
A Graphic Speci�cation of a High-Voltage Station

Gianna Reggio

DISI

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a di Genova

Via Dodecaneso, 35 { Genova 16146 { Italy

reggio @ disi.unige.it

http://www.disi.unige.it

In this report we present the development of an industrial case study using the SMoLCS

formal method, see [Reg98], precisely the high-voltage stations for the distribution of the electric

power used by ENEL, the Italian National Company of Electricity.

The development of such case study has been organized in the following phases.

Capture and speci�cation of the requirements Initially we have determined and speci-

�ed the fundamental requirements on the high-voltage stations considered by ENEL.

First development step Here we have re�ned such stations by considering only those man-

aged by a software automatism: the components of the station which constitute the plant

are completely de�ned. We give a functional description of the automatism, without

structuring it, so that we leave as much freedom as possible to its implementation. Thus,

at this step, we give the design speci�cation of the devices and of the bars (the plants

components), while we still have the requirements on the automatism.

Second development step Here we specify the automatism designed by ENEL. This speci-

�cation has to be interfaced with those already de�ned at the second level, to obtain the

complete speci�cation of the ENEL stations. The most relevant di�culty found at this

level has been to understand correctly how the concurrent activity of the components

of the automatism works, starting from the informal description provided by ENEL. It

has been possible to overcome this di�culty thanks to a constant veri�cation with the

designers of the automatism.

In this report we present both the formal and the informal speci�cations of the stations

produced at the various steps using for both of them a graphic notation; sometimes the informal

speci�cation is reported as comments within the formal one.

Acknowledgements. I thank V. Filippi of ENEL for her cooperation to the development

of this case study and A. Morgavi which has given a very preliminary speci�cation of these

stations in hers master thesis.

1

STATION.PHASE 1

In this phase we specify the high-voltage stations (shortly stations from now on) consid-

ered by ENEL by giving the fundamental properties of their interactions with their external

environment.

STATION.PHASE 1: Natural Description

The stations are the nodes of the electric high-voltage net. They allow: the setting of energy

coming from the production centers and/or from other nodes, the transformation of the levels of

voltage and the distribution to other nodes where the energy is used, for example transformation

cabins.

In this case study we consider stations formed by a double bar (that is to say a pair of wires)

and by a set of devices, breakers and isolators connected to bars and/or to lines reaching the

station. The connections between lines and bars are realized with the opening and closing of

devices suitable to this kind of connections.

The problem of automatizing the management of these stations has brought to an analysis

of their structure in order to permit a classi�cation of the devices composing them in sets

accordingly to their di�erent functionalities; every identi�ed set, called functional unit, performs

a precise duty for what concerns the automation of the station, at a higher level of abstraction

with respect to the simple opening and closing of a single device. Thus we can see a station as

formed by a set of functional units, each belonging to an identi�ed typology.

The class of stations considered is de�ned by the set of types of functional units associated

with constraints on their possible topological combinations.

In this case study we consider only stations with two bars denoted by \A" and \B", respec-

tively, and with three kinds of functional units: Ae, Dd and Fa.

The various functional unit kinds and their positions are presented in Fig. 1.

An Fa is a functional unit which makes the electric connection between the pair of bars and

a line either for one bar or for the other; it can be in three positions:

� open, when the line is not electrically connected to any bar;

� closed on bar A, when the line is electrically connected to bar A;

� closed on bar B, when the line is electrically connected to bar B.

A Dd is a functional unit which electrically connects the two bars equalizing their actual

tensions; the possible positions are:

� open, when the two bars are not connected;

� closed, when the two bars are connected.

2

Fa:

A

'

&

$

%

P

P

P

P

P

PP

line

�

��

B

Closed on B

A

'

&

$

%

P

P

P

P

P

PP

line

@

@@

B

Closed on A

A

'

&

$

%

P

P

P

P

P

PP

line

B

Open

Dd:

A

'

&

$

%

B

Closed

A

'

&

$

%
@

@@

B

Open

Ae:

(on bar A)

'

&

$

%

A

Closed

'

&

$

%

@

@@

A

Open

Figure 1: The kinds of functional units and their positions

3

An Ae is a functional unit which allows to electrically isolate sections of a bar to permit

upkeep; it is open/closed when the two bar sections are not connected/connected.

Every station can be represented with a combination of elements belonging to such types.

The elements are placed down on bars, with the following bounds:

� Ae's are always in pairs (one for each bar);

� bars can be sectioned by any number of pairs of Ae's (also none);

� there must exist at least one Fa and

� there must exist at least one Dd.

An example of an admissible station is graphically represented below.

�

�

�

�

Ae

�

�

�

�

Ae A

�

�

�

�

Fa

�

�

�

�

Dd

�

�

�

�

Ae

�

�

�

�

Ae B

The operator can require operations on the functional units of a station using non-detailed

commands, remitting to the station the task of managing other possible functional units and

in particular of managing the composing devices. The request of an operation consists in the

selection of a functional unit, by means of an identi�er, and of the �nal position which the unit

has to reach. The possible �nal positions are: for units of kind Fa, closed on bar A, closed on

bar B and open; while for units of kind Ae and Dd are closed and open.

If the execution of an operation is going on, the station does not accept requests of other

operations.

Moreover, if the required operation is useless (the position of the unit required by that

operation is already reached), then it must not be executed and the operator has to be informed.

Before of executing any operation, the station has to verify that the bars involved are under

tension; on the contrary an error rises, treated as a generic failure.

Below we briey explain how the various operations are performed on the functional units.

The functional unit of kind Ae and Dd can be opened and closed, and those of kind Fa

opened.

Closing operation on bar A of an Fa closed on bar B, or converse, is called \bar exchange";

to execute this operation it is necessary that the two bars are connected each other at least

by a Dd. The station has to identify a closing path and to operate on the corresponding Dd

without the operator, if necessary.

The closing path has to be identi�ed with the following rules in decreasingly order of priority:

� if there exists one closed Dd s.t. every Ae, which possibly separates it from the Fa, is

closed, the operation can take place;

4

A

Dd1

'

&

$

%

Ae

'

&

$

%

'

&

$

%

Ae

Fa

'

&

$

%

@

@@

C

C

C

C

Dd2

'

&

$

%

B

Figure 2: Either Dd1 or Dd2 may be chosen for building the closing path for Fa.

A

Dd

'

&

$

%
@

@@

Ae

'

&

$

%

'

&

$

%

Ae

Fa

'

&

$

%

@

@@

C

C

C

C

Ae

'

&

$

%

'

&

$

%

Ae

B

Figure 3: Dd must be closed for building the closing path for Fa.

� otherwise, if there exists some open Dd s.t. every Ae, which possibly separates it from the

Fa, is closed, it is necessary to close one of them and after the operation can take place

� otherwise, the station has to signal to the operator that it is impossible to execute the

operation (an Ae has to be closed).

Examples of the above three cases are shown in Fig. 2, 3 and 4 respectively.

5

A

Dd

'

&

$

%
@

@@

Ae

'

&

$

%

�

��

'

&

$

%

�

��

Ae

Fa

'

&

$

%

@

@@

C

C

C

C

Ae

'

&

$

%

'

&

$

%

Ae

B

Figure 4: No closing path for Fa is possible, some Ae must be closed.

6

STATION.PHASE 1: Border Determination

A station is an open system, i.e., it may interact with the external environment consisting of

an operator and of the other nodes of the high-voltage electric net. There are no hypothesis

on the behaviour of the nodes and of the operator, so they are considered outside the speci�ed

system.

STATION.PHASE 1: Shadow Spots

Nothing is said about to receive wrong operation requests, e.g., to perform an operation on a

non-existig unit. We have assumed that only correct operation requests will arrive.

STATION.PHASE 1: Speci�cation

Structure & Interactions

STATION

to have bar B put KO

to receive an operation request

to signal the outcome of an operation request

to signal that it is going to halt

A station is a node of the electric high-voltage net.
It allows the setting of energy coming from the
production centers and or from other nodes and the
distribution to other nodes.

MESSAGE

Messages about the outcome of an operation request

OPERATION

Operation requests

UNIT POSITION

Functional unit positions

UNIT IDENTIFIER

Functional unit identifiers

. . .

PLANT

Status of the plant (the electro-mechanical part of the station)

UNIT KIND

Functional unit kinds

to have bar A put KO

7

STATION

KO_BAR_A

KO_BAR_B

RECEIVE_REQ(operation)

SIGNAL(message)

HALT

. . .

UNIT POSITION

MESSAGE PLANT

UNIT IDENTIFIER

OPERATION

UNIT KIND

STATION.PHASE 1: Basic Data Structures

UNIT POSITION

Positions of the functional units: Open, Close, Close on bar A, Close on bar B, Broken.

UNIT IDENTIFIER UNIT KIND

Kinds of the functional units: Ae, Dd, Fa

Operation requests, consisting of the identifier of the unit on which to operate and of
the position that it must reach.

OPERATION

UNIT IDENTIFIER UNIT POSITION

MESSAGE

Messages about the resulkt of an operation request: Completed, Useless, Impossible.

Functional unit identifiers

8

UNIT POSITION

enum: Open, Close, Close_On_A, Close_On_B, Broken

UNIT IDENTIFIER UNIT KIND

enum: Ae, Dd, Fa

op Opr: unit_ident unit_position -> operation

OPERATION

UNIT IDENTIFIER UNIT POSITION

MESSAGE

enum: Completed, Useless, Impossible

PLANT

FUNCTIONAL_UNIT

UNIT IDENTIFIER UNIT POSITIONUNIT KIND

The electrical status of a bar: in tension and not in tension.

BAR

The status of a functional unit, characterized by the identity, the kind and the position. A unit of kind AE or
Dd open, closed or broke;one of kind Fa may be open, closed on A, closed on B or broken.

The status of a plant is given by the status of the two bars and of the functional units connected to each bar; Fa
and Dd are connected to both bars, while Ae’s are connected only to one bar, but there is one Ae on a bar iff there
is another Ae on the other bar.

In the plants of the adimissible stations the units are connected to the bars as hinted above and there is at least
one Dd and one Fa.

PLANT

FUNCTIONAL_UNITBAR

9

op Kind: functional_unit -> unit_kind

pr Position: functional_unit -> unit_position

op Id: functional_unit -> unit_ident

if Kind(fu) = Ae or Kind(fu) = Dd then
 (Position(fu) = Open or Position(fu) = Closed or Position(fu) = Broken)

if Kind(fu) = Fa then
 Position(fu) = Open or Position(fu) = Close_On_A or
 Position(fu) = Close_On_B or Position(fu) = Broken

FUNCTIONAL_UNIT

fu: functional_unit

UNIT IDENTIFIER UNIT POSITIONUNIT KIND

enum: OK, KO

BAR

10

** The status of the plant may consists just of the status of the two bars
op < _ _ >: bar bar -> plant
** adds two functional units to the status of a plant, one for each bar
op < _ _ > & _: functional_unit functional_unit plant -> plant
** adds a functional unit to the status of a plant, such functional unit is
** connected to both bars
op < _ > & _: functional_unit plant -> plant

** checks if a functional unit is connect to bar A (B)
pr On_A, On_B: functional_unit plant

ax On_A(fu,<fu> & pl)
ax On_A(fu,<fu1> & pl) if On_A(fu,pl)
ax On_A(fu,<fu fu1> & pl)
ax On_B(fu,<fu> & pl)
ax On_B(fu,<fu1> & pl) if On_B(fu,pl)
ax On_B(fu,<fu1 fu> & pl)

** checks if a functional unit is present in the plant
pr Is_In: functional_unit plant

ax if On_A(fu,pl) or On_B(fu,pl) then Is_In(fu,pl)

** checks whether the connections of the functional units on the bars are
** admissible, i.e. if each one of kind either Fa or Dd is connected to both
** the bars and those of kind Ae are present in pairs
pr Ok_Con: plant

ax Ok_Con(<ba bb>)
ax if Ok_Con(pl) and Kind(fu1) = Ae and Kind(fu2) = Ae then
 Ok_Con(<fu1 fu2> & pl)
ax if Ok_Con(pl) and Kind(fu) = Dd then Ok_Con(<fu> & pl)
ax if Ok_Con(pl) and Kind(fu) = Fa then Ok_Con(<fu> & pl)

** checks whether a station is admissible, i.e. if the connections are admissible
** and there is at least a functional unit of kind Fa and one of kind Dd
pr Ok_Plant: plant

ax Ok_Plant(pl) iff
 Ok_Con(pl) and
 (exists fu: Is_In(fu,pl) and Kind(fu) = Fa) and
 (exists fu: Is_In(fu,pl) and Kind(fu) = Dd)

** returns the status of bar B (B)
op Bar_A, Bar_B: plant -> bar

ax Bar_A(<ba bb>) = ba
ax Bar_A(<fu> & pl) = Bar_A(pl)
ax Bar_A(<fu1 fu> & pl) = Bar_A(pl)
ax Bar_B(<ba bb>) = bb
ax Bar_B(<fu> & pl) = Bar_B(pl)
ax Bar_B(<fu1 fu> & pl) = Bar_B(pl)

PLANT

pl : plant fu fu1: functional_unit ba bb: bar

FUNCTIONAL_UNITBAR

11

STATION.PHASE 1: States

** returns the status of the physical components of the station (the plant)
op Plant: station -> plant

** checks whether the station is executing an operation
pr Executing: station

** checks if a station state is initial
pr Initial: station

UNIT POSITION

MESSAGE PLANT

UNIT IDENTIFIER

OPERATION

UNIT KIND

12

STATION.PHASE 1: Activity

** checks wether a functional unit is a closing path in a station for a given Fa
pr Is_Closing_Path: unit_ident station fun_unit_ident

** If the the functional unit fid is a closing path for idfa, then
** fid is a Dd on the same bar section of idfa and either is closed or open and
** such case there does not exist a closed Dd on the same bar section of idfa
if Is_Closing_Path(fid,st,idfa) then
 - Kind(st,fid) = Dd
 - SameSection(Plant(st),idfa,fid)
 - Position(st,fid) = Closed or
 (Position(st,fid) = Open and not exists fid’: Kind(st,fid’) = Dd and)
 (Position(st,fid’) = Closed and SameSection(Plant(st),idfa,fid’))

** If there exists a functional unit which is a Dd and on the same bar section
** of idfa, then Is_Closing_Path is true for some functional unit
if exists fid: Kind(st,fid) = Dd and SameSection(Plant(st),idfa,fid) then
 exists fid’: Is_Closing_Path(fid’,st,idfa)

** checks whether two functional units are on the same bar section in a plant
pr SameSection: plant unit_ident unit_ident

if On_Bar_A(fu,pl) and Id(fu)=fid and On_Bar_A(fu’,pl) and Id(fu’)=idf’
then SameSection(pl,fid1,fid’)
if On_Bar_B(fu,pl) and Id(fu)=fid and On_Bar_A(fu’,pl) and Id(fu’)=idf’
then SameSection(pl,fid,fid’)

fid, fid’, idfa: unit_ident fu, fu’: fun
k: kind st: station up: unit_position

(auxiliary)

** checks if there is a failure in station
pr Failure: station

** If there exists a broken functional unit, then there is a failure in station
if exists fid: Position(st,fid) = Broken then Failure(st)

** If the station has received a request to perform an operation on a functional
** unit connected to a failed bar, then there is a failure in station
if exists fid, st’, up: st’ -- RECEIVE_REQ(Opr(fid,up)) --> st and
 On_Failed_Bar(fid,Plant(st)) then
 Failure(st)

** checks if a functional unit is connected to a failed bar
pr On_Failed_Bar: unit_ident plant

if On_Bar_A(fu,pl) and Id(fu)=fid and Bar_A(pl)=KO then On_Failed_Bar(fid,pl)
if On_Bar_B(fu,pl) and Id(fu)=fid and Bar_B(pl)=KO then On_Failed_Bar(fid,pl)

** returns the kind of a functional unit
op Kind: station unit_ident -> kind

Kind(st,fid)=k iff (exists fu: fu Is_In Plant(st) and Kind(fu)=k and Id(fu)=fid)

** returns the position of a functional unit
op Position: station unit_ident -> unit_position

Position(st,fid)=up iff
 (exists fu: fu Is_In Plant(st) and Position(fu)=up and Id(fu)=fid)

13

Kind

Plant

** A functional unit cannot change its kind
if st -- ls --> st’ then Kind(st,fid) = Kind(st’,fid)

Ok_Plant(Plant(st))

Failure

** If there is a failure in the station, then in any case it signals that
** is going to halt and after stops
if Failure(st) then
 st in any case <HALT> and after [not exists x’, l: x -- l --> x’]

Executing

** If the station becomes executing, then it has received an operation
** request
if st -- ls --> st’ and not Executing(st) and Executing(st’) then
 exists opr: ls = RECEIVE_REQ(opr)

** If the station becomes nonexecuting, then it signals the end of an
** operation
if st -- ls --> st’ and Executing(st) and not Executing(st’) then
 exists m: ls = SIGNAL(m)

** If the station is executing an operation, then it cannot accept another
** request
if Executing(st) then
 not st at least in a case <exists opr: RECEIVE_REQ(opr)>

Initial

** In the initial state each unit is open and the bars are OK
if Initial(st) then
 - forall fu: if Is_In(pl,fu) then Position(fu,pl) = Open
 - Bar_A(Plant(st)) = OK
 - Bar_B(Plant(st)) = OK

KO_BAR_A

** A bar may be always put KO
st at least in a case <KO_BAR_A>

if st -- KO_BAR_A --> st’ then Bar_A(Plant(st’)) = OK

KO_BAR_B

** A bar may be always put KO
st at least in a case <KO_BAR_B>

if st -- KO_BAR_B --> st’ then Bar_B(Plant(st’)) = OK

14

RECEIVE_REQ

** If the station receives an operation request, then it is not executing
** and in any case it is executing until the operation will end
if st -- RECEIVE_REQ(opr) --> st’ then
 - not Executing(st)
 - st’ in any case [Executing(x)] until <exists m: ls=SIGNAL(m)>

** If the station receives the request of putting a unit in the actual
** position, then in any case eventually it either will signal that the
** required operation is useless or will fail
if st -- RECEIVE_REQ(Opr(fid,up)) --> st’ and Position(st,fid)=up then
 st’ in any case
 eventually <SIGNAL(Useless)>
 or
 eventually [Failure(x)]

** If the station receives the request of opening a non-open unit fid, then
** in any case eventually either fid will become open and after it will
** signal that the required operation has been completed or it will fail
if st -- RECEIVE_REQ(Opr(fid,Open)) --> st’ and Position(st,fid)=/=Open then
 st’ in any case
 eventually [Position(x,fid)=Open] and after <SIGNAL(Completed)>
 or
 eventually [Failure(x)]

** If the station receives the request of closing an open Ae or Dd fid, then
** in any case eventually either fid will become closed and after it will
** signal that the required operation has been completed or it will fail
if st -- RECEIVE_REQ(Opr(fid,Close)) --> st’ and
 (Kind(st,fid)=Ae or Kind(st,fid)=Dd) and Position(st,fid)=Open then
 st’ in any case
 eventually [Position(x,fid) = Closed] and after <SIGNAL(Completed)>
 or
 eventually [Failure(x)]

** If the station receives the request of closing on bar A an open Fa fid,
** then in any case eventually either fid will be closed on A and after it
** will signal that the required operation has been completed orit will fail
if st -- RECEIVE_REQ(Opr(fid,Close_On_A)) --> st’ and Kind(st,fid)=Fa and
 Position(st,fid)=Open then
 st’ in any case
 eventually [Position(x,fid) = Close_On_A] and after <SIGNAL(Completed)>
 or
 eventually [Failure(x)]

15

RECEIVE_REQ

** If the station receives the request of closing on the bar A an Fa that is
** closed on the bar B and there is not a Dd to be used for the closing path,
** then in any case eventually either it will signal that the required
** operation is impossible or it will fail
if st -- RECEIVE_REQ(Opr(fid,Close_On_A)) --> st’ and Kind(st,fid)=Fa and
 Position(st,fid)=Close_On_B and
 not exists fid’: Is_Closing_Path(fid’,st,fid) then
 st’ in any case
 eventually <SIGNAL(Impossible)>
 or
 eventually [Failure(x)]

** If the station receives the request of closing on the bar A an Fa fid that
** is closed on the bar B and there is a Dd fid’ to be used for the closing
** path, then in any case eventually either fid’ will be closed and after
** eventually fid will be closed on the bar A and after it signal that the
** operation has been completed or it will fail
if st -- RECEIVE_REQ(Opr(fid,Close_On_A)) --> st’ and Kind(st,fid)=Fa and
 Position(st,fid)=Close_On_B and Is_Closing_Path(fid’,st,fid) then
 st’ in any case
 eventually [Position(x,fid’) = Closed] and after
 eventually [Position(x,fid) = Close_On_A] and after
 <SIGNAL(Completed)>
 or
 eventually [Failure(x)]

** Similar properties for the closing of an Fa on the bar B.

SIGNAL

** If the station signals the end of an operation, then it was executing and
** becomes nonexecuting
if st -- SIGNAL(m) --> st’ then Executing(st) and not Executing(st’)

HALT

** If the station halts, then there was a failure
if st -- HALT --> st’ then Failure(st’)

fu fu1 fu2: functional_unit m: message ls: lab_station
pl: plant opr: operation st st’ x x’: station
fid, fid’: unit_ident up: unit_position

16

STATION.PHASE 2.step 1

At this level we specify the class of the stations handled by an automatism; clearly they are

a subclass of those speci�ed in PHASE 1.

STATION.PHASE 2.step 1: Natural Description

Sets of stations and power plants are managed by only one operator. Thus the absence of local

operators in the stations, due to the installation of an automatic system, rises the necessity for

the system to satisfy security requirements of command and control; besides, to make easy the

tasks of the operator, the command of the operations has to take place by means of orders to

the automatism, which ensures also a continual caretaking of the devices of the plant.

The automatism has to be adaptable to di�erent stations, which can be modi�ed and

widened also after the installation. To realize its own task, the automatism has to know the

topology of the station on which it works, so we can assume that during the installation phase

the diagram of the station topology is provided.

The automatism has the task of checking the position of the devices of the plant and of

operating them accordingly to operator requests. So it has to collect continually information

coming from such devices about their own positions (reading the signals from an interface with

the �eld) and it has to be able to transmit (by means of the same interface) operating orders.

The interface is connected to the automatism by a set of informative channels, one for each

device of the station. Each channel can contain one of the following symbols:

{ OP if the device communicates \open";

{ CL if the device communicates \closed";

{ XX, if \open" and \closed" are communicated simultaneously or if a failure of the device

is detected by the interface;

{ it can be empty if none of the previous conditions is satis�ed (for example when the

device is moving). Indeed we assume that, as the operation time of the devices is faster

than the reading one (order of hundreds of milliseconds), the automatism can read several

times the value of a channel before it can �nd the \closed" symbol. Please notice that

the channel keeps no memory of the position left from the device.

Moreover, every bar transmits its state, analogously to devices, through an appropriate

channel, which can contain either the symbol \OK" if the corresponding bar works correctly,

or the symbol \KO" if the tension is down (breakdown or earth-wire).

In the same way, orders given from the automatism to each device of the plant are symbols

transmitted on such channels: CL for \close" and OP for \open".

To verify the correct execution of an order, it is necessary for the automatism to check the

position reached by the used device.

17

The operation of opening and closing a device has to be executed within a certain time from

the sending of the command. If the automatism does not receive within that time the signal

that the required state has been reached, the device has to be considered damaged.

The operator must have a self-starting key of the automatism. This key works also as a

\reset hardware" key, when the system reaches an irrecoverable error state, due, for example, to

the reading of symbol XX transmitted from a device of the plant through the interface towards

the �eld.

The automatism performs two fundamental tasks: monitoring and management of the

station components.

Monitoring has to be performed continuously, from system starting to its stopping and

during every operation. It consists in verifying:

{ that the devices remain in the positions required by the operator and

{ the rising of failures and abnormal situations.

In case of failure the system has to signal that to the operator and stop its own activity.

In this case study we do not distinguish the di�erent kinds of failure and we do not perform

recover activity. The automatism has to be able to recognize, when starting, an inconsistent

state of the station.

The management activity consists in verifying the feasibility of the operations required by

the operator and in executing these operations and checking their results.

The operator can guide the functional unit operations using not detailed commands, remit-

ting to the automatism the task of managing other possible functional units and in particular

of managing their devices. The request of an operation consists in the selection of a functional

unit, by means of an identi�er, and of the �nal state which the functional unit has to reach.

The possible �nal states are: closed on bar A (CA), closed on bar B (CB) and open (OP); for

functional units like Ae and Dd, the commands CA or CB stand for the \closed" command.

If the execution of an operation is going on, the automatism does not accept request of

other operations.

Moreover, if the operation ordered has already been executed (the position of the functional

unit required by that operation is already reached) it must not be executed and the operator

has to be informed.

Before of executing any operation, the automatism has to verify that bars involved are under

tension; on the contrary an error rises, treated as a generic failure.

Below we briey explain how the functional units are made of devices and how the various

operations are performed on them.

The devices present in the station (breakers, isolators) can be in two positions: on and o�

(open and close in the following).

The breakers can be put on/o� undertension and have operation time of the order of hun-

dreds of milliseconds; isolators cannot be used undertension (except bar isolators) and have

operation time of the order of some seconds. The result is that functional units own a breaker

for opening the whole unit, before using isolators and for closing it at the end of the operation.

In this case study we have analyzed three kinds of functional units:

� Ae made by a bar isolator;

18

Ae:

L

�

�

�

Dd:

B

B

B

B

B

B

B

B

�

�

�u

A B

I

Fa:

B

B

B

B

B

B

B

B

u

B

B

B

B

B

B

B

B

A B

I

L

�

�

�

: isolator

�

�

�

u : breaker

Figure 5: Schemas of the functional units

� Dd made by a breaker, a bar isolator connected to bar A and a bar isolator connected to

bar B;

� Fa made by a line isolator, a breaker, a bar isolator connected to bar A and a bar isolator

connected to bar B.

The schemas of the various functional unit kinds are presented in Fig. 5.

An Fa is a functional unit which makes the electric connection between the pair of bars and

a line either for one bar or for the other; it can be in three positions:

� open, when the three isolators are open (thus the line is not electrically connected to any

bar);

� closed on bar A, when the isolator on bar A, the line isolator L and the breaker I are

closed, while the isolator on bar B is open (thus the line is electrically connected to bar

A);

� closed on bar B, when the isolator on bar B, the line isolator and the line breaker are

closed, while the bar isolator A is open (thus the line is electrically connected to bar B).

A Dd is a functional unit which electrically connects the two bars equalizing the two actual

tensions; the possible positions are:

� \open", when the two isolators and the breaker are open (thus the two bars are not

connected);

� \closed", when the two isolators and the breaker are closed (thus the two bars are con-

nected).

19

An Ae is a functional unit, consisting simply of a bar isolator, which allows to electrically

isolate sections of bar to permit upkeep; it is open/closed when its isolator is open/closed.

AE operations The functional unit Ae is composed by a single device (an isolator); so its

closing/opening corresponds to the opening/closing of its isolator.

Dd operations The functional unit Dd is composed by a breaker S and two isolators A and

B; it can be closed or open. The opening operation consists of opening, in the following

order, S, A and B; and the closing operation consists of closing, in the following order, S,

A and B.

Fa operations The functional unit Fa is composed by a breaker S and three isolators L, A,

B; it can be closed on bar A, or on bar B, or open.

The opening operation consists of opening S, then A and then B. The closing operation on

bar A of an Fa open consists of closing A, then closing L and then closing S, analogously

for closing on bar B.

Closing operation on bar A of an Fa closed on bar B, or converse, is called \bar exchange";

to execute this operation it is necessary that the two bars are connected each other by a

Dd. The automatism has to identify a closing path and to operate the corresponding Dd

without the operator, if necessary.

The closing path has to be identi�ed with the rules already presented in the natural

description of PHASE 1.

20

STATION.PHASE 2.step 1: Speci�cation

Structure & Interactions

STATION

BAR

Electrical status of bar A

BAR

Electrical status of bar B

AUTOMATISM

It checks the device positions and operates
them accordingly to the received requests

DEVICES

Electromechanic elementary components of
the station

 UNIT IDENTIFIER

Functional unit identifiers

UNIT POSITION

Functional unit positions

STATION SCHEMA

The station schemas describe the station topology
and the correspondence between the functional
units and the composing devices

ORDER

Orders that the automatism sends
to the devices

DEVICE IDENTIFIER

Device identifiers

DEVICE POSITION

Device positions

DEVICE_KIND

Device kinds

UNIT KIND

Functional unit kinds

MESSAGE

Messages about the outcome of an operation request

OPERATION

Operation requests

to have bar B put KO

to receive an operation request

to signal the outcome of an operation request

to signal that it is going to halt

to have bar A put KO

21

B: BAR

DEVICES

AUTOMATISM

STATION

UNIT IDENTIFIER UNIT POSITION

STATION SCHEMAORDER

DEVICE IDENTIFIER DEVICE POSITION DEVICE_KIND

UNIT KIND

MESSAGEOPERATION

A: BAR

KO_BAR_A

KO_BAR_B

RECEIVE_REQ(operation)

SIGNAL(message)

HALT

22

STATION.PHASE 2.step 1: Basic Data Structures

UNIT POSITION

Positions of the functional units: Open, Close, Close on bar A, Close on bar B, Broken.

UNIT IDENTIFIER UNIT KIND

Kinds of the functional units: Ae, Dd, Fa

Operation requests, consisting of the identifier of the unit on which to operate and of
the position that it must reach.

OPERATION

UNIT IDENTIFIER UNIT POSITION

MESSAGE

Messages about the resulkt of an operation request: Completed, Useless, Impossible.

Functional unit identifiers

DEVICE IDENTIFIER DEVICE KIND

A device is a breaker or an isolatorDevice identifiers

DEVICE POSITION

Positions of the devices: open, close and broken (XX).

Orders sent from the automatism to the device, consisting of the identifier of the
interested devices and of the position that it must reach.

ORDER

DEVICE IDENTIFIER

23

UNIT IDENTIFIER

rename sort nat to unit_ident in NAT

UNIT POSITION

enum: Open, Close, Close_On_A, Close_On_B, Broken

UNIT KIND

enum: Ae, Dd, Fa

op Opr: unit_ident unit_position -> operation

OPERATION

 UNIT IDENTIFIER UNIT POSITION

DEVICE IDENTIFIER

rename sort nat to device_ident in NAT

MESSAGE

enum: Completed, Useless, Impossible

DEVICE POSITION

enum: OP, CL, XX

DEVICE KIND

enum: Br, Is

ORDER

op Open, Close: device_ident -> order

DEVICE IDENTIFIER

STATION SCHEMA

DEVICES SCHEMA

DEVICE_IDENT

The schemas of the set of devices composing a functional unit; each device is represented by its identifier.
An Ae has just an isolator; a Dd has an isolator on bar A, one on bar B and a breaker; an Fa has a line isolator,
a breaker and an isolator on bar A and one on bar B.

UNIT SCHEMA

DEVICES SCHEMA

The schemas of the functional units, characterized by the schema of their devices and by their identifiers.

UNIT IDENTIFIER

STATION SCHEMA

The station schemas describe the station topology and the correspondence between the functional units and
the composing devices.

UNIT SCHEMA UNIT KIND

24

DEVICES SCHEMA

** given the identifier of the isolator returns the schema of an Ae
op Ae: device_ident -> devices_schema

** given the identifiers of the isolator on bar A, of that on bar B and of the
** breaker returns the schema of a Dd
op Dd: device_ident device_ident device_ident -> devices_schema

** given the identifiers of the line isolator, of the breaker and of the
** isolator on bar A and of that on bar B returns the schema of an Fa
op Fa: device_ident device_ident device_ident device_ident -> devices_schema

UNIT SCHEMA

op Fu: unit_ident devices_schema -> unit_schema

DEVICE_IDENT

DEVICES SCHEMA UNIT IDENTIFIER

** given a station schema and a functional unit identifier, returns its kind
op Kind: station_schema unit_ident -> kind

ax Kind(<Fu(fid,Ae(id1)) Fu(fid2,Ae(id2))> & sch,fid)=Ae
ax Kind(<Fu(fid1,Ae(id1)) Fu(fid,Ae(id2))> & sch,fid)=Ae
ax if fid=/=fid1 and fid=/=fid2 then
 Kind(<Fu(fid1,Ae(id1)) Fu(fid2,Ae(id2))> & sch,fid)=Kind(sch,fid)
ax Kind(<Fu(fid,Dd(id1,id2,id3))> & sch,fid)=Dd
ax Kind(<Fu(fid,Fa(id1,id2,id3,id4))> & sch,fid)=Fa
ax if fid=/=fid’ then Kind(<Fu(fid’,dsch)> & sch,fid)=Kind(sch,fid)

STATION SCHEMA (continues)

cn E: station_schema ** schema of the empty station
** adds a functional unit to a schema (an Fa or a Dd)
op < _ > & _: unit_schema station_schema -> station_schema
** adds two functional units to a schema (two Ae’s)
op < _ _ > & _: unit_schema unit_schema station_schema -> station_schema

** given a station schema, checks if a functional unit is connected to bar A/B
pr On_BarA, On_BarB: unit_ident station_schema

ax On_BarA(fid,<Fu(fid,dsch)> & sch)
ax if On_BarA(fid,sch) then On_BarA(fid,<Fu(fid1,dsch)> & sch)
ax On_BarA(fid1,<Fu(fid1,dsch1) Fu(fid2,dsch2)> & sch)
ax if On_BarA(fid,sch) then On_BarA(fid,<Fu(fid1,dsch1) Fu(fid2,dsch2)> & sch)

ax On_BarB(fid,<Fu(fid,dsch)> & sch)
ax if On_BarB(fid,sch) then On_BarB(fid,<Fu(fid1,dsch)> & sch)
ax On_BarB(fid1,<Fu(fid1,dsch1) Fu(fid2,dsch2)> & sch)
ax if On_BarB(fid,sch) then On_BarB(fid,<Fu(fid1,dsch1) Fu(fid2,dsch2)> & sch)
ax if On_BarB(fid,sch) then On_BarB(fid,<Fu(fid1,dsch1) Fu(fid2,dsch2)> & sch)

 UNIT SCHEMA UNIT KIND

25

** given a station schema and a functional unit identifier return respectively
** the identifier of its isolator on bar A/on bar B, if any, i.e. if it is
** either a Dd or an Fa, of its breaker, if any, i.e. if it is either a Dd or
** an Fa, of its isolator, if any, i.e. if it is an Ae

op Isolator_On_A, Isolator_On_B, Breaker, Isolator:
 station_schema unit_ident -> device_ident partial

ax Isolator_On_A(<us1 us2> & sch,fid)=Isolator_On_A(sch,fid)
ax Isolator_On_A(<Fu(fid,Dd(id1,id2,id3))> & sch,fid)=id1
ax Isolator_On_A(<Fu(fid,Fa(id1,id2,id3,id4))> & sch,fid)=id3
ax if fid =/= fid’ then
 Isolator_On_A(<Fu(fid’,dsch)> & sch,fid)=Isolator_On_A(sch,fid)

ax Isolator_On_B(<us1 us2> & sch,fid) = Isolator_On_B(sch,fid)
ax Isolator_On_B(<Fu(fid,Dd(id1,id2,id3))> & sch,fid)=id1
ax Isolator_On_B(<Fu(fid,Fa(id1,id2,id3,id4))> & sch,fid)=id3
ax if fid=/=fid’ then
 Isolator_On_B(<Fu(fid’,dsch)> & sch,fid) = Isolator_On_B(sch,fid)

ax Breaker(<us1 us2> & sch,fid) = Breaker(sch,fid)
ax Breaker(<Fu(fid,Dd(id1,id2,id3))> & sch,fid)=id3
ax Breaker(<Fu(fid,Fa(id1,id2,id3,id4))> & sch,fid)=id2
ax if fid=/=fid’ then Breaker(<Fu(fid’,dsch)> & sch,fid)=Breaker(sch,fid)

ax Isolator(<Fu(fid,Ae(id1)) Fu(fid2,Ae(id2))> & sch,fid)=id1
ax Isolator(<Fu(fid1,Ae(id1)) Fu(fid,Ae(id2))> & sch,fid)=id2
ax if fid=/=fid1 and fid=/=fid2 then
 Isolator(<Fu(fid1,Ae(id1)) Fu(fid2,Ae(id2))> & sch,fid)=Isolator(sch,fid)
ax Isolator(<us1> & sch,fid)=Isolator(sch,fid)

STATION SCHEMA (end)

sch: station_schema fid fid1 fid2: unit_ident
dsch dsch1 dsch2: devices_schema us1 us2: unit_schema
id1,id2,id3,id4: device_ident

26

BAR: Speci�cation

BAR

** Electrical status of the bar: in tension and not in tension
enum: OK, KO

DEVICES: Speci�cation

Structure & Interactions

DEVICE1

.

.

.

DEVICE n

REC(order) & TAKEN(devices)

ORDER DEVICE KIND

TAKEN(devices)

DEVICES

27

DEVICE: Speci�cation

DEVICE

REC(Open(id))

R
E
C
(
O
p
e
n
(
i
d
)
)

REC(Close(id))

Open(id,knd)

Closed(id,knd)

XX(id,knd)

R
E
C
(
C
l
o
s
e
(
i
d
)
)

knd: DEVICE_KIND

TAKEN(device)

REC(order)

id: DEVICE IDENTIFIER

ORDER

TAK
EN(

Clo
sed

(id
,kn

d))

TAKEN(Open(id,knd))
TAKEN(XX(id,knd))

TAKEN(Open(id,knd))

TAKEN(Close(id,knd))

28

DEVICES: Activity

o: ORDER DEVICE KIND

ds1: DEVICE 1

dsn: DEVICEn

ds2: DEVICE2

REC(o) &
TAKEN(ds2|...|dsn)

.

.

.

TAKEN(ds1)

TAKEN(ds2)

TAKEN(dsn)

REC(o)

TAKEN(ds2)

TAKEN(dsn)

TAKEN(ds1|...|dsn)
. . .

. . .

Initial States

Initial

.

.

.

ORDER DEVICE KIND

Initial

29

AUTOMATISM.PHASE 2.step 1: Speci�cation

Structure & Interactions

Ta receive the request to perform an operation and
to monitor the station components.

To send an order to a device and to monitor the
station components.

ORDERDEVICES MESSAGE

STATION SCHEMA OPERATION BAR

To signal the result of the execution of an operation
(a message) and to monitor the station components.

To monitor the station components (the bars and the)show
grestore
gsave
180 188 translate 1 -1 scale 0 0 moveto
0 setgray
(devices componing the units)

To halt the station

It checks the device
positions and operates

them accordingly to the
received requests.

ORDERDEVICES MESSAGE

STATION SCHEMA OPERATION BAR

SIGNAL(message) & MONITOR(devices,bar,bar)

RECEIVE_REQ(operation) &
MONITOR(devices,bar,bar)

SEND(order) & MONITOR(devices,bar,bar)

MONITOR(devices,bar,bar)

HALT

30

AUTOMATISM.PHASE 2.step 1: States

** checks if the automatism is in an initial state
pr Initial: automatism

** given an automatism returns the schema of the handled station
op Schema: automatism -> station_schema

** checks if the automatism is executing (an operation)
pr Executing: automatism

** returns the recorded position of a device, if any
op Device_Position: device_ident automatism -> position partial

** checks if the automatism has detected a failure in the station
pr Failure: automatism

STATION_SCHEMADEVICES

31

AUTOMATISM.PHASE 2.step 1: Activity

** checks whether a functional unit is connected to a failed bar
op On_Failed_Bar: fun_unit_ident station_schema bar bar
ax if On_BarA(fid,sch) then On_Failed_Bar(fid,sch,KO,bb)
ax if On_BarB(fid,sch) then On_Failed_Bar(fid,sch,ba,KO)

Initial

if Initial(a) then
 - if OK(Device_Position(id,a)) then Device_Position(id,a)=OP
 - not Executing(a)

Schema

** The station schema does not change
if a -- l --> a’ then Schema(a)=Schema(a’)

Failure

** If the automatism has detected a failure in the station, then in any case it
** signals that the station is going to halt and after stops
if Failure(a) then
 a in any case <HALT> and after [not exists y, x’: x -- y --> x’]

** If a device is in position XX, then there is a failure in the station
if Device_Position(id,a)=XX then Failure(a)

** If the automatism has sent to a device the order of opening and sees that it
** is not open, then there is a failure in the station
if a at least in a case P<SEND(Open(id))> and
 a -- ... & MONITOR(ds,ba,bb) --> a’ and not Device_Position(id,a’) = OP then
 Failure(a’)

** If the automatism has sent to a device the order of closing and sees that it
** is not closed, then there is a failure in the station
if a at least in a case P<SEND(Close(id))> and
 a -- ... & MONITOR(ds,ba.bb) --> a’ and not Device_Position(id,a’)=CL then
 Failure(a’)

** If a device changes position without receiving an order, then there is a
** failure in the station
if a -- la --> a’ and Device_Position(id,a’)=/=Device_Position(id,a) and
 forall ds, ba,bb: la=/=SEND(Open(id)) & MONITOR(ds,ba,bb) and
 la=/=SEND(Close(id)) & MONITOR(ds,ba,bb) then
 Failure(a’)

** If the automatism receives an operation request for an unit connected
** to a failed bar, then there will be a failure in the station
if a -- RECEIVE_REQ(Opr(fid,up)) & MONITOR(ds,ba,bb) --> a’ and
 On_Failed_Bar(fid,Schema(a),ba,bb) then
 Failure(a)

** If the automatism monitors the plant seeing that a device id has position p,
** then the recorded position of id is p

if a -- la --> a’ and
 (la=MONITOR(ds,ba,bb) or la=SEND(0) & MONITOR(ds,ba,bb) or)show
grestore
gsave
44 739 translate 1 -1 scale 0 0 moveto
0 setgray
(la=RECIVE_REQ(opr) & MONITOR(ds,ba,bb)) and

 (Br(id,p) In ds or Is(id,p) In ds) then
Device_Position(id,a’) = p

Device_Position

32

** If the automatism monitors the plant and receives the request of opening
** an open functional unit, then in any case eventually either it signals
** that the required operation is useless or there will be a failure in the
** station
if a -- RECEIVE_REQ(Opr(fid,Open)) & MONITOR(ds,ba,bb) --> a’ and
 Unit_Position(Schema(a),ds,fid) = Open then
 a’ in any case
 eventually <exists ds,ba,bb: SIGNAL(Useless) & MONITOR(ds,ba,bb)>
 or
 eventually [Failure(x)]

** If the automatism monitors the plant and receives the request of opening
** a closed Ae, then in any case eventually either it orders to the isolator
** of opening and after signals that the operation has been completed or
** there will be a failure in the station
if a -- RECEIVE_REQ(Opr(fid,Open)) & MONITOR(ds,ba,bb) --> a’ and
 Kind(Schema(a),fid) = Ae and Unit_Position(Schema(a),ds,fid) = Closed then
 a’ in any case
 eventually
 <exists ds,ba,bb:
 l = SEND(Open(Isolator(Schema(a),fid))) & MONITOR(ds,ba,bb)>
 and after <exists ds,ba,bb: SIGNAL(Completed) & MONITOR(ds,ba,bb)>
 or
 eventually [Failure(x)]

** If the automatism monitors the station components and receives the request
** of opening a closed Dd, then in any case eventually either it orders to the
** breaker of fid of opening, after to the isolator on the bar A of fid of
** opening, after orders to the isolator on bar B of fid of opening and after
** signals that the operation has been completed or there will be a failure in
** the station
if a -- RECEIVE_REQ(Opr(fid,Open)) & MONITOR(ds,ba,bb) --> a’ and
 Kind(Schema(a),fid) = Dd and Unit_Position(Schema(a),ds,fid) = Closed then
 a’ in any case
 eventually
 <exists ds,ba,bb: l=SEND(Open(Breaker(Schema(a),fid))) & MONITOR(ds,ba,bb)>
 and after
 <exists ds,ba,bb:
 l=SEND(Open(Isolator_On_A(Schema(a),fid))) & MONITOR(ds,ba,bb)>
 and after
 <exists ds,ba,bb:
 l=SEND(Open(Isolator_On_B(Schema(a),fid))) & MONITOR(ds,ba,bb)>
 and after <SIGNAL(Completed)>
 or eventually [Failure(x)]

Executing

** If the automatism is executing and becomes not executing, then it signals
** the end of an operation
if a -- l --> a’ and Executing(a) and not Executing(a’) then
 exists ds,ba,bb,m: l = SIGNAL(m) & MONITOR(ds,ba,bb)

** If the automatism is not executing and become executing, then it receives an
** operation request
if a -- l --> a’ and not Executing(a) and Executing(a’) then
 exists opr,ds,ba,bb: l = RECEIVE_REQ(opr) & MONITOR(ds,ba,bb)

RECEIVE_REQ

33

RECEIVE_REQ

** If the automatism monitors the station components and receives the request
** of closing on bar A an Fa closed on bar B, and there exists a closing path
** made by a closed Dd, then in any case eventually either it orders to the
** isolator on A of closing, after orders to the isolator on B of opening,
** after signals that the operation has been completed or there will be a
** failure in the station
if a -- RECEIVE_REQ(Opr(fid,Close_On_A)) & MONITOR(ds,ba,bb) --> a’ and
 Kind(Schema(a),fid) = Fa and Unit_Position(Schema(a),ds,fid) = Close_On_B
 and Find_Closing_Path(Schema(a),fid,ds) = ClosedDd then
 a’ in any case eventually
 <exists ds,ba,bb:
			 l = SEND(Close(Isolator_On_A(Schema(a),fid))) & MONITOR(ds,ba,bb)>
 and after
 <exists ds,ba,bb:
		 l = SEND(Open(Isolator_On_B(Schema(a),fid))) & MONITOR(ds,ba,bb)>
 and after
 <SIGNAL(Completed)>
 or eventually [Failure(x)]

** If the automatism monitors the station components and receives the request
** of closing on bar A an Fa closed on bar B and there exists a closing path
** made by the open Dd fid’, then in any case eventually
** either it orders to the breaker of fid’ of closing, after
** orders to the isolator on bar A of fid’ of closing, after
** orders to the isolator on bar B of fid’ of closing, after
** orders to the isolator on A of fid of closing, after
** orders to the isolator on B of fid of opening and
** signals that the operation has been completed or
** there will be a failure in the station
if a -- RECEIVE_REQ(Opr(fid,Close_On_A)) & MONITOR(ds,ba,bb) --> a’ and
 Kind(Schema(a),fid) = Fa and
 Unit_Position(Schema(a),ds,fid) = Close_On_B and
 Find_Closing_Path(Schema(a),fid,ds) = OpenDd(fid’) then
 a’ in any case eventually
 <exists ds,ba bb:
 l = SEND(Close(Breaker(Schema(a),fid’))) & MONITOR(ds,ba,bb)>
 and after
 <exists ds,ba,bb:
 l = SEND(Close(Isolator_On_A(Schema(a),fid’))) & MONITOR(ds,ba,bb)>
 and after
 <exists ds,ba,bb:
 l = SEND(Open(Isolator_On_A(Schema(a),fid’))) & MONITOR(ds,ba,bb)>
 and after
 <exists ds,ba,bb:
 l = SEND(Close(Isolator_On_A(Schema(a),fid))) & MONITOR(ds,ba,bb)>
 and after
 <exists ds,ba,bb:
 l = SEND(Open(Isolator_On_B(Schema(a),fid))) & MONITOR(ds,ba,bb)>
 and after
 <SIGNAL(Completed)>
 or eventually [Failure(x)]

34

** If the automatism monitors the station components and receives the request
** of closing on bar A an Fa, sees that it is closed on bar B and there exists
** no closing path, then in any case eventually either it signals that the
** required operation is impossible or there will be a failure in the station
if a -- RECEIVE_REQ(Opr(fid,Close_On_A)) & MONITOR(ds,ba,bb) --> a’ and
 Kind(Schema(a),fid) = Fa and and
 Unit_Position(Schema(a),ds,fid) = Close_On_B and
 Find_Closing_Path(Schema(a),fid,ds) = None then
 a’ in any case
 eventually <SIGNAL(Impossible)> or eventually [Failure(x)]

35

** given the schema of the devices of a functional unit and the states of the
** devices, returns the functional unit position
op Position: devices_schema devices -> unit_position

** The position of an Ae is equal to that of its isolator
ax if Open(id,Is) In ds then Position(Ae(id),ds) = Open
ax if Closed(id,Is) In ds then Position(Ae(id),ds) = Close
ax if XX(id,Is) In ds then Position(Ae(id),ds) = Broken

** The position of a Dd whose devices are all open is open
ax if Open(id1,Br)|Open(id2,Is)|Open(id3,Is) SubEq ds then
 Position(Dd(id1,id2,id3),ds) = Open

** The position of a Dd whose devices are all closed is closed
ax if Closed(id1,Br)|Closed(id2,Br)|Closed(id3,Is) SubEq ds then
 Position(Dd(id1,id2,id3),ds) = Close

** If a device is broken then the position of a Dd is broken
ax if XX(id1,Br) In ds then Position(Dd(id1,id2,id3),ds) = Broken
ax if XX(id2,Is) In ds then Position(Dd(id1,id2,id3),ds) = Broken
ax if XX(id3,Is) In ds then Position(Dd(id1,id2,id3),ds) = Broken

** In any other case the position of a Dd is moving
ax if Open(id1,Br)|Closed(id2,Br) SubEq ds then Position(Dd(id1,id2,id3),ds) = OO
ax if Open(id1,Br)|Closed(id3,Is) SubEq ds then Position(Dd(id1,id2,id3),ds) = OO
ax if Closed(id1,Br)|Open(id2,Is) SubEq ds then Position(Dd(id1,id2,id3),ds) = OO
ax if Closed(id1,Br)|Open(id3,Is) SubEq ds then Position(Dd(id1,id2,id3),ds) = OO

** The position of an Fa whose devices are all open is open
ax if Open(id1,Is)|Open(id2,Br)|Open(id3,Is)|Open(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = Open

** The position of an Fa whose isolator is closed, the breaker is closed, the
** isolator on bar A is closed and that on bar B is open, is closed on bar A
ax if Closed(id1,Is)|Closed(id2,Br)|Closed(id3,Is)|Open(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = Closed_On_A

** The position of an Fa whose isolator is closed, the breaker is closed, the
** isolator on bar B is closed and that on bar A is open, is closed on bar B
ax if Closed(id1,Is)|Closed(id2,Br)|Open(id3,Is)|Closed(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = Closed_On_B

** If a device is broken then the position of an Fa is broken
ax if XX(id1,Is) In ds then Position(Fa(id1,id2,id3,id4),ds) = Broken
ax if XX(id2,Br) In ds then Position(Fa(id1,id2,id3,id4),ds) = Broken
ax if XX(id3,Is) In ds then Position(Fa(id1,id2,id3,id4),ds) = Broken
ax if XX(id4,Is) In ds then Position(Fa(id1,id2,id3,id4),ds) = Broken

ax if Open(id1,Is)|Closed(id3,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = OO
ax if Open(id1,Is)|Closed(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = OO
ax if Open(id2,Br)|Closed(id3,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = OO
ax if Open(id2,Br)|Closed(id3,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = OO
ax if Closed(id1,Is)|Open(id3,Is)|Open(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = OO
ax if Closed(id2,Br)|Open(id3,Is)|Open(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = OO
ax if Closed(id1,Is)|Closed(id2,Br)|Closed(id3,Is)|Closed(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds) = OO

36

** Find_Closing_Path given a station schema, a devices state and the identifier
** of an Fa fid says whether either for fid no closing path exists, a closing
** path made by an open or by a closed Dd exists
op Find_Closing_Path: station_schema unit_ident devices -> answer

** Find_Closing_Path returns closed Dd iff there exists a closed Dd	on the same
** bar section of idfa
ax Find_Closing_Path(sch,fida,ds)=ClosedDd iff
 exists fid: Position(sch,ds,fid)=Open and Kind(sch,fid)=Dd and
		 SameSection(sch,idfa,fid,ds)

** Find_Closing_Path returns a path made by an open Dd fid iff fid is an open
** Dd on the same bar section of idfa and there does not exist a closed Dd on
** the same bar setion of idfa
ax Find_Closing_Path(sch,fida,ds)=OpenDd(fid) iff
 (Position(sch,ds,fid)=Open and Kind(sch,fid)=Dd and)
 SameSection(sch,idfa,fid) and
 not exists fid’:
 (Position(sch,ds,fid’)=Open and Kind(sch,fid’) and)
 ((SameSection(Schema(st),idfa,fid’)))

** Find_Closing_Path returns that no closing path exist iff there does not exist
** a Dd on the same bar setion of idfa
ax Find_Closing_Path(sch,fida,ds)=None iff
 not exists fid’: (Is_Dd(st,fid’) and SameSection(Schema(st),idfa,fid’))

cn None, ClosedDd: answer
op OpenDd: unit_ident -> answer

** checks whether two units are on the same bar section in a station
pr SameSection: station_schema unit_ident unit_ident

ax if fid =/= fid1 and fid =/= fid2 and SameSection(sch,fid1,fid2,ds) then
 SameSection(Fu(fid,dsch) & sch,fid1,fid2,ds)
ax if Connect(sch,fid,ds) then
 SameSection(<Fu(fid,dsch)> & sch,fid,fid’,ds)
ax if Connect(sch,fid,ds) then
 SameSection(<Fu(fid,dsch)> & sch,fid’,fid,ds)
ax if SameSection(sch,fid1,fid2,ds) then
 SameSection(<fus1 fus2> & sch,fid1,fid2,ds)

** checks whether there is no cut before a given functional unit in a
** station
pr Connect: station_schema fun_unit_ident devices

ax if fid =/= fid’ and Connect(sch,fid’,ds) then
 Connect(<Fu(fid,dsch)> & sch,fid’,ds)
ax Connect(<Fu(fid,dsch)> & sch,fid,ds)
ax if Position(Ae(id1),ds)=Open and Position(Ae(id2),ds)=Open and
 Connect(sch,fid,ds) then
 Connect(<Fu(fid1,Ae(id1)) Fu(fid2,Ae(id2))> & sch,fid,ds)

** Given a station schema, the states of the devices and a functional unit
** identifier returns the position of such unit
op Unit_Position: station_schema devices unit_ident -> unit_position

ax Unit_Position(E,ds,fid)=OO
ax Unit_Position(<FU(fid,dsch)> & sch,ds,fid)=Position(dsch,ds)
ax if fid =/= fid’ then
 Unit_Position(<FU(fid’,dsch)> & sch,ds,fid)=Unit_Position(sch,ds,fid)
ax Unit_Position(<FU(fid,dsch1) FU(fid2,dsch2)> & sch,ds,fid)=
 Position(dsch1,ds)
ax Unit_Position(<FU(fid1,dsch1) FU(fid,dsch2)> & sch,ds,fid)=
 Position(dsch2,ds)
ax if fid =/= fid1 and fid =/= fid2 then
 Unit_Position(<FU(fid1,dsch1) FU(fid2,dsch2)> & sch,ds,fid)=
 Unit_Position(sch,ds,fid)

37

STATION.PHASE 2.step 1: Activity

bb: BAR

ds: DEVICES

AUTOMATISM

ba: BAR

H
A
L
T

TAKEN(ds)

MONITOR(ds,ba,bb)

REC(o) & TAKEN(ds)

SEND(o) &
MONITOR(ds,ba,bb)

SIGNAL(m)

SIGNAL(m) &
MONITOR(ds,ba,bb)

TAKEN(ds)

RECEIVE_REQ(opr)

RECEIVE_REQ(opr) &
MONITOR(ds,ba,bb)

TAKEN(ds)

KO_BAR_A

KO_BAR_B

K
o

K
o

H
A
L
T

UNIT IDENTIFIER UNIT POSITION

STATION SCHEMAo: ORDER

DEVICE IDENTIFIER DEVICE POSITION DEVICE_KIND

UNIT KIND

m: MESSAGEopr: OPERATION

38

STATION.PHASE 2.step 2

At this level we specify the stations handled by the automatism designed by ENEL; since

the automatism was the only part given by a requirement speci�cation in PHASE 2.step 1, in

this step we just give its design speci�cation.

STATION.PHASE 2.step 2: Natural Description

Task of the automatism The automatism has the task of collecting information from the

devices, of interpreting them for determining the positions of the corresponding functional

units and of managing such devices to perform the operations required by the operator. The

automatism must have a representation of the situation of the station, which evolves dynami-

cally following the variations of situations of the physical system. Such representation contains

information on the station topology and on the composing functional units.

Structure of the automatism The automatism is made by the console, the coordinator,

the bar managers and the functional unit managers.

The console is the interface of the automatism towards the operator, while the bar and

functional unit managers are those towards the station components; each functional unit man-

ager is associated with a functional unit, of whom memorizes the current position depending

on the positions of the component devices, and to whom sends the operations required by the

operator.

The coordinator supervises the management activity, verifying the practicability of the

operations; to do that it analyses the topology of the station and the positions of the functional

units (information present in the functional unit managers).

Activity of the automatism When the automatism is started, each functional unit manager

begins to monitor the devices of the associate functional unit; if it detects a failure, the console

is informed and the station stops. The failures of the bars have no immediate e�ect: the station

stops when someone attempts to perform an operation on a functional unit connected to a failed

bar.

If the operator requires an operation, the console sends it to the manager of the selected

functional unit, which, if the functional unit is not already in the required position, requires the

authorization to the coordinator and, if it receives an a�rmative answer, translates the opera-

tion in orders for the single devices composing the functional unit; afterwards it communicates

to the coordinator the result of the operation.

Since the operations must be done in sequential way, the console cannot receive a request

from the moment of sending an operation until it receives the message about the result of the

same.

In the case of bar exchange operation, the coordinator after having looked for the closing

path, if the operation is impossible, then it informs directly the console and denies the autho-

rization to the involved Fa; if it is needed to close a path, then it sends the closing operation

39

to the manager of the Dd to be used for such operation, and when it receives the message that

the operation has been successfully completed, it gives the authorization to the execution of

the bar exchange to the Fa that have required it.

Components

Console The console is the interface of the automatism towards the operator; it �lters the

requests of operations from the operator and send them to the functional unit managers. More-

over it receives from the coordinator and from the functional unit managers messages about the

station functioning and communicates them to the operator. To perform its activity the console

needs some information; in particular it must know: which operation request has received from

the operator and the messages received by the other components of the automatism.

Managers Each functional unit present in the station is controlled by a manager which

is the interface between the functional unit itself and the automatism. These managers have

two tasks:

{ to check that the devices of the associate functional unit keep their positions, sending a

failure signal to the coordinator and to the console otherwise;

{ to interpret the operations received either from the console or from the coordinator and

managing the devices of the associate functional unit to reach the required position.

When a manager receives an operation, it checks the positions of the devices of the associate

functional unit obtaining by them the position of the functional unit itself; if this is equal to

that required it informs the console that the operation is useless, otherwise, if the operation

arrives from the console, it requires to the coordinator the authorization for its execution and,

if it receives an a�rmative answer, it translates the operation into a sequence of orders for the

single devices realizing it; at the end it checks the position reached by the functional unit and

communicates the result to the coordinator.

For the managers of functional unit of kind Fa, the operation close on bar A (respectively

on bar B) has di�erent interpretation depending on the functional unit position: if it is open,

then there is the simple closing, if it is closed on bar B (respectively on bar A), there is the bar

exchange.

Coordinator The coordinator has the task of managing the activity of the functional

units (through their managers), depending on the operation required by the operator by means

of the console, and on the information on the situation of the station obtained by combining

those known from the managers (current situations of the various units and bars), with those

contained in the schema (topology of the station). Moreover it transmits to the console the

messages about to the result of the operation. Another task of the coordinator is the control

of the situation of the station: if it �nds a failure, then it orders to all managers and to the

console the end of the activity.

When the coordinator receives from a manager the authorization request for executing an

operation on a functional unit, then this is ready for such execution, i.e., it is not already in

the required position and there are not failures in the station.

40

The coordinator manages in di�erent way the three kinds of operations: opening, closing

and bar exchange.

In each case it checks that the operation is valid, i.e., that the bars connected to the

functional unit to be used are not failed; to do that it reads in the corresponding managers

the situations of the involved bars and if one of them is failed, it informs the console and all

managers that there is a failure.

In the case of closing on a bar of a functional unit of kind Fa, the coordinator must determine

if the operation is either of bar exchange or of closing; to do that it checks the situation of such

Fa (reading it in the corresponding manager).

For the bar exchange operation, it must analyze the schema for determining the closing

path:

{ if there is already a closed Dd, it allows the operation;

{ if it is needed to close a proper or not proper Dd but electrically connected, i.e., such that

the isolators that divides the pieces of bar of the Fa and of the Dd are closed, it orders

to the Dd to close and, after that, allows the operation of the Fa;

{ if it is needed to close a not proper Dd and not electrically connected, it does not allow

the operation of the Fa and informs the console that it is needed to close an Ae.

41

AUTOMATISM.PHASE 2.step 2: Speci�cation

Structure & Interactions

The coordinator has the task of managing the activity of
the functional units (through their managers), depending
on the operation required by the operator by means of the
console, and on the information on the situation of the
station obtained by combining those known from the
managers (current situations of the various units and bars),
with those contained in the schema (station topology).
Moreover it transmits to the console the messages about
to the result of the operation. Another task of the
coordinator is the control of the situation of the station: if
it finds a failure, then it orders to all managers and to the
console the end of the activity.

Ta receive an operation request and to monitor the
station components.

To send an order to a device and to monitor the
station components.

ORDERDEVICES MESSAGE

STATION SCHEMA OPERATION BAR

To signal the result of the execution of an operation
(a message) and to monitor the station components.

To monitor the station components (the bars and)show
grestore
gsave
180 188 translate 1 -1 scale 0 0 moveto
0 setgray
(the devices componing the units)

To halt the station

COORDINATOR

CONSOLE

MANAGERS

The interface of the automatism towards the operator; it
filters the requests of operations from the operator and
send them to the functional unit managers. Moreover it
receives from the coordinator and from the managers
messages about the station functioning and
communicates them to the operator.

They are the interface of the automatism towards the
functional units and the bars.

TOPOLOGY

A description of the station structure
in terms of functional units.

42

TOPOLOGY

COORDINATOR

CONSOLE

MANAGERS

MONITOR(devices,bar,bar)

SEND(order) & MONITOR(devices,bar,bar)

RECEIVE_REQ(operation) &
MONITOR(devices,bar,bar)

HALT

ORDERDEVICES MESSAGE

STATION SCHEMA OPERATION BAR

SIGNAL(message) & MONITOR(devices,bar,bar)

43

AUTOMATISM.PHASE 2.step 2: Basic Data Structures

** given a topology return the part on the right and on the left of a
** functional unit respectively
op RPart, LPart: topology unit_ident -> topology

ax RPart(Fa(fid) & tp,fid) = tp
ax RPart(Dd(fid) & tp,fid) = tp
ax RPart(Ae(fid1,fid) & tp,fid) = tp
ax RPart(Ae(fid,fid1) & tp,fid) = tp
ax if fid =/= fid1 then RPart(Fa(fid1) & tp,fid) = RPart(tp,fid)
ax if fid =/= fid1 then RPart(Dd(fid1) & tp,fid) = RPart(tp,fid)
ax if fid =/= fid1 and fid =/= fid2 then
 RPart(Ae(fid1,fid) & tp,fid) = RPart(tp,fid)
ax LPart(tp,fid) = LPart1(tp,fid,E)

 op LPart1: topology unit_ident topology -> topology
 ax LPart1(Dd(fid) & tp,fid,tp1) = tp1
 ax LPart1(Fa(fid) & tp,fid,tp1) = tp1
 ax LPart1(Ae(fid1,fid) & tp,fid,tp1) = tp1
 ax LPart1(Ae(fid,fid1) & tp,fid,tp1) = tp1
 ax if fid =/= fid1 then
 LPart1(Fa(fid1) & tp,fid,tp1) = LPart1(tp,fid,Fa(fid1) & tp1)
 ax if fid =/= fid1 then
 LPart1(Dd(fid1) & tp,fid,tp1) = LPart1(tp,fid,Dd(fid1) & tp1)
 ax if fid =/= fid1 and fid =/= fid2 then
 LPart1(Ae(fid1,fid2) & tp,fid,tp1) = LPart1(tp,fid,Ae(fid1,fid2) & tp1)

TOPOLOGY (continues)

UNIT IDENTIFIER

** The station topology, i.e. a description of the station structure in terms of
** functional units

cn E: topology ** empty station topology
op Fa(_) & _: unit_ident topology -> topology
op Dd(_) & _: unit_ident topology -> topology
op Ae(_, _) & _: unit_ident unit_ident topology -> topology

UNIT KIND

** given a station topology and a functional unit identifier returns its kind
op Kind: topology unit_ident -> kind (partial)

ax Kind(Ae(fid,fid1) & tp,fid) = Ae
ax Kind(Ae(fid,fid1) & tp,fid1) = Ae
ax Kind(Dd(fid) & tp,fid) = Dd
ax Kind(Fa(fid) & tp,fid) = Fa
ax if fid =/= fid1 then Kind(Dd(fid) & tp,fid1) = Kind(tp,fid1)
ax if fid =/= fid1 then Kind(Fa(fid) & tp,fid1) = Kind(tp,fid1)
ax if fid =/= fid1 and fid =/= fid2 then
 Kind(Ae(fid1,fid2) & tp,fid) = Kind(tp,fid)

44

** given a station topology checks whether in such topology a functional unit
** is connected to a bar
pr On_BarA, On_BarB: unit_ident topology

ax On_BarA(uid,Fa(uid) & tp)
ax On_BarA(uid,Dd(uid) & tp)
ax On_BarA(uid,Ae(uid,uid1) & tp)
ax if On_BarA(uid,tp) then On_BarA(uid,Fa(uid1) & tp)
ax if On_BarA(uid,tp) then On_BarA(uid,Dd(uid1) & tp)
ax if On_BarA(uid,tp) then On_BarA(uid,Ae(uid1,uid2) & tp)

ax On_BarB(uid,Fa(uid) & tp)
ax On_BarB(uid,Dd(uid) & tp)
ax On_BarB(uid,Ae(uid1,uid) & tp)
ax if On_BarB(uid,tp) then On_BarA(uid,Fa(uid1) & tp)
ax if On_BarB(uid,tp) then On_BarA(uid,Dd(uid1) & tp)
ax if On_BarB(uid,tp) then On_BarA(uid,Ae(uid1,uid2) & tp)

TOPOLOGY (end)

tp tp1: topology uid uid1 uid2: unit_ident

45

CONSOLE: Speci�cation

To send to the
opertor a message
about the result of
the execution of an
operation.

ready

executing an
operation

stopped

waiting for the
result of an
operation execution

knowing that there
is a failure in
the station

Forwarding a message about the
result of the execution of an
operation.

r
e
c
e
i
v
e
s

a

r
e
q
u
e
s
t

o
f

e
x
e
c
u
t
i
n
g

a
n

o
p
e
r
a
t
i
o
n

receives a message about a failure in

the station

i
n
f
o
r
m
s

a
b
o
u
t

a

f
a
i
l
u
r
e

i
n

t
h
e

s
t
a
t
i
o
n

f
o
r
w
a
r
d
s

a
n

o
p
e
r
a
t
i
o
n

r
e
q
u
e
s
t

r
e
c
e
i
v
e
s

a

m
e
s
s
a
g
e

a
b
o
u
t

t
h
e

r
e
s
u
l
t

o
f

a
n

o
p
e
r
a
t
i
o
n

e
x
e
c
u
t
i
o
n

re
ce
iv
es
 a
 m
es
sa
ge
 a
bo
ut
 a

fa
il
ur
e
in
 t
he
 s
ta
ti
on

s
e
n
d
s

a

m
e
s
s
a
g
e

a
b
o
u
t

t
h
e

r
e
s
u
l
t

o
f

a
n

o
p
e
r
a
t
i
o
n

OPERATION MESSAGE

receives a message about a

failure in the station

receives a message
about a failure

To receive the request
of executing an
operation from the
operator.

To forward to the
unit managers an
operation request.

To receive a message
about the result of
the execution of an
operation from the
unit managers.

To inform the operator
of a failure in the
station.

46

Ready

Executing(opr)

Stop

Waiting Failure

Forwarding(m)
R
E
C
E
I
V
E
_
R
E
Q
(
o
p
r
)

RECEIVE_MES(Failure)

F
A
I
L
U
R
E

F
O
R
W
A
R
D
(
o
p
r
)

R
E
C
E
I
V
E
_
M
E
S
S
A
G
E
(
m
)

RE
CE
IV
E_
ME
S(
Fa
il
ur
e)

S
E
N
D
_
M
E
S
S
A
G
E
(
m
)

OPERATIONopr: MESSAGEm:

RECEIVE_MES(Failure)

RECEIVE_MES(Failure)

RECEIVE_REQ(operation)

FORWARD(operation)

RECEIVE_MES(message)

FAILURE

SEND_MESSAGE(message)

47

MANAGERS: Speci�cation

To receive the negation to execute the
received operation and monitor the
devices and the bars

To receive the request to execute an
operation and monitor the devices and
the bars

To receive the authorization to
execute the received operation and
monitor the devices and the bars

To send an order to a device and
monitor the devices and the bars

BAR MANAGER

BAR MANAGER

 MANAGER

 MANAGER

.

.

.

1

n

To monitor the devices and the bars

To inform about the result of the
execution of the received operation
and monitor the devices and the bars

To require the authorization to
execute the received operation and
monitor the devices and the bars

ORDER DEVICES OPERATION BAR

Manager messages: there is a failure, the required operation is useless/has been executed.

M_MESSAGE

NO_AUTHOR & MONITOR(devices,bar,bar)

BAR MANAGER

BAR MANAGER

 MANAGER

 MANAGER

.

.

.

1

n

MONITOR(devices,bar,bar)

SEND(order) & MONITOR(devices,bar,bar)

REC_OPER(operation) &
MONITOR(devices,bar,bar)

INFORM(m_message) & MONITOR(devices,bar,bar)

REQUIRE_AUTHOR(operation) &
MONITOR(devices,bar,bar)

ORDER DEVICES OPERATION BAR

enum: Failure, Useless, Executed

M_MESSAGE

OK_AUTHOR & MONITOR(devices,bar,bar)

48

MANAGER: Speci�cation

Structure & Interactions

To require the authorization to execute the
received operation and monitor the unit devices

To receive the negation to the execution of the
received operation and monitor the unit devices

To receive the request to execute an operation
on the unit

To receive the authorization to execute the
received operation and monitor the unit devices

To send an order to a device and monitor the
unit devices

To monitor the unit devices

To inform about the result of the execution of
the received operation and monitor the unit
devices

DEVICES SCHEMA DEVICES

OPERATION

ORDERS

Lists of orders.

M_MESSAGE
ORDER

The interface of the automatism
towards a functional units.

49

DEVICES SCHEMA DEVICES

OPERATIONORDER

ORDERS

LIST

M_MESSAGE

NO_AUTHOR & MONITOR(devices)

MONITOR(devices)

SEND(order) & MONITOR(devices)

REC_OPER(operation)

INFORM(m_message) & MONITOR(devices)

REQUIRE_AUTHOR(operation) &
MONITOR(devices)

OK_AUTHOR & MONITOR(devices)

50

MANAGER: Activity

Executing(fid,dsch,up,up’)

NoFailure(dsch,up,ds)
and up=/=up’

Failure(dsch,up,ds)

NoFailure(dsch,up,ds)
and up=up’

Ordering(fid,dsch,up,up’,ol) Position(dsch,ds)=Broken{

Ordering(fid,dsch,up,up’,o ^ol) Position(dsch,ds)=/=Broken{

Ready(fid,dsch,up)
NoFailure(dsch,up,ds)

Failure(dsch,up,ds)

{

MONITOR(ds)

INFORM(Useless) & MONITOR(ds)

Waiting_Author(fid,dsch,up,up’)
NoFailure(dsch,up,ds)

Failure(dsch,up,ds){

REQUI
RE_AU

THOR(
Opr(f

id,up
’)) &

 MONI
TOR(d

s)

NO_AUTHOR & MONITOR(ds)

I
N
F
O
R
M
(
F
a
i
l
u
r
e
)

&

M
O
N
I
T
O
R
(
d
s
)

Ordering(fid,dsch,up,up’,OrderList(dsch,up,up’))

SEND(o) & MONITOR(ds)

REC
_OP

ER(
Opr

(fi
d,u

p’)
)

Position(dsch,ds)=/=up’
Ordering(fid,dsch,up,up’,Empty)

Position(dsch,ds)=up’

{

ol: ORDERS

o: ORDER

dsch: DEVICES SCHEMA

ds: DEVICES
up,up’: UNIT POSITION

fid: UNIT IDENTIFIER

MONITOR(ds)

INFORM(Executed) & MONITOR(ds)

Stop

opr: OPERATION

M_MESSAGE

OK_AUTHOR & MONITOR(ds)

51

** given the schema of a functional unit and the set of the states of its
** devices returns its position
op Position: devices_schema devices -> unit_position partial

** The position of an Ae is equal to that of its isolator
ax if Open(id,Is) In ds then Position(Ae(id),ds)=Open
ax if Closed(id,Is) In ds then Position(Ae(id),ds)=Close
ax if XX(id,Is) In ds then Position(Ae(id),ds)=Broken

** The position of a Dd whose devices are all open is open
ax if Open(id1,Br) | Open(id2,Is) | Open(id3,Is) SubEq ds then
 Position(Dd(id1,id2,id3),ds)=Open

** The position of a Dd whose devices are all closed is closed
ax if Closed(id1,Br) | Closed(id2,Br) | Closed(id3,Is) SubEq ds then
 Position(Dd(id1,id2,id3),ds)=Close

** If a device is broken then the position of a Dd is broken
ax if XX(id1,Br) In ds then Position(Dd(id1,id2,id3),ds) = Broken
ax if XX(id2,Is) In ds then Position(Dd(id1,id2,id3),ds) = Broken
ax if XX(id3,Is) In ds then Position(Dd(id1,id2,id3),ds) = Broken

** The position of an Fa whose devices are all open is open
ax if Open(id1,Is) | Open(id2,Br) | Open(id3,Is) | Open(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds)=Open

** The position of an Fa whose isolator is closed, the breaker is closed, the
** isolator on bar A is closed and that on bar B is open, is closed on bar A
ax if Closed(id1,Is)|Closed(id2,Br)|Closed(id3,Is)|Open(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds)=Close_On_A

** The position of an Fa whose isolator is closed, the breaker is closed, the
** isolator on bar B is closed and that on bar A is open, is closed on bar B
ax if Closed(id1,Is)|Closed(id2,Br)|Open(id3,Is)|Closed(id4,Is) SubEq ds then
 Position(Fa(id1,id2,id3,id4),ds)=Close_On_B

** If a device is broken then the position of an Fa is broken
ax if XX(id1,Is) In ds then Position(Fa(id1,id2,id3,id4),ds)=Broken
ax if XX(id2,Br) In ds then Position(Fa(id1,id2,id3,id4),ds)=Broken
ax if XX(id3,Is) In ds then Position(Fa(id1,id2,id3,id4),ds)=Broken
ax if XX(id4,Is) In ds then Position(Fa(id1,id2,id3,id4),ds)=Broken

** checks if there is/is not is a failure in the managed functional unit
pr Failure, No_Failure: devices_schema unit_position devices

ax	if Position(dsch,ds) =/= Broken and Position(dsch,ds) = up then
 No_Failure(dsch,up,ds)
ax	if Position(dsch,ds) = Broken then Failure(dsch,up,ds)
ax	if Position(dsch,ds) =/= up then Failure(dsch,up,ds)

auxiliary (continues)

52

** given the schema a functional unit, its position and the position to reach,
** returns the list of the	orders to be sent to its devices
op Order_List: devices_schema unit_position unit_position -> orders

** The order corresponding to an operation on an Ae is go to the required
** position
ax Order_List(Ae(id),up,Open) = Open(id) Empty
ax Order_List(Ae(id),up,Close) = Close(id) Empty

** The orders corresponding to opening a Dd are: open the breaker, the isolator
** on bar A and the isolator on bar B
ax Order_List(Dd(id1,id2,id3),up,Open) = Open(id1) Open(id2) Open(id3) Empty

** The orders corresponding to closing a Dd are: close the isolator on bar B,
** the isolator on bar A and the breaker
ax Order_List(Dd(id1,id2,id3),up,Close) = Close(id3) Open(id2) Close(id1) Empty

** The orders corresponding to closing on a bar an open Fa are: close the
** isolator on the corresponding bar, the isolator and the breaker
ax Order_List(Fa(id1,id2,id3,id4),Open,Close_On_A) =
 Close(id3) Close(id1) Close(id2) Empty
ax Order_List(Fa(id1,id2,id3,id4),Open,Close_On_B) =
 Close(id4) Close(id1) Close(id2) Empty

** The orders corresponding to the operation of bar exchange of an Fa are:
** close the isolator on the bar that is open and open the one that is closed
ax Order_List(Fa(id1,id2,id3,id4),Close_On_A,Close_On_B) =
 Close(id4) Open(id3) Empty
ax Order_List(Fa(id1,id2,id3,id4),Close_On_B,Close_On_A) =
 Close(id3) Open(id4) Empty

auxiliary (end)

53

BAR MANAGER: Speci�cation

M
O
N
I
T
O
R
(
O
K
)

OK

KO

M
O
N
I
T
O
R
(
K
O
)

MONITOR(OK)

MONITOR(KO)

BAR

54

MANAGERS: Activity

MONITOR(ba)

.

.

.

MONITOR(ds,ba,bb)

MONIT
OR(ds

)

REC_OPER(opr)

INFORM(mm) &

MONITOR(ds)

REQUIRE_AUTHOR(opr) &

MONITOR(ds)
NO_AUTHOR &

MONITOR(ds)
S
E
N
D
(
o
)

&

M
O
N
I
T
O
R
(
d
s
)

MO
NI
TO
R(
ds
)

 MANAGER
1

REC_OPER(opr) &
MONITOR(ds,ba,bb)

INFORM(mm) &
MONITOR(ds,ba,bb)

REQUIRE_AUTHOR(opr) &
MONITOR(ds,ba,bb)

NO_AUTHOR &
MONITOR(ds,ba,bb)

 MANAGER
2

 MANAGER
n

MO
NI
TO
R(
ds
)

MONITOR(ds)

MONITOR(ds)

MONITOR(ds)

MO
NI
TO
R(
ds
)

MONITOR(ds)

SEND(o) &

MONITOR(d
s,ba,bb)

MO
NI
TO
R(
ds
)

M
O
N
I
T
O
R
(
d
s
)

BAR MANAGER

MONITOR(ba)

BAR MANAGER

ORDER DEVICES OPERATION BAR M_MESSAGE

M
O
N
I
T
O
R
(
d
s
)

M
O
N
I
T
O
R
(
d
s
)

M
O
N
I
T
O
R
(
d
s
)

NO_AUTHOR &
MONITOR(ds,ba,bb)

NO_AUTHOR

MONITOR
(ds)

MO
NI
TO
R(
ds
)

55

COORDINATOR: Speci�cation

To monitor the units and the bars throughout their managers

To signal the completition of an operation

To detect a failure in a unit

UNITS POSITIONS

TOPOLOGY

OPERATION

To receive an authorization request

To halt the station due to some failure

To deny the authorization to the execution of an operation

To be informed that the operation has been completed

To require to close a Dd

MAP

UNIT POSITION

 UNIT IDENTENTIFIER

To authorize the execution of an operation

56

SIGNAL_COMPLETED_OPER

UNITS POSITIONS

TOPOLOGY

OPERATION

FAILURE_IN_UNIT

REC_AUTHOR_REQUEST(operation)

HALT

INFORM_IMPOSSIBLE_OPER

COMPLETED_OPER

REQ_CLOSE(fid)

MONITOR(managers)

MAP

UNIT POSITION

 UNIT IDENTENTIFIER

OK_OPER

57

COORDINATOR: Activity

NoOnFailedBar(fid,tp,ba,bb)
and Kind(fid,tp)=/=Fa

 Handling_Req(tp,Opr(fid,up),)
(ups,ba,bb) {

 Handling_Req(tp,Opr(fid,CloseOnB),)
(ups,ba,bb)

 Handling_Req(tp,Opr(fid,Open),)
(ups,ba,bb)

Ready(tp)

Request_Received(tp,opr)

H
A
L
T

Handling_Req(tp,opr,FunsOf(ms),Bar(ms),Bar(ms))

Handling_Req(tp,opr,ups,ba,bb)
OnFailedBar(fid,tp,ba,bb)

{NoOnFailedBar(fid,tp,ba,bb)and Kind(fid,tp)=Fa

NoOnFailedBar(fid,tp,ba,bb)
and Kind(fid,tp)=Fa and
ups[fid]=ClosedOnA and
FindClosingPath(tp,fid,ups)=OpenDd(fid’)

NoOnFailedBar(fid,tp,ba,bb)
and Kind(fid,tp)=Fa and
ups[fid]=ClosedOnA and
FindClosingPath(tp,fid,ups)=ClosedDd

NoOnFailedBar(fid,tp,ba,bb)
and Kind(fid,tp)=Fa and
ups[fid]=ClosedOnA and
FindClosingPath(tp,fid,ups)=
None

INFORM_IMPOSSIBLE_OPER

R
E
C
_
C
L
O
S
E
(
f
i
d
’
)

Failure_Detected
Inform(tp)

S
I
G
N
A
L
_
C
O
M
P
L
E
T
E
D
_
O
P
E
R

Waiting(tp)

Waiting_ClosingDd(tp)

Authorizing(tp)

REC_
AUTH

OR_R
EQUE

ST(o
pr)

MONITOR(ms)

Stop

F
A
I
L
U
R
E
_
I
N
_
U
N
I
T

CloseOnA
........

C
O
M
P
L
E
T
E
_
O
P
E
R

O
K
_
O
P
E
R

O
K
_
O
P
E
R

H
A
L
T

COMPLETED_OPER FAILURE_IN_UNIT

FAILURE_IN_UNIT

58

sort answer
cn None, ClosedDd: answer
op OpenDd: unit_ident -> answer

** Find_Closing_Path given a station topology, the functional unit positions and
** the identifier of an Fa returns an answer saying whether for such unit no
** closing path exists, a closing path made by an open or by a closed Dd exists
op Find_Closing_Path: topology unit_ident units_positions -> answer

** If on the right of the functional unit fida there exists a proper closing
** path, then there exists a proper closing path for idfa
ax if Path(RPart(tp,idfa),ups,None)=ClosedDd then
 Find_Closing_Path(tp,idfa,ups)=ClosedDd

** If on the left of the functional unit fida there exists a proper closing path,
** then there exists a proper closing path for idfa
ax if Path(LPart(tp,idfa),ups,None)=ClosedDd then
 Find_Closing_Path(tp,idfa,ups)=ClosedDd

** If on the right of the functional unit fida there exists a non-proper closing
** path and on the left of fida there does not exist a proper closing path, then
** there exists a non-proper closing path for idfa
ax if Path(RPart(tp,idfa),ups,None)=Open(fid)
 Path(LPart(tp,idfa),ups,None)=/=ClosedDd then
 Find_Closing_Path(tp,idfa,ups)=Open(fid)

** If on the left of the functional unit fida there exists a non-proper closing
** path and on the right of fida there does not exist a closing path, then there
** exists a non-proper closing path for idfa
ax if Path(LPart(tp,idfa),ups,None)=Open(fid) and
 Path(RPart(tp,idfa),ups,None)=None then
 Find_Closing_Path(tp,idfa,ups)=Open(fid)

** If on the left and on the right of the functional unit fida no closing path
** exist, then no closing path exists for idfa
ax if Path(LPart(tp,idfa),ups,None)=None
 and Path(RPart(tp,idfa),ups,None)=None then
 Find_Closing_Path(tp,idfa,ups)=None

** given a set of functional unit managers returns the positions of the
** associated functional units
op Positions_From: managers -> units_positions

ax Positions_From({})=[]
ax Positions_From(Ready(fid,dsch,up) | ms)= Positions_From(ms)[up / fid]
ax Positions_From(Executing(fid,dsch,up,up’)|ms)=Positions_From(ms)[up/fid]
ax Positions_From(Waiting_Authorization(fid,dsch,up,up’)|ms)=
 Positions_From(ms)[up/fid]
ax Positions_From(Ordering(fid,dsch,up,up’,ol)|ms)=Positions_From(ms)[up/fid]

auxiliary (continues)

59

** Path given the topology of one part of the station, the functional unit
** positions and the identifier of an Fa returns an answer saying whether in
** such part of the station for such unit no closing path exists, a closing
** path made by an open or by a closed Dd exists
op Path: topology units_positions answer -> answer

** If the station has been scanned until the end Path returns the recorded
** answer
ax Path(E,ups,a) = a

** If fid is a closed Dd then Path returns there is a closing path made by
** a closed Dd
ax if ups[fid] = Close then Path(Dd(fid) & tp,ups,a) = ClosedDd

** If fid is an open Dd and there is already recorded an open Dd, then the
** scanning of the bars goes on
ax if ups[fid] = Open then
 Path(Dd(fid) & tp,ups,OpenDd(fid’)) = Path(tp,ups,OpenDd(fid’))

** If fid is an open Dd and nothing is recorded, then the scanning of the
** bars goes on recording it
ax if ups[fid] = Open then
 Path(Dd(fid) & tp,ups,None) = Path(tp,ups,OpenDd(fid))

** If fid1 and fid2 are two closed Ae, then the scanning of the bars goes on
ax if ups[fid] = Close and ups[fid] = Close then
 Path(Ae(fid1,fid2) & tp,ups,a) = Path(tp,ups,a)

** If either fid1 or fid2 is open, then the recorded answer is returned
ax if (ups[fid] = Open or ups[fid] = Open) then
 Path(Ae(fid1,fid2) & tp,ups,a) = a

** If fid is an Fa, then the scanning of the bars goes on
ax Path(Fa(fid) & tp,ups,a) = Path(tp,ups,a)

** checks whether a functional unit is/is not connected to a failed bar
op No_On_Failed_Bar, On_Failed_Bar: unit_ident topology bar bar

ax if Non_On_BarA(fid,tp) then No_On_Failed_Bar(fid,tp,KO,bb)
ax if Non_On_BarB(fid,tp) then No_On_Failed_Bar(fid,tp,ba,KO)

op On_Failed_Bar: unit_ident topology bar bar
ax if On_BarA(fid,tp) then On_Failed_Bar(fid,tp,KO,bb)
ax if On_BarB(fid,tp) then On_Failed_Bar(fid,tp,ba,KO)

op Bar: bar_manager -> bar
ax Bar(OK) = OK
ax Bar(KO) = KO

opr: operation a: answer ups: unit_positions
fid, fid’, idfa: unit_ident ms: set(manager) ba,bb: bar
tp: topology dsch: devices_schema ol: orders
up up’: unit_position

auxiliary (end)

60

AUTOMATISM: Activity

RECEIVE_MES
FORWARD
RECEIVE_REQ
SEND_MESSAGE

F
A
I
L
U
R
E

REC_OPER & MONITOR

INFORM & MONITOR

MONITOR

IN
FO
RM
 &
 M
ON
IT
OR

RE
QU
IR
E_
AU
TH
OR
(o
pr
)&
 M
ON
IT
OR

RE
C_
OP
ER
 &
 M
ON
IT
OR

SEND(o) &

MONITOR(ds,ba,bb)

RECEIVE_MESSAGE
IN
FO
RM
_I
MP
OS
SI
BL
E_
OP
ER

SI
GN
AL
_C
OM
PL
ET
ED
_O
PE
R

FA
IL
UR
E_
IN
_U
NI
T

CONSOLE

MONITOR

SEND & MONITOR

COORDINATOR

ms: MANAGERS

COORD-
CONSOLE-
MANAGERS

MONITOR
NO_AUTHOR & MONITOR
INFORM & MONITOR

HALT

HALT

H
A
L
T

TOPOLOGYORDERDEVICES MESSAGE

STATION SCHEMA OPERATION BAR

COORD-
MANAGERS

CONSOLE-
MANAGERS

REC_AUTHOR_REQUEST
OK_OPER
COMPLETED_OPER
REQ_CLOSE
MONITOR

MONITOR

RECEIVE_REQ & MONITOR
SIGNAL & MONITOR
MONITOR

61

COORD-CONSOLE-MANAGERS

FO
RW
AR
D(
op
r) REC_OPER(opr) &

MONITOR(ds,ba,bb)

RECEI
VE_ME

S(Use
less)

INFORM(Useless) &
MONITOR(ds,ba,bb)

MONITOR(ds,ba,bb)

CONSOLE ms: MANAGERS
RECEIVE_REQ(opr)

MONIT
OR(ds

,ba,b
b)

RECEIVE_REQ(opr) &
MONITOR(ds,ba,bb)

MO
NI
TO
R(
ds
,b
a,
bb
)

SIGNAL(m) &
MONITOR(ds,ba,bb)

SEND_MESSAGE(m)

TOPOLOGYORDERds: DEVICES MESSAGE

STATION SCHEMA opr: OPERATION ba, bb: BAR

MONITOR(ds,ba,bb)

62

COORD-MANAGERS

fid: unit_ident
opr: OPERATION

RE
C_
OP
ER
(O
pr
(f
id
,C
lo
se
))
 &
 M
ON
IT
OR
(d
s,
ba
,b
b)

RE
C_
AU
TH
OR
_R
EQ
UE
ST
(o
pr
)

REQUIRE_AUTHOR(opr)&

MONITOR(ds,ba,bb)

REQ_CLOSE(fid)

OK_AUTHOR &
MONITOR(ds,ba,bb)

COMPLETED_OPER

INF
ORM

(Ex
ecu

ted
) &

 MO
NIT

OR(
ds,

ba,
bb)

MONITOR(ds,ba,bb)

MONITOR(ds,ba,bb)

MONITOR(ms)

ms: MANAGERS
COORDINATOR

MONITOR(ds,ba,bb)

OK_OPER

MONITOR(ds,ba,bb)

MONITOR(ds,ba,bb)

TOPOLOGYORDERds: DEVICES MESSAGE

STATION SCHEMA ba, bb: BAR

63

COORD-CONSOLE

CANCEL_OPER & MONITOR(ds,ba,bb)

INFORM_
IMPOSSI

BLE_OPE
R

MONI
TOR(

ds,b
a,bb

)

SIGNAL_COMPLETED_OPER

MONITOR(ds,ba,bb)

RE
CE
IV
E_
ME
SS
(I
mp
os
si
bl
e)

MONITOR(ds,ba,bb)

RE
CE
IV
E_
ME
S(
Co
mp
le
te
d)

IN
FO
RM
(F
ai
lu
re
)
&
MO
NI
TO
R(
ds
,b
a,
bb
)

FAILURE_IN_UNIT

MONITOR(ds,ba,bb)
RECEIVE_MES(Failure)

CONSOLE

ms: MANAGERS

COORDINATOR

TOPOLOGYORDERds: DEVICES MESSAGE

STATION SCHEMA OPERATION ba, bb: BAR

References

[Reg98] G. Reggio. A Guide to the Use of the SMoLCS Methodology. Technical Report DISI{

TR{98{3, DISI { Universit�a di Genova, Italy, 1998.

64

