _unit -> unit_ident

if Kind(fu) = Ae or Kind(fu) = Dd then
(Position(fu) = Open or Position(fu) = Cosed or Position(fu) = Broken)

if Kind(fu) = Fa then
Posi tion(fu) Open or Position(fu) = Cose_On_A or
Posi tion(fu) Close_On_B or Position(fu) = Broken

fu: functional _unit

FUNCTIONAL_UNIT_STATUS

bar ::= K| KO

BAR_STATUS

10

BAR_STATUS FUNCTIONAL_UNIT_STATUS

pl

* %
* %
* %
* %
* %

* %

ant ::=

< bar bar > |

< functional _unit functional _unit > & plant |
< functional _unit > & plant

The status of the plant consists either

of just the status of the two bars,

or of the status of two functional units (one for each bar) plus the status of
the remain plant,

or of the status of a functional unit (connected to both bars) plus the status
of the renmining plant

* %

checks if a functional unit is connect to bar A (B)

pr On_A On_B: functional _unit plant
ax On_A(fu,<fu> & pl)
ax On_A(fu,<ful> & pl) if On_A(fu,pl)
ax On_A(fu,<fu ful> & pl)
ax On_B(fu,<fu> & pl)
ax On_B(fu,<ful> & pl) if On_B(fu,pl)
ax On_B(fu,<ful fu> & pl)
** checks if a functional unit is present in the plant
pr Is_In: functional _unit plant
ax if On_A(fu,pl) or On_B(fu,pl) then Is_In(fu,pl)
** checks whether the connections of the functional units on the bars are
** adm ssible, i.e. if each one of kind either Fa or Dd is connected to both
** the bars and those of kind Ae are present in pairs
pr Ok_Con: plant
ax Ok_Con(<ba bb>)
ax if Ok_Con(pl) and Kind(ful) = Ae and Kind(fu2) = Ae then
Ok_Con(<ful fu2> & pl)
ax if Ok_Con(pl) and Kind(fu) = Dd then _Con(<fu> & pl)
ax if Ok_Con(pl) and Kind(fu) = Fa then _Con(<fu> & pl)
** checks whether a station is admssible, i.e. if the connections are adm ssible
** and there is at least a functional unit of kind Fa and one of kind Dd
pr O_Plant: plant
ax O _Plant(pl) iff
O_Con(pl) and
(exists fu: Is_In(fu,pl) and Kind(fu) = Fa) and
(exists fu: Is_In(fu,pl) and Kind(fu) = Dd)
** returns the status of bar B (B)
op Bar_A Bar_B: plant -> bar
ax Bar_A(<ba bb>) = ba
ax Bar_A(<fu> & pl) = Bar_A(pl)
ax Bar_A(<ful fu> & pl) = Bar_A(pl)
ax Bar_B(<ba bb>) = bb
ax Bar_B(<fu> & pl) = Bar_B(pl)
ax Bar_B(<ful fu> & pl) = Bar_B(pl)
pl pl ant fu ful: functional _unit ba bb: bar

P LAH’I'

STATION.PHASE 1: States

FUNCTIONAL UNITS OPERATION MESSAGE PLANT

** returns the status of the physical conponents of the station (the plant)
op Plant: station -> plant

** checks whether the station is executing an operation
pr Executing: station

** checks whether the station is in a initial state
pr Initial: station

STATION1 (states)

12

STATION.PHASE 1: Activity

pr
* %
if

* %

* %

if

checks if there is a failure in station
Fai l ure: station

If there exists a broken functional unit, then there is a failure in station
exists uid: Position(st,uid) = Broken then Failure(st)

If the station has received a request to performan operation on a functiona
unit connected to a failed bar, then there is a failure in station
exists uid, st', up: st’ -- RECEIVE REQ Opr(uid,up)) --> st and
On_Failed_Bar(uid,Plant(st)) then

Fai | ure(st)

** checks if a functional unit is connected to a failed bar
pr On_Failed_Bar: unit_ident plant

if On_Bar_A(fu,pl) and Bar_A(pl)
if On_Bar_B(fu,pl) and Bar_B(pl)

KO then On_Failed_Bar(ld(fu), pl)
KO then On_Failed_Bar(ld(fu), pl)

* %

returns the kind of a functional unit

op Kind: station unit_ident -> kind

Kind(st,uid) = k iff (exists fu: fuls_In Plant(st) and Kind(fu)=k and 1d(fu)=uid)

* %

returns the position of a functional unit

op Position: station unit_ident -> unit_position

Position(st,uid) = up iff

(exists fu: fuls_In Plant(st) and Position(fu) = up and Id(fu) = uid)

* %

checks wether a functional unit is a closing path in a station for a given Fa

pr _ Is_Cdosing_Path_ For _ In _: unit_ident unit_ident station
** |f the the functional unit fid is a closing path for idfa, then fid is a
** Dd on the sane bar section of idfa and either is closed or open and in such
** case there does not exist a closed Dd on the sane bar section of idfa
if fid Is_Cosing Path_For fa In st then
- Kind(st,uid) = D
- SanmeSection(Plant(st),fa, uid)
- Position(st,uid) = Closed or
(Position(st,uid) = Open and not exists uid : Kind(st,uid) = Dd and
Position(st,uid) = C osed and SaneSection(Plant(st),fa,uid))
** |f there exists a functional unit that is a Dd and on the sanme bar section
** of fa, then there exists a functional unit that is a closing path for fa
if exists uid: Kind(st,uid) = Dd and SaneSection(Plant(st),fa,uid) then
exists uid : fid |Is_Closing_Path_For fa In st
** checks whether two functional units are on the sane bar section in a plant
pr SaneSection: plant unit_ident unit_ident
if On_Bar_A(fu,pl) and On_Bar_A(fu',pl) then SaneSection(pl,ld(fu),ld(fu’))
if On_Bar_B(fu,pl) and On_Bar_A(fu',pl) then SaneSection(pl,ld(fu),ld(fu’))
uid, uid, fa: unit_ident fu, fu : fun
k: kind st: station up: unit_position
(auxiliary)

13

Initial

** |Inthe initial state each unit is open and the bars are K

if Initial(st) then
- forall fu: if Is_In(pl,fu) then Position(fu,pl) = Open

- Bar_A(Plant(st)) = &K
- Bar_B(Plant(st)) = XK
Failure (Failure(st))

|

st

\|J/ HALT

in any case St ———— - -ccmmmammao -

not exists x',I:
X--1-->x

Pl ant

Ok_Pl ant (Pl ant (st))

Ki nd
** A functional unit cannot change its kind
if st --1s -->st’ then Kind(st,fid) = Kind(st’,fid)
Executi ng
(not Executi ng(st)) (Executi ng(st))

st st’

N4

RECEI VE_REQ opr)

exists opr: st

(Executi ng(st))

CExecuti ng(st)) @ot Executi ng(st))
st

S|t st’ |J/
\U/ in any case\st —lfﬁ _______

SI GNAL(m)

exists m st st’ forall opr:
I s =/ = RECElI VE_REQ opr)

14

RECEI VE_REQ RECE| VE_REQ opr)

st st’
\V%
st st’
@ot Execut i ng(stD CExecuti ng(st))

CPosi tion(st, uid) =up)

|

st

RECEI VE_REQ Opr (ui d, up))

\| ; , SI GNAL(Usel ess)
in any case st’ -------

Posi tion(st,uid) =/=
Open

|

RECEI VE_REQ(Opr (ui d, Open))

st
\U/ SI GNAL(Conpl et ed)
in any case st’ ----- X ——> - - - -
(Posi tion(x, uid) =Open)
or
____________ X___________________
(Kind(st,uid) = Ae or

showgrestoregsave 29 774 translaje 1 -1 scale O 0 novet
Posi ti on(st, ui d) =Cpen *Fal | ure(x)

st

RECEI VE_REQ(Opr (ui d, d ose))

V4

in any case st’ ----- X

SI GNAL(Conpl et ed)

15

RECEI VE_REQ |

Kind(st,fa) = Fa and
Posi tion(st, fa)=0pen
| RECEI VE_REQ(OQpr (ui d, Cl ose_On_A))
st st’

U/ S| GNAL(Conpl et ed)
in any case st’ ----- X— S -

Kind(st,fa) = Fa and
Position(st,fa)=C ose_On_B and not
exists uid:
uid Is_Cosing Path_For uid In st

| RECEI VE_REQ(Opr (ui d, T ose_On_A))
st st

1

| / SI GNAL() showgr est ore gsave 3
in any case st' -----eim—— > ...

Kind(st,fa) = Fa and
Position(st,fa)=C ose_On_B and
Is_Closing_Path(uid,st,fa)

| RECEI VE_REQ(Qpr (ui d, T ose_(On_A))
st st

\|\J/ S| GNAL(Conpl et ed)

in any case st’' = m--------------- x —————————————— x ______

Posi ti on(x, ui d) Posi ti on(x fa)=
or Cl ose Close_On_A

16

KO BAR A

KO BAR_A
st st U/ st
\|J/ st st’
KO _BAR A ,
st st
(Bar _A(Plant(st’)) = G()
KO _BAR B
KO _BAR B
st st |J/ st
\U/ st st’
KO BAR B
st — st’ |
C Bar _B(Plant(st’)) = CK)
S| GNAL SI GNAL(M) ,
st st
st st’
(Executi ng(st)) Cnot Execut i ng(st)
HALT
HALT
st st
st st
(Fai | ure(st))
m nessage I's: lab_station opr: operation
st st’ x x': station uid, uid, fa: unit_ident up: unit_position

17

STATION.PHASE 2.step 1

In this phase we specify the class of the stations handled by an automatism; clearly they
are a subclass of those specified in PHASE 1.

STATION.PHASE 2.step 1: Natural Description

A unique operator manages sets of stations and power plants. Thus the absence of local
operators in the stations, due to the installation of an automatic system, raises the necessity
for the system to satisfy security requirements of command and control; besides, to make easy
the tasks of the operator, the command of the operations has to take place by means of orders
to the automatism, which ensures also a continual caretaking of the devices of the plant.

The automatism has to be adaptable to different stations, which can be modified and
widened also after the installation. To realize its own task, the automatism has to know the
topology of the station on which it works, so we can assume that during the installation phase
the diagram of the station topology is provided.

The automatism has the task of checking the position of the devices of the plant and of
operating them accordingly to operator requests. So it has to collect continually information
coming from such devices about their own positions (reading the signals from an interface with
the field) and it has to be able to transmit (by means of the same interface) operating orders.

The interface is connected to the automatism by a set of channels, one for each device of
the station. Each channel can contain one of the following symbols:

— OP if the device communicates “open”;
— CL if the device communicates “closed”;

- XX, if “open” and “closed” are communicated simultaneously or if a failure of the device
is detected by the interface;

— it can be empty if none of the previous conditions is satisfied (for example when the
device is moving). Indeed we assume that, as the operation time of the devices is faster
than the reading one (order of hundreds of milliseconds), the automatism can read several
times the value of a channel before it can find the “closed” symbol. Please notice that
the channel keeps no memory of the position left from the device.

Moreover, every bar transmits its state, analogously to devices, through an appropriate
channel, which can contain either the symbol “OK” if the corresponding bar works correctly,
or the symbol “KO” if the tension is down (breakdown or earth-wire).

In the same way, orders given from the automatism to each device of the plant are symbols
transmitted on such channels: CL for “close” and OP for “open”.

To verify the correct execution of an order, it is necessary for the automatism to check the
position reached by the used device.

18

The operation of opening and closing a device has to be executed within a certain time from
the sending of the command. If the automatism does not receive within that time the signal
that the required state has been reached, the device has to be considered damaged.

The operator must have a self-starting key of the automatism. This key works also as a
“reset hardware” key; when the system reaches an irrecoverable error state, due, for example, to
the reading of symbol XX transmitted from a device of the plant through the interface towards
the field.

The automatism performs two fundamental tasks: monitoring and management of the
station components.

The monitoring has to be performed continuously, from system starting to its stopping and
during every operation. It consists in verifying:

— that the devices remain in the positions required by the operator and
— the rising of failures and abnormal situations.

In case of failure the system has to signal that to the operator and to stop its own activity.
In this case study we do not distinguish the different kinds of failure and we do not perform
recover activity. The automatism has to be able to recognize, when starting, an inconsistent
state of the station.

The management activity consists in verifying the feasibility of the operations required by
the operator and in executing these operations and checking their results.

The operator can guide the functional unit operations using not detailed commands, remit-
ting to the automatism the task of managing other possible functional units and in particular
of managing their devices. The request of an operation consists in the selection of a functional
unit, by means of an identifier, and of the final state that the functional unit has to reach.
The possible final states are: closed on bar A (CA), closed on bar B (CB) and open (OP); for
functional units like Ae and Dd, the commands CA and CB stand for the “closed” command.

If the execution of an operation is going on, the automatism does not accept request of
other operations.

Moreover, if the operation ordered has already been executed (the position of the functional
unit required by that operation is already reached) it must not be executed and the operator
has to be informed.

Before of executing any operation, the automatism has to verify that bars involved are under
tension; on the contrary an error rises, treated as a generic failure.

Below we briefly explain how the functional units are made of devices and how the various
operations are performed on them.

The devices present in the station (breakers, isolators) can be in two positions: on and off
(open and close in the following).

The breakers can be put on/off under tension and have operation time of the order of
hundreds of milliseconds; isolators cannot be used undertension (except bar isolators) and have
operation time of the order of some seconds. The result is that functional units own a breaker
for opening the whole unit, before using isolators and for closing it at the end of the operation.

In this case study we have analyzed three kinds of functional units:

e Ae made by a bar isolator;

19

Dd: A B

Fa: \
|

__— : breaker

" :1isolator

Figure 5: Schemas of the functional units

e Dd made by a breaker, a bar isolator connected to bar A and a bar isolator connected to

bar B;

e Fa made by a line isolator, a breaker, a bar isolator connected to bar A and a bar isolator
connected to bar B.

The schemas of the various functional unit kinds are presented in Fig. 5.
An Fa is a functional unit that makes the electric connection between the pair of bars and
a line either for one bar or for the other; it can be in three positions:

e open, when the three isolators are open (thus the line is not electrically connected to any

bar);

o closed on bar A, when the isolator on bar A, the line isolator L. and the breaker I are
closed, while the isolator on bar B is open (thus the line is electrically connected to bar

A);

o closed on bar B, when the isolator on bar B, the line isolator and the line breaker are
closed, while the bar isolator A is open (thus the line is electrically connected to bar B).

A Dd is a functional unit which electrically connects the two bars equalizing the two actual
tensions; the possible positions are:

e “open”, when the two isolators and the breaker are open (thus the two bars are not
connected);

e “closed”, when the two isolators and the breaker are closed (thus the two bars are con-
nected).

20

An Ae is a functional unit, consisting simply of a bar isolator, which allows to isolate
electrically sections of bar to permit upkeep; it is open/closed when its isolator is open/closed.

AE operations The functional unit Ae is composed by a single device (an isolator); so its
closing/opening corresponds to the opening/closing of its isolator.

Dd operations The functional unit Dd is composed by a breaker S and two isolators A and
B; it can be closed or open. The opening operation consists of opening, in the following
order, S, A and B; and the closing operation consists of closing, in the following order, S,

A and B.

Fa operations The functional unit Fa is composed by a breaker S and three isolators L, A,
B; it can be closed on bar A, or on bar B, or open.

The opening operation consists of opening S, then A and then B. The closing operation on
bar A of an Fa open consists of closing A, then closing L. and then closing S, analogously
for closing on bar B.

Closing operation on bar A of an Fa closed on bar B, or converse, is called “bar exchange”;
to execute this operation it is necessary that the two bars are connected each other by a
Dd. The automatism has to identify a closing path and to operate the corresponding Dd
without the operator, if necessary.

We identify the closing path with the rules already presented in the natural description
of PHASE 1.

21

STATION.PHASE 2.step 1: Specification

Structure & Interactions

Data about functional units; precisely identifiers, positions and kinds Operation requests

FUNCTIONAL UNITS OPERATION

Data about devices; precisely identifiers, positions and kinds Orders that the automatism sends to the devices

DEVICE_INFO ORDER

Messages about the outcome of an Description of the station topology and of the correspondence between
operation request the functional units and the composing devices

MESSAGE STATION SCHEMA

(")

to have bar A put KO

i It checks the device positions and operates
Electrical status of bar A them accordingly to the received requests to have bar B put KO

BAR

AUTOMATISM to receive an operation request

- J
~

to signal the outcome of an operation request

Electromechanic elementary components of

Electrical status of bar B
I B the station to signal that it is going to halt

BAR

DEVICES
- J

STATION

FUNCTIONAL UNITS DEVICE_ INFO

OPERATION MESSAGE ORDER STATION SCHEMA

e N
N KO BAR A

B: BAR AUTOMATISM KO BAR B

J RECEI VE_REQ oper at i on)

J

S| GNAL(message)

A: BAR DEVICES

HALT

STATION

22

STATION.PHASE 2.step 1: Basic Data Structures

and kinds (Ae, Dd, Fa)

Data about functional units; precisely identifiers, positions (Open, Close, Close on bar A, Close on bar B, Broken)

FUNCTIONAL UNITS

FUNCTIONAL UNITS

Operation requests, consisting of the identifier of the unit on which to operate and of the position to reach.

OPERATION

Messages about the resulkt of an operation request: Completed, Useless, Impossible.

MESSAGE

Data about devices; precisely identifiers, positions (open, close and broken [XX]) and kinds (breaker and isolator).

DEVICE_INFO

DEVICE_INFO

position that it must reach.

Orders sent from the automatism to the device, consisting of the identifier of the interested devices and of the

ORDER

23

unit_identifier = NAT
unit_kind ::= Ae | Dd | Fa
unit_position ::= Qpen | Close | Close_On_A| Close_On_B | Broken

FUNCTIONAL UNITS

FUNCTIONAL UNITS

operation ::= Qor(unit_ident,unit_position)

OPERATION

devi ce_i dent = NAT

device_kind ::=Br | Is
device_position ::= OP | CL | XX
DEVICE_INFO
DEVICE_INFO
order ::= Qpen: device_ident | Cose: device_ident
ORDER
nmessage ::= Conpleted | Useless | Inpossible
MESSAGE

STATION SCHEMA

DEVICE_INFO

The schemas of the devices composing afunctional unit. Each device is represented by itsidentifier. An Ae hasjust an
isolator; a Dd has an isolator on bar A, one on bar B and a breaker; an Fahas alineisolator, a breaker and an isolator
on bar A and one on bar B.

DEVICE SCHEMA

DEVICE SCHEMA FUNCTIONAL UNIT

The schemas of the functional units, characterized by their identifiers and by the schema of their devices.

UNIT SCHEMA

UNIT SCHEMA

The station schemas describe the station topology and the correspondence between the functional units and the
composing devices.

STATION SCHEMA

24

DEVICE_INFO

devi ces_schema :: =
Ae(device_ident) |
Dd(devi ce_i dent, devi ce_i dent, devi ce_i dent) |
Fa(devi ce_i dent, devi ce_i dent, devi ce_i dent, devi ce_i dent)

** The device schema of a functional unit is either the identifier of the

** jsolator (Ae), or the identifiers of the isolator on bar A of that on bar B
** and of the breaker (Dd), or the identifiers of the line isolator, of the

** preaker and of the isolator on bar A and of that on bar B (Fa)

DEVICE SCHEMA

DEVICE SCHEMA FUNCTIONAL UNIT
unit_schema ::= Fu(unit_ident, devi ces_schenn)
UNIT SCHEMA

25

UNIT SCHEMA

station_schema ::=
E |
< unit_schema > & station_schena |
< unit_schenma unit_schema > & station_schena

** The station is either enmpty or consists of a functional unit (an Fa or a Dd)
** plus the ream ning of the station or consists of two functional units
** (two Ae’s) plus the ream ning of the station

** given a station schema, checks if a functional unit is connected to bar A/B
pr On_BarA, On_BarB: unit_ident station_schena

ax On_Bar A(ui d, <Fu(ui d, dsch) > & sch)

ax if On_BarA(uid,sch) then On_BarA(uid, <Fu(uidl, dsch)> & sch)

ax On_Bar A(ui dl, <Fu(ui d1, dschl) Fu(uid2,dsch2)> & sch)

ax if On_BarA(uid,sch) then On_BarA(uid, <Fu(uidl, dschl) Fu(uid2,dsch2)> & sch)

ax On_BarB(uid, <Fu(uid, dsch)> & sch)

ax if On_BarB(uid,sch) then On_BarB(uid, <Fu(uidl, dsch)> & sch)

ax On_BarB(uidl, <Fu(uidl, dschl) Fu(uid2,dsch2)> & sch)

ax if On_BarB(uid,sch) then On_BarB(uid, <Fu(uidl, dschl) Fu(uid2,dsch2)> & sch)
ax if On_BarB(uid,sch) then On_BarB(uid, <Fu(uidl, dschl) Fu(uid2,dsch2)> & sch)

** given a station schenma and a functional unit identifier, returns its kind
op Kind: station_scherma unit_ident -> kind

ax Kind(<Fu(uid, Ae(idl)) Fu(fid2, Ae(id2))> & sch, uid)=Ae
ax Kind(<Fu(uidl, Ae(idl)) Fu(uid, Ae(id2))> & sch, uid)=Ae
ax if uid=/=uidl and uid=/=fid2 then
Ki nd(<Fu(ui d1, Ae(id1)) Fu(uid2, Ae(id2))> & sch, uid)=Kind(sch, uid)
ax Kind(<Fu(uid,Dd(id1,id2,id3))> & sch, uid)=Dd
ax Kind(<Fu(uid, Fa(idl,id2,id3,id4))> & sch, uid)=Fa
ax if uid=/=uid" then Kind(<Fu(uid ,dsch)> & sch, uid)=Kind(sch, uid)

sch: station_schena uid uid uidl uid2: unit_ident
dsch dschl dsch2: device_schenma idl, id2, i1d3, id4: device_ident

STATION SCHEMA (continues)

26

* %
* %
* %

* %

op

ax
ax
ax
ax

ax
ax
ax
ax

ax

given a station schema and a functional unit identifier return respectively

the identifier of its isolator on bar Aon bar B, if any, i.e. if it is
either a Dd or an Fa, of its breaker, if any, i.e. if it is either a Dd or
an Fa, of its isolator, if any, i.e. if it is an Ae

Isolator_On_A, Isolator_On_B, Breaker, I|solator:
station_schema unit_ident -> device_ident partial

I sol ator_On_A(<usl us2> & sch, uid)=Isol ator_On_A(sch, ui d)

I sol at or _On_A(<Fu(uid, Dd(id1,id2,id3))> & sch,uid)=idl

I sol ator _On_A(<Fu(uid, Fa(idl,id2,id3,id4))> & sch, uid)=id3

if uid =/=uid then

I sol ator _On_A(<Fu(uid ,dsch)> & sch, uid)=Isol ator_On_A(sch, ui d)

I solator_On_B(<usl us2> & sch,uid) = Isolator_On_B(sch, uid)

I sol at or _On_B(<Fu(uid, Dd(id1,id2,id3))> & sch,uid)=idl

I sol ator _On_B(<Fu(uid, Fa(idl,id2,id3,id4))> & sch, uid)=id3

if uid=/=uid then

I solator_On_B(<Fu(uid ,dsch)> & sch,uid) = Isolator_On_B(sch, uid)

Breaker (<usl us2> & sch,v) = Breaker(sch, uid)

ax Breaker(<Fu(uid,Dd(idl,id2,id3))> & sch, uid)=id3
ax Breaker(<Fu(uid, Fa(idl,id2,id3,id4))> & sch, uid)=id2
ax if uid=/=uid" then Breaker(<Fu(uid ,dsch)> & sch, uid)=Breaker(sch, uid)
ax |solator(<Fu(uid, Ae(idl)) Fu(uid , Ae(id2))> & sch,uid)=idl
ax Isolator(<Fu(uid , Ae(idl)) Fu(uid, Ae(id2))> & sch, uid)=id2
ax if uid=/=uidl and uid=/=uid2 then

I sol at or (<Fu(uidl, Ae(idl)) Fu(uid2, Ae(id2))> & sch, uid)=Isolator(sch, uid)
ax |solator(<usl> & sch, uid)=Isolator(sch, uid)
sch: station_schema uid uid uidl uid2: unit_ident
dsch dschl dsch2: devices_schena usl us2: unit_schem

idl,id2,id3,id4: device_ident

STATION SCHEMA (end)

27

BAR: Specification

** Electrical status of the bar: in tension and not in tension
bar ::= K| KO

BAR

DEVICES: Specification

Structure & Interactions

ORDER
4)
DEVICE
TAKEN(devi ces)
REC(or der) & TAKEN(devi ces)
DEVICE
_ J
DEVICES

28

DEVICE: Specification

DEVICE_INFO

id: device_ident knd: device_kind

ORDER

/ TAKEN(Open(i d, knd))
REC(Open(i d))

——=>{ Open(id, knd)

((p 1)uadod Joay

REC(Cl ose(id))

Cl osed(i d, knd)

REC(Cl ose(id))
TAKEN(C ose(i d, knd))

TAKEN(XX(i d, knd))

DEVICE

29

TAKEN(devi ce)

REC(or der)

DEVICES: Activity

o: ORDER
~ N TAKEN(ds1)
ds1: DEVICE, TAKEN(ds2) TAKEN(ds1] . . . | dsn)
_
TAKEN(dsn)
ds2: DEVICE,
REC(0) REC(0) &
TAKEN(ds2| ... |dsn)
TAKEN(ds2)
dsn: DEVICE,
J TAKEN(dsn)

Initial States

ORDER

(")

(e)
(o)

NS J

DEVICES (initial states)

30

AUTOMATISM.PHASE 2.step 1: Specification

Structure & Interactions

STATION SCHEMA

OPERATION BAR

DEVICES ORDER

MESSAGE

-

N

To monitor the station components
(the bars and the devices componing the units)

The automatism checks
the device positions and
operates them

To signal the result of the execution of an operation (a message)
and to monitor the station components

accordingly to the
operation requests that it
has received.

Tareceive the request to perform an operation and to monitor the
station components

To send an order to a device and to monitor the station components

To halt the station
AUTOMATISM2
STATION SCHEMA OPERATION BAR
DEVICES ORDER MESSAGE

-

\\

MONI TOR(devi ces, bar, bar)

S| GNAL(message) & MONI TOR(devi ces, bar, bar)

RECEI VE_REQoper ation) & MONI TOR(devi ces, bar, bar)

SEND(or der) & MONI TOR(devi ces, bar, bar)

e

2%

AUTOMATISM2

HALT

31

AUTOMATISM.PHASE 2.step 1: States

DEVICES STATION_SCHEMA

** checks if the automatismis in an initial state
pr Initial: automatism

** given an automati smreturns the schema of the handl ed station
op Schema: automatism-> station_schema

** checks if the automati smis executing an operation
pr Executing: automatism

** returns the recorded position of a device, if any
op Device_Position: device_ident autonmatism-> position parti al

** checks if the automati sm has detected a failure in the station
pr Failure: automatism

AUTOMATISMZ (states)

32

AUTOMATISM.PHASE 2.step 1: Activity

Initial

if Initial(a) then

- if OK(Device_Position(id,a)) then Device_Position(id,a)=0P
- not Executing(a)

Schenma

** The station schema does not change

if a--1 -->a then Schema(a)=Schena(a’)

Failure (Devi ce_Position(id,a) =/= 93

SEND(Open(i d))

inacase -=--------

g

a

CDevi ce_Position(id,a) =/= 9: .
SEND(Ol ose(i d)) |

inacase --------- a

Vg

a

Fai lure(a)

(not Send_Order(al, Open(id))
and Devi ce_Position(id,a’
(not Send_Order(al, d ose(id) =/ =

Devi ce_Position(id, a

al |
a’ a’

Ve

a’

Fai l ure(a)

(on_Fai | ed_Bar (ui d, Schema(a), ba, bp)
RECEI VE_REQ Opr (ui d, up)) & MONI TOR(ds, ba, bb)

a’ a’
\V%
a
a

\U/ HALT

inany case a— > - - e mmmmmmm oo o

GOT exists x',l: x -- -->)<’

33

RECEI VE_REQ

CUni t_Posi ti on(Schema(a), ds, ui d) =)p

RECEl VE_REQ Opr (ui d, up))
& MONI TOR(ds, ba, bb)

a’ CSi gnal (I, Usel ess))

N |

inany case a'----=---""-"—m——————————> -~

or

Fai | ure(x)

Ki nd(Schena(a), uid) = Ae and
Uni t _Position(Schema(a),ds,uid) = C osed

RECEI VE_REQ(Opr (ui d, Gpen)) & MONI TOR(ds, ba, bb)
a a’

Send_Order (I,) showgr estlor e gsav -1 scale 0 0 novHg
Si gnal (1, Conpl et ed)

in any casea -c-c-emn S S

34

_REQ

RECEI VE_RE

Ki nd(Schema(a),uid) = Dd and
Unit_Position(Schema(a),ds,uid) = Cosg¢d

in any case a’

| RECEI VE_REQ(Opr (ui d, Open)) & MONI TOR(ds, ba, bb)
a

N\

Send_Or der (1, Qpen(D
Car eaker (Schema(a) i d'§))) C Po0)ater On A Behem(a) . ui dj D

Send_Or der (1, Open(
| sol at or _On_B(Schema

1)
(a), uid)

Si gnal (1, Conpl et ed

or

35

RECEI VE_REQ

Ki nd(Schema(a), uid) = Fa and
Unit _Position(Schema(a),ds,uid) =
Cl ose_On_B and
Fi nd_d osi ng_Pat h(Schena(a), uid, ds) =
Cl osedDd

RECEI VE_REQ(Opr (ui d, O ose_On_A)) &
a MONI TOR(ds, ba, bb)

Send_Order (I, Open() sho transl at
(- (1, Gpen() §g< Si gnal (I, Conpl et edg)

inany case a' -=====-==-== _—_ - S e -

Fai | ure(x)

Ki nd(Schema(a), uid) = Fa and
Uni t _Position(Schema(a),ds,uid) =
Cl ose_On_B and
Fi nd_d osi ng_Pat h(Schema(a), ui d,ds) =
None

RECEI VE_REQ(Opr (ui d, G ose_On_A))

& MONI TOR(ds, ba, bb) o CSi gnal (1, | npossi bl e))

U |

inany case a' -------"-"-~——————————> -------

or

Fai | ure(x)

36

Ki nd(Schema(a), uid) = Fa and
Uni t Poslllon(Scherra(a) ds,uid) =

I—
[ap]

Send_Order (1, O ose(

Send_Order (1, O ose(
I sol ator _On B(Schema(a), ui d))

Send_Or der (I, O ose(On_A(Schema(a), ui d);)

‘1 sol ator_On_B(Schena(a),

ose_On_B a
Fi nd_Cl osi ng_Pat h(Scherra(a) uid, ds) =
OpenDd(ui d")
RECEI VE_REQ(Opr (ui d, O ose_n_A)) & MONI TOR(ds, ba, bb)
Send_Order (1, O ose(
Breaker(Schema(a) Llld) Send_Order (1, O ose(
((Isolator_On A(Schema(a) ui d’))

in any case a’

or

Fai | ure(x)

Q

RECEI VE_RE

Si gnal (1, Conpl et ed)

* %

* %
op
ax
ax
ax
ax

ax

ax

G ven a station schem, the states of the devices and a functional unit
identifier returns the position of such unit
Unit_Position: station_schema devices wunit_ident -> unit_position

Unit_Position(E, ds, fid)=00

Uni t _Posi tion(<FU(uid, dsch)> & sch, ds, ui d)=Position(dsch, ds)
if uid =/=uid then

Unit _Position(<FU(uid' ,dsch)> & sch, ds, uid)=Unit_Position(sch,ds, uid)
Unit _Position(<FU(uid,dschl) FU(uid2,dsch2)> & sch,ds,uid)=
Posi ti on(dschil, ds)

Uni t _Posi tion(<FU(ui dl, dschl) FU(uid, dsch2)> & sch, ds, uid)=
Posi ti on(dsch2, ds)

if uid =/=uidl and uid =/= uid2 then

Uni t _Posi tion(<FU(ui dl, dschl) FU(uid2,dsch2)> & sch,ds,uid)=
Uni t _Posi tion(sch, ds, uid)

* %

checks whether an automati sminteraction includes to signal a nessage

pr Signalling: |ab_automatism nmessage

ax Signalling(al,m iff exists ds,ba,bb: al = SIGNAL(n) & MONI TOR(ds, ba, bb)
** checks whether an automati sminteraction includes to send an order

pr Send_Order: |ab_autonmati sm order

ax Send _Oder(al,o0) iff exists ds,ba,bb: al = SEND(o) & MONI TOR(ds, ba, bb)

AUTOMATISM2 (auxiliary)

38

Initial

If the automatism isinin aninitial situaion, then all devices are open and it is not executing.

Schema

The station schema never does not change

Failure

If the automatism has detected a failure in the station, then in any caseit signals that the station is going to halt and
after stops

If adeviceisin position XX, then the automatism detects afailure in the station

If the automatism has sent the open order to adevice id and seesthat id is not open, then it detects afailure in the
station

If the automatism has sent the close order to adevice id and seesthat id is not closed, then it detects afailurein the
station

If a device changes position without receiving an order, then the automatism detects afailure in the station

If the automatism receives an operation request for an unit connected to afailed bar, then it detects afailure in the station

On_Failed Bar

Checks whether afunctional unit is connected to afailed bar

Device Position

If the automatism monitors the plant seeing that adevice id has position p, then the recorded position of idisp

Executing

If the automatism is executing and becomes not executing, then it signal's the end of an operation

If the automatism is not executing and become executing, then it receives an operation request

RECEIVE_REQ

If the automatism monitors the plant and receives the request of putting a unit in the actual position, then in any case
either eventually it will signal that the required operation is useless or eventually it will detect afailurein the station

If the automatism monitors the plant and receives the request of opening aclosed Ae, then in any case either
eventually it will order to the A€’ sisolator of opening and after will signal that the operation has been completed or
eventually it will detect afailurein the station

If the automatism monitors the plant and receives the request of opening a closed Dd uid, then in any case either
eventually it will order to the uid’ s breaker of opening, after to the uid’ sisolator on the bar A of opening, after to the
uid'sisolator on bar B of opening and after it will signal that the operation has been completed or eventually it will
detect afailurein the station

If the automatism monitors the plant and receives the request of closing on bar A an Fauid closed on bar B, and there
existsaclosing path made by a closed Dd, then in any case either eventually it will order to the uid’ sisolator on A of
closing, after to the uid’ sisolator on B of opening, and after it will signal that the operation has been completed or
eventually there will be afailurein the station

If the automatism monitors the plant and receives the request of closing on bar A an Fa uid closed on bar B and there
exists a closing path made by the open Dd uid’, then in any case either eventually it will order to the breaker of uid’ of
closing, after to theisolator on bar A of uid’ of closing, after to theisolator on bar B of uid’ of closing, after to the
isolator on A of uid of closing, after to the isolator on B of uid of opening and after it will signal that the operation
has been completed or eventually there will be afailure in the station

If the automatism monitors the plant and receives the request of closing on bar A an Fauid, seesthat it is closed on
bar B and there exists no closing path, then in any case either eventually it will signal that the required operation is
impossible or eventually it will detect afailurein the statiogg

* %

* %

op

ax
ax
ax

* %

* %

ax

* %

* %

ax

ax
ax
ax
ax
ax
ax
ax
ax
ax

ax

ax

given the schema of the devices of a functional unit and the states of its
devi ces, returns the functional unit position
Posi tion: devices_schenma devices -> unit_position

The position of an Ae is equal to that of its isolator
if Open(id,Is) In ds then Position(Ae(id),ds) = Open
if Cdosed(id,Is) In ds then Position(Ae(id),ds) = d ose
if XX(id,Is) In ds then Position(Ae(id),ds) = Broken

The position of a Dd whose devices are all open is open
if Open(idl, Br)|Open(id2,1s)|Open(id3,1s) SubEg ds then
Position(Dd(idl,id2,id3),ds) = Open

The position of a Dd whose devices are all closed is closed
if Closed(idl,Br)|C osed(id2,Br)|d osed(id3,1s) SubEq ds then
Position(Dd(idl,id2,id3),ds) = dose

If a device is broken then the position of a Dd is broken

if XX(idl,Br) In ds then Position(Dd(idl,id2,id3),ds) = Broken
if XX(id2,1s) In ds then Position(Dd(idl,id2,id3),ds) = Broken
if XX(id3,1s) In ds then Position(Dd(idl,id2,id3),ds) = Broken

In any other case the position of a Dd is noving

if Open(idl,Br)|C osed(id2,Br) SubEq ds then Position(Dd(idl,id2,id3),ds)
if Open(idl,Br)|C osed(id3,Is) SubEq ds then Position(Dd(idl,id2,id3),ds)
if Cosed(idl, Br)|Open(id2,1s) SubEq ds then Position(Dd(idl,id2,id3),ds)
if Cosed(idl, Br)|Open(id3,Is) SubEq ds then Position(Dd(idl,id2,id3),ds)

The position of an Fa whose devices are all open is open
if Open(idl, Is)|Open(id2,Br)|Open(id3,1s)|Open(id4,ls) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds) = Open

The position of an Fa whose isolator is closed, the breaker is closed, the
isolator on bar Ais closed and that on bar B is open, is closed on bar A
if Closed(idl,Is)|Cosed(id2, Br)|dosed(id3,1s)|Open(id4,|ls) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds) = dosed_On_A

The position of an Fa whose isolator is closed, the breaker is closed, the
isolator on bar Bis closed and that on bar Ais open, is closed on bar B
if Closed(idl,1s)|Cosed(id2, Br)|Open(id3,1s)|C osed(id4,|ls) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds) = Cosed_On_B

If a device is broken then the position of an Fa is broken

if XX(idl,Is) In ds then Position(Fa(idl,id2,id3,id4),ds) = Broken
if XX(id2,Br) In ds then Position(Fa(idl,id2,id3,id4),ds) = Broken
if XX(id3,Is) In ds then Position(Fa(idl,id2,id3,id4),ds) = Broken
if XX(id4,1s) In ds then Position(Fa(idl,id2,id3,id4),ds) = Broken

if Open(idl, Is)|C osed(id3,Is) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds) = OO

if Open(idl, Is)|C osed(id4,Is) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds) = OO

if Open(id2,Br)|C osed(id3,Is) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds) = OO

if Open(id2,Br)|C osed(id3,Is) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds) = OO

if Cosed(idl,|Is)|Open(id3,1s)|Open(id4,|s) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds) = OO

if Cosed(id2,Br)| Open(id3,1s)|Open(id4,|s) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds) = OO

if Closed(idl,Is)|Cosed(id2, Br)|C osed(id3,1s)|dosed(id4,ls) SubEqg ds then
Position(Fa(idl,id2,id3,id4),ds) :ﬁp

8888

AUTOMATISM2 (auxiliary)

answer ::= None | CosedDd | OpenDd(unit_ident)

* *

* *

Find_Cl osing_Path given a station schema, a devices state and the identifier
of an Fa uid says whether either for uid there exists no closing path, or

there exists a closing

* %
op
* %
* *

ax

* *
* *

* *

ax

* %

* %

ax

path made by an open or closed Dd
Find_Cl osing_Path: station_schema unit_ident devices -> answer

Find_Cl osing_Path returns closed Dd iff there exists a closed Ddon the sane
bar section of the FA
Fi nd_C osi ng_Pat h(sch, fa, ds)=Cl osedDd i ff
exists fid: Position(sch,ds,fid)=0Cpen and Ki nd(sch, fid)=Dd and
SaneSection(sch, fa,fid,ds)

Find_C osing_Path returns an open Dd uid iff uid is an open
Dd on the sanme bar section of fa and there does not exist a closed Dd on
the same bar setion of fa
Fi nd_C osi ng_Pat h(sch, fa, ds) =CpenDd(uid) iff
(Posi tion(sch, ds, ui d)=0pen and Ki nd(sch, uid)=Dd and
SaneSection(sch, fa, uid) and
not exists fid:
(Posi tion(sch,ds, uid)=0pen and Ki nd(sch,uid) and
SaneSecti on(Schema(st),fa,uid)))

Find_Cl osing_Path returns that no closing path exist iff there does not exist
a Dd on the same bar setion of fa
Fi nd_C osi ng_Pat h(sch, fa, ds)=None i ff

not exists fid : (ls_Dd(st,fid) and SaneSection(Schenma(st),fa,fid))

** checks whether two units are on the same bar section in a station
pr SaneSection: station_schema unit_ident unit_ident

ax if uid =/=uidl and uid =/= uid2 and SanmeSecti on(sch, ui d1, ui d2,ds) then
SaneSecti on(Fu(uid, dsch) & sch, uidl, fid2,ds)
ax if Connect(sch,uid,ds) then
SaneSecti on(<Fu(uid, dsch)> & sch, uid, uid ,ds)
ax if Connect(sch,uid,ds) then
SaneSecti on(<Fu(uid, dsch)> & sch, uid’, uid,ds)
ax if SameSection(sch, uidl, uid2,ds) then
SaneSection(<fusl fus2> & sch, uidi, ui d2, ds)

** checks whether there is no cut before a given functional unit in a
** station
pr Connect: station_schema fun_unit_ident devices

ax if uid =/=uid and Connect(sch,uid ,ds) then
Connect (<Fu(uid, dsch)> & sch, uid’,ds)

ax Connect (<Fu(uid, dsch)> & sch, uid, ds)

ax if Position(Ae(idl),ds)=0pen and Position(Ae(id2),ds)=0pen and
Connect (sch, uid, ds) then
Connect (<Fu(ui d1, Ae(idl)) Fu(uid2, Ae(id2))> & sch, uid,ds)

AUTOMATISM2 (auxiliary)

41

STATION.PHASE 2.step 1: Activity

FUNCTIONAL UNITS

DEVICE_ INFO

opr : OPERATION m MESSAGE

HALT

MONI TOR(ds, ba, bb)

TAKEN(ds)

5
£

AUTOMATISM SEND(0) &

MONI TOR(ds, ba, bb)

REC(0) & TAKEN(ds)

SIGNAL(m) &
MONI TOR(ds, ba, bb)

TAKEN(ds)

RECEI VE_REQ(opr) &
MONI TOR(ds, ba, bb)

DEVICES

TAKEN(ds)

0: ORDER

STATION SCHEMA

KO _BAR_A
i
)
|
\i
********* o7 >
. e ba: BAR
7
N // ///,
/< ///
N /
\ !
7 1
g N
N
/ \\
/
————— EREEE SR
S bb: BAR
/ , i
/ ;)
Yo !
,’ / |
|
! // B
I / |
17
7 1
// // /
KO BAR B
!
4 !
4 /
!
/
, d SI GNAL(m)

RECEI VE_REQ opr)

42

STATION.PHASE 2.step 2

At this level we specify the stations handled by the automatism designed by ENEL, because
the automatism was the only part given by a requirement specification in PHASE 2.step 1, in
this step we just give its design specification.

STATION.PHASE 2.step 2: Natural Description

Task of the automatism The automatism has the task of collecting information from the
devices, of interpreting them for determining the positions of the corresponding functional
units and of managing such devices to perform the operations required by the operator. The
automatism must have a representation of the situation of the station, which evolves dynami-
cally following the variations of situations of the physical system. Such representation contains
information on the station topology and on the composing functional units.

Structure of the automatism The automatism is made by the console, the coordinator,
the bar managers and the functional unit managers.

The console is the interface of the automatism towards the operator, while the bar and
functional unit managers are those towards the station components; each functional unit man-
ager 1s associated with a functional unit, of whom memorizes the current position depending
on the positions of the component devices, and to whom sends the operations required by the
operator.

The coordinator supervises the management activity, verifying the practicability of the
operations; to do that it analyses the topology of the station and the positions of the functional
units (information present in the functional unit managers).

Activity of the automatism When the automatism starts, each functional unit manager
begins to monitor the devices of the associate functional unit; if it detects a failure, then it
informs the console and the station stops. The failures of the bars have no immediate effect: the
station stops when someone attempts to perform an operation on a functional unit connected
to a failed bar.

If the operator requires an operation, the console sends it to the manager of the selected
functional unit, which, if the functional unit is not already in the required position, requires the
authorization to the coordinator and, if it receives an affirmative answer, translates the opera-
tion in orders for the single devices composing the functional unit; afterwards it communicates
to the coordinator the result of the operation.

Since the operations must be done in sequential way, the console cannot receive a request
from the moment of sending an operation until it receives the message about the result of the
same.

In the case of bar exchange operation, the coordinator after having looked for the closing
path, if the operation is impossible, then it informs directly the console and denies the autho-
rization to the involved Fa; if it is needed to close a path, then it sends the closing operation

43

to the manager of the Dd to be used for such operation, and when it receives the message that
the operation has been successfully completed, it gives the authorization to the execution of
the bar exchange to the Fa that have required it.

Components

Console The console is the interface of the automatism towards the operator; it filters the
requests of operations from the operator and sends them to the functional unit managers. More-
over 1t receives from the coordinator and from the functional unit managers messages about the
station functioning and communicates them to the operator. To perform its activity the console
needs some information; in particular it must know: which operation request has received from
the operator and the messages received by the other components of the automatism.

Managers Fach functional unit present in the station is controlled by a manager that is
the interface between the functional unit itself and the automatism. These managers have two
tasks:

— to check that the devices of the associate functional unit keep their positions, sending a
failure signal to the coordinator and to the console otherwise;

— to interpret the operations received either from the console or from the coordinator and
managing the devices of the associate functional unit to reach the required position.

When a manager receives an operation, it checks the positions of the devices of the associate
functional unit obtaining by them the position of the functional unit itself; if this is equal to
that required it informs the console that the operation is useless, otherwise, if the operation
arrives from the console, it requires to the coordinator the authorization for its execution and,
if it receives an affirmative answer, it translates the operation into a sequence of orders for the
single devices realizing it; at the end it checks the position reached by the functional unit and
communicates the result to the coordinator.

For the managers of functional unit of kind Fa, the operation close on bar A (respectively
on bar B) has different interpretation depending on the functional unit position: if it is open,
then there is the simple closing, if it is closed on bar B (respectively on bar A), there is the bar
exchange.

Coordinator The coordinator has the task of managing the activity of the functional
units (through their managers), depending on the operation required by the operator by means
of the console, and on the information on the situation of the station obtained by combining
those known from the managers (current situations of the various units and bars), with those
contained in the schema (topology of the station). Moreover it transmits to the console the
messages about to the result of the operation. Another task of the coordinator is the control
of the situation of the station: if it finds a failure, then it orders to all managers and to the
console the end of the activity.

When the coordinator receives from a manager the authorization request for executing an
operation on a functional unit, then this is ready for such execution, i.e., it is not already in
the required position and there are not failures in the station.

44

The coordinator manages in different way the three kinds of operations: opening, closing
and bar exchange.

In each case it checks that the operation is valid, i.e., that the bars connected to the
functional unit to be used are not failed; to do that it reads in the corresponding managers
the situations of the involved bars and if one of them is failed, it informs the console and all
managers that there is a failure.

In the case of closing on a bar of a functional unit of kind Fa, the coordinator must determine
if the operation is either of bar exchange or of closing; to do that it checks the situation of such
Fa (reading it in the corresponding manager).

For the bar exchange operation, it must analyze the schema for determining the closing
path:

— if there is already a closed Dd, it allows the operation;

— if it is needed to close a proper or not proper Dd but electrically connected, i.e., such that
the isolators that divides the pieces of bar of the Fa and of the Dd are closed, it orders
to the Dd to close and, after that, allows the operation of the Fa;

— if it is needed to close a not proper Dd and not electrically connected, it does not allow
the operation of the Fa and informs the console that it is needed to close an Ae.

45

AUTOMATISM.PHASE 2.step 2: Specification

Structure & Interactions

STATION SCHEMA OPERATION

BAR

ORDER MESSAGE

DEVICES

-

The console is the interface of the automatism
towards the operator; it filters the requests of
operations from the operator and send them to the
functional unit managers. Moreover it receives from
the coordinator and from the functional unit and bar
managers messages concerning the station
functioning and communicates them to the operator.

CONSOLE

A description of the station structure
in terms of functiona units.

TOPOLOGY

N

To monitor the station components
(the bars and the devices componing the units)

J
To signal the result of the execution of an operation
N (amessage) and to monitor the station components
The (functional units and bar) managers are the
interface of the automatism towards the functional
units and the bars. Tareceive an operation request and to monitor the
MANAGERS station components
J
To send an order to a device and to monitor the

The coordinator has the task of managing the activity of
the functional units (through their managers), depending
on the operation required by the operator by means of the
console, and on the information on the situation of the
station obtained by combining those known by the

managers (current situations of the various units and)show

messages about to the results of the operations. Another
task of the coordinator isto control the situation of the
station: if it detects afailure, then it ordersto all
managers and to the console to end the activity.

COORDINATOR

N

AUTOMATISM

46

station components

To halt the station

grestore gsave 44 475 trandate 1 -1 scale 0 0 moveto O sef(

~/

STATION SCHEMA OPERATION BAR

DEVICES ORDER MESSAGE

TOPOLOGY

SI GNAL(nmessage) & MONI TOR(devi ces, bar, bar)

CONSOLE
MONI TOR(devi ces, bar, bar)

SEND(or der) & MONI TOR(devi ces, bar, bar)
MANAGERS

RECEI VE_REQ(operation) &
MONI TOR(devi ces, bar, bar)

COORDINATOR
HALT

AUTOMATISM

47

AUTOMATISM.PHASE 2.step 2: Basic Data Structures

FUNCTIONAL UNITS

** The station topology, i.e. a description of the station structure in terns of
** functional units
topology ::=

E |

Fa(_) & _: unit_ident topol ogy |

Dd(_) & _: unit_ident topology |

Ae(_,) & _: unit_ident unit_ident topol ogy

* %

given a topology return the station parts on the right

and on the |eft

of a

** functional unit respectively
op RPart, LPart: topology unit_ident -> topol ogy
ax RPart(Fa(fid) &tp,fid) =tp
ax RPart(Dd(fid) &tp,fid) =tp
ax RPart(Ae(fidl,fid) &tp,fid) =tp
ax RPart(Ae(fid,fidl) & tp,fid) =tp
ax if fid =/=fidl then RPart(Fa(fidl) & tp,fid) = RPart(tp,fid)
ax if fid =/=fidl then RPart(Dd(fidl) & tp,fid) = RPart(tp,fid)
ax if fid =/=fidl and fid =/= fid2 then
RPart (Ae(fidl, fid) &tp,fid) = RPart(tp,fid)
ax LPart(tp,fid) = LPart1(tp,fid,E)
op LPartl: topology unit_ident topol ogy -> topol ogy
ax LPartl(Dd(fid) & tp,fid, tpl) = tpl
ax LPartl(Fa(fid) & tp,fid, tpl) =tpl
ax LPartl1(Ae(fidl,fid) & tp,fid, tpl) = tpl
ax LPartl1l(Ae(fid,fidl) & tp,fid,tpl) = tpl
ax if fid =/=fidl then
LPart1(Fa(fidl) & tp,fid, tpl) = LParti(tp,fid, Fa(fidl) & tpl)
ax if fid =/=fidl then
LPart1(Dd(fidl) & tp,fid,tpl) = LPartl(tp,fid, Dd(fidl) & tpl)
ax if fid =/=fidl and fid =/= fid2 then
LPart 1(Ae(fidl,fid2) & tp,fid, tpl) = LPartl(tp,fid, Ae(fidl, fid2) & tpl)
** given a station topology and a functional unit identifier returns its Kind,
** jf it is part ofthe station
op Kind: topology unit_ident -> kind (partial)
ax Kind(Ae(fid, fidl) & tp,fid) = Ae
ax Kind(Ae(fid, fidl) & tp,fidl) = Ae
ax Kind(Dd(fid) &tp,fid) = Dd
ax Kind(Fa(fid) &tp,fid) = Fa
ax if fid =/=fidl then Kind(Dd(fid) & tp,fidl) = Kind(tp,fidl)
ax if fid =/=fidl then Kind(Fa(fid) & tp,fidl) = Kind(tp,fidl)
ax if fid =/=fidl and fid =/=fid2 then

Kind(Ae(fidl, fid2) &tp, fid) = Kind(tp,fid)

TOPOLOGY (continues)

48

* *

* *

given a station topol ogy checks whether in such topology a functional
is connected to a bar

unit

pr On_BarA, On_BarB: unit_ident topol ogy

ax On_BarA(uid, Fa(uid) & tp)

ax On_BarA(uid, Dd(uid) & tp)

ax On_BarA(uid, Ae(uid,uidl) & tp)

ax if On_BarA(uid,tp) then On_BarA(uid, Fa(uidl) & tp)

ax if On_BarA(uid,tp) then On_BarA(uid, Dd(uidl) & tp)

ax if On_BarA(uid,tp) then On_BarA(uid, Ae(uidl, uid2) & tp)
ax On_BarB(uid, Fa(uid) & tp)

ax On_BarB(uid, Dd(uid) & tp)

ax On_BarB(uid, Ae(uidl,uid) & tp)

ax if On_BarB(uid,tp) then On_BarA(uid, Fa(uidl) & tp)

ax if On_BarB(uid,tp) then On_BarA(uid, Dd(uidl) & tp)

ax if On_BarB(uid,tp) then On_BarA(uid, Ae(uidl, uid2) & tp)
tp tpl: topol ogy uid uidl uid2: unit_ident

TOPOLOGY (end)

49

CONSOLE: Specification

OPERATION

MESSAGE

-

uoiresado e Jo 1nsal ay) INoge afiesseu e spuss

uoiresedo ue

Bunnoaxe Jo 1senbal e sondl

|

To receive the request of
executing an operation from
the operator

To forward to the unit
managers an operation request

To receive a message about
the result of the execution of
an operation from the unit
managers

To send to the opertor a
message about the result of
the execution of an operation

) %
cg %
&; S
3
8
jo}
8
S
g3
- <
o 8
QD
33
24
8 &
S
3
S &

receives amessage
about afailure

[
L

Qa

o

3 N i
Q informs about afailure in the station

CONSOLE

50

To inform the operator of a
failurein the station

opr:

OPERATION

m MESSAGE

-

W)moVvsSsan anas

(1do O3y 3N FO

Executi ng(opr)

(1do Yaywwwo4

Fail ure

Wi ting
—— RECEI VE_MES(Failure) ~ |

(u)=mOVSSIN 3IA 1F0

C\ﬁ
7
5
2
2

-

RECEI VE_REQ oper ati on)

FORWARD(oper at i on)

RECEI VE_MES(nessage)

SEND_MESSAGE(message)

FAI LURE

FAlI LURE

@
o
kel

CONSOLE

51

MANAGERS: Specification

Manager messages: there is afailure, the required operation is useless/has been executed.

M_MESSAGE

ORDER DEVICES OPERATION BAR

4)
To monitor the devices and the bars

MANAGER To informabout the result of the
execution of the received operation
BAR MANAGER and nonitor the devices and the bars

To send an order to a device and
nonitor the devices and the bars

To receive the authorization to
execute the received operation and
nmonitor the devices and the bars

To receive the request to execute an
operation and nonitor the devices ant
the bars

BAR MANAGER

To require the authorization to
execute the received operation and
MANAGER|, moni tor the devices and the bars

To receive the negation to execute t
recei ved operation and nonitor the
devi ces and the bars

MANAGERS

52

m message ::= Failure | Useless | Executed

M_MESSAGE
ORDER DEVICES OPERATION BAR
)
MONI TOR(devi ces, bar, bar)
MANAGER | NFORM m_nessage) & MONI TOR(devi ces, bar, be
BAR MANAGER
SEND(order) & MONI TOR(devi ces, bar, bar)
OK_AUTHOR & MONI TOR(devi ces, bar, bar)
REC OPER(operation) &
. MONI TOR(devi ces, bar, bar)
BAR MANAGER REQUI RE_AUTHOR(oper ati on) &
MONI TOR(devi ces, bar, bar)
MANAGERy,
NO_AUTHOR & MONI TOR(devi ces, bar, bar)
J
MANAGERS

33

MANAGER: Specification

Structure & Interactions

ORDER M_MESSAGE OPERATION
Lists of orders. DEVICES SCHEMA DEVICES
ORDERS
4)

To nonitor the unit devices

To informabout the result of the execution
of the received operation and nonitor the
unit devi ces

To send an order to a device and nonitor the
uni t devices

To receive the authorization to execute the
The interface of the automatism recei ved operation and nonitor the unit device
towards a functional units.

To receive the request to execute an operation
on the unit

To require the authorization to execute the
received operation and nonitor the unit device

To receive the negation to the execution of th
recei ved operation and nonitor the unit device

MANAGER

54

ORDER M_MESSAGE OPERATION

DEVICES SCHEMA DEVICES

LIST

ORDERS

MONI TOR(devi ces)

I NFORM m_nmessage) & MONI TOR(devi ces)

SEND(order) & MONI TOR(devi ces)

OK_AUTHOR & MONI TOR(devi ces)

REC_OPER(oper at i on)

REQUI RE_AUTHOR(oper ation) &
MONI TOR(devi ces)

NO_AUTHOR & MONI TOR(devi ces)

MANAGER

35

MANAGER: Activity

ui d: unit_ident] M_MESSAGE
up, up’: unit_position o: ORDER
opr: OPERATION ol - ORDERS ds: DEVICES dsch DEVICES SCHEMA

\ MONI TOR(ds)

(. N
. NoFai | ure(dsch, up, ds)
KReady(h d. dsch, up)l% | ure(dsch, up, ds) /N

REC OPER(Opr (fid, up'))

Fai | ure(dsch, up, ds))

NoFai | ure(dsch, up, ds)
Executing(fid, dsch, up,up’) and up=/=up’

NoFai | ure(dsch, up, ds)
and up=up’

I NFORM Usel ess) & MONI TOR(ds)

REQUI RE_AUTHOR(Qpr (fid, up’)) & MONI TOR(ds)

-

N\

i)
Wi ti ng_Aut hor (fid, dsch, up, up’)EFaI I ure(dsch, up, ds)

NoFai | ure(dsch, up, dsE
_J

MONI TOR(ds)

NO_AUTHOR & NMONI TOR(ds)

OK_AUTHOR & MONI TOR(ds)

Ordering(fid,dsch,up,up’, OrderlList(dsch, up,up’))

Ordering(fid,dsch, up,up’,ol)| Position(dsch, ds)=Broken

Ordering(fid,dsch,up,up’, Enpty Posf tf on(dsch, ds)=/=up
Posi ti on(dsch, ds) =up’

Ordering(fid,dsch,up,up’,0 "ol) Position(dsch, ds)=/=Broken
J

SEND(0) & NMONI TOR(ds)

| NFORM Execut ed) & MONI TOR(ds)

St op }\

56

I NFORM Fai | ure) & MONI TOR(ds)

** given the schema of a functional unit and the set of the states of its
** devices returns its position
op Position: devices_schena devices -> unit_position partia

** The position of an Ae is equal to that of its isolator
ax if Open(id,Is) In ds then Position(Ae(id),ds) = Open

ax if Cosed(id,Is) In ds then Position(Ae(id),ds) = C ose
ax if XX(id,Is) In ds then Position(Ae(id),ds) = Broken

** The position of a Dd whose devices are all open is open
ax if Open(idl,Br) | Open(id2,1s) | Open(id3,Is) SubEq ds then
Position(Dd(idl,id2,id3),ds) = Open

** The position of a Dd whose devices are all closed is closed
ax if Cosed(idl,Br) | Cosed(id2,Br) | dosed(id3,1s) SubEg ds then
Posi tion(Dd(idl,id2,id3),ds) = dose

** |f a device is broken then the position of a Dd is broken

ax if XX(idl,Br) In ds then Position(Dd(idl,id2,id3),ds) = Broken
ax if XX(id2,1s) In ds then Position(Dd(idl,id2,id3),ds) = Broken
ax if XX(id3,1s) In ds then Position(Dd(idl,id2,id3),ds) = Broken

** The position of an Fa whose devices are all open is open
ax if Open(idl,Is) | Open(id2,Br) | Open(id3,Is) | Open(id4,ls) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds)=0pen

** The position of an Fa whose isolator is closed, the breaker is closed, the

** jsolator on bar Ais closed and that on bar Bis open, is closed on bar A

ax if Cosed(idl,Is)|Cosed(id2,Br)|d osed(id3,I1s)|Open(id4,|ls) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds)=C ose_On_A

** The position of an Fa whose isolator is closed, the breaker is closed, the

** jsolator on bar Bis closed and that on bar Ais open, is closed on bar B

ax if Cosed(idl,Is)|Cosed(id2,Br)|Open(id3,1s)|C osed(id4,|s) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds)=Cl ose_On_B

** |f a device is broken then the position of an Fa is broken

ax if XX(idl,1s) In ds then Position(Fa(idl,id2,id3,id4),ds)=Broken
ax if XX(id2,Br) In ds then Position(Fa(idl,id2,id3,id4),ds)=Broken
ax if XX(id3,1s) In ds then Position(Fa(idl,id2,id3,id4),ds)=Broken
ax if XX(id4,1s) In ds then Position(Fa(idl,id2,id3,id4),ds)=Broken

** checks if there is/is not a failure in the managed functional unit
pr Failure, No_Failure: devices_schenma unit_position devices

axif Position(dsch,ds) =/= Broken then No_Fail ure(dsch, Position(dsch, ds), ds)
axif Position(dsch,ds) = Broken then Failure(dsch, up, ds)
axif Position(dsch,ds) =/= up then Fail ure(dsch, up, ds)

auxiliary (continues)

57

* %

* %
op
* %
* %

ax
ax

* %

* %

ax

* %

* %

ax

* %

* *

ax

ax

* %

* %

ax

ax

given the schema a functional unit, its position and the position to reach,
returns the list of theorders to be sent to its devices
Order _List: devices_schema unit_position unit_position -> orders

The order corresponding to an operation on an Ae is go to the required
position

Order _List(Ae(id),up, Open) = Open(id) Empty

Order _List(Ae(id),up,Cose) = Uose(id) Enpty

The orders corresponding to opening a Dd are: open the breaker, the isolator
on bar A and then the isolator on bar B
Order _List(Dd(idl,id2,id3),up, Open) = Open(idl) Open(id2) Open(id3) Enmpty

The orders corresponding to closing a Dd are: close the isolator on bar B,
the isolator on bar A and then the breaker
Order _List(Dd(idl,id2,id3),up, dose) = Cose(id3) OQpen(id2) Cose(idl) Enpty

The orders corresponding to closing on a bar an open Fa are: close the
i solator on the corresponding bar, the isolator and then the breaker
Order_List(Fa(idl,id2,id3,id4), Open,Cose_On_A) =

Close(id3) Cose(idl) Cose(id2) Enpty

Order_List(Fa(idl,id2,id3,id4), Open,Cose_On_B) =

Close(id4) Cose(idl) Cose(id2) Enpty

The orders corresponding to the operation of bar exchange of an Fa are:
close the isolator on the bar that is open and open the one that is closed
Order_List(Fa(idl,id2,id3,id4),C ose_On_A Cose_ On_B) =

Cl ose(id4) Open(id3) Enpty

Order_List(Fa(idl,id2,id3,id4),C ose_On_B,Cose_ On_A) =

Cl ose(id3) Open(id4) Enpty

auxiliary (end)

38

BAR MANAGER: Specification

BAR

/ MONI TOR(OK) \

XK

MONI TOR(bar)

(OI0 MOL INON
MONI TOR(KO)

— (o ——
& MONI TOR(KO) /

BAR_MANAGER

59

MANAGERS: Activity

ORDER DEVICES

OPERATION

BAR

M_MESSAGE

MANAGER1

MONI TOR(ba)
BAR MANAGER

MONI TOR(ds, ba, bb)

Z v 1
REC_OPER(opr) &
MONT TOR(ds, ba, bb)

NO_AUTHCR &
MONI TOR(ds, ba, bb)

REQUI RE_AUTHOR(opr) &
MONI TOR(ds, ba, bb)

NO_AUTHCR &
MONI TOR(ds, ba, bb)

\\ BAR MANAGER
MONI TCR(ba)

60

COORDINATOR: Specification

OPERATION

Unit positions allows to represent the positions
of the units as known by the coordinator

TOPOLOGY

UNITS POSITIONS

COORDINATOR

61

(The coordinator has the task of managing the activity of the functional units
(through their managers), depending on the operation required by the operator
by means of the console, and on the information on the situation of the To halt the station due to some failure
station obtained by combining those known from the managers (current)show grgstore gsave 33 230 trandaie 1 -1 scale 0 0 mo
. . . To detect afailurein a unit
(topology of the station). Moreover it transmits to the consol e the messages
about to the result of the operation. Another task of the coordinator is the
control of the situation of the station: if it finds a failure, then it ordersto all To receive an authorization request
managers and to the console the end of the activity.
When the coordinator receives from a manager the authorization request for To signal the completition of
executing an operation on a functional unit, then thisis ready for such an operation
execution, ie, it isnot already in the required position and there are not
failuresin the station.
The coordinator manages in different way the three kinds of operations: To deny the authorization to the
opening, closing and bar exchange. execution of an operation
In each case it checks that the operation isvalid, ie, that the bars connected to
thefunctior_1a| unit to be used f’;\re r!ot faled; tq do that it reads in_ the To beinformed that the operation has
corresponding managers the situations of the involved bars and if one of been completed
them isfailed, it informs the console and all managers that thereis afailure.
In the case of closing on abar of afunctional unit of kind Fa, the coordinator
must determine if the operation is either of bar exchange or of closing; to do To requireto close a Dd
that it checks the situation of such Fa (reading it in the corresponding)show gresjoregsave33446transtate 1 -1 scale 0 0 move
For the bar exchange operation, it must analyze the schemafor determining To monitor the units and the bars
the closing path: throughout their managers
- if thereis already aclosed Dd, it allows the operation;
- if itisneeded to close a proper or not proper Dd but electrically connected,
i.e., such that the isolators that divides the pieces of bar of the Faand of the To authorize the execution of an operation
Dd are closed, it ordersto the Dd to close and, after that, allows the operation
of the Fa;
- if itisneeded to close a not proper Dd and not electrically connected, it
does not allow the operation of the Faand informs the console that it is
L needed to close an Ae. y

FUNCTIONAL UNITS

MAP()show grestore /Courier findfont 10|scRlefont setfont g
TOPOLOGY

OPERATION

UNITS POSITIONS

COORDINATOR

HALT

FAILURE_IN UNIT

save 151 142 trar

REC_AUTHOR_REQUEST(oper at i on)

SI GNAL_COMPLETED OPER

I NFORM_| MPGSSI BLE_OPER

COVPLETED_OPER

REQ CLOSE(f i d)

MONI TOR(manager s)

OK_OPER

62

COORDINATOR: Activity

=] Ready(tp)

(Request _Recei ved(tp, opr)
4 N
Handl i ng_Req(t p, opr, FunsCOf (s) , Bar (ns), Bar (s))
Handl i ng_Req(t p, opr, ups, ba, bb)
. . A
Handl i ng_Req(t p, Opr (fi d, up), nFai | edBar (fid, t p, ba, bb) N—
ups, ba, bb) [NoOnFai | edBar (fi d tp ba, bb)
and Kind(fid,tp)=
Handl i ng_Req(tp, Opr (fid, Qpen), NoOnFai | edBar (fid, t p, ba, bb)
9- q(ugs%a,(bb Qpen).) and Kind(fid,tp)=Fa
NoOnFai | edBar (fi d, t p, ba, bb)
and Kind(fid,tp)=Fa and
ups[fid] =Cl osedOnA and T
Fi ndQd osi ngPat h(tp, fid, ups) =Cl osedDd =
. —
Hand| Req(t fid, d onB NoOnFai | edBar (fi d, tp, ba, bb) <
ndling_ q(ugsq)r('b) 0seOB),) | And Kind(fid.tp)=Fa and R IR
ups[fid] =C osedOnA and o] —
Fi ndC osi ngPat h(tp, fid, ups)=CpenDd(fid") % Z
NoOnFai | edBar (fid, t p, ba, bb) s
and Kind(fid,tp)=Fa and P —
ups[fid] =Cl osedOnA and e}
Fi ndd osi ngPat h(tp, fid, ups)= IP
None 8
_ CoseOnA ) ’En:
® o
% | NFORM | MPOSSI BLE_OPER =
Il_
% (V\altlng d osi ngDd(t p) J N—]
e
: :
m
2 a
3
m
by}
(Aut hori zi ng(tp)) /N—
R
9
m
by
I nf or n(t p) Je—oWPLETED_OPER (vai ting(tp) o Failure_Detect ed)e
\) FAILURE_IN UNIT ~ \.

}

FAI LURE_IN_UNI T

Stop |

HALT

63

HALT

answer ::=
None, Cl osedDd: answer | OpenDd: unit_ident

** given a set of functional unit managers returns the positions of the
** associated functional units
op Positions_From managers -> units_positions

ax Positions_From({})=[]
ax Positions_From Ready(uid, dsch,up) | ms)= Positions_Fron(ms)[up / uid]
ax Positions_From Executing(uid, dsch, up,up’)| nms)=Positions_Fron(ns)[up/uid]
ax Positions_From Waiting_Authorization(uid,dsch,up,up’)]|ms)=
Posi ti ons_From(ns) [up/ ui d]
ax Positions_From Ordering(fid,dsch,up,up’,ol)|ns)=Positions_Fron(ns)[up/uid]

** Find_C osing_Path given a station topol ogy, the functional unit positions and
** the identifier of an Fa returns an answer saying whether for such unit no

** closing path exists, a closing path nade by an open or by a closed Dd exists
op Find_d osing_Path: topology unit_ident units_positions -> answer

** |f on the right of the functional unit fa there exists a proper closing path,
** then there exists a proper closing path for fa
ax if Path(RPart(tp,fa), ups, None) = C osedDd then

Fi nd_C osing _Path(tp,fa, ups) = O osedDd

** |f on the left of the functional unit fa there exists a proper closing path,
** then there exists a proper closing path for fa
ax if Path(LPart(tp,fa), ups, None) = C osedDd then

Find_C osing _Path(tp,fa, ups) = O osedDd

** |f on the right of the functional unit fa there exists a non-proper closing
** path and on the left of fa there does not exist a proper closing path, then
** there exists a non-proper closing path for fa
ax if Path(RPart(tp,fa), ups, None) = Open(uid) and
Pat h(LPart(tp, fa), ups, None) =/= C osedDd then
Find_C osing_Path(tp,fa, ups) = Open(uid)

** |f on the left of the functional unit fa there exists a non-proper closing
** path and on the right of fa there does not exist a closing path, then there
** exists a non-proper closing path for fa
ax if Path(LPart(tp,fa), ups, None) = Open(uid) and
Pat h(RPart (tp, fa), ups, None) = None then
Find_C osing_Path(tp, fa, ups) = Open(uid)

** |f on the left and on the right of the functional unit fa no closing path
** exist, then no closing path exists for fa
ax if Path(LPart(tp,fa), ups, None) = None and

Pat h(RPart (tp, fa), ups, None) = None then

Find_C osing_Path(tp,fa, ups) = None

auxiliary (continues)

64

** Path given the topol ogy of one part of the station, the functional unit
** positions and the identifier of an Fa returns an answer saying whether in
** gsuch part of the station for such unit no closing path exists, a closing
** path made by an open or by a closed Dd exists

op Path: topology units_positions answer -> answer

** |f the station has been scanned until the end Path returns the recorded
** answer
ax Path(E ups,a) = a

** |f uidis a closed Dd then Path returns there is a closing path nade by
** a closed Dd
ax if ups[uid] = Cose then Path(Dd(uid) & tp,ups,a) = O osedDd

** |f uid is an open Dd and there is already recorded an open Dd, then the
** gcanning of the bars goes on
ax if ups[uid] = Open then

Pat h(Dd(uid) & tp,ups, OpenDd(uid')) = Path(tp, ups, OpenDd(uid'))

** |f uid is an open Dd and nothing is recorded, then the scanning of the
** pars goes on recording it
ax if ups[uid] = Open then

Pat h(Dd(uid) & tp,ups, None) = Path(tp, ups, OpenDd(uid))

** | f uidl and uid2 are two closed Ae, then the scanning of the bars goes on
ax if ups[uid] = Cose and ups[uid] = C ose then
Pat h(Ae(ui d1, uid2) & tp,ups,a) = Path(tp,ups,a)

** | f either uidl or uid2 is open, then the recorded answer is returned
ax if (ups[uid] = Open or ups[uid] = Open) then
Pat h(Ae(ui dl, uid2) & tp,ups,a) = a

** |f uid is an Fa, then the scanning of the bars goes on
ax Path(Fa(uid) & tp,ups,a) = Path(tp,ups,a)

* %

checks whether a functional unit is/is not connected to a failed bar

op No_On_Failed Bar, On_Failed_Bar: unit_ident topol ogy bar bar

ax if Non_On_BarA(uid,tp) then No_On_Fail ed_Bar(uid,tp, KO bb)

ax if Non_On_BarB(uid,tp) then No_On_Fail ed_Bar(uid,tp,ba, KO

op On_Failed_Bar: unit_ident topology bar bar

ax if On_BarA(uid,tp) then On_Fail ed_Bar(uid,tp, KO bb)

ax if On_BarB(uid,tp) then On_Failed_Bar(uid,tp,ba, KO

op Bar: bar_manager -> bar

ax Bar(OK) = K

ax Bar(KO = KO

opr: operation a: answer ups: unit_positions
uid, uid, fa: unit_ident ns: set(nmanager) ba, bb: bar
tp: topol ogy dsch: devices_schena ol : orders
up up’: unit_position

auxiliary (end)

65

AUTOMATISM: Activity

‘ STATION SCHEMA ‘ ‘ OPERATION ‘ ‘ BAR ‘
‘ DEVICES ‘ ‘ ORDER ‘ ‘ MESSAGE ‘ TOPOLOGY
RECEI VE_MES
FORWARD
RECEl VE_REQ
SEND_NMESSAGE CONSOLE-

HALT

MONI TOR

CONSOLE

MANAGERS

349N Ivd

HALT

COORDINATOR

COORD-
CONSOLE-
MANAGERS

COORD-
MANAGERS

RECE| VE_AUTHOR REQUEST
OK_OPER

COVPLETED_OPER

REQ CLOSE

MONI TOR

HALT

66

RECEI VE_REQ & MONI TOR
SI GNAL & MONI TOR
MONI TOR

SEND(0) &
MONI TOR(ds, ba, bb)

MANAGERS

MONI TOR

CONSOLE-MANAGERS

‘ STATION SCHEMA ‘ ‘ opr: OPERATION ‘ ba, bb:BAR

‘dS:DEVICES‘ ‘ ORDER ‘ ‘ MESSAGE ‘

TOPOLOGY

MONI TOR(ds, ba, bb)

Ale
/LOV?O%/?(
O?,O:S‘O/Zr)
G
bb)
MONI TOR(ds, ba, bb)
I NF
A/u\ﬁ&’g(tgﬁ/ 223) @
CONSOLE +00) ms: MANAGERS
L bb)
ou TGS ve
RECEI VE_REQ opr) &
MONI TOR(ds, ba, bb)
)
w2
&
&

SIGNAL(M) &
MONI TOR(ds, ba, bb)

67

COORD-MANAGERS

fid: unit_ident
‘ STATION SCHEMA ‘ opr : OPERATION ba, bb:BAR

‘ds:DEVICES ‘ ‘ ORDER ‘ ‘ MESSAGE TOPOLOGY

MONI TOR(ds, ba, bb)

S
Q\
Qﬁg’\\o
&
S
[N
@O/
MONI TOR(ds, ba, bb)
OK_OPER MONI TOR(ds, ba, bb) .
COORDINATOR ms: MANAGERS
LETE
D
\QDE/?
MONI TOR(ds, ba, Xb)
&
°Q
RON
ff/.
Q)

MONI TOR(ds, ba, bb)

MONI TOR(ds, ba, bb)

68

COORD-CONSOLE-MANAGERS

STATION SCHEMA OPERATION ba, bb: BAR

ds: DEVICES ORDER MESSAGE TOPOLOGY

MONI TOR(ds, ba, bb)

COORDINATOR

@ MONI TOR(ds, ba, bb)

CONSOLE

RECEI VE_MES(Fai | ur e) MONI TOR(ds, ba, bb)

;

69

References

[LR97] M. Larosa and G. Reggio. A Graphic Notation for Formal Specifications of Dynamic

Systems. Technical Report DISI-TR-97-3, DISI — Universita di Genova, Italy, 1997.
Full Version.

[Reg98] G. Reggio. A Guide to the Use of the SMoLCS Methodology. Technical Report DISI-
TR-98-3, DISI — Universita di Genova, Italy, 1998.

70

