A Graphic Specification of a High-Voltage Station

Gianna Reggio
DISI
Dipartimento di Informatica e Scienze dell’Informazione
Universita di Genova
Via Dodecaneso, 35 — Genova 16146 — Italy

reggio @ disi.unige.it

http://www.disi.unige.it

In this report we present the development of an industrial case study using the SMoLCS
formal method, see [Reg98], precisely the high-voltage stations for the distribution of the electric
power used by ENEL, the Italian National Company of Electricity.

The development of such case study has been organized in the following phases.

Capture and specification of the requirements Initially we have determined and speci-
fied the fundamental requirements on the high-voltage stations considered by ENEL.

First development step Here we have refined such stations by considering only those man-
aged by a software automatism: the components of the station which constitute the plant
are completely defined. We give a functional description of the automatism, without
structuring it, so that we leave as much freedom as possible to its implementation. Thus,
at this step, we give the design specification of the devices and of the bars (the plants
components), while we still have the requirements on the automatism.

Second development step Here we specify the automatism designed by ENEL. This speci-
fication has to be interfaced with those already defined at the second level, to obtain the
complete specification of the ENEL stations. The most relevant difficulty found at this
level has been to understand correctly how the concurrent activity of the components
of the automatism works, starting from the informal description provided by ENEL. It
has been possible to overcome this difficulty thanks to a constant verification with the
designers of the automatism.

In this report we present both the formal and the informal specifications of the stations
produced at the various steps using for both of them a graphic notation; sometimes the informal
specification is reported as comments within the formal one.

Acknowledgements. I thank V. Filippi of ENEL for her cooperation to the development
of this case study and A. Morgavi which has given a very preliminary specification of these
stations in hers master thesis.

STATION.PHASE 1

In this phase we specify the high-voltage stations (shortly stations from now on) consid-
ered by ENEL by giving the fundamental properties of their interactions with their external
environment.

STATION.PHASE 1: Natural Description

The stations are the nodes of the electric high-voltage net. They allow: the setting of energy
coming from the production centers and/or from other nodes, the transformation of the levels of
voltage and the distribution to other nodes where the energy is used, for example transformation
cabins.

In this case study we consider stations formed by a double bar (that is to say a pair of wires)
and by a set of devices, breakers and isolators connected to bars and/or to lines reaching the
station. The connections between lines and bars are realized with the opening and closing of
devices suitable to this kind of connections.

The problem of automatizing the management of these stations has brought to an analysis
of their structure in order to permit a classification of the devices composing them in sets
accordingly to their different functionalities; every identified set, called functional unit, performs
a precise duty for what concerns the automation of the station, at a higher level of abstraction
with respect to the simple opening and closing of a single device. Thus we can see a station as
formed by a set of functional units, each belonging to an identified typology.

The class of stations considered is defined by the set of types of functional units associated
with constraints on their possible topological combinations.

In this case study we consider only stations with two bars denoted by “A” and “B”, respec-
tively, and with three kinds of functional units: Ae, Dd and Fa.

The various functional unit kinds and their positions are presented in Fig. 1.

An Fa is a functional unit which makes the electric connection between the pair of bars and
a line either for one bar or for the other; it can be in three positions:

e open, when the line is not electrically connected to any bar;
o closed on bar A, when the line is electrically connected to bar A;
o closed on bar B, when the line is electrically connected to bar B.

A Dd is a functional unit which electrically connects the two bars equalizing their actual
tensions; the possible positions are:

e open, when the two bars are not connected;

o closed, when the two bars are connected.

Fa: .
line
B
Closed on B
A A
line line
B B
Closed on A Open
A A
Dd:
B B
Closed Open
Ae: m
(on bar A) U A A

Closed Open

Figure 1: The kinds of functional units and their positions

An Ae is a functional unit which allows to electrically isolate sections of a bar to permit
upkeep; it is open/closed when the two bar sections are not connected/connected.

Every station can be represented with a combination of elements belonging to such types.
The elements are placed down on bars, with the following bounds:

e Ae’s are always in pairs (one for each bar);
e bars can be sectioned by any number of pairs of Ae’s (also none);
o there must exist at least one Fa and

e there must exist at least one Dd.

An example of an admissible station is graphically represented below.

— A

) ()

i

?

The operator can require operations on the functional units of a station using non-detailed
commands, remitting to the station the task of managing other possible functional units and
in particular of managing the composing devices. The request of an operation consists in the
selection of a functional unit, by means of an identifier, and of the final position which the unit
has to reach. The possible final positions are: for units of kind Fa, closed on bar A, closed on
bar B and open; while for units of kind Ae and Dd are closed and open.

If the execution of an operation is going on, the station does not accept requests of other
operations.

Moreover, if the required operation is useless (the position of the unit required by that
operation is already reached), then it must not be executed and the operator has to be informed.

Before of executing any operation, the station has to verify that the bars involved are under
tension; on the contrary an error rises, treated as a generic failure.

Below we briefly explain how the various operations are performed on the functional units.

The functional unit of kind Ae and Dd can be opened and closed, and those of kind Fa
opened.

Closing operation on bar A of an Fa closed on bar B, or converse, is called “bar exchange”;
to execute this operation it is necessary that the two bars are connected each other at least
by a Dd. The station has to identify a closing path and to operate on the corresponding Dd
without the operator, if necessary.

The closing path has to be identified with the following rules in decreasingly order of priority:

o if there exists one closed Dd s.t. every Ae, which possibly separates it from the Fa, is
closed, the operation can take place;

Dd1

Dd2

-
i
AN

Figure 2: Either Dd1 or Dd2 may be chosen for building the closing path for Fa.

@ = @ =
M T

Figure 3: Dd must be closed for building the closing path for Fa.

e otherwise, if there exists some open Dd s.t. every Ae, which possibly separates it from the
Fa, is closed, it is necessary to close one of them and after the operation can take place

e otherwise, the station has to signal to the operator that it is impossible to execute the
operation (an Ae has to be closed).

Examples of the above three cases are shown in Fig. 2, 3 and 4 respectively.

Ae Ae m \
N
N
Ae AeU

Figure 4: No closing path for Fa is possible, some Ae must be closed.

OO

STATION.PHASE 1: Border Determination

A station is an open system, i.e., it may interact with the external environment consisting of
an operator and of the other nodes of the high-voltage electric net. There are no hypothesis
on the behaviour of the nodes and of the operator, so they are considered outside the specified

system.

STATION.PHASE 1: Shadow Spots

Nothing is said about to receive wrong operation requests, e.g., to perform an operation on a

non-existig unit. We have

assumed that only correct operation requests will arrive.

STATION.PHASE 1: Specification

Structure & Interactions

Functional unit identifiers

—| Functional unit positions Functional unit kinds

UNIT IDENTIFIER

UNIT POSITION UNIT KIND

Operation requests

M essages about the outcome of an operation request

OPERATION

MESSAGE

Status of the plant (the electro-mechanical part of the station)

PLANT
4)
\
to have bar A put KO
h B K
A station is anode of the electric high-voltage net. o have bar B put KO
It allows the setting of energy coming from the to receive an operation request
production centers and or from other nodes and the
distribution to other nodes. to signal the outcome of an operation request
to signal that it is going to halt
g J
N J

STATION

UNIT IDENTIFIER UNIT POSITION UNIT KIND
OPERATION MESSAGE PLANT
4 \\
KO BAR A
KO BAR B
RECEI VE_REQ oper at i on)
S| GNAL(message)
HALT
\\)J

STATION

STATION.PHASE 1: Basic Data Structures

Functional unit identifiers —‘ Kinds of the functional units: Ae, Dd, Fa

UNIT IDENTIFIER UNIT KIND

Positions of the functional units: Open, Close, Close on bar A, Close on bar B, Broken.

UNIT POSITION

UNIT IDENTIFIER UNIT POSITION

Operation requests, consisting of the identifier of the unit on which to operate and of
the position that it must reach.

OPERATION

M essages about the resulkt of an operation request: Completed, Useless, Impossible.

MESSAGE

—‘ enum Ae, Dd, Fa

UNIT IDENTIFIER UNIT KIND

enum Open, Cose, Cose_On_A dose_On_B, Broken

UNIT POSITION

UNIT IDENTIFIER UNIT POSITION

op Opr: unit_ident unit_position -> operation

OPERATION

enum Conpl eted, Usel ess, |npossible

MESSAGE

PLANT

UNIT KIND UNIT IDENTIFIER UNIT POSITION

The status of afunctional unit, characterized by the identity, the kind and the position. A unit of kind AE or
Dd open, closed or broke;one of kind Famay be open, closed on A, closed on B or broken.

FUNCTIONAL_UNIT

The electrical status of abar: in tension and not in tension.

BAR

BAR FUNCTIONAL_UNIT

The status of aplant is given by the status of the two bars and of the functional units connected to each bar; Fa

and Dd are connected to both bars, while A€’ s are connected only to one bar, but there is one Ae on a bar iff there
is another Ae on the other bar.

In the plants of the adimissible stations the units are connected to the bars as hinted above and thereis at |east
one Dd and one Fa.

PLANT

UNIT KIND UNIT IDENTIFIER UNIT POSITION

op Kind: functional _unit -> unit_kind
pr Position: functional _unit -> unit_position
op Id: functional _unit -> unit_ident

if Kind(fu) = Ae or Kind(fu) = Dd then
(Position(fu) = Open or Position(fu) = C osed or Position(fu) = Broken)

if Kind(fu) = Fa then
Posi tion(fu) Open or Position(fu) = Cose_On_A or
Posi tion(fu) Cl ose_On_B or Position(fu) = Broken

fu: functional unit

FUNCTIONAL_UNIT

enum OK, KO —‘

BAR

10

BAR FUNCTIONAL_UNIT

* %

The status of the plant may consists just of the status of the two bars

op < _ _ > bar bar -> plant
** adds two functional units to the status of a plant, one for each bar
op < _ _ > & _: functional _unit functional _unit plant -> plant
** adds a functional unit to the status of a plant, such functional unit is
** connected to both bars
op < _ > & _: functional _unit plant -> plant
** checks if a functional unit is connect to bar A (B)
pr On_A, On_B: functional _unit plant
ax On_A(fu,<fu> & pl)
ax On_A(fu,<ful> & pl) if O_A(fu,pl)
ax On_A(fu,<fu ful> & pl)
ax On_B(fu,<fu> & pl)
ax On_B(fu,<ful> & pl) if O_B(fu,pl)
ax On_B(fu,<ful fu> & pl)
** checks if a functional unit is present in the plant
pr Is_In: functional _unit plant
ax if On_A(fu,pl) or On_B(fu,pl) then Is_In(fu,pl)
** checks whether the connections of the functional units on the bars are
** admi ssible, i.e. if each one of kind either Fa or Dd is connected to both
** the bars and those of kind Ae are present in pairs
pr Ok_Con: plant
ax _Con(<ba bb>)
ax if Ok_Con(pl) and Kind(ful) = Ae and Kind(fu2) = Ae then
Ok_Con(<ful fu2> & pl)
ax if Ok_Con(pl) and Kind(fu) = Dd then _Con(<fu> & pl)
ax if Ok_Con(pl) and Kind(fu) = Fa then O_Con(<fu> & pl)
** checks whether a station is adm ssible, i.e. if the connections are adm ssi bl e
** and there is at least a functional unit of kind Fa and one of kind Dd
pr O_Plant: plant
ax Ok_Plant(pl) iff
O_Con(pl) and
(exists fu: Is_In(fu,pl) and Kind(fu) = Fa) and
(exists fu: Is_In(fu,pl) and Kind(fu) = Dd)
** returns the status of bar B (B)
op Bar_A, Bar_B: plant -> bar
ax Bar_A(<ba bb>) = ba
ax Bar_A(<fu> & pl) = Bar_A(pl)
ax Bar_A(<ful fu> & pl) = Bar_A(pl)
ax Bar_B(<ba bb>) = bb
ax Bar_B(<fu> & pl) = Bar_B(pl)
ax Bar_B(<ful fu> & pl) = Bar_B(pl)
pl pl ant fu ful: functional _unit ba bb: bar

PLANT

11

STATION.PHASE 1: States

UNIT IDENTIFIER UNIT POSITION UNIT KIND

OPERATION MESSAGE PLANT

** returns the status of the physical conponents of the station (the plant)
op Plant: station -> plant

** checks whether the station is executing an operation
pr Executing: station

** checks if a station state is initial
pr Initial: station

12

STATION.PHASE 1: Activity

** checks if there is a failure in station
pr Failure: station

** | f there exists a broken functional unit, then there is a failure in station
if exists fid: Position(st,fid) = Broken then Failure(st)

** |f the station has received a request to performan operation on a functional
** unit connected to a failed bar, then there is a failure in station
if exists fid, st’, up: st’ -- RECEIVE REQQOpr(fid,up)) --> st and
On_Failed_Bar(fid,Plant(st)) then
Fai | ure(st)

** checks if a functional unit is connected to a failed bar
pr On_Failed_Bar: unit_ident plant

if On_Bar_A(fu,pl) and Id(fu)=fid and Bar_A(pl)=KO then On_Fail ed_Bar (fid, pl)
if On_Bar_B(fu,pl) and Id(fu)=fid and Bar_B(pl)=KO then On_Fail ed_Bar (fid, pl)

** returns the kind of a functional unit
op Kind: station unit_ident -> kind

Kind(st,fid)=k iff (exists fu: fu ls_In Plant(st) and Kind(fu)=k and Id(fu)=fid)

** returns the position of a functional unit
op Position: station unit_ident -> unit_position

Position(st,fid)=up iff
(exists fu: fuls_In Plant(st) and Position(fu)=up and Id(fu)=fid)

** checks wether a functional unit is a closing path in a station for a given Fa
pr Is_Closing_Path: unit_ident station fun_unit_ident

** |f the the functional unit fid is a closing path for idfa, then
** fidis a Dd on the same bar section of idfa and either is closed or open and
** such case there does not exist a closed Dd on the sane bar section of idfa
if Is_Cosing Path(fid,st,idfa) then
- Kind(st,fid) = Dd
- SaneSection(Plant(st),idfa,fid)
- Position(st,fid) = Closed or
(Position(st,fid) = Open and not exists fid : Kind(st,fid) = Dd and
Position(st,fid') = Cosed and SaneSection(Plant(st),idfa,fid))

** |f there exists a functional unit which is a Dd and on the sane bar section

** of idfa, then Is_Cosing Path is true for sone functional unit

if exists fid: Kind(st,fid) = Dd and SanmeSection(Plant(st),idfa,fid) then
exists fid': Is_Cosing_Path(fid ,st,idfa)

** checks whether two functional units are on the same bar section in a plant
pr SaneSection: plant unit_ident unit_ident

if On_Bar_A(fu,pl) and Id(fu)=fid and On_Bar_A(fu',pl) and Id(fu)=idf’
then SaneSection(pl,fidl, fid)
if On_Bar_B(fu,pl) and Id(fu)=fid and On_Bar_A(fu',pl) and Id(fu)=idf’
then SaneSection(pl,fid,fid)

fid, fid , idfa: unit_ident fu, fu : fun
k: kind st: station up: unit_position
(auxiliary)

13

Ki nd

** A functional unit cannot change its kind

if st --Is -->st’ then Kind(st,fid) = Kind(st’,fid)

Pl ant

Ck_Pl ant (Pl ant (st))

Failure

** |f there is a failure in the station, then in any case it signals that

** js going to halt and after stops
if Failure(st) then

st in any case <HALT> and after [not exists x’

l: x -- -->x']

Executi ng

** |f the station becones executing, then it has received an operation

** request

if st -- Is -->st’ and not Executing(st) and Executing(st’) then

exists opr: |Is = RECElI VE_REQ opr)

** |f the station becones nonexecuting, then it signals the end of an

** operation

if st -- Is -->st’ and Executing(st) and not Executing(st’) then

exists m |s = SIGNAL(mM

** |f the station is executing an operation, then it cannot accept another

** request
if Executing(st) then

not st at least in a case <exists opr: RECEIVE_REQ opr)>

Initial

** |nthe initial state each unit is open and the bars are K

if Initial(st) then

- forall fu: if Is_In(pl,fu) then Position(fu,pl) = Open
- Bar_A(Plant(st)) = XK
- Bar_B(Plant(st)) = XK
KO BAR_A
** A bar may be al ways put KO
st at least in a case <KO BAR A>
if st -- KOBAR A --> st’ then Bar_A(Plant(st’)) = K
KO _BAR B
** A bar may be al ways put KO
st at least in a case <KO BAR B>
if st -- KOBAR B --> st’ then Bar_B(Plant(st’)) = &K

14

RECEI VE_REQ

** |f the station receives an operation request, then it is not executing
** and in any case it is executing until the operation will end
if st -- RECEIVE_REQopr) --> st’ then

- not Executing(st)

- st’ in any case [Executing(x)] until <exists m |s=SIGNAL(m) >

** |f the station receives the request of putting a unit in the actual
** position, then in any case eventually it either will signal that the
** required operation is useless or will fail
if st -- RECEIVE REQQOpr(fid,up)) --> st’ and Position(st,fid)=up then
st’ in any case

eventual |y <SI GNAL(Usel ess) >

or

eventual |y [Failure(x)]

** |f the station receives the request of opening a non-open unit fid, then
** in any case eventually either fid will becone open and after it wll
** sjgnal that the required operation has been conpleted or it will fail
if st -- RECEIVE REQQOpr(fid,Qpen)) --> st’ and Position(st,fid)=/=Cpen then
st’ in any case
eventual |y [Position(x,fid)=0pen] and after <SI GNAL(Conpl et ed) >
or
eventual |y [Failure(x)]

** |f the station receives the request of closing an open Ae or Dd fid, then
** jin any case eventually either fid will becone closed and after it wll
** sjgnal that the required operation has been conpleted or it will fail
if st -- RECEIVE REQQOpr(fid,Close)) --> st’ and
(Kind(st,fid)=Ae or Kind(st,fid)=Dd) and Position(st,fid)=0pen then
st’ in any case
eventually [Position(x,fid) = Closed] and after <SIGNAL(Conpl et ed) >
or
eventual |y [Failure(x)]

** |f the station receives the request of closing on bar A an open Fa fid,

** then in any case eventually either fid will be closed on A and after it

** will signal that the required operation has been conpleted orit will fail
if st -- RECEIVE REQ(Opr(fid,Cdose_On_A)) -->st’ and Kind(st,fid)=Fa and
Position(st,fid)=0pen then

in any case

eventually [Position(x,fid) = Cose_On_A] and after <SI GNAL(Conpl et ed) >
or

eventual |y [Failure(x)]

st

15

RECEI VE_REQ

** |f the station receives the request of closing on the bar A an Fa that is
** closed on the bar B and there is not a Dd to be used for the closing path,
** then in any case eventually either it will signal that the required
** operation is inmpossible or it will fail
if st -- RECEIVE REQ Opr(fid,dose_On_A)) --> st’ and Kind(st, fid)=Fa and
Position(st,fid)=Cose_On_B and
not exists fid : Is_Cosing_Path(fid ,st,fid) then
st’ in any case
eventual | y <SI GNAL(I npossi bl e) >
or
eventual ly [Failure(x)]

** |f the station receives the request of closing on the bar A an Fa fid that
** js closed on the bar B and there is a Dd fid" to be used for the closing
** path, then in any case eventually either fid will be closed and after
** eventually fid will be closed on the bar A and after it signal that the
** operation has been conpleted or it will fail
if st -- RECEIVE REQ Opr(fid,dose_On_A)) --> st’ and Kind(st,fid)=Fa and
Position(st,fid)=Close_On_B and Is_C osing_Path(fid ,st,fid) then
st’ in any case
eventually [Position(x,fid) = Closed] and after
eventual ly [Position(x,fid) = Close_On_A] and after
<S| GNAL(Conpl et ed) >
or
eventual ly [Failure(x)]

** Simlar properties for the closing of an Fa on the bar B.

SI GNAL

** |f the station signals the end of an operation, then it was executing and
** pecones nonexecuting
if st -- SIGNAL(n) --> st’ then Executing(st) and not Executing(st’)

HALT

** |f the station halts, then there was a failure

if st -- HALT --> st’ then Failure(st’)

fu ful fu2: functional _unit m nessage I's: lab_station
pl: plant opr: operation st st’ x x': station

fid, fid : unit_ident up: unit_position

16

STATION.PHASE 2.step 1

At this level we specify the class of the stations handled by an automatism; clearly they are
a subclass of those specified in PHASE 1.

STATION.PHASE 2.step 1: Natural Description

Sets of stations and power plants are managed by only one operator. Thus the absence of local
operators in the stations, due to the installation of an automatic system, rises the necessity for
the system to satisfy security requirements of command and control; besides, to make easy the
tasks of the operator, the command of the operations has to take place by means of orders to
the automatism, which ensures also a continual caretaking of the devices of the plant.

The automatism has to be adaptable to different stations, which can be modified and
widened also after the installation. To realize its own task, the automatism has to know the
topology of the station on which it works, so we can assume that during the installation phase
the diagram of the station topology is provided.

The automatism has the task of checking the position of the devices of the plant and of
operating them accordingly to operator requests. So it has to collect continually information
coming from such devices about their own positions (reading the signals from an interface with
the field) and it has to be able to transmit (by means of the same interface) operating orders.

The interface is connected to the automatism by a set of informative channels, one for each
device of the station. Each channel can contain one of the following symbols:

— OP if the device communicates “open”;
— CL if the device communicates “closed”;

- XX, if “open” and “closed” are communicated simultaneously or if a failure of the device
is detected by the interface;

— it can be empty if none of the previous conditions is satisfied (for example when the
device is moving). Indeed we assume that, as the operation time of the devices is faster
than the reading one (order of hundreds of milliseconds), the automatism can read several
times the value of a channel before it can find the “closed” symbol. Please notice that
the channel keeps no memory of the position left from the device.

Moreover, every bar transmits its state, analogously to devices, through an appropriate
channel, which can contain either the symbol “OK” if the corresponding bar works correctly,
or the symbol “KO” if the tension is down (breakdown or earth-wire).

In the same way, orders given from the automatism to each device of the plant are symbols
transmitted on such channels: CL for “close” and OP for “open”.

To verify the correct execution of an order, it is necessary for the automatism to check the
position reached by the used device.

17

The operation of opening and closing a device has to be executed within a certain time from
the sending of the command. If the automatism does not receive within that time the signal
that the required state has been reached, the device has to be considered damaged.

The operator must have a self-starting key of the automatism. This key works also as a
“reset hardware” key, when the system reaches an irrecoverable error state, due, for example, to
the reading of symbol XX transmitted from a device of the plant through the interface towards
the field.

The automatism performs two fundamental tasks: monitoring and management of the
station components.

Monitoring has to be performed continuously, from system starting to its stopping and
during every operation. It consists in verifying:

— that the devices remain in the positions required by the operator and
— the rising of failures and abnormal situations.

In case of failure the system has to signal that to the operator and stop its own activity.
In this case study we do not distinguish the different kinds of failure and we do not perform
recover activity. The automatism has to be able to recognize, when starting, an inconsistent
state of the station.

The management activity consists in verifying the feasibility of the operations required by
the operator and in executing these operations and checking their results.

The operator can guide the functional unit operations using not detailed commands, remit-
ting to the automatism the task of managing other possible functional units and in particular
of managing their devices. The request of an operation consists in the selection of a functional
unit, by means of an identifier, and of the final state which the functional unit has to reach.
The possible final states are: closed on bar A (CA), closed on bar B (CB) and open (OP); for
functional units like Ae and Dd, the commands CA or CB stand for the “closed” command.

If the execution of an operation is going on, the automatism does not accept request of
other operations.

Moreover, if the operation ordered has already been executed (the position of the functional
unit required by that operation is already reached) it must not be executed and the operator
has to be informed.

Before of executing any operation, the automatism has to verify that bars involved are under
tension; on the contrary an error rises, treated as a generic failure.

Below we briefly explain how the functional units are made of devices and how the various
operations are performed on them.

The devices present in the station (breakers, isolators) can be in two positions: on and off
(open and close in the following).

The breakers can be put on/off undertension and have operation time of the order of hun-
dreds of milliseconds; isolators cannot be used undertension (except bar isolators) and have
operation time of the order of some seconds. The result is that functional units own a breaker
for opening the whole unit, before using isolators and for closing it at the end of the operation.

In this case study we have analyzed three kinds of functional units:

e Ae made by a bar isolator;

18

Dd: A B

Fa: \
|

__— : breaker

" :1isolator

Figure 5: Schemas of the functional units

e Dd made by a breaker, a bar isolator connected to bar A and a bar isolator connected to

bar B;

e Fa made by a line isolator, a breaker, a bar isolator connected to bar A and a bar isolator
connected to bar B.

The schemas of the various functional unit kinds are presented in Fig. 5.
An Fa is a functional unit which makes the electric connection between the pair of bars and
a line either for one bar or for the other; it can be in three positions:

e open, when the three isolators are open (thus the line is not electrically connected to any

bar);

o closed on bar A, when the isolator on bar A, the line isolator L. and the breaker I are
closed, while the isolator on bar B is open (thus the line is electrically connected to bar

A);

o closed on bar B, when the isolator on bar B, the line isolator and the line breaker are
closed, while the bar isolator A is open (thus the line is electrically connected to bar B).

A Dd is a functional unit which electrically connects the two bars equalizing the two actual
tensions; the possible positions are:

e “open”, when the two isolators and the breaker are open (thus the two bars are not
connected);

e “closed”, when the two isolators and the breaker are closed (thus the two bars are con-
nected).

19

An Ae is a functional unit, consisting simply of a bar isolator, which allows to electrically
isolate sections of bar to permit upkeep; it is open/closed when its isolator is open/closed.

AE operations The functional unit Ae is composed by a single device (an isolator); so its
closing/opening corresponds to the opening/closing of its isolator.

Dd operations The functional unit Dd is composed by a breaker S and two isolators A and
B; it can be closed or open. The opening operation consists of opening, in the following
order, S, A and B; and the closing operation consists of closing, in the following order, S,

A and B.

Fa operations The functional unit Fa is composed by a breaker S and three isolators L, A,
B; it can be closed on bar A, or on bar B, or open.

The opening operation consists of opening S, then A and then B. The closing operation on
bar A of an Fa open consists of closing A, then closing L. and then closing S, analogously
for closing on bar B.

Closing operation on bar A of an Fa closed on bar B, or converse, is called “bar exchange”;
to execute this operation it is necessary that the two bars are connected each other by a
Dd. The automatism has to identify a closing path and to operate the corresponding Dd
without the operator, if necessary.

The closing path has to be identified with the rules already presented in the natural
description of PHASE 1.

20

STATION.PHASE 2.step 1: Specification

Structure & Interactions

Functional unit identifiers Functional unit positions Functional unit kinds
UNIT IDENTIFIER UNIT POSITION UNIT KIND
Device identifiers Device positions Device kinds
DEVICE IDENTIFIER DEVICE POSITION DEVICE_KIND
Operation requests M essages about the outcome of an operation request
OPERATION MESSAGE

The station schemas describe the station topology
and the correspondence between the functional
units and the composing devices

STATION SCHEMA

Orders that the automatism sends

to the devices

ORDER

to have bar A put KO

to have bar B put KO

to receive an operation request

to signal the outcome of an operation request

to signal that it is going to halt

4)
- It checks the device positions and operates
Electrical status of bar A them accordingly to the received requests
BAR
AUTOMATISM
o J
~
Electrical status of bar B Electromechanic €l ementary components of
the station
BAR
DEVICES
- J
- J
STATION

21

UNIT IDENTIFIER UNIT POSITION UNIT KIND

DEVICE IDENTIFIER DEVICE POSITION DEVICE_KIND
OPERATION MESSAGE ORDER STATION SCHEMA
e ™
e KO BAR A
B: BAR AUTOMATISM KO BAR B
. RECEI VE_REQ oper at i on)
-
SI GNAL(message)
A: BAR DEVICES
HALT
L I
_ Y,
STATION

22

STATION.PHASE 2.step 1: Basic Data Structures

Functional unit identifiers Kinds of the functional units: Ae, Dd, Fa

UNIT IDENTIFIER UNIT KIND

Positions of the functional units: Open, Close, Close on bar A, Close on bar B, Broken.

UNIT POSITION

UNIT IDENTIFIER UNIT POSITION

Operation requests, consisting of the identifier of the unit on which to operate and of
the position that it must reach.

OPERATION

M essages about the resulkt of an operation request: Completed, Useless, Impossible.

MESSAGE
Deviceidentifiers A deviceisabreaker or an isolator
DEVICE IDENTIFIER DEVICE KIND

Positions of the devices: open, close and broken (XX).

DEVICE POSITION

DEVICE IDENTIFIER

Orders sent from the automatism to the device consisting of the identifier of the
interested devices and of the position that it must reach.

ORDER

23

rename sort nat to unit_ident in NAT enum Ae, Dd, Fa

UNIT IDENTIFIER UNIT KIND

enum Open, Cose, Cose_On_A, dose_On_B, Broken

UNIT POSITION

UNIT IDENTIFIER UNIT POSITION

op Opr: unit_ident unit_position -> operation

OPERATION

renane sort nat to device_ident in NAT enum Br, Is

DEVICE IDENTIFIER DEVICE KIND

enum OP, CL, XX enum Conpl eted, Usel ess, Inpossible
DEVICE POSITION

MESSAGE

DEVICE IDENTIFIER

op Open, Cose: device_ident -> order

ORDER

STATION SCHEMA

DEVICE_IDENT

The schemas of the set of devices composing afunctional unit; each device is represented by its identifier.

An Aehasjust anisolator; aDd has an isolator on bar A, one on bar B and a breaker; an Fahas alineisolator,
abreaker and an isolator on bar A and one on bar B.

DEVICES SCHEMA

DEVICES SCHEMA UNIT IDENTIFIER

The schemas of the functional units, characterized by the schema of their devices and by their identifiers.

UNIT SCHEMA

UNIT SCHEMA UNIT KIND

The station schemas describe the station topology and the correspondence between the functional units and
the composing devices.

STATION SCHEMA

24

DEVICE_IDENT

* %

given the identifier of the isolator returns the schema of an Ae

op Ae: device_ident -> devices_schema
** given the identifiers of the isolator on bar A of that on bar B and of the
** preaker returns the schema of a Dd
op Dd: device_ident device_ident device_ident -> devices_schema
** given the identifiers of the line isolator, of the breaker and of the
** jsolator on bar A and of that on bar B returns the schema of an Fa
op Fa: device_ident device_ident device_ident device_ident -> devices_schem
DEVICES SCHEMA
DEVICES SCHEMA UNIT IDENTIFIER
op Fu: unit_ident devices_schenma -> unit_schema
UNIT SCHEMA

UNIT SCHEMA UNIT KIND
cn E station_schema ** schema of the enpty station
** adds a functional unit to a schema (an Fa or a Dd)
op < _ > & _: unit_schena station_schema -> station_schem
** adds two functional units to a schema (two Ae’'s)
op < _ _ > & _: unit_schema unit_schena station_schema -> station_schem

* %

given a station schemn, checks if a functional unit is connected to bar A/B

pr On_BarA, On_BarB: unit_ident station_schenma
ax On_BarA(fid, <Fu(fid,dsch)> & sch)
ax if On_BarA(fid,sch) then On_BarA(fid, <Fu(fidl,dsch)> & sch)
ax On_BarA(fidl, <Fu(fidl, dschl) Fu(fid2,dsch2)> & sch)
ax if On_BarA(fid,sch) then On_BarA(fid, <Fu(fidl,dschl) Fu(fid2,dsch2)> & sch)
ax On_BarB(fid, <Fu(fid,dsch)> & sch)
ax if On_BarB(fid,sch) then On_BarB(fid, <Fu(fidl,dsch)> & sch)
ax On_BarB(fidl, <Fu(fidl, dschl) Fu(fid2,dsch2)> & sch)
ax if On_BarB(fid,sch) then On_BarB(fid, <Fu(fidl,dschl) Fu(fid2,dsch2)> & sch)
ax if On_BarB(fid,sch) then On_BarB(fid, <Fu(fidl,dschl) Fu(fid2,dsch2)> & sch)
** given a station schema and a functional unit identifier, returns its kind
op Kind: station_schema unit_ident -> kind
ax Kind(<Fu(fid, Ae(idl)) Fu(fid2, Ae(id2))> & sch,fid)=Ae
ax Kind(<Fu(fidl, Ae(idl)) Fu(fid, Ae(id2))> & sch,fid)=Ae
ax if fid=/=fidl and fid=/=fid2 then
Ki nd(<Fu(fidl, Ae(idl)) Fu(fid2, Ae(id2))> & sch,fid)=Kind(sch,fid)
ax Kind(<Fu(fid,Dd(id1,id2,id3))> & sch,fid)=bDd
ax Kind(<Fu(fid, Fa(idl,id2,id3,id4))> & sch,fid)=Fa
ax if fid=/=fid" then Kind(<Fu(fid ,dsch)> & sch,fid)=Kind(sch,fid)

STATION SCHEMA (continues)

25

** given a station schema and a functional unit identifier return respectively

** the identifier of its isolator on bar Aon bar B, if any, i.e. if it is
** either a Dd or an Fa, of its breaker, if any, i.e. if it is either a Dd or
** an Fa, of its isolator, if any, i.e. if it is an Ae

op Isolator_On_A, Isolator_On_B, Breaker, I|solator:
station_schema unit_ident -> device_ident partial

ax |solator_On_A(<usl us2> & sch,fid)=lsolator_On_A(sch,fid)
ax Isolator_On_A(<Fu(fid,Dd(idl,id2,id3))> & sch,fid)=idl
ax |solator_On_A(<Fu(fid, Fa(idl,id2,id3,id4))> & sch,fid)=id3
ax if fid =/=fid then
I solator_On_A(<Fu(fid ,dsch)> & sch,fid)=Ilsolator_On_A(sch, fid)

ax |solator_On_B(<usl us2> & sch,fid) = Isolator_On_B(sch,fid)
ax Isolator_On_B(<Fu(fid,Dd(idl,id2,id3))> & sch,fid)=idl
ax |solator_On_B(<Fu(fid, Fa(idl,id2,id3,id4))> & sch,fid)=id3
ax if fid=/=fid then
Isolator_On_B(<Fu(fid ,dsch)> & sch,fid) = Isolator_On_B(sch,fid)

ax Breaker(<usl us2> & sch,fid) = Breaker(sch,fid)

ax Breaker(<Fu(fid,Dd(idl,id2,id3))> & sch,fid)=id3

ax Breaker(<Fu(fid,Fa(idl,id2,id3,id4))> & sch,fid)=id2

ax if fid=/=fid then Breaker(<Fu(fid ,dsch)> & sch,fid)=Breaker(sch,fid)

ax Isolator(<Fu(fid, Ae(idl)) Fu(fid2, Ae(id2))> & sch,fid)=idl
ax Isolator(<Fu(fidl, Ae(idl)) Fu(fid, Ae(id2))> & sch,fid)=id2
ax if fid=/=fidl and fid=/=fid2 then
I sol ator (<Fu(fidl, Ae(idl)) Fu(fid2, Ae(id2))> & sch,fid)=Isolator(sch,fid)
ax Isolator(<usl> & sch,fid)=Isolator(sch,fid)

sch: station_schema fid fidl fid2: unit_ident
dsch dschl dsch2: devices_schenn usl us2: unit_schem
idl,id2,id3,id4: device_ident

STATION SCHEMA (end)

26

BAR: Specification

** Electrical status of the bar: in tension and not in tension
enum OK, KO

BAR

DEVICES: Specification

Structure & Interactions

ORDER DEVICE KIND

(")

DEVICE |
TAKEN(devi ces)

REC(or der) & TAKEN(devi ces)

DEVICE n

DEVICES

27

DEVICE: Specification

i d: DEVICE IDENTIFIER

ORDER

knd: DEVICE_KIND

/ TAKEN(Open(i d, knd))
REC(Open(id))

Open(i d, knd)
74
N0,
. "(/qk TAKEN(XX(i d, knd))
i = q))
Q °
9 =
g § XX(i d, knd)
- o
Q.
= g)
o
05°
. et
Cl osed(id, knd
REC(Cl ose(id))
k TAKEN(C ose(i d, knd))
DEVICE

28

TAKEN(devi ce)

REC(or der)

TAKEN(ds1|...|dsn)
REC(0) &
TAKEN(ds2| ... |dsn)

DEVICES: Activity
0: ORDER DEVICE KIND
4 N TAKEN(ds1)
dsl: DEVICE TAKEN(ds?2)
o
TAKEN(dsn)
ds2: DEVICE,
REC(0)
TAKEN(ds2)
dsn: DEVICE,
J TAKEN(dsn)
Initial States
ORDER DEVICE KIND
e D
Initial
Initial
- J

29

AUTOMATISM.PHASE 2.step 1: Specification

Structure & Interactions

STATION SCHEMA OPERATION BAR

DEVICES ORDER MESSAGE

/ \ To monitor the station components (the bars and the)shol

To signal the result of the execution of an operation
It checks the device (amessage) and to monitor the station components.
positions and operates
them accordingly to the
received requests.

Tareceive the request to perform an operation and
to monitor the station components.

To send an order to adevice and to monitor the
station components.

To halt the station
STATION SCHEMA OPERATION BAR
DEVICES ORDER MESSAGE

)

S| GNAL(message) & MONI TOR(devi ces, bar, bar)

RECEI VE_REQ(oper ation) &
MONI TOR(devi ces, bar, bar)

SEND(or der) & MONI TOR(devi ces, bar, bar)

MONI TOR(devi ces, bar, bar)

HALT

30

AUTOMATISM.PHASE 2.step 1: States

DEVICES STATION_SCHEMA

* %
pr
* %
op
* %
pr
* %
op
* %

pr

checks if the automatismis in an initial state
Initial: automati sm

gi ven an automati smreturns the schema of the handl ed station
Scherma: automatism-> station_schema

checks if the automati smis executing (an operation)
Executing: automatism

returns the recorded position of a device, if any
Devi ce_Position: device_ident automati sm-> position parti al

checks if the automati sm has detected a failure in the station
Fai l ure: automatism

31

AUTOMATISM.PHASE 2.step 1: Activity

Initial

if Initial(a) then
- if OK(Device_Position(id,a)) then Device_Position(id,a)=0P
- not Executing(a)

Schena

** The station schema does not change
if a--1 -->a then Schenma(a)=Schenma(a’)

Fai l ure

** |f the autonmati sm has detected a failure in the station, then in any case it
** sjgnals that the station is going to halt and after stops
if Failure(a) then

a in any case <HALT> and after [not exists y, X': X -- y --> x"]

** |f a device is in position XX, then there is a failure in the station
if Device_Position(id,a)=XX then Failure(a)

** | f the automati sm has sent to a device the order of opening and sees that it
** js not open, then there is a failure in the station
if a at least in a case P<SEND(Open(id))> and
a-- ... & MONITOR(ds, ba,bb) --> a' and not Device_Position(id,a’) = OP then
Failure(a’)

** | f the automati smhas sent to a device the order of closing and sees that it
** js not closed, then there is a failure in the station
if a at least in a case P<SEND(C ose(id))> and
a-- ... & MONITOR(ds, ba.bb) --> a and not Device_Position(id,a)=CL then
Failure(a’)

** |f a device changes position wi thout receiving an order, then there is a
** failure in the station
if a--la-->a and Device_Position(id,a')=/=Device_Position(id,a) and
forall ds, ba, bb: |a=/=SEND(Qpen(id)) & MONI TOR(ds, ba, bb) and
| a=/ =SEND(C ose(id)) & MONI TOR(ds, ba, bb) then
Failure(a’)

** | f the automati smreceives an operation request for an unit connected
** to a failed bar, then there will be a failure in the station
if a-- RECEIVE_ REQ(Opr(fid,up)) & MONI TOR(ds, ba, bb) --> a and

On_Fail ed_Bar (fid, Scherma(a), ba, bb) then

Fai l ure(a)

** checks whether a functional unit is connected to a failed bar
op On_Failed_Bar: fun_unit_ident station_schenma bar bar
ax if On_BarA(fid,sch) then On_Fail ed_Bar(fid, sch, KO bb)
ax if On_BarB(fid,sch) then On_Fail ed_Bar(fid, sch, ba, KO

Devi ce_Position

** |f the automati smnmonitors the plant seeing that a device id has position p,
** then the recorded position of idis p

if a--la-->a and
(1 a=MONI TOR(ds, ba, bb) or | a=SEND(0) & MONI TOR(ds, ba, bb) or)showgrestoregsdg

(Br(id,p) Inds or Is(id,p) In ds) then
Device_Position(id,a) =p

32

Executing

* *

* *

if

* *

* *

If the automati smis executing and becones not executing, then it signals
the end of an operation

a--1 -->a and Executing(a) and not Executing(a) then

exists ds,ba,bb,m | = SIGNAL(n) & MONI TOR(ds, ba, bb)

If the automati smis not executing and becone executing, then it receives an
operation request

if a--1 -->a and not Executing(a) and Executing(a) then
exi sts opr,ds, ba, bb: | = RECEI VE_REQ opr) & MONI TOR(ds, ba, bb)
RECEI VE_REQ

* *
* *
* *

* *

if

* *
* *
* *

* *

if

* %
* %
* %
* %
* %

* %

if

If the automati smnonitors the plant and receives the request of opening
an open functional unit, then in any case eventually either it signals
that the required operation is useless or there will be a failure in the
station
a -- RECEIVE_REQ(Opr(fid, Open)) & MONI TOR(ds, ba, bb) --> a and
Unit_Position(Schema(a), ds,fid) = Open then
a' in any case

eventual |y <exists ds, ba, bb: SI GNAL(Usel ess) & MONI TOR(ds, ba, bb) >

or
eventual |y [Failure(x)]

If the automati smnonitors the plant and receives the request of opening
a closed Ae, then in any case eventually either it orders to the isolator
of opening and after signals that the operation has been conpleted or
there will be a failure in the station
a -- RECEIVE_REQ(Opr(fid, Open)) & MONI TOR(ds, ba, bb) --> a and
Ki nd(Schema(a),fid) = Ae and Unit_Position(Schema(a),ds,fid) = Cosed then
a’ in any case
eventual |y
<exi sts ds, ba, bb:
| = SEND(Open(|sol ator(Schena(a),fid))) & MONI TOR(ds, ba, bb) >
and after <exists ds, ba, bb: SI GNAL(Conpl et ed) & MONI TOR(ds, ba, bb) >
or
eventual |y [Failure(x)]

If the automati smnonitors the station conmponents and receives the request
of opening a closed Dd, then in any case eventually either it orders to the
breaker of fid of opening, after to the isolator on the bar A of fid of
opening, after orders to the isolator on bar B of fid of opening and after
signal s that the operation has been conpleted or there will be a failure in
the station
a -- RECEIVE_REQ(Opr(fid, Open)) & MONI TOR(ds, ba, bb) --> a and
Ki nd(Scherma(a),fid) = Dd and Unit_Position(Schema(a),ds,fid) = dosed then
a' in any case
eventual |y
<exi sts ds, ba, bb: | =SEND(Open(Br eaker (Schema(a),fid))) & MONI TOR(ds, ba, bb) >
and after
<exi sts ds, ba, bb:

| =SEND(Open(| sol at or _On_A(Schema(a),fid))) & MONI TOR(ds, ba, bb) >
and after
<exi sts ds, ba, bb:
| =SEND(Open(| sol at or _On_B(Schera(a),fid))) & MON TOR(ds, ba, bb) >
and after <SIGNAL(Conpl eted)>
or eventually [Failure(x)]

33

RECEI VE_REQ

* %
* %
* *
* *
* %

* %

if

* %
* %
* %
* %
* %
* %
* %
* %
* %

* %

if

If the automati smnonitors the station conmponents and receives the request
of closing on bar A an Fa closed on bar B, and there exists a closing path
made by a closed Dd, then in any case eventually either it orders to the
isolator on A of closing, after orders to the isolator on B of opening,
after signals that the operation has been conpleted or there will be a
failure in the station
a -- RECEIVE_REQ(Opr(fid,Cose_On_A)) & MONI TOR(ds, ba, bb) --> a and
Ki nd(Scherma(a),fid) = Fa and Unit_Position(Schema(a),ds,fid) = dose_On_B
and Fi nd_d osi ng_Pat h(Schema(a),fid,ds) = C osedDd then
a’ in any case eventually
<exi sts ds, ba, bb:
| = SEND(Cl ose(lsol ator_On_A(Schema(a),fid))) & MONI TOR(ds, ba, bb) >
and after
<exi sts ds, ba, bb:
| = SEND(Open(|sol ator_On_B(Schema(a),fid))) & MONI TOR(ds, ba, bb)>
and after
<SI GNAL(Conpl et ed) >
or eventually [Failure(x)]

If the automati smnonitors the station conmponents and receives the request
of closing on bar A an Fa closed on bar B and there exists a closing path
made by the open Dd fid' , then in any case eventually
either it orders to the breaker of fid of closing, after
orders to the isolator on bar A of fid of closing, after
orders to the isolator on bar B of fid of closing, after
orders to the isolator on A of fid of closing, after
orders to the isolator on B of fid of opening and
signals that the operation has been conpleted or
there will be a failure in the station
a -- RECEIVE_REQ(Opr(fid,Cose_On_A)) & MONI TOR(ds, ba, bb) --> a and
Ki nd(Scherma(a),fid) = Fa and
Unit_Position(Schema(a),ds,fid) = Cose_On_B and
Fi nd_C osi ng_Pat h(Schema(a), fid,ds) = OpenDd(fid) then
a' in any case eventually
<exi sts ds, ba bb:
| = SEND(C ose(Breaker(Schema(a),fid))) & MONI TOR(ds, ba, bb) >
and after
<exi sts ds, ba, bb:
I = SEND(C ose(| sol ator_On_A(Schema(a),fid))) & MONI TOR(ds, ba, bb) >
and after
<exi sts ds, ba, bb:
| = SEND(Open(lsol ator_On_A(Schema(a),fid))) & MONI TOR(ds, ba, bb) >
and after
<exi sts ds, ba, bb:
| = SEND(d ose(lsol ator_On_A(Scherma(a),fid))) & MONI TOR(ds, ba, bb) >
and after
<exi sts ds, ba, bb:
| = SEND(Open(|sol ator_On_B(Schema(a),fid))) & MONI TOR(ds, ba, bb) >
and after
<SI GNAL(Conpl et ed) >
or eventually [Failure(x)]

34

* %
* %
* %

* %

i f

If the automati smnonitors the station conponents and receives the request
of closing on bar A an Fa, sees that it is closed on bar B and there exists
no closing path, then in any case eventually either it signals that the
required operation is inpossible or there will be a failure in the station
a -- RECEIVE_REQ(Opr(fid,dose_On_A)) & MONI TOR(ds, ba, bb) --> a' and

Ki nd(Scherma(a),fid) = Fa and and

Unit _Position(Schema(a),ds,fid) = Cose_On_B and

Fi nd_d osi ng_Pat h(Schema(a), fid,ds) = None then

a' in any case

eventual |y <SI GNAL(I npossible)> or eventually [Failure(x)]

35

* %

* *

op

ax
ax
ax

* %

* %

ax

* %

* %

ax

ax
ax
ax
ax
ax
ax
ax
ax
ax

ax

ax

given the schema of the devices of a functional unit and the states of the
devi ces, returns the functional unit position
Posi tion: devices_schema devices -> unit_position

The position of an Ae is equal to that of its isolator
if Open(id,Is) In ds then Position(Ae(id),ds) = Open
if Cosed(id,Is) In ds then Position(Ae(id),ds) = d ose
if XX(id,Is) In ds then Position(Ae(id),ds) = Broken

The position of a Dd whose devices are all open is open
if Open(idl,Br)|Open(id2,1s)|Open(id3,Is) SubEq ds then
Position(Dd(idl,id2,id3),ds) = Open

The position of a Dd whose devices are all closed is closed
if Cosed(idl,Br)|C osed(id2,Br)|C osed(id3,1s) SubEg ds then
Position(Dd(idl,id2,id3),ds) = dose

If a device is broken then the position of a Dd is broken

if XX(idl,Br) In ds then Position(Dd(idl,id2,id3),ds) = Broken
if XX(id2,1s) In ds then Position(Dd(idl,id2,id3),ds) = Broken
if XX(id3,1s) In ds then Position(Dd(idl,id2,id3),ds) = Broken

In any other case the position of a Dd is noving

if Open(idl,Br)|d osed(id2,Br) SubEq ds then Position(Dd(idl,id2,id3),ds)
if Open(idl,Br)|Cd osed(id3,Is) SubEq ds then Position(Dd(idl,id2,id3),ds)
if Cosed(idl, Br)|Open(id2,1s) SubEq ds then Position(Dd(idl,id2,id3),ds)
if Cosed(idl, Br)|Open(id3,Is) SubEq ds then Position(Dd(idl,id2,id3),ds)

8888

The position of an Fa whose devices are all open is open
if Open(idl,|s)|Open(id2, Br)|Open(id3,Is)|Open(id4,ls) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds) = Open

The position of an Fa whose isolator is closed, the breaker is closed, the
isolator on bar Ais closed and that on bar B is open, is closed on bar A
if Cosed(idl,1s)|C osed(id2,Br)|C osed(id3,1s)|Open(id4,1s) SubEqg ds then
Position(Fa(idl,id2,id3,id4),ds) = dosed_On_A

The position of an Fa whose isolator is closed, the breaker is closed, the
isolator on bar B is closed and that on bar Ais open, is closed on bar B
if Cosed(idl,1s)|C osed(id2,Br)|Open(id3,1s)|d osed(id4,1s) SubEqg ds then
Position(Fa(idl,id2,id3,id4),ds) = Closed_On_B

If a device is broken then the position of an Fa is broken

if XX(idl,1s) In ds then Position(Fa(idl,id2,id3,id4),ds) = Broken
if XX(id2,Br) In ds then Position(Fa(idl,id2,id3,id4),ds) = Broken
if XX(id3,1s) In ds then Position(Fa(idl,id2,id3,id4),ds) = Broken
if XX(id4,1s) In ds then Position(Fa(idl,id2,id3,id4),ds) = Broken

if Open(idl,1s)|Cosed(id3,Is) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds) = OGO

if Open(idl,|1s)|C osed(id4,Is) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds) = OGO

if Open(id2,Br)|C osed(id3,Is) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds) = OGO

if Open(id2,Br)|C osed(id3,Is) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds) = OGO

if Cosed(idl,1s)|Open(id3,Is)|Open(id4,ls) SubEg ds then
Position(Fa(idl,id2,id3,id4),ds) = OGO

if Cosed(id2,Br)|Open(id3,Is)|Open(id4,ls) SubEg ds then
Position(Fa(idl,id2,id3,id4),ds) = OGO

if Cosed(idl,1s)|C osed(id2,Br)|C osed(id3,1s)|C osed(id4,1s) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds) = (%)

cn
op

None, Cl osedDd: answer
OpenDd: unit_ident -> answer

* %
* *

* *
op
* %
* %

ax

* %
* %

* *

ax

* %

* %

ax

Find_Cl osing_Path given a station schema, a devices state and the identifier
of an Fa fid says whether either for fid no closing path exists, a closing
path made by an open or by a closed Dd exists

Fi nd_Cl osi ng_Path: station_schema unit_ident devices -> answer

Find_C osing_Path returns closed Dd iff there exists a closed Ddon the sane
bar section of idfa
Fi nd_C osi ng_Pat h(sch, fida, ds)=Cl osedDd iff
exists fid: Position(sch,ds,fid)=0Cpen and Ki nd(sch, fid)=Dd and
SaneSection(sch,idfa,fid,ds)

Find_C osing_Path returns a path made by an open Dd fid iff fid is an open
Dd on the sanme bar section of idfa and there does not exist a closed Dd on
the same bar setion of idfa
Fi nd_C osi ng_Pat h(sch, fida, ds) =CpenDd(fid) iff
(Position(sch,ds, fid)=0pen and Ki nd(sch,fid)=Dd and
SaneSection(sch,idfa,fid) and
not exists fid:
(Position(sch,ds,fid)=0pen and Ki nd(sch,fid) and
SaneSecti on(Schema(st),idfa,fid)))

Find_Cl osing_Path returns that no closing path exist iff there does not exist
a Dd on the same bar setion of idfa
Fi nd_C osi ng_Pat h(sch, fi da, ds) =None iff

not exists fid : (ls_Dd(st,fid) and SaneSection(Schema(st),idfa,fid))

** checks whether two units are on the same bar section in a station
pr SaneSection: station_schenma unit_ident unit_ident

ax if fid =/=fidl and fid =/= fid2 and SaneSection(sch, fidl, fid2,ds) then
SaneSection(Fu(fid, dsch) & sch,fidl, fid2,ds)
ax if Connect(sch,fid,ds) then
SaneSection(<Fu(fid, dsch)> & sch,fid,fid ,ds)
ax if Connect(sch,fid,ds) then
SaneSecti on(<Fu(fid, dsch)> & sch,fid ,fid,ds)
ax if SameSection(sch,fidl, fid2,ds) then
SaneSection(<fusl fus2> & sch,fidl, fid2,ds)

** checks whether there is no cut before a given functional unit in a
** gstation
pr Connect: station_schema fun_unit_ident devices

ax if fid =/=fid and Connect(sch,fid ,ds) then
Connect (<Fu(fid, dsch)> & sch,fid’,ds)

ax Connect (<Fu(fid,dsch)> & sch,fid, ds)

ax if Position(Ae(idl),ds)=0pen and Position(Ae(id2),ds)=0pen and
Connect (sch, fid, ds) then
Connect (<Fu(fidl, Ae(idl)) Fu(fid2, Ae(id2))> & sch,fid,ds)

* %

* %
op
ax
ax
ax
ax

ax

ax

G ven a station schema, the states of the devices and a functional unit
identifier returns the position of such unit
Unit_Position: station_schenma devices wunit_ident -> unit_position

Unit_Position(E, ds, fid)=00

Unit_Position(<FU(fid,dsch)> & sch,ds, fid)=Position(dsch, ds)
if fid =/=fid then

Unit_Position(<FU(fid ,dsch)> & sch,ds, fid)=Unit_Position(sch,ds,fid)
Unit_Position(<FU(fid, dschl) FU(fid§7dsch2)> & sch,ds, fid)=
Posi ti on(dschil, ds)

Unit_Position(<FU(fidl,dschl) FU(fid,dsch2)> & sch,ds,fid)=
Posi ti on(dsch2, ds)

if fid =/=fidl and fid =/= fid2 then
Unit_Position(<FU(fidl,dschl) FU(fid2,dsch2)> & sch,ds,fid)=
Unit _Position(sch,ds,fid)

STATION.PHASE 2.step 1: Activity

UNIT IDENTIFIER UNIT POSITION UNIT KIND
DEVICE IDENTIFIER DEVICE POSITION DEVICE_KIND
opr : OPERATION m MESSAGE 0:ORDER STATION SCHEMA

HALT

MONI TOR(ds, ba, bb)

TAKEN(ds)

5
£

AUTOMATISM SEND(0) &

MONI TOR(ds, ba, bb)

REC(0) & TAKEN(ds)

SIGNAL(m) &
MONI TOR(ds, ba, bb)

TAKEN(ds)

RECEI VE_REQ(opr) &
MONI TOR(ds, ba, bb)

TAKEN(ds)

ds: DEVICES

KO BAR_A
|
)
I
\]
********* o7 >
| / ba: BAR
N < e
/
————— o>
. /J bb: BAR
/ I
! ;
I
i B
1y |
17/
/ 1/
/ "
/ 1
KO BAR B
/ //
d /
i
I
S SI GNAL(m)

RECEI VE_REQ opr)

38

STATION.PHASE 2.step 2

At this level we specify the stations handled by the automatism designed by ENEL; since
the automatism was the only part given by a requirement specification in PHASE 2.step 1, in
this step we just give its design specification.

STATION.PHASE 2.step 2: Natural Description

Task of the automatism The automatism has the task of collecting information from the
devices, of interpreting them for determining the positions of the corresponding functional
units and of managing such devices to perform the operations required by the operator. The
automatism must have a representation of the situation of the station, which evolves dynami-
cally following the variations of situations of the physical system. Such representation contains
information on the station topology and on the composing functional units.

Structure of the automatism The automatism is made by the console, the coordinator,
the bar managers and the functional unit managers.

The console is the interface of the automatism towards the operator, while the bar and
functional unit managers are those towards the station components; each functional unit man-
ager 1s associated with a functional unit, of whom memorizes the current position depending
on the positions of the component devices, and to whom sends the operations required by the
operator.

The coordinator supervises the management activity, verifying the practicability of the
operations; to do that it analyses the topology of the station and the positions of the functional
units (information present in the functional unit managers).

Activity of the automatism When the automatism is started, each functional unit manager
begins to monitor the devices of the associate functional unit; if it detects a failure, the console
is informed and the station stops. The failures of the bars have no immediate effect: the station
stops when someone attempts to perform an operation on a functional unit connected to a failed
bar.

If the operator requires an operation, the console sends it to the manager of the selected
functional unit, which, if the functional unit is not already in the required position, requires the
authorization to the coordinator and, if it receives an affirmative answer, translates the opera-
tion in orders for the single devices composing the functional unit; afterwards it communicates
to the coordinator the result of the operation.

Since the operations must be done in sequential way, the console cannot receive a request
from the moment of sending an operation until it receives the message about the result of the
same.

In the case of bar exchange operation, the coordinator after having looked for the closing
path, if the operation is impossible, then it informs directly the console and denies the autho-
rization to the involved Fa; if it is needed to close a path, then it sends the closing operation

39

to the manager of the Dd to be used for such operation, and when it receives the message that
the operation has been successfully completed, it gives the authorization to the execution of
the bar exchange to the Fa that have required it.

Components

Console The console is the interface of the automatism towards the operator; it filters the
requests of operations from the operator and send them to the functional unit managers. More-
over 1t receives from the coordinator and from the functional unit managers messages about the
station functioning and communicates them to the operator. To perform its activity the console
needs some information; in particular it must know: which operation request has received from
the operator and the messages received by the other components of the automatism.

Managers Fach functional unit present in the station is controlled by a manager which
is the interface between the functional unit itself and the automatism. These managers have
two tasks:

— to check that the devices of the associate functional unit keep their positions, sending a
failure signal to the coordinator and to the console otherwise;

— to interpret the operations received either from the console or from the coordinator and
managing the devices of the associate functional unit to reach the required position.

When a manager receives an operation, it checks the positions of the devices of the associate
functional unit obtaining by them the position of the functional unit itself; if this is equal to
that required it informs the console that the operation is useless, otherwise, if the operation
arrives from the console, it requires to the coordinator the authorization for its execution and,
if it receives an affirmative answer, it translates the operation into a sequence of orders for the
single devices realizing it; at the end it checks the position reached by the functional unit and
communicates the result to the coordinator.

For the managers of functional unit of kind Fa, the operation close on bar A (respectively
on bar B) has different interpretation depending on the functional unit position: if it is open,
then there is the simple closing, if it is closed on bar B (respectively on bar A), there is the bar
exchange.

Coordinator The coordinator has the task of managing the activity of the functional
units (through their managers), depending on the operation required by the operator by means
of the console, and on the information on the situation of the station obtained by combining
those known from the managers (current situations of the various units and bars), with those
contained in the schema (topology of the station). Moreover it transmits to the console the
messages about to the result of the operation. Another task of the coordinator is the control
of the situation of the station: if it finds a failure, then it orders to all managers and to the
console the end of the activity.

When the coordinator receives from a manager the authorization request for executing an
operation on a functional unit, then this is ready for such execution, i.e., it is not already in
the required position and there are not failures in the station.

40

The coordinator manages in different way the three kinds of operations: opening, closing
and bar exchange.

In each case it checks that the operation is valid, i.e., that the bars connected to the
functional unit to be used are not failed; to do that it reads in the corresponding managers
the situations of the involved bars and if one of them is failed, it informs the console and all
managers that there is a failure.

In the case of closing on a bar of a functional unit of kind Fa, the coordinator must determine
if the operation is either of bar exchange or of closing; to do that it checks the situation of such
Fa (reading it in the corresponding manager).

For the bar exchange operation, it must analyze the schema for determining the closing
path:

— if there is already a closed Dd, it allows the operation;

— if it is needed to close a proper or not proper Dd but electrically connected, i.e., such that
the isolators that divides the pieces of bar of the Fa and of the Dd are closed, it orders
to the Dd to close and, after that, allows the operation of the Fa;

— if it is needed to close a not proper Dd and not electrically connected, it does not allow
the operation of the Fa and informs the console that it is needed to close an Ae.

41

AUTOMATISM.PHASE 2.step 2: Specification

Structure & Interactions

STATION SCHEMA OPERATION BAR

DEVICES ORDER MESSAGE A description of the station structure
in terms of functional units.

TOPOLOGY

/(The interface of the automatism towards the operator; it\
filters the requests of operations from the operator and
send them to the functional unit managers. Moreover it
receives from the coordinator and from the managers

messages about the station functioning and To monitor the station components (the bars and)show
communicates them to the operator.

S CONSOLE)

To signal the result of the execution of an operation
(" They aretheinterface of the automatism towardsthe | (amessage) and to monitor the station components.
functional units and the bars.

MANAGERS Tareceive an operation request and to monitor the
- /| sation components.
(.) . .
The coordinator has the task of managing the activity of To send an order to a device and to monitor the
the functional units (through their managers), depending station components.
on the operation required by the operator by means of the]
console, and on the information on the situation of the To halt the station

station obtained by combining those known from the
managers (current situations of the various units and bars),
with those contained in the schema (station topology).
Moreover it transmits to the consol e the messages about
to the result of the operation. Another task of the
coordinator is the control of the situation of the station: if
it finds afailure, then it ordersto all managers and to the
console the end of the activity.

COORDINATOR

S ~

42

STATION SCHEMA OPERATION BAR

DEVICES ORDER MESSAGE

TOPOLOGY

SI GNAL(message) & MONI TOR(devi ces, bar, bar)

CONSOLE
MONI TOR(devi ces, bar, bar)

SEND(or der) & MONI TOR(devi ces, bar, bar)

MANAGERS
RECEI VE_REQ oper ation) &
MONI TOR(devi ces, bar, bar)

COORDINATOR
HALT

43

AUTOMATISM.PHASE 2.step 2: Basic Data Structures

UNIT IDENTIFIER UNIT KIND

* %

* %

cn
op
op
op

The station topology, i.e. a description of the station structure in terns of
functional units

E: topology ** enpty station topol ogy

Fa(_) & _: unit_ident topology -> topol ogy

Dd(_) & _: unit_ident topology -> topol ogy

Ae(_, _) & _: unit_ident unit_ident topology -> topol ogy

* %

* %

op

ax
ax
ax
ax
ax
ax
ax

ax

given a topology return the part on the right and on the left of a
functional unit respectively
RPart, LPart: topology unit_ident -> topol ogy

RPart (Fa(fid) & tp,fid) =tp

RPart (Dd(fid) & tp,fid) =tp

RPart (Ae(fidl, fid) & tp,fid) tp

RPart (Ae(fid,fidl) & tp,fid) tp

if fid =/=fidl then RPart(Fa(fidl) & tp,fid)
if fid =/=fidl then RPart(Dd(fidl) & tp,fid)
if fid =/=fidl and fid =/= fid2 then

RPart (Ae(fidl, fid) & tp,fid) = RPart(tp,fid)
LPart (tp,fid) = LPartl(tp,fid, E

RPart (tp, fid)
RPart (tp, fid)

op LPartl: topology unit_ident topol ogy -> topol ogy
ax LPartl(Dd(fid) & tp,fid, tpl) =1tpl
ax LPartl(Fa(fid) & tp,fid, tpl) =1tpl
ax LPartl1l(Ae(fidl, fid) & tp,fid,tpl)
ax LPartl(Ae(fid,fidl) & tp,fid,tpl)
ax if fid =/=fidl then
LPart1(Fa(fidl) & tp,fid, tpl) = LParti(tp,fid, Fa(fidl) & tpl)
ax if fid =/=fidl then
LPart1(Dd(fidl) & tp,fid,tpl) = LPartl(tp,fid, Dd(fidl) & tpl)
ax if fid =/=fidl and fid =/= fid2 then
LPart 1(Ae(fidl,fid2) & tp,fid,tpl) = LPartl(tp,fid, Ae(fidl, fid2) & tpl)

= tpl
= tpl

op

ax
ax
ax
ax
ax
ax
ax

given a station topology and a functional unit identifier returns its kind
Ki nd: topology unit_ident -> kind (partial)

Kind(Ae(fid, fidl) &tp,fid) = Ae
Kind(Ae(fid, fidl) &tp,fidl) = Ae
Kind(Dd(fid) &tp,fid) = Dd

Kind(Fa(fid) &tp,fid) = Fa

if fid =/=fidl then Kind(Dd(fid) & tp,fidl
if fid=/=fidl then Kind(Fa(fid) & tp,fidl
if fid=/=fidl and fid =/= fid2 then
Kind(Ae(fidl, fid2) & tp,fid) = Kind(tp,fid)

Ki nd(tp, fidl)
Ki nd(tp, fidl)

~— —

TOPOLOGY (continues)

44

* %

* %

given a station topol ogy checks whether in such topology a functional
is connected to a bar

unit

pr On_BarA, On_BarB: unit_ident topol ogy

ax On_BarA(uid, Fa(uid) & tp)

ax On_BarA(uid, Dd(uid) & tp)

ax On_BarA(uid, Ae(uid,uidl) & tp)

ax if On_BarA(uid,tp) then On_BarA(uid, Fa(uidl) & tp)

ax if On_BarA(uid,tp) then On_BarA(uid, Dd(uidl) & tp)

ax if On_BarA(uid,tp) then On_BarA(uid, Ae(uidl, uid2) & tp)
ax On_BarB(uid, Fa(uid) & tp)

ax On_BarB(uid, Dd(uid) & tp)

ax On_BarB(uid, Ae(uidl,uid) & tp)

ax if On_BarB(uid,tp) then On_BarA(uid, Fa(uidl) & tp)

ax if On_BarB(uid,tp) then On_BarA(uid, Dd(uidl) & tp)

ax if On_BarB(uid,tp) then On_BarA(uid, Ae(uidl, uid2) & tp)
tp tpl: topol ogy uid uidl uid2: unit_ident

TOPOLOGY (end)

45

CONSOLE: Specification

OPERATION

MESSAGE

-

uo 11eJado ue BuIIndaxa
J0 1sanbalJ e saA 189981

executl ng an
operation

ue spJew.o

3sanbaJ uo 1 1elado

waiting for the

knowi ng that ther
is afailyre in

result of an
operation executi

uo1lesado ue Jo 1|nsal ay]l 1noge abessau e spuss

operati on.

® ~ —
X T O
™ d® O
o o
c = =
-~ 0 <
- o
o cCcw
e =
-~ o
23
w
D »
5o
o &8
S <
D (<)
s ’\Q}é\
2e N
=1
o
=}

Forwar di ng a nessage about th
result of the execution of an

. the statipn
ecei ves a nessag
about a failure
c
()
5
©
—
©
-
>
o C
Qa o
© .—
=
g o
-
- 0
o
w— O
c c
st opped

46

To receive the request
of executing an
operation fromthe
operator.

To forward to the
unit managers an
operation request.

To receive a nmessage
about the result of
the execution of an
operation fromthe
uni t managers.

To send to the
opertor a message
about the result of
the execution of an
operati on.

To informthe operator
of a failure in the
station.

opr:

OPERATION m MESSAGE

W)mvssan anas

(4do O3y 3N =03

y

Executi ng(opr)

(1do Yaydwwo4

A

ng
_ RECEI VE_MES(Fai | ure)

(W)IPVSSIN IA FO

Forwar di ng(m

RECEI VE_REQ oper at i on)

FORWARD(oper at i on)

RECEI VE_MES(nessage)

SEND_MESSAGE(message)

FAI LURE

47

MANAGERS: Specification

Manager messages: there is afailure, the required operation is useless/has been executed.

M_MESSAGE

ORDER

DEVICES

OPERATION

BAR

BAR MANAGER

BAR MANAGER

~

To monitor the devices and the bars

MANAGER;

To inform about the result of the
execution of the received operation
and nonitor the devices and the bars

To send an order to a device and
nmonitor the devices and the bars

To receive the authorization to
execute the received operation and
nmoni tor the devices and the bars

To receive the request to execute an
operation and nonitor the devices and
the bars

To require the authorization to
execute the received operation and
noni tor the devices and the bars

MANAGERj,

To receive the negation to execute tF
recei ved operation and nonitor the
devi ces and the bars

enum Fail ure,

Usel ess, Executed

M_MESSAGE

ORDER

DEVICES

OPERATION

BAR

~

BAR MANAGER

MANAGER1

MONI TOR(devi ces, bar, bar)

I NFORM m_nessage) & MONI TOR(devi ces, bar, be

BAR MANAGER

SEND(order) & MONI TOR(devi ces, bar, bar)

OK_AUTHOR & MONI TOR(devi ces, bar, bar)

REC _OPER(operation) &
MONI TOR(devi ces, bar, bar)

REQUI RE_AUTHOR(oper ation) &

MANAGERj,

MONI TOR(devi ces, bar, bar)

NO_AUTHOR & MONI TOR(devi ces, bar, bar)

48

MANAGER: Specification

Structure & Interactions

M_MESSAGE
ORDER — OPERATION
Lists of orders. DEVICES SCHEMA DEVICES
ORDERS
s

To nmonitor the unit devices
To inform about the result of the execution of
the received operation and nonitor the unit
devi ces
To send an order to a device and nonitor the
unit devices
To receive the authorization to execute the

. . received operation and nmonitor the unit device

The interface of the automatism
towards afunctional units. To receive the request to execute an operatior
on the unit
To require the authorization to execute the
recei ved operation and nonitor the unit device
To receive the negation to the execution of tF
recei ved operation and nonitor the unit device
_

49

M_MESSAGE
ORDER _ OPERATION
LIST DEVICES SCHEMA DEVICES
ORDERS
~

MONI TOR(devi ces)

I NFORM m_nessage) & MONI TOR(devi ces)

SEND(order) & MONI TOR(devi ces)

OK_AUTHOR & MONI TOR(devi ces)

REC_OPER(oper ati on)

REQUI RE_AUTHOR(oper ati on) &
MONI TOR(devi ces)

NO_AUTHOR & MONI TOR(devi ces)

50

MANAGER: Activity

fi d: UNIT IDENTIFIER 0. ORDER M_MESSAGE
up, up’ : UNIT POSITION ol : ORDERS ds: DEVICES
opr: OPERATION dsch DEVICES SCHEMA
MONI TCR(ds)

' .
Ready(fid, dsch, up){ NoFai | ure(dsch, up, dS)j_/-‘

d

Fai | ure(dsch, up, ds)

Fai | ure(dsch, up, ds)
NoFai | ure(dsch, up, ds)
Executing(fid,dsch, up,up’) and up=/=up’

NoFai | ure(dsch, up, ds) —
and up=up’

I NFORM Usel ess) & MONI TOR(ds)

("~ Wiiting_Author(fid,dsch,up,up’){ Fai | l_”e(dSCh’ up, ds) ‘
X NoFai | ure(dsch, up, ds)="]

MONI TOR(ds)

NO_AUTHOR& NMONI TOR(ds)

OK_AUTHOR& NONI TOR(ds)

Ordering(fid,dsch,up,up’, OrderlList(dsch, up,up’))

Ordering(fid,dsch, up,up’,ol) { Posi ti on(dsch, ds) =Br oken

{ Position(dsch,ds)=/=up’
Posi ti on(dsch, ds) =up’
Ordering(fid,dsch,up,up’,0 "ol){ Posi ti on(dsch, ds) =/ =Br oken—— 1

Ordering(fid,dsch,up,up’, Enpty)

SEND(0) & NMONI TOR(ds)

| NFORM Execut ed) & MONI TOR(ds)

Stop =

I NFORM Fai | ure) & MONI TOR(ds)

** given the schema of a functional unit and the set of the states of its
** devices returns its position
op Position: devices_schema devices -> unit_position parti al

** The position of an Ae is equal to that of its isolator
ax if Open(id,Is) In ds then Position(Ae(id),ds)=Cpen
ax if Cosed(id,Is) In ds then Position(Ae(id),ds)=C ose
ax if XX(id,Is) In ds then Position(Ae(id),ds)=Broken

** The position of a Dd whose devices are all open is open
ax if Open(idil,Br) | Open(id2,1s) | Open(id3,ls) SubEg ds then
Position(Dd(idl,id2,id3),ds)=0pen

** The position of a Dd whose devices are all closed is closed
ax if Closed(idl,Br) | Cosed(id2,Br) | dosed(id3,1s) SubEg ds then
Position(Dd(idl,id2,id3),ds)=0 ose

** |f a device is broken then the position of a Dd is broken

ax if XX(idl,Br) In ds then Position(Dd(idl,id2,id3),ds) = Broken
ax if XX(id2,1s) In ds then Position(Dd(idl,id2,id3),ds) = Broken
ax if XX(id3,1s) In ds then Position(Dd(idl,id2,id3),ds) = Broken

** The position of an Fa whose devices are all open is open
ax if Open(idil,Is) | Open(id2,Br) | Open(id3,1s) | Open(id4,ls) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds)=0pen

** The position of an Fa whose isolator is closed, the breaker is closed, the

** jsolator on bar Ais closed and that on bar B is open, is closed on bar A

ax if Closed(idl,Is)|Cosed(id2,Br)|d osed(id3,I1s)|Open(id4,ls) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds)=C ose_On_A

** The position of an Fa whose isolator is closed, the breaker is closed, the

** jsolator on bar Bis closed and that on bar Ais open, is closed on bar B

ax if Closed(idl,Is)|Cosed(id2,Br)|Open(id3,1s)|C osed(id4,ls) SubEq ds then
Position(Fa(idl,id2,id3,id4),ds)=C ose_On_B

** |f a device is broken then the position of an Fa is broken

ax if XX(idl,1s) In ds then Position(Fa(idl,id2,id3,id4),ds)=Broken
ax if XX(id2,Br) In ds then Position(Fa(idl,id2,id3,id4),ds)=Broken
ax if XX(id3,1s) In ds then Position(Fa(idl,id2,id3,id4),ds)=Broken
ax if XX(id4,1s) In ds then Position(Fa(idl,id2,id3,id4),ds)=Broken

** checks if there is/is not is a failure in the managed functional unit
pr Failure, No_Failure: devices_schema unit_position devices

axif Position(dsch,ds) =/= Broken and Position(dsch,ds) = up then
No_Fai | ure(dsch, up, ds)

axif Position(dsch,ds) = Broken then Failure(dsch, up, ds)

axif Position(dsch,ds) =/= up then Fail ure(dsch, up, ds)

auxiliary (continues)

52

* %

* %
op
* %
* %

ax
ax

* %

* %

ax

* %

* %

ax

* %

* *

ax

ax

* %

* %

ax

ax

given the schema a functional unit, its position and the position to reach,
returns the list of theorders to be sent to its devices
Order _List: devices_schema unit_position unit_position -> orders

The order corresponding to an operation on an Ae is go to the required
position

Order _List(Ae(id),up, Open) = Open(id) Empty

Order _List(Ae(id),up,Cose) = Uose(id) Enpty

The orders corresponding to opening a Dd are: open the breaker, the isolator
on bar A and the isolator on bar B
Order _List(Dd(idl,id2,id3), up, Open)

Open(idl) Open(id2) Open(id3) Enpty

The orders corresponding to closing a Dd are: close the isolator on bar B,
the isolator on bar A and the breaker
Order _List(Dd(idl,id2,id3),up, dose) = Cose(id3) OQpen(id2) Cose(idl) Enpty

The orders corresponding to closing on a bar an open Fa are: close the
i solator on the corresponding bar, the isolator and the breaker
Order_List(Fa(idl,id2,id3,id4), Open,Cose_On_A) =

Close(id3) Cose(idl) Cose(id2) Enpty

Order_List(Fa(idl,id2,id3,id4), Open,Cose_On_B) =

Close(id4) Cose(idl) Cose(id2) Enpty

The orders corresponding to the operation of bar exchange of an Fa are:
close the isolator on the bar that is open and open the one that is closed
Order_List(Fa(idl,id2,id3,id4),C ose_On_A Cose_ On_B) =

Cl ose(id4) Open(id3) Enpty

Order_List(Fa(idl,id2,id3,id4),C ose_On_B,Cose_ On_A) =

Cl ose(id3) Open(id4) Enpty

auxiliary (end)

33

BAR MANAGER: Specification

BAR

/ MONI TOR(OK) \

XK

>0 XMOL INON
MONI TOR(KO)

KO

\\ MONI TOR(KO) /

MANAGERS: Activity

ORDER DEVICES OPERATION BAR M_MESSAGE

MONI TOR(ba)
BAR MANAGER

MONI TOR(ds, ba, bb)

MANAGER1

REC_OPER(opr) &
MONT TOR(ds, ba, bb)

NO_AUTHCR &
MONI TOR(ds, ba, bb)

REQUI RE_AUTHOR(opr) &
MONI TOR(ds, ba, bb)

NO_AUTHCR &
MONI TOR(ds, ba, bb)

\
‘\‘ I TOR(ba) BAR MANAGER

COORDINATOR: Specification

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

OPERATION

TOPOLOGY

UNITS POSITIONS

To halt the station due to some failure

To detect afailurein aunit

To receive an authorization request

To signal the completition of an operation

To deny the authorization to the execution of an operation

To be informed that the operation has been completed

Torequireto close aDd

To monitor the units and the bars throughout their managers

To authorize the execution of an operation

56

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

OPERATION

TOPOLOGY

UNITS POSITIONS

HALT

FAILURE_I N UNI'T

REC_AUTHOR_REQUEST(oper at i on)

SI GNAL_COVPLETED_GOPER

I NFORM_| MPCSSI BLE_OPER

COVPLETED_OPER

REQ CLOSE(f i d)

MONI TOR(manager s)

OK_OPER

57

COORDINATOR: Activity

< Ready(tp)

Handl i ng_Req(t p, opr, FunsOf (ns), Bar (ns), Bar (ns))

Handl i ng_Req(t p, opr, ups, ba, bb)

Handl i ng_Req(t p, Qpr (fi d, up), OnFai | edBar (fid,tp, ba, bb)

ups, ba, bb) NoOnFai | edBar (fid, tp, ba, bb)
and Kind(fid,tp)=/=Fa

: : NoOnFai | edBar (fi d, tp, ba, bb)
Handl i ng—ReQ(Lg'sgé;F{)'k)?' Qpen) , {and Kind(fid,tp)=Fa

NoOnFai | edBar (fi d, tp, ba, bb)

and Kind(fid,tp)=Fa and
ups[fid] =Cl osedOnA and
Fi ndd osi ngPat h(tp, fid, ups)=Cl osedDd

. . NoOnFai | edBar (fi d, t p, ba, bb)

Handl i ng_Req(tp, Opr (fid, O osenB),)< and Kind(fid,tp)=Fa and
ups, ba, bb) ups[fi d] =0 osedOnA and

Fi ndd osi ngPat h(tp, fid, ups) =OpenDd(fid’)

NoOnFai | edBar (fid, tp, ba, bb)
and Kind(fid,tp)=Fa and
ups[fid] =C osedOnA and

O osenA Elloggcl osi ngPat h(tp, fid, ups)=

I NFORM_I MPCSSI BLE_OPER

d3d0 YO

(.p11)30O O

Wi ting_d osi ngDd(tp) 2

4340 d3131dN00 TVND IS

d3d0 3137dANOO

)

Aut hori zi ng(tp)

\

d3d0 YO

FAI LURE_IN_UNI T Failure Detecte

I nf or m LETED_OPER /V\ait.i ng(tp)

FAI LURE_IN_UNI T

HALT

[

LINN'N I 3407 Iv4

38

HALT

sort answer
cn None, d osedDd: answer
op OpenDd: unit_ident -> answer

** given a set of functional unit managers returns the positions of the
** associated functional units
op Positions_From managers -> units_positions

ax Positions_From({})=[]
ax Positions_From Ready(fid, dsch,up) | ms)= Positions_Fronm(ms)[up / fid]
ax Positions_From Executing(fid,dsch,up,up’)| nms)=Positions_Fron(ns)[up/fid]
ax Positions_FromWiting_Authorization(fid,dsch,up,up’)]|ms)=
Posi tions_From(ns) [up/fid]
ax Positions_From Ordering(fid,dsch,up,up’,ol)|ns)=Positions_Fron(ns)[up/fid]

** Find_C osing_Path given a station topol ogy, the functional unit positions and
** the identifier of an Fa returns an answer saying whether for such unit no

** closing path exists, a closing path nade by an open or by a closed Dd exists
op Find_d osing_Path: topology unit_ident units_positions -> answer

** |f on the right of the functional unit fida there exists a proper closing
** path, then there exists a proper closing path for idfa
ax if Path(RPart(tp,idfa), ups, None)=C osedDd then

Fi nd_C osi ng_Pat h(tp,idfa, ups)=0 osedDd

** |f on the left of the functional unit fida there exists a proper closing path,
** then there exists a proper closing path for idfa
ax if Path(LPart(tp,idfa), ups, None)=C osedDd then

Fi nd_C osi ng_Pat h(tp,idfa, ups)=0 osedDd

** |f on the right of the functional unit fida there exists a non-proper closing
** path and on the left of fida there does not exist a proper closing path, then
** there exists a non-proper closing path for idfa
ax if Path(RPart(tp,idfa), ups, None)=0Cpen(fid)
Pat h(LPart (tp,idfa), ups, None)=/=C osedDd t hen
Fi nd_C osi ng_Pat h(tp,idfa, ups)=0Cpen(fid)

** |f on the left of the functional unit fida there exists a non-proper closing
** path and on the right of fida there does not exist a closing path, then there
** exists a non-proper closing path for idfa
ax if Path(LPart(tp,idfa), ups, None)=0Cpen(fid) and
Pat h(RPart (tp,idfa), ups, None) =None t hen
Fi nd_C osi ng_Pat h(tp,idfa, ups)=0Cpen(fid)

** |f on the left and on the right of the functional unit fida no closing path
** exist, then no closing path exists for idfa
ax if Path(LPart(tp,idfa), ups, None)=None
and Path(RPart (tp,idfa), ups, None) =None then
Fi nd_C osing_Pat h(tp,idfa, ups)=None

auxiliary (continues)

59

** Path given the topol ogy of one part of the station, the functional unit
** positions and the identifier of an Fa returns an answer saying whether in
** gsuch part of the station for such unit no closing path exists, a closing
** path made by an open or by a closed Dd exists

op Path: topology units_positions answer -> answer

** |f the station has been scanned until the end Path returns the recorded
** answer
ax Path(E ups,a) = a

** |f fidis a closed Dd then Path returns there is a closing path nade by
** a closed Dd
ax if ups[fid] = Cose then Path(Dd(fid) & tp,ups,a) = O osedDd

** |f fidis an open Dd and there is already recorded an open Dd, then the
** gcanning of the bars goes on
ax if ups[fid] = Open then

Path(Dd(fid) & tp,ups,OpenDd(fid)) = Path(tp,ups, OpenDd(fid))

** |f fid is an open Dd and nothing is recorded, then the scanning of the
** pars goes on recording it
ax if ups[fid] = Open then

Pat h(Dd(fid) & tp,ups, None) = Path(tp,ups, OpenDd(fid))

** |f fidl and fid2 are two closed Ae, then the scanning of the bars goes on
ax if ups[fid] = Cose and ups[fid] = Close then
Pat h(Ae(fidl, fid2) & tp,ups,a) = Path(tp,ups,a)

** |f either fidl or fid2 is open, then the recorded answer is returned
ax if (ups[fid] = Open or ups[fid] = Open) then
Path(Ae(fidl,fid2) & tp,ups,a) = a

** |f fid is an Fa, then the scanning of the bars goes on
ax Path(Fa(fid) & tp,ups,a) = Path(tp,ups,a)

* %

checks whether a functional unit is/is not connected to a failed bar

op No_On_Failed Bar, On_Failed_Bar: unit_ident topol ogy bar bar

ax if Non_On_BarA(fid,tp) then No_On_Failed Bar(fid,tp, KO bb)

ax if Non_On_BarB(fid,tp) then No_On_Failed Bar(fid,tp,ba, KO

op On_Failed_Bar: unit_ident topology bar bar

ax if On_BarA(fid,tp) then On_Failed_Bar(fid,tp, KO bb)

ax if On_BarB(fid,tp) then On_Failed_Bar(fid,tp,ba, KO

op Bar: bar_manager -> bar

ax Bar(OK) = K

ax Bar(KO = KO

opr: operation a: answer ups: unit_positions
fid, fid , idfa: unit_ident ns: set(nmanager) ba, bb: bar
tp: topol ogy dsch: devices_schena ol : orders
up up’: unit_position

auxiliary (end)

60

AUTOMATISM: Activity

STATION SCHEMA OPERATION BAR
DEVICES ORDER MESSAGE TOPOLOGY
RECEI VE_REQ & MONI TOR
SI GNAL & MONI TOR
EECEI \FQEJVES MONI TOR
RECEI VE_REQ
CONSOLE SEND_MESSAGE CONSOLE-
MANAGERS SEND & MONI TOR

39N7 Ivd

HALT

I T
@;\u?ﬁm & MONI TOR ms: MANAGERS

I NFORM & MONI TOR

COORD-
CONSOLE-

MANAGERS MONI TOR
<
Y
HALT o @
&)
\Q\\)&\"E&
X vz%\%*@
P
& e
COORD-
COORDINATOR MANAGERS
REC_AUTHOR REQUEST MONI TOR

OK_OPER
COVPLETED GPER
REQ CLCSE

MONT TOR

61

COORD-CONSOLE-MANAGERS

‘ STATION SCHEMA ‘ ‘ opr: OPERATION ‘ ba, bb:BAR

‘dS:DEVICES‘ ‘ ORDER ‘ ‘ MESSAGE ‘

TOPOLOGY

MONI TOR(ds, ba, bb)

o
4%,)
o Pr
> é{ K
0)
MONI TOR(ds, ba, bb)
I NE
'\/D\uo%/(qff,e’ eéfst)J <
CONSOLE bb) ms: MANAGERS
L bb)
ou TGS e
RECEI VE_REQ opr) &
MONI TOR(ds, ba, bb)
)
w2
&2
@«d&

SIGNAL(M) &
MONI TOR(ds, ba, bb)

62

COORD-MANAGERS

fid: unit_ident
‘ STATION SCHEMA ‘ opr : OPERATION ba, bb:BAR

‘ds:DEVICES ‘ ‘ ORDER ‘ ‘ MESSAGE TOPOLOGY

MONI TOR(ds, ba, bb)

S
Q\
Qﬁg’\\o
&
S
[N
@O/
MONI TOR(ds, ba, bb)
OK_OPER MONI TOR(ds, ba, bb) .
COORDINATOR ms: MANAGERS
LETE
D
\QDE/?
MONI TOR(ds, ba, Xb)
&
°Q
RON
ff/.
Q)

MONI TOR(ds, ba, bb)

MONI TOR(ds, ba, bb)

63

COORD-CONSOLE

STATION SCHEMA OPERATION ba, bb: BAR

ds: DEVICES ORDER MESSAGE TOPOLOGY

MONI TOR(ds, ba, bb)

CONSOLE
MONI TOR(ds, ba, bb)
RECEI VE_MES(Fai | ure)

References

[Reg98] G. Reggio. A Guide to the Use of the SMoLCS Methodology. Technical Report DISI-
TR-98-3, DISI — Universita di Genova, Italy, 1998.

64

