
A Method to Capture Formal Requirements:

the INVOICE Case Study

Gianna Reggio

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a di Genova, Italy

Viale Dodecaneso, 35 { Genova 16146, Italy

reggio @ disi.unige.it

Introduction

In the last years myself in cooperation with other people have developed various

speci�cation formalisms for systems which can be named concurrent, parallel,

reactive, . . . , (e.g., [2, 7]) and applied to various case studies also in projects in

cooperation with industry (see e.g., [10,11, 4]). While the people forwarding the

case studies have found the formal speci�cations produced with our cooperation

satisfactory, they were asking \how can we produce such speci�cations?" and

\how can be such speci�cations integrated into a development process?" That

has lead us to try to derive from a speci�cation formalism for systems, satis-

factory from a formal point of view, e.g., expressive, powerful, allowing various

degrees of abstraction, a method for supporting the development process. Some

tasks have been already worked out, as

{ informal speci�cations strictly corresponding to the formal ones, [3];

{ a method (i.e., precise guidelines for the speci�er) for giving design speci�-

cations with an associated graphic notation, [12];

{ software tools helping to validate design speci�cations by prototyping, [1].

Now we are trying to develop a method for giving requirement speci�cations

(thus requirements capture and speci�cation) and a graphic presentation for

such speci�cations. Our formal speci�cation of the INVOICE case study is an

application of an initial proposal for such method.

Requirement speci�cations should express the fundamental characteristic of

something that we have to develop; and here we consider only the development of

products that are changing along the time, and call them systems. The systems

can be classi�ed as simple or structured; the latter are those consisting of several

parts (components), which are in turn systems, cooperating to give the whole

system activity. The description of a system usually includes also entities which

cannot be considered systems, since they are static; for example the quantities

and the references in the case of INVOICE. Such static entities are just data, and

we assume that are organized in data structures. In our approach systems and

data, simple and structured systems are considered di�erent and are analysed

and speci�ed di�erently.

Our requirement speci�cations follow an axiomatic (or better property ori-

ented) style, and use a variant of the branching-time temporal logic, [7].

In our treatment of INVOICE the emphasis in on \HOW" to get the formal

speci�cation. The method provides precise instructions guiding the user to �nd,

after some analysis of the system, in an exhaustive way all sensible properties.

The resulting speci�cation will have a very precise format, and that could be

positive, since it helps

{ to read the speci�cation;

{ to easily modify the speci�cation (and that could be used to support the

evolution of the system);

{ to develop techniques for veri�cation, if we know exactly the subset of for-

mulae that will be used, then the veri�cation task may be simpler.

On the other side such speci�cations may be longer and less elegant than those

produced in a free way.

The guidelines are derived from our experience in specifying; the application

to this example and to other simple case studies seems to be positive (see, e.g.,

in [9] some lift variants); but now the problem is to see whether the proposed

method is coping with more realistic cases. At the moment the class of considered

systems is still rather large, and we think that the guidelines may be e�ectively

tuned, if we consider more particular classes of systems (e.g., purely reactive).

In this paper we present only the part of our method concerning requirement

speci�cations of simple (non-structured) systems using a basic speci�cation for-

malism, because that is what we need for INVOICE; see [9] for a complete pre-

sentation. Furthermore in our approach formal speci�cations have an associated

informal presentation, which is not considered here.

In Sect. 1 we brie
y present the formalism used in our approach; initially

the reader can also skip it and came back if she/he needs that when reading

Sect. 2 and 3, where we present the two speci�cations and the followed guide-

lines. Finally in Sect. 4 we try to evaluate our speci�cations by showing theirs

characteristics.

1 Formal Basis

In this section we shortly present the formalism used in our approach, just what

is need for handling INVOICE; for complete presentations see [7, 5].

Formal models Data structures are formally modelled by many-sorted �rst-

order signatures (algebras with predicates), see [13].

To model systems we use labelled transition systems, see [8]. A labelled tran-

sition system (shortly lts) is a triple (ST ;L;!), where ST and L are two sets,

the states and the labels of the system, and ! � ST � L� ST is the transition

relation. A triple (s; l; s

0

) 2! is said a transition and is usually written s

l

��! s

0

.

A system S is thus modelled by an lts (ST ;L;!) and an initial state s

0

2 ST ;

the states reachable from s

0

represent the intermediate (interesting) situations

(stages) of the life of S and the transitions between them the possibilities of S of

passing from a state to another one. It is important to note that here a transition

s

l

��! s

0

has the following meaning: S in the state s has the capability of passing

into the state s

0

by performing a transition, where the label l represents the

interaction with the external (to S) world during such move; thus l contains

information on the conditions on the external world for the capability to become

e�ective, and on the transformation of such world induced by the execution of

the action; so transitions correspond to action capabilities.

An lts can be represented by a many-sorted �rst-order structure A on a sig-

nature with at least two sorts, state and label , whose elements correspond to the

states and the labels of the system respectively, and with a predicate

��! : state� label � state representing the transition relation. The triple con-

sisting of the carriers associated by A to state and label and the interpretation

of! in A is the corresponding lts. If the system uses some data structures, then

A will have also sorts di�erent from state and label , with the relative operations

and predicates.

The �-�rst-order structures corresponding to lts's are called LT-structures.

Axiomatic (property-oriented) speci�cations To express the requirements

on a system we use the �rst-order branching-time temporal logic with edge for-

mulae and equality of [7], shortly presented below.

Let L be an LT-structure. We need the following technical de�nitions. PATH

denotes the set of the paths on the associated lts, i.e. the set of all sequences of

transitions having form either:

s

0

l

0

s

1

l

1

s

2

l

2

: : :

s

0

l

0

s

1

l

1

s

2

l

2

: : : s

n

, n � 0 and there do not exist l, s

0

s.t. s

n

l

��! s

0

in L

where for all i � 0,s

i

l

i

��! s

i+1

in L.

FirstS(�) denotes the �rst state of �; and FirstL(�) denotes the �rst label of

�, if exists, i.e. if � is not just a state.

Given � = s

0

l

0

s

1

l

1

s

2

l

2

: : : and h � 0, if s

h

exists, then �

jh

denotes the

path s

h

l

h

s

h+1

l

h+1

s

h+2

: : :, otherwise it is unde�ned.

The set of formulae, denoted by FOR, and the sets of path formulae, denoted

by PF , on � and variables X are de�ned as follows.

formulae

{ P (t

1

; : : : ; t

n

) 2 FOR for each predicate P : s

1

� : : :� s

n

, t

i

terms

{ t

1

= t

2

2 FOR t

1

, t

2

terms with the same sort

{ not �

1

, if �

1

then �

2

, for all x: �

1

2 FOR �

1

; �

2

2 FOR, x 2 X

{ t in any case � 2 FOR t term of sort state, � 2 PF

path formulae

{ [x. �]2 PF x 2 X of sort state, � 2 FOR

{ < x. � >2 PF x 2 X of sort label, � 2 FOR

{ �

1

until �

2

2 PF �

1

; �

2

2 PF

{ after � 2 PF � 2 PF

{ not �, if � then �

0

, for all x: � 2 PF �; �

0

2 PF ; x 2 X

Let L be a �-structure and V a variable evaluation of X in L; then validity

is de�ned as follows:

{ L; V j= P (t

1

; : : : ; t

n

) i� ht

L;V

1

; : : : ; t

L;V

n

i 2 P

L

(t

L;V

interpretation of t in L under V , P

L

interpretation of P in L)

{ L; V j= t

1

= t

2

i� t

L;V

1

= t

L;V

2

{ L; V j= t in any case � i� for each � s.t. FirstS(�) = t

L;V

, L; V; � j= �

{ L; V; � j= [x. �] i� L; V [FirstS(�)=x] j= �

{ L; V; � j= < x. � > i� FirstL(�) is de�ned and L; V [FirstL(�)=x] j= �

{ L; V; � j= �

1

until �

2

i�

there exists j � 0 s.t. for all h, 0 < h < j, L; V; �

jh

j= �

1

and L; V; �

jj

j= �

2

{ L; V; � j= after � i� �

j1

is de�ned and L; V; �

j1

j= �

{ not �, if �

1

then �

2

, for all x: �, not �, if �

1

then �

2

,

for all x: � as usual

� is valid in L (written L j= �) i� L; V j= � for all evaluations V .

The formulae of our logic include the usual ones of �rst-order logic with

equality, and formulae built with the transition predicate (arrow).

The formula t in any case � can be read as \for every path � starting in

the state denoted by t, the path formula � holds on �".

The formula [x. �] holds on the path � whenever � holds at the �rst state

of �; while the formula < x. � > holds on the path � if � is not just a single

state and � holds at the �rst label of �.

In the above de�nitions we have used a minimal set of combinators; but it is

possible to de�ne other, derived, combinators as:

eventually � =

def

true until �

(eventually the property represented by � will hold)

forever � =

def

not eventually not �

(the property represented by � will hold forever)

t in at least a case � =

def

not t in any case not � (at least in one

case, i.e. the property represented by � holds in at least one path).

A speci�cation is a pair: a signature � with at least two sorts for states and

labels and a transition predicate (arrow), plus a set AX of formulae in FOR; its

semantics is the class of all �-LT-structures L s.t. for all � 2 AX L j= �.

2 Requirement Speci�cation of INVOICE (Case 1)

We present how the speci�cation of the INVOICE requirements has been pro-

duced following our method.

The instructions and the questions posed by the method will be written in this

way; while [the answers for the INVOICE case are written in this way.]

Each subsection corresponds to a part of the document presenting the re-

quirements.

2.1 Natural Description

Require to the client a document in whatever format (natural language text,

diagrams, pictures, . . .) describing the system that he wants; this is called the

\natural description".

[The natural description is the just the text proposed by the Workshop

Organizers.]

This document is the starting point of the development process. In the follow-

ing, ambiguities, inconsistencies, incompleteness found in the natural description

must be reported in another document, the \Shadow Spots"; if when giving the

requirements such points have been settled in some way (e.g. by making a par-

ticular choice) that should be recorded in the Shadow Spots too, together with

motivations. Sometime the problematic points are too many or too relevant and

so the natural description is not apt to be the basis for de�ning the requirements;

in such cases we need to interact with the client to get a new improved natural

description.

[The Shadow Spots of INVOICE case 1 are reported in Sect. 2.4.]

2.2 Border Determination

Determine the universe, i.e. the smallest closed system (no interactions with its

external world) including all entities mentioned in the natural description.

[The �rst line of the natural description \The subject is to invoice orders" is

already ambiguous; indeed it is not clear who/what invoices the orders. We have

assumed that the information system (shortly IS) of some company automatically

takes care of invoicing the orders. Another possibility is that there is a clerk that

sends commands to IS requiring to invoice some orders; in this case IS either will

signal that there is not enough product, or that the order is not pending, or will

change the state of the order.

We assume that the orders are static (a data structure).

IS interacts with

{ the clients (they send orders, receive invoices, pay and receive the products),

{ the warehouse (it informs IS when products are added to the stock),

{ the deliver department (it is informed by IS on the invoiced orders and then

delivers the ordered products);

thus the clients, the warehouse and the deliver department are in the universe.

Some producers (e.g. factories, trading companies) send the products to the

warehouse, and so also they are in the universe; other entities interacting with

the producers could not be relevant to this case.

WAREHOUSE
.
.
.

. . .

DELIVER
DEPARTMENT

PRODUCERS

C1

IS

Cn

]

(1) Find the components of the universe belonging to the system we have

to develop (system of interest); the remaining ones belong to the \application

domain".

(2) Find the domain components s.t. in the natural description there is some

information about them, relevant w.r.t. the system of interest.

In the following steps you must specify the system whose components are

those determined at points (1) and (2).

To clarify what we mean by \relevant", here there some examples of possible

relevant information for INVOICE: \some particular clients can cause troubles

if their orders are not serviced within one month", or \the deliver department

handles overseas orders on Tuesday".

In our framework, the speci�cation of a system does not include properties

on its external environment, and so the relevant parts of the application domain

must be included in the speci�ed system.

[The system of interest is IS, we have no relevant information on any domain

component, thus the system we are going to specify is just IS.]

2.3 Speci�cation

In our framework a system is modelled by an lts represented by a �rst-order

structure, where two sorts correspond to the states and the labels of the lts

and an arrow predicate to the transition relation, other sorts describe the used

data. Thus the speci�cation of a system is split in 4 parts: used data structures,

states, interactions (labels), and activity (transition relation). Here we consider

only simple systems, since IS is so.

Basic Data Structures Determine which are the data structures used in the

system. Specify them.

In our framework a data structure is modelled by a �rst-order structure; a

requirement speci�cation is just a signature � plus a set of �rst-order formulae

with equality built on it, and determines a class of �-structures: all those in

which the formulae hold. We assume that each data structure has at least a sort,

named as the structure, but using low-case letters. The guidelines to specify a

data structure are as follows.

Has it any sub-data structure? If so, specify them.

Determine the constructors to represent the elements of the main sort, and

the operations and predicates we need to operate on them.

Find the essential properties on them, and express such properties by using

�rst-order formulae.

There are further detailed instructions for the last point, not reported here,

guiding to �nd all properties, asking, e.g., for each pair of predicates if there is

any relationships between their truth, see [9].

[The basic data structures are: REFERENCE, QUANTITY and ORDER.

QUANTITY REFERENCE

pr _ <= _: quantity quantity (total order)
op _ - _: quantity quantity

if q’ <= q then q - q’ <= q

REFERENCEQUANTITY

op Ref: order -> reference
op Quantity: order -> quantity
** do two elements of type "order" correspond to the same order
pr Same_Order: order order

Same_Order(o,o)

ORDER

]

The box is the icon for data structures; the double box denotes requirement

speci�cations (the metaphor tries to suggest a pile of boxes, since a requirement

speci�cation determines many, usually in�nite, data structures). The construc-

tors, operations and predicates are de�ned in the �rst part of the box, they give

the interface of the structure; the properties are in the second part. The boxes

with inside a name represent sub-data structures; the referred data structures

should have been de�ned before.

These speci�cations are really simple, since we just need to compare and

subtract quantities. The predicate SameOrder has been introduced to properly

express some properties; indeed we need to check whether two elements of sort

order refer to the same order, to avoid, e.g., that the same order is both pending

and invoiced. In any sensible implementation we should have a key to identify

orders, e.g. client name and data.

Interactions Determine the interchanges with the external environment that

the system must have.

In our framework the interactions (labels of the lts modelling the system) are

represented by a data structure with a sort named lab-name, where NAME is the

name of the system.

Determine the various kinds of the interactions (i.e. classes of them having

common characteristics).

Each kind of interactions should be informally speci�ed by a sentence having

form \to (adverbs) verb (complements)"; e.g. \to correctly send a message", \to

break down", \to receive an order from a user". Each complement in one of the

above sentences should be described by the elements of some basic data structures.

Is it possible that di�erent interactions of the same or of di�erent kinds may

be performed simultaneously?

If the answer is no, for each kind we introduce a constructor to represent

the interactions of such kind; otherwise for each kind we introduce a predicate

checking whether a label includes an interaction of such kind.

[The interactions of IS are just of one kind: \to invoice an order"; they are

interactions with the deliver department and with a client, which will receive

the invoice.

INVOICE(order)

IS

REFERENCEQUANTITY

ORDERREFERENCEQUANTITY

..............

]

Graphically interactions are represented by lines leaving the icon of the sys-

tem (a box with round angles). The dots remember that INVOICE(order) are

not the unique interactions of the system, during its development more interac-

tions may be added. Above the drawing we report schematically the basic data

structure part, to have at hand which are the available data.

States Determine the relevant intermediate situations that the system may reach

along its life (the states); more precisely since at this level it is really hard to

be able to precisely de�ne them, determine which are the predicates and the

operations extracting from them the relevant information.

In our framework the \states" are just the states of the lts modelling the

system and are represented by a �rst-order structure, with a sort named name,

where NAME is the name of the system.

[In any state of IS we must know which are the pending and the invoiced

orders; in our opinion the simplest way to extract this information is by two

predicates asking whether an order is pending/invoiced (alternatively we may

have two operations returning sets of orders). We need also to know in any

state which quantities of products are in the stock; this is done by an operation

returning the available quantity for each product reference.

** gives for each reference the quantity of product available
** in the stock
op Stock: is reference -> quantity

** check wether an order is pending (invoiced)
pr Pending, Invoiced: is order

IS (states)

REFERENCEQUANTITY

ORDERREFERENCEQUANTITY

]

Since states are a data structure, we use the box as their icon. Also in this

part we report schematically the basic data structure part.

Activity In our framework the activity of a system is the transition relation of

the lts modelling it, and it is represented by a ternary predicate

-- --> : syst lab-syst syst; the properties on the activity are then ex-

pressed by formulae of the temporal logic introduced in Sect. 1.

The guidelines concerning the activity are more complex, and we present

them step by step. They ask to look for informal properties, guiding to produce

the informal speci�cation, but such properties are organized in a way to be easily

transformed into formulae of the used logic.

It may happen that the system has a property that does not �t the proposed

schemas, or that afterwards being informally stated cannot be transformed into

a formula. There are two possibilities:

{ the property concerns aspects of the system not expressible in our framework,

e.g. probabilistic information or strict real-time. At the moment an extension

of our approach has been developed to cover particular real time properties

(see the case studies [10, 11]); if that it is not enough, then you can either

leave such property as informal annotation, or choose another method.

{ The property is about the happening along the time of some interactions;

our experience shows that frequently it could be rearranged till to have the

required format by adding more operations/predicates on the states. This is

not over-speci�cation; we are just pointing out that some information must

be recorded in some way in the states.

In the following \future-prop(st)" denotes a property on the possible future

evolutions of st, a state of the system, whose possible informal forms are given

by the following syntactical diagrams.

at least in one case

in any case

or

path-propst

after

eventually

forever

perform

hold until

interaction

property on current
state or interact.

; and then

property on current
state or interact.

will hold

property on current
state or interact.

will hold

path-prop

An example of future-prop is (forgot the English grammar)

\it starts; and then the heath is less than 3 until stops; and then the heath is 0"

which corresponds to the formula of our logic

<i.i = START> and after

([x. Heath(x)<3] until (<i.i = STOP> and after [x.Heath(x)=0])).

For each predicate pr on the states look for properties of the following form:

(1) relationships with other predicates and operations on the states

(2) if pr(st,a

1

,. . . ,a

n

) holds/does not hold, then future-prop(st)

(3) if future-prop(st), then pr(st,a

1

,. . . ,a

n

) holds/does not hold

(4) if pr(st,a

1

,. . . ,a

n

) holds/does not hold, st goes to st

0

by performing inter-

action i and pr(st

0

,a

1

,. . . ,a

n

) does not hold/holds, then property on i

[There are two predicates on the states of IS, Pending and Invoiced, and

the resulting properties are as follows. Notice that there are no (2) properties

for Pending, since from the natural description it seems possible that a pending

order stays pending forever, also if the ordered quantity product is in the stock.

Pending

(1) if Pending(o,is) then not exists o’: o =/= o’ and
 Same_Order(o,o’) and (Pending(o’,is) or Invoiced(o’,is))

(3) if is in at least a case <i. i = INVOICE(o)> then Pending(is,o)

(4) if Pending(o,is) and is -- i --> is’ and not Pending(o,is’) then
 i = INVOICED(o)

Invoiced

(1) if Invoiced(o,is) then not exists o’: o =/= o’ and
 Same_Order(o,o’) and (Invoiced(o’,is) or Pending(o’,is))

(2) if Invoiced(o,is) then is in any case forever [x. Invoiced(o,x)]

(4) if not Invoiced(o,is) and is -- i --> is’ and Invoiced(o,is’) then
 i = INVOICED(o)

]

For each operation op on the states look for properties of the form:

(1) relationships with other predicates and operations on the states

(2) if property on op(st,a

1

,. . . ,a

n

), then future-prop(st)

(3) if future-prop(st), then property on op(st,a

1

,. . . ,a

n

)

(4) if st goes to st

0

by performing interaction i and op(st,a

1

,. . . ,a

n

) is di�er-

ent from op(st

0

,a

1

,. . . ,a

n

), then property on i

[There is only one operation on the states of IS, Stock, and the found prop-

erties are as follows.

Stock

(3) if is in at least a case <i.i=INVOICE(o)> then
 Quantity(o) <= Stock(is,Ref(o))

(4) if is -- i --> is’ and Stock(is’,r) < Stock(is,r) then
 exists o:
 i = INVOICE(o) and Stock(is,Ref(o))-Stock(is’,Ref(o))=Quantity(o)

]

For each interaction kind represented by constructor IK

pre-post condition

(1) if st goes into st

0

by performing interaction IK(a

1

,. . . ,a

n

), then property

on st and on st

0

reaction in the future

(2) if st goes into st

0

by performing interaction IK(a

1

,. . . ,a

n

), then

future-prop(st

0

)

incompatibility

(3) if st goes into st

0

by performing interaction IK(a

1

,. . . ,a

n

), then it cannot

go into st

00

by performing interaction i s.t. property on i and st

00

vitality

(4) if property on st, then there exists st

0

s.t. st goes into st

0

by performing

interaction IK(a

1

,. . . ,a

n

) and property on st

0

, a

1

,. . . ,a

n

(5) if property on st, then in any case/at least in a case st

0

eventually will

perform IK(a

1

,. . . ,a

n

) s.t. property on a

1

,. . . ,a

n

[There is only one interaction kind INVOICE and the resulting properties are

as follows. Notice the lack of vitality properties; nothing is required about �nally

invoicing the pending orders.

INVOICE

(1) if is -- INVOICE(o) --> is’ then
 - Pending(o,is) and Invoiced(o,is’)
 - Quantity(o) <= Stock(Ref(o),is)
 - Stock(Ref(o),is’) = Stock(Ref(o),is) - Quantity(o)
 - for all o’: if o’ =/= o then
 Pending(o’,is) iff Pending(o’,is’) and
 Invoiced(o’,is) iff Invoiced(o’,is’)
 - for all r: if r =/= Ref(o) then
 Stock(is,r) = Stock(is’,r)

]

Here and in the following we write if cond then - cond1 ... - condk

instead of if cond then cond1 and ... and condk

2.4 Shadow Spots

[The �rst line of the natural description \The subject is to invoice orders" is

already ambiguous; indeed it is not clear who/what invoices the orders. We have

assumed that the information system (shortly IS) of some company automatically

takes care of invoicing the orders. Another possibility is that there is a clerk that

sends commands to IS requiring to invoice some orders; in this case IS either will

signal that there is not enough product, or that the order is not pending, or will

change the state of the order.

The most relevant shadow spot is the lack of a policy for handling the pending

orders (we may have correct implementations serving the orders in a truly unfair

way); furthermore there are no \vitality" requirements, saying for example that a

pending order must eventually be invoiced when the ordered quantity of products

is in the stock.

We have assumed that invoicing an order cannot be performed simultaneously

with other activity (including invoicing another order); because nothing was said

in the natural description and because for systems of this kind \timed related"

aspects (as the possibility to have two orders invoiced simultaneously) are not

relevant.

It seems sensible to have some keys to identify orders, to easily identify

them.]

3 Requirement Speci�cation of INVOICE (Case 2)

If we consider the case 2 of INVOICE, then IS has more ways to interact with

outside (it can receive orders, have an order cancelled and be informed when

products are added to the stock). The speci�cation of case 2 is simply obtained

by modifying that of case 1; the disciplined way to produce the speci�cations

results in structured speci�cations making easy to modify them in the case of

changes in the natural description. Recall that each property could be equipped

with info making precise which was the question introducing it.

Starting with the document produced in Sect. 2 and the new natural de-

scription given by the Workshop Organizers, we have to add a plus operation to

QUANTITY, and to change the interaction and the activity parts of IS.

ADD(reference,quantity)

INVOICE(order)

ÉÉ

RECEIVE(order)

CANCEL(order)

IS

REFERENCEQUANTITY

ORDERREFERENCEQUANTITY

In the activity part we have to change the properties of type (4) for Pending

and Stock, because there are new ways to modify them,

(4) if Pending(o,is) and is -- i --> is’ and not Pending(o,is’) then
 i = INVOICE(o) or i = CANCEL(o)

(4) if not Pending(o,is) and is -- i --> is’ and Pending(o,is’) then
 i = RECEIVE(o)

(4) if is -- i --> is’ and Stock(is,r) < Stock(is’,r) then
 exists q: i = ADD(q,r) and Stock(is’,r) = Stock(is,r) + q

and to add the properties relative to the new interactions:

(1) if is -- RECEIVE(o) --> is’ then
 - not Pending(o,is) and not Invoiced(o,is)
 - Pending(o,is’)
 - for all r: Stock(r,is) = Stock(r,is’)
 - for all o’: if o’ =/= o then
 Pending(o’,is) iff Pending(o’,is’) and
 Invoiced(o’,is) iff Invoiced(o’,is’)

RECEIVE

CANCEL

(1) if is -- CANCEL(o) --> is’ then
 - Pending(o,is) and not Pending(o,is’)
 - not Invoiced(o,is’)
 - for all o’: if o’ =/= o then
 Pending(o’,is) iff Pending(o’,is’) and
 Invoiced(o’,is) iff Invoiced(o’,is’)
 - for all r: Stock(r,is) = Stock(r,is’)

ADD

(1) if is -- ADD(o) --> is’ then
 - Stock(r,is’) = Stock(r,is) + q
 - for all r: if r=/= r’ then Stock(r’,is) = Stock(r’,is’)
 - for all o:
 Pending(o,is) iff Pending(o,is’) and
 Invoiced(o,is) iff Invoiced(o,is’)

4 Conclusions

We have tried to present a \method" to formally capture system requirements,

or to be more precise the part of the method needed to handle INVOICE; thus

here we have not considered structured systems. For us method means to give

very precise \guidelines" to fully guide the user to produce the speci�cation.

In our opinion the small experiment on INVOICE has worked satisfactorily;

indeed

{ everything known about the system has been formalized (i.e., what given by

the Workshop Organizers), but nothing more;

{ many lacking relevant information about the system have been found (look at

the Shadow Spots part), among them who is invoicing, a policy for deciding

in which order to invoicing the orders, the need of a key to identify orders.

The most relevant features of our speci�cations of INVOICE are:

{ no over-speci�cation at all, exactly only what said by the Workshop Orga-

nizers has been formalized (also for the slightly arti�cial case 1);

{ rich modularity; that has helped to pass from case 1 to 2;

{ high level of abstraction; e.g., consider the interaction INVOICE, it could cor-

respond to call another process (in the case of a distributed implementation

where each component of the universe is connect by Internet), or just to

print two pieces of paper: the invoice for the client and a memo for deliver

department, in a more traditional realization.

The last point is positive in our opinion, since abstraction could help to master

complexity; but that could be negative for someone. Our speci�cation is too far

from the system to implement at the end, and so it may look unfamiliar to the

developers, and there is the need of several steps before the coding.

The proposed method with its guidelines to get the fundamental properties of

the system has worked for the very simple INVOICE case, and also on something

of more complex, see the various lift examples in [9]. However to asses its value it

has to be experimented on industrial case studies; and, still better, experimented

by some industrial developers, to see if the proposed concepts and techniques

are not too far from what they are used to.

We think that by considering more specialized classes of systems, e.g. purely

reactive systems, we can tune up the guidelines getting a more e�ective method.

Trying to compare our approach to the requirement speci�cation with others,

we can say:

{ it is formal, we give formal speci�cations also if they are presented using a

graphical notation;

{ its speci�cations have strictly corresponding informal speci�cations (not re-

ported here for lack of room) where formulae and declarations are replaced

by English sentences;

{ it aims to support the development of \systems" considering the reactive,

concurrent, parallel aspects, and so it is not similar to Z or B, where such

aspects have to be considered by ad hoc extensions;

{ similarly to object-oriented methods it o�ers some conceptual entities for

modelling the entities in the universe, but it does not consider only one kind

of entity. Indeed we assume to have systems distinguished by data structure,

that systems are further distinguished in simple and structured (those hav-

ing subcomponents cooperating among them) and that the components are

still distinguished in active and passive or inert. We think that to use only

one conceptual entity to model the real world entities may lead to misun-

derstandings and to unnecessary complications.

{ it asks many questions to the person writing the requirement speci�cation;

however in many cases that require some further interactions with the client,

to avoid to detect too late inconsistencies between hers/his ideas and the

developed system. Clearly some of the questions raised by myself in the role

of developer could be trivial for real developers, that knows muchmore about

the considered application domain.

References

1. E. Astesiano, F. Morando, and G. Reggio. The SMoLCS Toolset. In P.D. Mosses,

M. Nielsen, and M.I. Schwartzbach, editors, Proc. of TAPSOFT '95, number 915

in L.N.C.S. Springer Verlag, Berlin, 1995.

2. E. Astesiano and G. Reggio. Specifying Reactive Systems by Abstract Events.

In Proc. of Seventh International Workshop on Software Speci�cation and Design

(IWSSD-7). IEEE Computer Society, Los Alamitos, CA, 1993.

3. E. Astesiano and G. Reggio. Formally-Driven Friendly Speci�cations of Concurrent

Systems: A Two-Rail Approach. Technical Report DISI{TR{94{20, DISI { Univer-

sit�a di Genova, Italy, 1994. Presented at ICSE'17-Workshop on Formal Methods,

Seattle April 1995.

4. E. Astesiano and G. Reggio. A Dynamic Speci�cation of the RPC-Memory Prob-

lem. In M. Broy, S. Merz, and K. Spies, editors, Formal System Speci�cation: The

RPC-Memory Speci�cation Case Study, number 1169 in L.N.C.S. Springer Verlag,

Berlin, 1996.

5. E. Astesiano and G. Reggio. Labelled Transition Logic: An Outline. Technical

Report DISI{TR{96{20, DISI { Universit�a di Genova, Italy, 1996.

6. E. Coscia and G. Reggio. Deontic Concepts in the Algebraic Speci�cation of

Dynamic Systems: The Permission Case. In M. Haveraaen, O. Owe, and O.-J.

Dahl, editors, Recent Trends in Data Type Speci�cation, number 1130 in L.N.C.S.

Springer Verlag, Berlin, 1996.

7. G. Costa and G. Reggio. Speci�cation of Abstract Dynamic Data Types: A Tem-

poral Logic Approach. T.C.S., 173(2), 1997.

8. R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.

9. G. Reggio. A Guide to the Use of the SMoLCS Method. Technical report, DISI {

Universit�a di Genova, Italy, 1998.

10. G. Reggio and E. Crivelli. Speci�cation of a Hydroelectric Power Station. Technical

Report DISI{TR{94{17, DISI { Universit�a di Genova, Italy, 1994.

11. G. Reggio and V. Filippi. Speci�cation of a High-Voltage Substation. Technical

Report DISI-TR-95-09, DISI { Universit�a di Genova, Italy, 1995.

12. G. Reggio and M. Larosa. A Graphic Notation for Formal Speci�cations of Dy-

namic Systems. In J. Fitzgerald and C.B. Jones, editors, Proc. FME 97 - Indus-

trial Applications and Strengthened Foundations of Formal Methods, number 1313

in L.N.C.S. Springer Verlag, Berlin, 1997.

13. M. Wirsing. Algebraic Speci�cations. In J. van Leeuwen, editor, Handbook of

Theoret. Comput. Sci., volume B. Elsevier, 1990.

