
In: Recent Trends in Data Type Specification, Lecture Notes in Computer Science n. 534, 1991.

ENTITIES:

AN INSTITUTION FOR DYNAMIC SYSTEMS

GIANNA REGGIO

DIPARTIMENTO DI MATEMATICA - UNIVERSITA' DI GENOVA

VIA L.B. ALBERTI 4, 16132 GENOVA, ITALY

INTRODUCTION

In this paper we introduce the entity framework (entity algebras and entity specifications) and show, also
with the help of several examples, how they can be used for formally modelling and specifying dynamic
systems.

Entity algebras are structures devised as formal models for both data types, processes and objects, thus al-
lowing to give integrated abstract specifications of processes, data types and objects. They are a subclass of
partial algebras with predicates, having the following features:

 – some sorts correspond to dynamic elements, that we call entities; dynamics is represented by the pos-
sibility of performing labelled transitions;

 – entities may have subcomponent entities together with usual (static) subcomponents; it is important to
notice that the structure of an entity is not fixed, as the binary parallelism with interleaving of CCS or
the record-like structure of usual objects, but is definable by giving appropriate operations and axioms;

 – entities have identities in such a way that it is possible to retrieve entity subcomponents depending on
their identities and to describe sharing of subcomponents.

Moreover the structure of each entity can be represented graphically in a way that makes sharing explicit.

Correspondingly to this model level, it is possible to define entity specifications; which are just the corre-
spondent in the entity field of the usual specifications of abstract data types and can be used to formally
specify dynamic systems. Using entity specifications we can abstractly describe how it is structured a dy-
namic system, give properties about its activity and the activity of its dynamic subcomponents; for
example we can require for a certain entity that the order of the subcomponents is not relevant, that it must
always terminate its activity, that its subcomponents interact in a synchronous way and so on.

However using this kind of entity specifications, called specifications in the small, we cannot formalize
“very” abstract properties about the structure of classes of dynamic systems; for example we cannot
specify the class of all “simple” dynamic systems (ie, that cannot be decomposed in several other entities
interacting between them) and the class of all systems where no entity is shared between several others. To
handle these cases it is possible to use a kind of ultra loose entity specifications, called entity specifications

in the large. To enlighten the distinction between specifications in the small and in the large consider the
well-known firing squad problem (see [DHJW]): for specifying one system which represents a possible
solution of the problem we use an entity specification in the small; while for specifying the class of all
systems representing solutions of the problem we use an entity specification in the large.

 Work partially funded by COMPASS-Esprit-BRA-W.G. n 3264, by CNR-PF-Sistemi Informatici e Calcolo Parallelo

and

 by a grant ENEL/CRA (Milano Italy).

2
In this paper we consider only entity specifications in the small and give a brief hint of specifications in the
large, while a full treatment of them can be found in [AR2]. We show that the specifications in the small
constitute an institution; give conditions ensuring the existence of the initial model and show that has inter-
esting properties about the dynamics and the structure (it is characterized by the minimum amount of
activity and by the simpler structure).

Since entity specifications are particular algebraic specifications of abstract data types, we can extend to
them various notions and results about classical specifications (eg, structured and hierarchical
specifications, observational/behavioural semantics, implementation and so on); usually these extensions
are adequate for coping with the particular features of entities. Here we only consider the notion of
implementation (see [W]) and show that its extension to entity specifications is reasonable.

Because of their characteristics (dynamics, structure, identities) entity algebras and specifications could be
used for modelling and specifying object systems; in this paper we just give an example, but do not handle
this topic in a general way (for more about that see [Dragon]).

The basic algebraic institution we use in the paper is that of partial algebras with predicates; see [GM] for
the institution of algebras with predicates and [BW] for the institution of partial algebras; the institution of
partial algebras with predicates can be found in [AC]; note that the combination of the two institutions does
not pose particular problems.

The problem of the development of an integrated algebraic framework for the specification of concurrent
systems has been treated in previous papers about the SMoLCS methodology, see for example [AR],
[AR1], [AGR]; the SMoLCS specifications of concurrent systems could be considered as particular entity
specifications in the small. Recently it has been considered also the problem of using algebraic techniques
for the formal modelling and specifications of classical object-oriented systems, see for example [BZ] and
[FB]; a very recent paper of Meseguer [M] tries to offer a unifying and integrated framework for the speci-
fications of dynamic system based on rewriting. Since the technical framework of all these approaches is
quite different from the present one, it is not easy to make a comparison; some special effort should be
made for investigating their relationship.

In sect. 1 and 2 we introduce entity algebras and entity specifications in the small and show their features;
these sections include complete examples. Entity specifications in the large are shortly introduced in sect.
3. The proofs are omitted and will appear in [AR2].

1 ALGEBRAS FOR DYNAMIC ENTITIES

Entity algebras are particular partial algebras with predicates used for modelling dynamic concurrent and
object-oriented systems; “particular” means that they always have certain sorts, operations and predicates,
whose interpretations must respect some conditions. These special algebraic ingredients are used for:

• representing dynamic systems (for example, processes) and their activity;

• determining whether such systems are simple or structured, and, in the second case, allowing to de-
scribe their structure (eg, fix the number of dynamic subcomponents),

• determining the identity of such systems

and so on.

In the paper we abbreviate “signature with predicates” and “partial algebra with predicates” with
“psignature” and “palgebra”.

1.1 Entity signatures

Entity signatures are particular psignatures where some sorts correspond to the usual static values and
some other correspond to dynamic elements (entities), their identities and their “cores”. Each entity is

3
completely determined by its identity and its core. The sorts corresponding to cores of entities, ie, whose
elements are the cores of entities, are called dynamic sorts. In an entity signature for each dynamic sort
there exist some special sorts, operations and predicates; precisely, given a dynamic sort s:
 – a sort, ent(s), of entities (dynamic elements) with cores of type s (shortly entities of type s);
 – a sort, ident(s), of identities of the elements of ent(s);
 – an operation building the elements of ent(s)

_ : _ : ident(s) × s → ent(s)
which taken an identity and a core returns an entity;

 – a sort, lab(s), of labels for the transitions of the elements of ent(s);
 – a predicate describing the activity of the elements of ent(s) by means of labelled transitions

_ ______
> _ : ent(s) × lab(s) × ent(s).

Notice that here and in the following we use operations and predicates with mixfix syntax; the symbol “_”
denotes the places of the arguments.

For giving an entity signature it is sufficient to give the basic sorts, distinguishing the ones which corre-
spond to the cores of dynamic elements (dynamic sorts), while we can omit the special components; thus
we have the following definition.

Def. 1.1

• An entity signature (or simply signature) is a 4-tuple EΣ = (D, S, OP, PR) such that:

– D and S are two disjoint sets
(the basic sorts; those in D correspond to the cores of dynamic elements and are called dynamic

sorts);

– (DE ∪ S, OP, PR) is a psignature, where
DE = D ∪ (∪s ∈ D { ent(s), lab(s), ident(s) })

(the sorts having form ent(s) are called entity sorts).

• EΣE is the psignature (DE ∪ S, OPE, PRE), where:

– OPE = OP ∪ { _ : _ : ident(s) × s → ent(s) | s ∈ D },

– PRE = PR ∪ { _ ______
> _ : ent(s) × lab(s) × ent(s) | s ∈ D }.fi

Notation: in the following EΣ will be a generic entity signature (D, S, OP, PR) and Dsorts(EΣ) will
denote the set of the dynamic sorts of EΣ. Moreover we will write

sorts s1, …, sn
dsorts d1, …, dm
opns Op1, …, Opk
preds Pr1, …, Prh

for denoting the entity signature ({ d1, …, dm}, { s1, …, sn}, { Op1, …, Opk}, { Pr1, …, Prh}).

1.2 Entity algebras

Given an entity signature EΣ, an EΣ-entity algebra is a particular EΣE-palgebra, but not all EΣE-palge-
bras are suitable as entity algebras; the interpretations of the special sorts, operations and predicates must
respect some conditions. Consider indeed the entity signature ΣS

dsorts nat, stack
opns 0: → nat

Succ: nat → nat
α, β, … : ident(nat)
Empty: → stack
Push: ent(nat) × stack → stack
Pop: ent(stack) → ent(stack)
Γ, Ψ, … : ident(stack)

4
and let AS be a ΣSE-palgebra; for example, it may happen that in AS:

– AS‘ α: 0 = β: 1 and AS‘ α ≠ β (entities with different identities are identified);

– AS‘ Γ: Empty _____l
> Ψ: Empty and AS‘ Γ ≠ Ψ

(an entity changes its identity performing a transition);

 – there exists v ∈ ASent(nat) and for all id ∈ ASident(nat), n ∈ ASnat v ≠ id :AS n
(we cannot determine the identity and the core of an entity);

– AS‘ 0 ≠ 1 and the interpretation of Γ: Push(α: 0, Push(α: 1, Empty)) in AS is defined
(an entity has two different subentities with the same identity).

Obviously an EΣE-palgebra where one of the above properties holds cannot be considered an entity
algebra.

To define formally which EΣE-palgebras are entity algebras, we need some technical definitions and for
clarity we first illustrate them on an example.

Given an EΣE-palgebra and an element of entity sort, say e, we can find out the possible “views” of the
dynamic structure of e by showing which are its dynamic subcomponents (ie, entity subcomponents) and
how they are put together.

Consider a term-generated ΣSE-palgebra BS, where sorts and operations are interpreted in the obvious
way: BSnat = N , BSent(nat) = { α , β , … } × BS nat , BSs tack = BSent(nat)

* , BSent(stack) =

{ Γ, Ψ, … } × BSstack and so on.

Here and in the following SymbALG, the interpretation in an algebra ALG of Symb, either a predicate or
an operation symbol, will be simply written Symb and analogously for ground terms, thus tALG will be
written t.

The element
e = Γ: Push(α: 0, Push(β: 1, Empty))

represents an entity of type stack with identity Γ and core Push(α: 0, Push(β: 1, Empty)), which has
two subentities of type nat, represented respectively by α: 0 and β: 1, organized in a stack. Thus e
could be viewed as

Γ : λ e1, e2. (Push(e1, Push(e2, Empty)))(α: 0, β: 1),

where the function

(*1) λ e1, e2. Push(e1, Push(e2, Empty)): BSent(nat) × BSent(nat) → BSstack

represents the way the entities α: 0, β: 1 are composed (ie, organized in a stack) to build up the compound
entity e.

The entities α: 0, β: 1 are in some sense “simple” (ie, without subcomponents); indeed the zero-ary func-
tions
(*2) 0, 1: → BSnat
say that they are not built by composing other entities.

Graphically this way of viewing the dynamic structure of e can be represented by

 : 1

: Push(, Push(, Empty))Γ

β : 0α

where the term with holes “Push(, Push(, Empty))” stands for the function (*1). Notice that

5

 : 1β : 0α

represent the views of the dynamic structures of the two entities α: 0 and β: 1 (they have no subcompo-
nents).

The functions like (*1) and (*2), which describe how some entities are put together to get the core of com-
pound entities, are called entity composers; while the structures pictorially represented above by graphs are
called entity views; both notions are formally given in def. 1.2 and 1.3.

The entity composers such as (1*) and (2*) correspond to open terms on ΣS; however we are not re-
stricted to term-generated algebras, since, as usual we can use a new signature obtained by adding zero-ary
operations for all junk elements (recall that v ∈ ALGs is a junk element iff there does not exist a ground
term t s.t. v = tALG).

EΣJ is the psignature

enrich EΣE by { Opv: → s | s ∈ Sorts(EΣE), v ∈ As junk };

and AJ the term-generated EΣJ-palgebra obtained from A by interpreting each Opv as v.

Def. 1.2 Let A be an EΣΕ-palgebra. The set EC(EΣ, A) of the entity composers on EΣ and A is
the set of functions

{ λ e1, …, en. tA
J , [e1/x1, …, en/xn] | t ∈ (TEΣJ(X))s

Var(t) = { x1: ent(s1), …, xn: ent(sn) }, for some s, s1, …, sn ∈ Dsorts(EΣ) and
x1, …, xn are the only subterms of t of entity sort }. fi

Notice that entity composers are given at a “semantic level” not at a “syntactical level”, ie they are
composition of operation interpretations of the algebra not terms.

Notation: given ec ∈ EC(EΣ, A), if ec is a function from Aent(s1) × … × Aent(sn) into As, then we
simply write ec: ent(s1) × … × ent(sn) → s.

Def. 1.3

• The set EV(EΣ, A) of the entity views of an EΣΕ-palgebra A is the subset of ordered trees with
nodes labelled by couples consisting of an entity identity and an entity composer for entity of the same
sort (such sort is the sort of the view) inductively defined as follows:

for all ec: ent(s1) × … × ent(sn) → s ∈ EC(EΣ, A) with n ≥ 0, id ∈ Aident(s) and ev1, …, evn ∈
EV(EΣ, A) having sorts respectively s1, …, sn

(id, ec)

ev
1 evn

. . .

∈ EV(EΣ, A).

• With each entity view there is associated an element of entity sort, defined in the following way:

V(

(id, ec)

ev
1

ev. . . n

) = id : ec(V(ev1), …, V(evn)) ∈ ∪s∈Dsorts(EΣ)

Aent(s);

if V(ev) = e, then we say that ev is a view for e. fi
Notice that only the operations having sort s contribute to define the composers for entities of sort ent(s),
ie, the structure of the entities is determined by the operations whose result sort is the core sort; for exam-
ple the operation Pop, having sort ent(stack), never appears in a composer for entities of sort ent(stack),
ie, it does not contribute to the structure of the entities of type stack. Also note that in general an element of
entity sort does not admit a unique view of its structure as it is shown in the following (see sect. 1.3).

We need also the following terminology.

6
Assume that A is an EΣE-palgebra, e ∈ ∪s∈Dsorts(EΣ) Aent(s) and ev ∈ EV(EΣ, A).

• e is a (proper) subentity of ev iff there exists a (proper) subtree of ev which is a view for e.

• ev is simple iff it is a tree of depth 1.

• e has identity id or is identified by id iff e = id: v for some v.

• ev is sound iff for all subentities of ev e' and e", if e' and e" have the same identity, then e' = e".

Def. 1.4 An EΣ-entity algebra (or simply EΣ-algebra) is an EΣE-palgebra EA such that for all
s ∈ Dsorts(EΣ)

• EAent(s) ⊆ EAident(s) × EAs
(*) and (_ : _ : ident(s) × s → ent(s))EA = λ id, x. <id, x>;

• if EA‘ e _____l
> e', then e and e' have the same identity;

• all elements of EAent(s) have at least a view and only sound views.

The class of all EΣ-algebras is denoted by eAlgEΣ. fi
Notice that the last property requires that usually the interpretations in EA of some operations (eg, the en-
tity builder operations _ : _) are partial functions.

Fact 1.5 shows that def. 1.4 is reasonable.

Fact 1.5 Let EA be an EΣ-algebra and e ∈ EAent(s) for some s sort of EΣ,

i) e has one and only one identity;

ii) if e' and e" are two distinct subentities of a view for e, then e' and e" have different identities;

iii) if e has identity id, then a view for e cannot have a proper subentity identified by id. fi
Instead the following properties show that our definition of entity algebras is not too restrictive and allows
to formally describe several interesting situations.

For example, it is possible to give an EΣ-algebra EA and e, e' ∈ EAent(s) for some s sort of EΣ s.t.:

• E A ‘ e _____l
> e' and e, e' have views with a different number of subentities (dynamic creation and

termination of subentities);

• e has several different views also with different subentities (different ways to put together (different)
groups of entities are semantically equivalent);

• there exists a view for e where two distinct subentities have the same subentity (sharing of subenti-
ties).

1.3 An Example: Distributed Concurrent Calculi

In this section we define a particular algebra DC (and some variations) and use them to enlighten the most
relevant features of entity algebras.

DC represents a simple distributed concurrent calculus. In DC we have sequential processes which
evolve in an interleaving way and interact between them by handshaking communication; Nil, _ … _ and
_ +_ are the combinators for expressing the sequential processes and _ || _ is the parallel combinator.

Let DΣ be the following entity signature:

(*) More precisely EAent(s) is isomorphic to a subset of EAident(s) × EAs.

7
dsorts proc, prog – processes and programs
opns Tau, Alpha, Beta, … → lab(proc) -- process actions

__
__

: lab(proc) → lab(proc) -- complementary operation on actions
Nil: → proc
_ … _ : lab(proc) × proc → proc
_ + _ : proc × proc → proc
α, β, … : → ident(proc)
_: ent(proc) → prog
_ || _ : prog × prog → prog
_ : lab(proc) → lab(prog)
Γ, Ψ, … : → ident(prog)

DC is a term-generated DΣ-algebra such that:

• its carriers are subsets of the quotient of the ground terms on DΣ modulo the congruence generated
by the equations l

 = l for l ≠ Tau, Tau

 = Tau and those corresponding to the fact that + and ||

are commutative, associative and that Nil, id: Nil for all id are their identities;

• its operations are defined in the obvious way;

• the transition relation predicates (_____> for processes and =====> for programs) are defined by the
following inductive rules, where p: proc, ep: ent(proc), id: ident(proc), a: lab(proc), pg: prog,
pid: ident(prog).

 id: a … p _______a
> id: p

id: p1
_______a

> id: p1'

 id: p1+ p2 _______
a

> id: p1'

 ep _______
a

> ep'

 ep ======
a

> ep'

 pid: pg1 ======
a

> pg1'

 pid: pg1 || pg2 ======
a

> pid: pg1' || pg2

 pid: pg1
 ======

a
> pg1' pid: pg2

 ======
a
__

> pg2'

 pid: pg1 || pg2 ======
Tau

> pid: pg1' || pg2'
a ≠ Tau

Different ways of composing some entities together may be equivalent

epg = Γ: (α: Tau . Nil || β: Gamma . Nil) ∈ DCent(prog)

is an example of an entity whose structure may be seen in two different ways; indeed epg is also equal to
Γ: (β: Gamma . Nil || α: Tau . Nil);

the two views of epg are graphically represented by

and

 : ||

 : Gamma . Nil : Tau . Nil

Γ

β α: Tau . Nilα : Gamma . Nilβ

 : || Γ

That means that in DC programs the order of the processes put in parallel is not relevant.

Compositions of different groups of entities may be equivalent

It is possible that different views of an entity can differ also for the number of dynamic subentities, as it is
shown by the entity epg' = Γ: α: Nil; indeed epg' is also equal to

Γ: α: Nil || β: Nil , Γ: α: Nil || β: Nil || γ: Nil

8
and to any number of Nil processes put in parallel (recall that processes having form id: Nil are identities
for the operation ||).

Various views of the structure of epg' are graphically represented by:

: Nilα

 : || Γ

: Nilβ: Nilα

 : Γ

: Nilα

 : || (||) Γ

: Nilβ : Nilγ

Thus in the DC programs the processes which cannot perform any action (id: Nil) do not matter.

Not all operations contribute to the entity composers

Here we consider a calculus DC1 differing from DC only for having an operation for extracting from a
program a process with a given identity,

Get: ent(prog) × ident(proc) → ent(proc),

whose interpretation is given by

Get(pid: id: p || ep1 … || epn, id) = id: p

Get(pid: id1: p1 || … || idn: pn, id, p') undefined if id ≠ idi for i = 1, …, n.

The set of entity composers on DC1 is the same of those on DC.

Sharing of subentities

Here we consider a calculus DC2 differing from DC only for having a multilevel parallelism instead of a
flat one; we just take a new signature DΣ2 obtained from DΣ by replacing the operation _ || _ with

_ ||| _: ent(prog) × ent(prog) → prog,
and give a DΣ2-algebra DC2 in the same way of DC. In this case an entity of sort prog has either one
subentity of sort proc or two subentities of the same sort prog.

epg" = Γ: [Ψ: (Ω: pg1 ||| Λ: pg2) ||| ∆: (Ω: pg1 ||| Θ: pg3)],

is an entity where the subentity represented by Ω: pg1 is shared between the subentities identified by Ψ
and ∆; its structure is graphically represented by

..............

Λ:

..............

 : ||| Γ

 : ||| Ψ : ||| ∆

Ω: Θ:

Entities may terminate and new entities may be created

Here we consider a calculus DC3 differing from DC only for allowing the termination and the creation
of processes. We just take a new signature DΣ3 obtained from DΣ by adding the operations

9
Terminate: → lab(proc) and Create: proc → lab(proc),

and DC3 is defined as DC; the transitions due to the new actions are given by

 ep ==========
Terminate

> ep'

 pid: ep || pg =====
Tau

> pid: pg

 ep ==========
Create(p)

> ep'

 pid: ep || pg ======
Tau

> pid: ep' || id: p || pg
 for all id not used in pg

Graphically an example of a creation and of a termination of a process of DC3 are shown by:

 : || (||) Γ

Tau

 : || Γ : || : ||

: Nilα : Nilβ : Nil : Alpha . Nilγ: Nilα: Create(Alpha . Nil) . Nilβ

Γ

Tau

 : || : || Γ :

: Nilα : Nilα: Terminate . Nilβ

1.4 Entity homomorphisms

Since entity algebras are particular palgebras, we take as homomorphisms between entity algebras the total
strengthening homomorphisms between palgebras (see [AC]) and will show that they have good proper-
ties. Recall that a total strengthening homomorphism between two palgebras h: A → B is a family of
total functions hs: As → Bs s.t.
 – for all Op and a1, …, an ∈ A

if OpA(a1, …, an) is defined, then OpB(hs1(a1), …, hsn(an)) is defined and
hs(OpA(a1, …, an)) = OpB(hs1(a1), …, hsn(an));

 – for all Pr and all a1, …, an ∈ A
if PrA(a1, …, an) holds, then PrB(hs1(a1), …, hsn(an)) holds.

Def. 1.6 Let EA and EA' be two EΣ-algebras; a total strengthening homomorphism between EΣE-
palgebras
 h: EA → EA'
is an entity homomorphism from EA into EA' (still written h: EA → EA'). fi
It is easy to see that eAlgEΣ with the entity homomorphisms forms a category (still denoted by eAlgEΣ).

Entity homomorphisms in some sense preserve the structure of the entities but can enrich it as prop. 1.7

shows; if a view of the structure of e is graphically represented by
. . .

id: ec

ev
1

ev ev
n

then

10

h(id): ec'

m
ev'

1
ev'

. . .

1

. . .
h(ev)h(ev) n

represents a view of the structure of h(e).

Thus, for example,

• if e has only simple views, then h(e) could have a non-simple view;

• if h(e) has only simple views, then e has only simple views.

Prop. 1.7 Assume h: EA → EA' and e, e' elements of entity sort in EA,
if e' is a subentity of some view for e, then h(e') is a subentity of some view for h(e)
(the vice versa does not hold). fi

Using entity homomorphisms we can speak of initial elements in a class of entity algebras and the follow-
ing proposition shows their properties.

Prop. 1.8 Let C be a class of EΣ-algebras and I ∈ C be initial in C; then

1) I‘ t = t' iff (EA ‘ t = t' for all EA ∈ C)
where “=” stands for strong equality;

2) for all predicates Pr of EΣ
I‘ Pr(t1, …, tn) iff (EA ‘ Pr(t1, …, tn) for all EA ∈ C), thus in particular

– I‘ e _____l
> e' iff (EA ‘ e _____l

> e' for all EA ∈ C)
in I each entity has in some sense the minimum amount of activity,

– I‘ D(t) iff (EA ‘ D(t) for all EA ∈ C)
I is minimally defined;

3) for all terms of entity sort et, et'
et is a subentity of et' in I iff (et is a subentity of et' in EA for all EA ∈ C). fi

Notice that 1) implies that two entity views ev and ev' are equivalent in I, ie I‘ V(ev) = V(ev'), iff
(they are equivalent in all EA ∈ C).

2 ENTITY SPECIFICATIONS IN THE SMALL

Correspondingly to the model level introduced in the previous section we can define entity specifications in
the same way as it is done for the usual specifications of abstract data types: a specification is a couple
(EΣ, Ax), where Ax is a set of formulas on EΣ and the validity is the usual validity in palgebras; and we
have that this framework constitutes an institution (see [GB]).

To such specifications could be given either an initial or a loose semantics; in the first case we give condi-
tions for its existence, while in the latter we show how the usual notion of implementation for abstract data
type specifications can be extended to the entity specifications.

2.1 Entity specifications in the small

We define the institution of entities in the small

e = (ESign, eSen, eAlg, ‘ e)

where:

11
 – ESign is the category of the entity signatures (see the appendix); its objects are the entity signatures

and its morphisms are the subclass of the morphism of psignatures respecting the particular features
related to entities (eg, dynamic sorts are sent into dynamic sorts, special operations and predicates are
sent into the corresponding special operations and predicates and so on);

 – eSen is the sentence functor (see the appendix); sentences in e are first order formulas(*) on EΣE;

 – eAlg is the algebra functor (see the appendix); eAlg(EΣ) is the category eAlgEΣ;

 – ‘ e is the satisfaction relation defined by

EA ‘ e EΣ ϑ iff EA ‘ P EΣE ϑ,

where ‘ P Σ is the satisfaction relation in the institution of palgebras with existential equality, ie,

A ‘ P Σ t = t' iff tA and t'A are both defined and equal, thus the formula t = t requires that the inter-
pretation of t must be defined; in the following we will write D(t) instead of t = t.

Theorem 2.1 e = (ESign, eSen, eAlg, ‘ e) is an institution. fi
Thus we can define an entity specification (in the small) as a couple

ESP = (EΣ, Ax)

where EΣ is an entity signature and Ax ⊆ eSen(EΣ); the class of the models of ESP, denoted by
eMod(ESP), is

{ EA | EA is an EΣE-palgebra and EA‘ e ϑ for all ϑ ∈ Ax }.

To investigate the properties of entity specifications (existence of the initial model, of a sound and complete
deductive system and so on), we first note that the class of the models of an entity specification ESP =
(EΣ, Ax) is the class of the models of a (partial with predicates) specification ESPP = (EΣE, Ax ∪
eAxioms(EΣ)), where

eAxioms(EΣ) = ∪s ∈ Dsorts(EΣ)

(a) { ∃ id, x … e = id: x,
(b) id: x = id': x' ⊃ id = id' ∧ x = x',

(c) id: x _____l
> id': x ⊃ id = id' | id, id': ident(s), l: lab(s), x, x': s, e: ent(s) } ∪

(d) { D(tid: tv) ∧ tid' = tid" ⊃ tv' = tv" |
tid: tv ∈ TEΣ(X)ent(s), tid': tv', tid": tv" are subterms of tid: tv }.

Lemma 2.2 eMod(ESP) = PMod(ESPP),
where PMod denotes the class of models of a (partial with predicates) specification. fi
Partial specifications with predicates whose axioms are (existential) positive conditional formulas have par-
ticular nice properties. Recall that a positive conditional formula has form

∧1 ≤ i ≤ n αi ⊃ α,
where α and αi for i = 1, …, n are atoms and atoms are formulas of the form either Pr(t1, …, tn) with

(*) The set of the first order formulas on a predicate signature Σ and X (a Sorts(Σ)-sorted family of variables),

indicated by FΣ(X), is inductively defined as follows:

• t = t' ∈ FΣ(X) for all t, t' ∈ (TΣ(X))s, s ∈ Sorts(Σ);

• Pr(t1, …, tn) ∈ FΣ(X) for all Pr: s1 × … × sn ∈ Preds(Σ), ti ∈ (TΣ(X))si i = 1, …, n;

• if ϑ, ϑ ' ∈ FΣ(X) and x ∈ X, then Æ ϑ, ϑ ⊃ ϑ ', ∃ x … ϑ ∈ FΣ(X);

• if for all i = 1, …, n ϑi ∈ FΣ(X), then ∧i = 1, …, n ϑi ∈ FΣ(X).

Morover, t ≠ t', ∀ x … ϑ,∨i ∈ I ϑi, ∃\ x … ϑ, ϑ ≡ ϑ' are defined as abbreviations as usual.

12
Pr predicate or t = t'. In particular for such specifications there exist the initial model and a deductive sys-
tem which is sound a complete w.r.t. the class of the models. If the signature of the specification Σ is
such that (TΣ)s ≠ ∅ for all sorts s, this system can be obtained, as in [C], by considering a system which
is sound and complete for the total case and modifying it as follows: suppress reflexivity of equality; allow
substitution of t for x only when t is defined (rule SUB below); add rules to assert that operations and
predicates are strict (rules STRICT below).

Such system is given by the following rules, where D(t) stands for t = t:

t = t'
t' = t

t = t' t' = t"

 t = t"

D(Op(t1,, tn)) ti = ti' (i = 1, ..., n)
 Op(t1,, tn) = Op(t1',, tn')

 Pr(t1,, tn) ti = ti' (i = 1, ..., n)
 Pr(t1',, tn')

(∧i = 1, …, n ϑi) ⊃ ϑ ϑi (i = 1, ..., n)

 ϑ

(STRICT)
D(Op(t1, ..., tn))

 D(ti)
Pr(t1, ..., tn)

D(ti)

(SUB)
ϑ[x] D(t)

ϑ[t] .

In the following we write SP“ϑ, if ϑ can be proved in the above system starting from the axioms of SP.

Theorem 2.3 Let ESP = (EΣ, Ax) be an entity specification such that

0) for all sorts s (TEΣ)s ≠ ∅,

1) Ax is a set of positive conditional formulas,

2) for all te ∈ (TEΣ)ent(s) s.t. ESP“D(te)
there exist tid ∈ (TEΣ)ident(s), tv ∈ (TEΣ)s s.t. ESP“ te = tid: tv,

then:
i) ESPP “ α iff (EA ‘ α for all EA ∈ eMod(ESP)) for all atoms α;

ii) there exists the initial element of eMod(ESP), denoted by IESP;

iii) IESP ‘ α iff ESPP “ α for all atoms α. fi

2.2 Some Examples

2.2.1 A specification of a class of objects

We give a specification describing an object-oriented version of the data type consisting of queues of inte-
gers; precisely we give a specification of a class queue whose objects are queues of objects of class int
(just integers).

Let INT be the specification of a class of objects corresponding to integers with the entity sort ent(int)
and we assume that each entity of sort ent(int) is simple.

The specification SPQ corresponding to the class queue is

13
enrich INT by

dsorts queue
opns

Empty: → queue (total)
Get: queue → ident(int)
Remove: ent(queue) → ent(queue)
Put: ent(int) × queue → queue
Γ, Ψ, … : → ident(queue) (total)

* _ . Empty: ident(queue) → lab(queue) (total)
* _ = _ . Get: ident(int) × ident(queue) → lab(queue) (total)
* _ . Remove: ident(queue) → lab(queue) (total)
* _ . Put(_): ident(queue) × ent(int) → lab(queue) (total)
* Queue : lab(int) → lab(queue)

-- defines the labels corresponding to sending a method to a subcomponent of class int
preds

_ Diff _ : ident(queue) × ident(queue)
Unused: queue × ident(int)
-- checks whether a queue has not an integer component with a certain identity

axioms

0 Γ Diff Ψ …

1 Get(Put(id: i, Empty)) = id
2 D(Get(q)) ⊃ Get(Put(ei, q)) = Get(q)

3 Remove(id: Put(ei, Empty)) = id: Empty
4 Remove(id: q) = id: q' ⊃ Remove(id: Put(ei, q)) = id: Put(ei, q')

5 Unused(id, Empty)
6 id Diff id' ∧ Unused(id, q) ⊃ Unused(id, Put(id': i, q))

7 Unused(id, q) ⊃ D(Put(id: i, q))

 -- sending a method to an element of class queue

8 id: q

>
id . Empty

id: Empty

9 D(Put(ei, q)) ⊃ id: q
______________id . Put(ei)

> id: Put(ei, q)

10 D(Remove(id: q)) ⊃ id: q
______________id . Remove

> Remove(id: q)

11 Get(q) = id' ⊃ id: q
______________id' = id . Get

> id: q

 -- sending a method to a subcomponent of class int

12 ei
_____l

> ei' ⊃ id: Put(ei, q)
_________Queue(l)

> id: Put(ei', q)

13 id: q
_________Queue(l)

> id: q' ⊃ id: Put(ei, q)
_________Queue(l)

> id: Put(ei, q')

In this specification we have that:

• the sort ent(queue) corresponds to the class queue;

• the entities of sort ent(queue) represent the objects of the class queue;

• the operations having either as result and/or as argument the sorts queue and ent(queue) (Empty, Put,
Remove and Get) correspond to the methods of the class queue (Get, whose result sort is different
from queue and ent(queue), corresponds to a method returning some result);

• the activity of the entities of sort ent(queue) is the result of the application of some methods, thus their
transitions are labelled by message sendings (method applications in object-oriented jargon) defined by
the operations marked with *.

Notice how in this specification the structure and the methods of the class queue have been abstractly
specified. Since Empty and Put are the only operations of sort queue we have that each object of class
queue has n (n ≥ 0) subcomponent objects of class int arranged in a row. Axiom 7 requires that no ob-
ject of class int may appear in two different places in the same queue. Axioms 1, …, 4 say that the meth-
ods Get and Remove respectively returns an identification of and removes the last element of the row.

14
Axioms 8, …, 11 describe the dynamic effects of the method applications; while axioms 12 and 13 de-
scribe the application of a method of the class int to some subcomponent.

2.2.2 Non-lazy processes with handshaking communications

Here we give the specification NLP (for Non-Lazy Process) of the concurrent systems with exactly the
following properties:

 – the active components of the systems are processes of “the same kind” and there are no “passive com-
ponents”;

 – each component process is identified by a unique name;

 – the component processes exchange messages (not further specified) between them in a handshaking
way and that is the only kind of interaction between the processes; moreover each process sending a
message states the name of receivers, analogously a process receiving a message states the name of the
senders;

 – there are no mutual exclusion requirements on the process actions (ie, whatever number of processes
can perform internal actions and whatever number of disjoint couples of processes can exchange mes-
sages between them simultaneously);

 – no component process can be lazy;

 – processes can neither be created nor terminate.

Note that here we are abstractly specifying handshaking and nonlaziness, not just giving a particular sys-
tem having such properties.

PROC =
sorts message
dsorts process
opns Tau: → lab(process)

SEND, REC: ident(process) × ident(process) × message → lab(process)
axioms

ep
_______l

> ep' ⊃ l = Tau ∨ (∃ pi, pi', m … l = SEND(pi, pi', m) ∨ l = REC(pi, pi', m))

The sort message is static, its element are usually values; while process is a dynamic sort, its elements
are the cores of the dynamic elements corresponding to the process components of the systems.

NLP =
 enrich PROC by

dsorts system
opns ∅ : → system

_ : ent(process) → system
_ | _ : system × system → system (comm., assoc.)
Tau : → lab(system)

preds

_ =======>_ : system × system
-- auxiliary predicate used for defining the properties of the transitions of the entities of sort

system
axioms

1) D(id: s) ⊃ (∃ ep … s = ep) ∨ (∃ s1, s2 … D(id: s1) ∧ D(id: s2) ∧ s = s1 | s2)

2) ep
_______ Tau

> ep' ⊃ ep =======> ep'

3) ep1
 _________________SEND(pi, pi', m)

> ep1' ∧ ep2
 _________________REC(pi', pi, m)

> ep2' ⊃ ep1 | ep2 =======> ep1' | ep2'

4) s1 =======> s1' ∧ s2 =======> s2' ⊃ s1 | s2 =======> s1' | s2'

5) si: s
 _______l

> si: s' ⊃
5.1) l = Tau ∧
5.2) ∃ s1, s2, s1' … (s = s1 | s2 ∧ s1 =======> s1' ∧ s' = s1' | s2 ∧
5.3) ∃\ s3, s3', s4 … s2 = s3 | s4 ∧ s3 =======> s3')

15
Axiom 1) requires that the only subcomponents of the system states are processes specified by PROC ar-
ranged in parallel by the “|” operator; that means, for example, that a model of this specification cannot
have either additional processes or buffers to handle the communications between the component pro-
cesses.

Axioms 2), 3) and 4) define the auxiliary predicate ====>, which describes partial moves of groups of
processes (combinations of internal actions and of handshaking communications).

Axiom 5) requires that:

 – the whole system is closed (5.1);

 – the only transitions of the system are caused by a combination of process internal actions and process
communications (5.2), thus processes can interact between them only by exchanging messages in a
handshaking way;

 – no process can idle (5.3);

but note that these axioms do not specify what is the policy to be followed when some conflict arises; thus
this specification admits models where the conflicts are solved by allowing nondeterministically all the
possible choices, by using priorities associated with the processes and so on. Moreover axiom 5) also re-
quires that a process can neither be created nor terminate.

The structure of the entities of sort system can be graphically represented by:

 si : || ... ||

. . . pi1 : ... pin : ...

2.3 Implementation of Entity Specifications

Here we try to extend to the case of entity specifications the well-known general notion of implementation
for algebraic specifications of Wirsing (see [W]); we have chosen this notion since it has been proved well
adequate in the case of usual specifications.

For Wirsing a specification SP is implemented by another specification SP1 via f, where f is a function
from specifications into specifications built by composing specification operations (as enrich, rename,
export, hide and so on) iff

Mod(f(SP1)) ⊆ Mod(SP).

The function f describes how the elements of the sorts, the operations and the predicates of SP can be
obtained from those of SP1; while requiring the inclusion of the classes of models instead of the coinci-
dence allows SP1 to be a “refinement” of SP, ie, “things” not specified in SP are made more precise in
SP1.

This notion is very general but it includes as particular cases (ie, when f has a particular form) the various
notions presented in the literature as implementation by rename-forget-restrict-identify or implementation
by behavioural abstraction (see [W]).

Def. 2.4 Let ESP = (EΣ, Ax) and ESP1 = (EΣ1, Ax1) be two entity specifications and f a function
from specifications with signature EΣ into specifications with signature EΣ1 built by composing specifi-
cation operations.

ESP is implemented by ESP1 via f (written ESP ~~~>f ESP1) iff EMod(f(ESP1)) ⊆ EMod(ESP).
fi

16
As examples we give two implementations of the entity specification NLP defined in sect. 2.2.2.

First we give a specification SYSTEM describing a particular concurrent calculus similar to Milner’s
SCCS having all the properties required by the specification NLP. In SYSTEM the elements of the static
sort message and of the dynamic sort process (the cores of the system components) are completely
defined (specifications CHAN and BEH); moreover the proper axioms of SYSTEM precisely define
the activity of the systems.

CHAN = sorts chan
opns Alpha, Beta, … : → chan (total)

BEH =
enrich CHAN by

dsorts beh
opns SEND, REC: ident(beh) × ident(beh) × chan → lab(beh)

Tau: → lab(beh)
Nil: → beh
_ ?_ … _, _ !_ … _: chan × ident(beh) × beh → beh
+: beh × beh → beh (comm., assoc.)
δ _: beh → beh

axioms

bi': ch ! bi … b
_______________SEND(bi' , bi , ch)

> bi': b

bi': ch ? bi … b
______________REC(bi' , bi , ch)

> bi': b

bi: b1
_____l

> bi: b1' ⊃ bi: b1 + b2
_____l

> bi: b1'

bi: δ b
_____Tau

> bi: δ b

bi: b
_____l

> bi: b' ⊃ bi: δ b
_____l

> bi: b'

SYSTEM =
enrich BEH by

dsorts system
opns

∅ : → system
_ : ent(beh) → system
_ | _ : system × system → system (comm., assoc.)
Tau : → lab(system)

axioms

eb
_______Tau

> eb' ⊃ si: eb

=========

Tau
> si: eb'

eb1
_______________SEND(ch , bi , bi')

> eb1' ∧ eb2
_______________REC(ch , bi', bi)

> eb2' ⊃ si: eb1 | eb2

========

Tau
> si: eb1' |

eb2'

si: eb1

=========

Tau
> si: eb1' ∧ si: eb2

=========

Tau
> si: eb2' ⊃ si: eb1 | eb2

=========

Tau
> si: eb1' | eb2'

SYSTEM is an implementation of NLP, indeed changing the sort names chan, beh into message, pro-
cess, hiding the operations Alpha, Beta, …, Nil, ?, ! , +, δ and defining the auxiliary predicate =======>
we get a new specification, whose models are included into the models of NLP. Formally
NLP ~~~>f SYSTEM, where

f = λ X . hide { Alpha, Beta, …, Nil, !, ?, +, δ } in
enrich X[process/beh, message/chan] by

preds

_ =======>_: system × system

axioms

si: es ========
l

> si: es' ⊃ es =======>es'

The notion of implementation of def. 2.4 allows also that simple entities are implemented by structured en-
tities having several dynamic subcomponents, as it is shown by specifications as NLP2, given below,
where the entities of type process are implemented by groups of other entities interacting between them.

NLP2 = enrich NLP by

dsorts agent
opns _: ent(agent) → process

17
_ |||_: ent(agent) × process → process

axioms …

In this case NLP ~~~>f NLP2, where f is just the hiding of the dynamic sort agent and the operation |||.

The structure of the entities of sort system in NLP2 is graphically represented by:

 si : || ... ||

. . .

.

 pin : ||| ... |||

. . .

 pin : ||| ... |||

3 FURTHER DEVELOPMENTS: ENTITY SPECIFICATIONS IN THE LARGE

Entity specifications in the small allow us to do a lot of things: for example we can formally represent ob-
ject-systems where subcomponents are shared, specify concurrent systems by giving very abstract proper-
ties about their activity and so long; but they do not allow us to write down specifications whose axioms
only require some very abstract properties about the structure of the entities but do not completely describe
such structure; ie, we do not want to fix which are the operations for composing entities together and give
their properties (as we have done in NLP), but just require some properties of the resulting structure.

This point is very important for keeping the level of the specifications very abstract.

Consider the following paradigmatic situations: we want to give an entity specification requiring one of the
following conditions:

i) each entity of sort s is simple, ie, it has not entity subcomponents (eg, each process of type s is se-
quential, each object of type s has no object attributes);

ii) each entity of sort s has exactly two simple subentities (eg, each process of type s consists of the
parallel composition of two sequential processes);

iii) each entity of sort s has either a subentity satisfying P or a subentity satisfying Q (P and Q predi-
cates) but not both (eg, each process of type s has either a subcomponent which is a printer or a mo-
dem but not both);

but we do not want to completely describe the entities of sort s.

Situations of this kind can arise when we want to give only very abstract properties of some dynamic sys-
tem without fully defining its structure. Think, for example, of giving the requirements for a net of per-
sonal computers just saying how many people must be able to work simultaneously and how many re-
sources they may have, without specifying anything about the use of servers, bridges and so on; or also of
specifying the firing squad problem (see [DHJW]).

To solve this problem we can define a new kind of entity specifications, called entity specifications in the

large, whose axioms allow to express properties on the dynamic structure of the entities without fully de-
scribing such structure.

The idea is to introduce some special predicates “_ Are-Sub _” for checking which are the subcompo-
nents of the entities; these predicates, given a set of entities es and an entity e of a certain sort, return true
iff es is the set of all subentities (proper and not) of e w.r.t. some view.

18
Using these predicates the properties i), ii) and iii) may be formalized by the following formulas.

i) es Are-Sub e ⊃ es = { e }

ii) es Are-Sub e ⊃ ∃ e1, e2 … e1 ≠ e2 ≠ e ∧ es = { e1, e2, e }

iii) es Are-Sub e ⊃ ∃ e' … e' ∈ es ∧ e ≠ e' ∧ (P(e') ∨ Q(e')) ∧ ¬ (P(e') ∧ Q(e'))

The axioms of these new entity specifications are the first order formulas on a new signature EΣST, ob-
tained by enriching EΣ. The validity of one of these new formulas, say ϑ, in an EΣ-entity algebra EA is
defined as the validity of ϑ in a particular EΣST-palgebra, EAST, which is an extension of EA:

EA ‘ E EΣ ϑ iff EAST ‘ P EΣST ϑ.

Also for entity specifications in the large it is possible give a corresponding institution

E = (ESign, ESen, EAlg, ‘ E)

where ESign is defined in the appendix, ESen(EΣ) = eSen(EΣST) and

EAlg(EΣ) = { EA | EA is an EΣ'-algebra for some EΣ' s.t. EΣ ⊆ EΣ' }

Here for lack of room we cannot further justify the definition of EAlg and prove that E is truly an insti-
tution (see [AR2] for a full treatment).

APPENDIX

The Category of Entity Signatures

Def. A.1 Given an entity signature EΣ, s ∈ Sorts(EΣΕ) is entity-reaching iff for some dynamic sort s'
there exists a term t of sort ent(s') having a subterm of sort s. fi
Def. A.2 Given two entity signatures EΣ and EΣ', an entity signature morphism φ is a psignature
morphism (see [AC]) φ: EΣE → EΣ'E such that:

a1) φ(Dsorts(EΣ)) = Dsorts(EΣ');

a2) for all s ∈ Dsorts(EΣ)

φ(ent(s)) = ent(φ(s)),
φ(lab(s)) = lab(φ(s)),
φ(ident(s)) = ident(φ(s)),
φ(_ : _ : ident(s) × s → ent(s)) = _ : _ : ident(φ(s)) × φ(s) → ent(φ(s)),
φ(_ ______

> _ : ent(s) × lab(s) × ent(s)) = _ ______
> _ : ent(φ(s)) × lab(φ(s)) × ent(φ(s));

a3) for all s' ∈ Dsorts(EΣ')

φ-1({ ent(s') })(*) = { ent(s) | s ∈ φ-1({ s' }) },
φ-1({ lab(s') }) = { lab(s) | s ∈ φ-1({ s' }) },
φ-1({ ident(s') }) = { ident(s) | s ∈ φ-1({ s' }) },
φ-1({ _ : _ : ident(s') × s' → ent(s') }) = { _ : _ : ident(s) × s → ent(s) | s ∈ φ-1({ s' }) },
φ-1({ _ ______

> _ : ent(s') × lab(s') × ent(s') }) =
{ _ ______

> _ : ent(s) × lab(s) × ent(s) | s ∈ φ-1({ s' }) };

a4) φ-1({ Op }) ≠ ∅
for all Op: s1 × … × sn → s ∈ Opns(EΣE) with s entity-reaching. fi

(*) If f: A → B is a function, then f-1 indicates the function from P(B) into P(A) defined by f-1(B) = { a | f(a)

∈ B }.

19
Conditions a2 and a3 require that φ sends the special elements of EΣ into the corresponding special
elements of EΣ'; while a1 (a4) requires that all dynamic sorts (dynamic operations, ie those which build
the entity composers) of EΣ' are image w.r.t. φ of some dynamic sort (dynamic operation) of EΣ.

If there exists an entity signature morphism φ: EΣ1 → EΣ2, then in some sense EΣ1 and EΣ2 may be
used to describe dynamic systems with a similar structure.

Fact A.3 Entity signatures and entity signature morphisms form a category denoted by ESign.fi

The Institution of Entity Algebras in the Small e

e = (ESign, eSen, eAlg, ‘ e)

We recall that P = (PSign, PSen, PAlg, ‘ P) is the institution of palgebras with first order formulas (see
[AC]).

• The signature category

ESign is given above.

• The sentence functor

eSen: ESign → Set

is the functor defined by:
 – on objects: eSen(EΣ) = PSen(EΣE);
 – on morphisms: eSen(φ: EΣ → EΣ') = PSen(φ: EΣE → EΣ'E);
it is trivial to see that eSen is a functor.

• The algebras functor

eAlg: ESign → CatOP

is the functor defined by:

• on objects: eAlg(EΣ) = eAlgEΣ (eAlgEΣ is a category, see fact 1.10);

• on morphisms: eAlg(φ: EΣ → EΣ') is the restriction of PAlg(φ: EΣΕ → EΣ'E) to eAlgEΣ'.

Fact A.4 ensures that PAlg(φ)(EA) is an EΣ-algebra; moreover, since entity homomorphisms (in the
small) are just phomomorphisms and PAlg is a functor, it is easy to see that eAlg is a functor.

Fact A.4 PAlg(φ)(EA) is an EΣ-algebra. fi
• The satisfaction relation

For all entity signatures EΣ, ‘ e EΣ ⊆ | eAlg(EΣ) | × eSen(EΣ) is defined by

EA ‘ e EΣ ϑ iff EA ‘ P EΣE ϑ.

Acknowledgement. This paper grew out of some common work with Prof. E. Astesiano on further de-
velopments of the SMoLCS approach. I wish to thank him for constant inspiration and encouragement.

REFERENCES

[AC] Astesiano E.; Cerioli M. “Commuting between Institutions via Simulation”, Internal Report
Dipartimento di Matematica Università di Genova n. 5, June 1990.

[AGR] Astesiano, E.; Giovini, A.; Reggio, G. “Data in a concurrent environment”, in (Vogt, F. ed.)
Proc Concurrency ’88 (International Conference on Concurrency, Hamburg, FRG October
1988), Berlin, Springer Verlag, 1988 (Lecture Notes in Computer Science n.335), pp. 140-159.

20
[AR] Astesiano, E.; Reggio, G. “An Outline of the SMoLCS Methodology”, (Venturini Zilli, M.

ed.) Mathematical Models for the Semantics of Parallelism, Proc. Advanced School on
Mathematical Models of Parallelism, Berlin, Springer Verlag, 1987 (Lecture Notes in
Computer Science n. 280), pp. 81-113.

[AR1] Astesiano, E.; Reggio, G. “SMoLCS-Driven Concurrent Calculi”, Proc. TAPSOFT’87, vol.1,
Berlin, Springer Verlag, 1987 (Lecture Notes in Computer Science n. 249), pp. 169–201.

[AR2] Astesiano, E.; Reggio G. Entity Institutions: Frameworks for Dynamic Systems, in
preparation.

[BW] Broy, M.; Wirsing, M. “Partial abstract data types”, Acta Informatica 18 (1982), 47-64.

[BZ] Breu, R.; Zucca, E. “An algebraic compositional semantics of an object-oriented notation with
concurrency”, in (Veni Madhavan, C. E. ed.) Foundations of Software Technology and
Theoretical Computer Science (Proc. of the Ninth conference, Bangalore, India), 1989, Berlin,
Springer Verlag, (Lecture Notes in Computer Science n. 405).

[C] Cerioli M. “A sound and equationally-complete deduction system for partial conditional
(higher order) types” Proc. 3rd Italian Conf. on Theoretical Comp. Sci. Mantova 1989, World
Scientific Pub. pp 164 - 175.

[DHJW] Denvir B.T.; Harwood W. T.; Jackson M.I.; Wray M.J. Proc. of the Workshop on The
Analysis of Concurrent Systems, Cambridge, 1983, Berlin, Springer Verlag, 1985 (Lecture
Notes in Computer Science n. 207).

[Dragon] Astesiano E.; Breu R. Hennicker R.: Reggio G.; Wirsing M.; Zucca E. A Theory of Reuse and
its Applications to Object Oriented Environments, Deliverable of the DRAGON project, June
1990.

[GB] Goguen J.A.; Burstall R. M. “Introducing Institutions”, Logics of Programming, Berlin,
Springer Verlag, 1983 (Lecture Notes in Computer Science n. 164).

[GM] Goguen, J.A.; Meseguer, J. “Models and Equality for Logical Programming”, Proc.
TAPSOFT’87, vol.2, Berlin, Springer Verlag, 1987 (Lecture Notes in Computer Science n.
249), pp. 1-22.

[M] Meseguer J. Rewriting as a Unified Model of Concurrency, draft, 1990.

[FB] Fiadeiro J.; Maibaum T. “Describing, Structuring and Implementing Objects”, Draft, presented
at the REX School/Workshop on Foundations of Object-Oriented Languages, May, 1990.

[W] Wirsing M. “Algebraic Specifications”, Handbook of Theoretical Computer Science, Vol. B,
North-Holland, 1990.

