
�

�

�

�

�

�

2

Version 4.2 { 02/8/95

Example 1.1

End example

1 Data type speci�cations

email smolcsdisi.unige.it

METAL: a Metalanguage for SMoLCS

Fabio Parodi { Gianna Reggio

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a di Genova

This work has been supported by a grant ENEL/CRA (Milano Italy) and by \Progetto Finalizzato

Sistemi Informatici e Calcolo Parallelo" of C.N.R. (Italy).

In this section we present the constructs of METAL for specifying data types. A data

type is:

a family of sets, called carries;

some constants, i.e. particular elements of the carries;

some functions manipulating the elements of the carries; each function taken some

arguments belonging to some carries returns a result belonging to some other carrier;

some predicates expressing conditions on the elements of the carries; each predicate

taken some arguments belonging to some carries is either true or false.

Data type \natural numbers"

Consider a very simple data type, \natural numbers", consisting of:

{ the set of the natural numbers IN;

{ the constant 0 IN;

{ the unary function which taken a number returns the successor;

{ the binary function which adds two numbers;

{ the binary predicate which is true if the �rst argument is less than the second one.

1

IN

0

i

i

i

�

2

�

: : : i i >

[

� � f g

2

Data type

Version 4.2

Example 1.2

??

End example

2

Data type \stack of natural numbers"

The data type stack is a structure containing some elements, in this case natural numbers,

regulating the insertion and the extraction in such a way that the last number inserted

will be the �rst to be extracted; it is as if the numbers within the stack are put one over

the other, in a way that only that on the top is accessible. This data type consists of:

{ the set of the natural numbers IN;

{ the set of the �nite sequences of naturals IN = IN ;

(recall that IN = IN IN, times, if 0, and that IN = �);

{ the constant, the functions and the predicate of the data type of the natural numbers

of the Ex. ;

{ the constant � IN , i.e. the empty stack;

{ the function which taken a number and a stack returns the stack with such number

put on the top;

{ the function which taken a stack returns the number on the top (0 if the stack is

empty);

{ the function which taken a stack returns such stack where the number on the top

has been taken away (� if the stack is empty);

{ the predicate checking if a stack is empty.

In the de�nition of the data types we can distinguish a syntactic/structural part,

called signature, describing which are the components (carries, constants, functions and

predicates), and a semantic part, describing how such components should be interpreted.

The signature is the syntactic aspect of the data type. The components of the signature

are related with the components of the data type following the schema below.

Syntax (signature) Semantic (interpretation)

sort carrier (set)

constant name particular element of a carrier

operation name function

predicate name predicate

To specify a data type means to de�ne �rst its signature, and then to de�ne the

interpretation of its components. For de�ning the interpretation we give the properties

that it must satisfy; such properties say which result gives a function when applied to

some arguments, and if a predicate applied to some arguments is true or false. In METAL

these properties are expressed by syntactic constructs called axioms.

�

�

n n n

sort�

�

�

�

Version 4.2

1.1 Signatures

Speci�cation of a data type

??

Example 1.3

??

End example

nat

stack

nat

stack

** this is a comment

sort nat ** sort corresponding to the carrier natural numbers

cn Zero: nat} ** constant

op Succ: nat: nat ** unary operation

op Sum: nat nat -> nat ** binary operation

pr Ge: nat nat ** binary predicate

3

signature components of the data type

axioms semantic properties

The properties of a data type are expressed independently by the representation con-

crete of the elements of the carries and by the way in which are calculated the operations

and evaluated the predicates; for example an important property of the natural numbers

is that \for each natural number , 0+ = ", and this fact must hold if we represent the

numbers as binary sequences or as sequences of decimal digits, and for whatever algorithm

more or less e�cient we choose for computing the sum.

The signature expresses the (syntactic) structure of the data type.

A name is given for each carrier, called ; the notion of sort intuitively corresponds

to the notion of \type" in the usual programming languages as Pascal and Ada.

Consider the data type \stacks of natural numbers" of the Ex. : the sort may

be the name of the carrier IN; the sort that of the carrier IN . Then we can

say that IN is the carrier associated with and that IN is the carrier associated

with .

A name and a sort are given for each constant; the sort denotes the carrier to whom

the constant belong.

A name and an arity are given for each function; the arity of an operation is the list

of the sorts of the arguments and the sort of the result.

A name and an arity are given for each predicate; the arity of a predicate is the list

of the sorts of the arguments.

Signature of the data type \natural numbers"

Referring to the data type \natural numbers" de�ned in the Ex. , in METAL its

signature may be de�ned as follows:

Notice that the sorts are denoted by lower case identi�ers, while constants, opera-

tions and predicates are represented by identi�ers which start with an upper case letter.

1

1

1

n

n

n

j

j

j

Version 4.2

1.2 Terms and atoms over a signature

Example 1.4

??

??

End example

Syntax

??

SignatureDec Sort Sort

UpIdent Sort

UpIdent Sort Sort Sort

UpIdent Sort Sort

Sort LowIdent

sort stack

cn Empty: stack

op Put: nat stack -> stack

op Get: stack -> stack

op First: stack -> nat

pr IsEmpty: stack

sort ...

cn :

op : ... ->

pr : ...

op X: a -> a ** error: a has not still been declared

sort a b

op Y: a -> b ** OK

op Z: a -> c ** error: c is not in the signature

4

Signature of the data type \stacks of natural numbers"

Referring to the data type \stacks of natural numbers" de�ned in the Ex. , in METAL

its signature may be de�ned starting from the signature de�ned in adding what follows:

A signature is a sequence of declarations of sorts, constants, operations and predicates.

::=

::=

The sorts used in the declarations of the constants, of the operations and of the

predicates must be part of the signature, and must be declared before. For example the

following signature contains two errors .

It is prohibited to declare twice the same sort. It is instead allowed to declare constants,

operations and predicates with the same name, but they must have di�erent arities (see

subsection).

A signature � de�nes the syntax of a data type; for using this data type we need a way for

representing the elements of the carries, the application of the operations and predicates

to such elements. For doing all that in METAL we use appropriate constructs, which are

the terms and the atoms over the signature.

The terms over � are used to represent the elements of the carrier and the application

of the operations to such elements; the atoms over � are used for expressing some basic

logic conditions on the elements of the carries, given either by the application of the

predicates of the signature, or by the comparisons between terms.

The terms over a signature � are obtained by composing the constants and the oper-

ations; i.e. a term can be:

1

1

n

n L R

Version 4.2

�

�

�

�

j

j

�

�

�

�

??

??

??

Syntax

Term UpIdent UpIdent Term Term

Atom UpIdent Term Term Term Term

Zero Succ(Zero) Succ(Succ(Zero))

nat Sum(Zero,Succ(Zero))

Sum

Zero Succ(Zero)

IsEmpty(Empty) Zero = Succ(Zero) Empty = Put(Succ(Zero),Empty)

Succ(Empty)

Put(Zero,Zero) Get(Zero,Empty) Zero = Empty Ge(Zero,Put(Zero,Empty))

IsEmpty(Zero)

(, ...,)

(, ...,) =

C s C: s

O(t1, ...,tn) s O: s1 ... sn -> s

t1 tn s1 sn

P(t1, ...,tn) P: s1 ... sn

t1 tn s1 sn

tL = tR tL tR

5

a constant name;

an operation name applied to some arguments, which in turn are represented by

terms.

Referring to the signature of the Ex. , the terms , ,

and so long represent elements of the carrier of . The term

represents the application of the operation denoted by to the elements represented

by the terms and .

An atom over a signature � can be:

a predicate name applied to some arguments,which are represented by terms;

a comparison between two terms of the same sort.

Referring to the signature of the Ex. the following are atoms:

, , .

METAL is a typed language, in the sense that it does not allow to confuse di�erent

sorts. This feature helps to separating in a clear way distinct concepts and allows to

determine some conceptual errors due to the confusion.

For example, always referring to the signature of Ex. , the terms ,

, and the atoms , ,

are wrong since the arguments do not respect the arities of the operations

or of the predicates.

::=

::=

Not all the terms and the atoms obtained by the above grammar are correct: the

requirements about the arities of the operations and of the predicates are the following.

is a correct term of sort if is a constant of the signature.

is a correct term of sort if is an operation of

the signature and , . . . , are correct terms respectively of sorts , . . . , .

is a correct atom if is a predicate of the signature

and , . . . , are correct terms respectively of sort , . . . , .

is a correct atom if and are correct terms of the same sort.

n1

8 2n n n

Version 4.2

VarDec LowIdent LowIdent Sort

Term LowIdent

1.2.1 Variables

??

Example 1.5

End example

Syntax

1.2.2 Overloading

var n: nat n Sum(Zero,n)

nat

sort nat

var n m: nat

cn Zero: nat

op Succ: nat -> nat

op Sum: nat nat -> nat

pr Ge: nat nat

sort pair

var p: pair

op Pair: nat nat -> pair

op First: pair -> nat

op Second: pair -> nat

pr In: nat pair

p Zero Pair(n,Sum(Zero,n)) First(p)

Second(n) Pair(n,Pair(Zero,Zero)) Pair(p)

Ge(n,m) Second(p) = Zero

In(p,p) Zero = p Sum(n,m) = Second(n)

var ... :

v s v s

6

\In the data type natural numbers, whatever number added to zero gives as result the

number itself". For expressing properties of this type in mathematics we use the variables,

writing in a way very compact and expressive IN, +0 = ; in METAL the concept

of variable is used analogously.

The variables are used to represent generic elements of the carrier of a certain sort;

they are represented by lower case identi�ers and may be used for building the terms,

together constants and operations. For example if we add to the declarations of the

Ex. the declaration ; then and are terms with variables of

sort .

Consider the following signature with variables:

The following are correct terms: , , , ;

while these are wrong: , , ;

the following are correct atoms: , ;

while these are wrong: , , .

::=

::=

The sorts appearing in a variable declaration must be declared before to be used.

Given a signature, is a correct term of sort if is a variable of sort and has been

declared before to be used.

The overloading of the names of constant, operation and predicate is a feature of some

signatures. In METAL a name of constant, of operation or of predicate can be overloaded

Version 4.2

Example 1.6

End example

1.2.3 Constants, operations and predicates with mixed in�x syntax

Sum

sort nat int

var n m: nat

var i: int

cn Zero: nat

op Succ: nat -> nat

op Sum: nat nat -> nat

cn Zero: int

op Succ -> int -> int

op Pred: int -> int

op Sum: int int -> int

op NatInt: nat -> int

op Abs: int -> nat

Zero Succ Sum

Zero Succ(Zero) Sum(Zero,Succ(Zero))

NatInt(Succ(Zero)) Sum(Zero,n)

NatInt(Sum(Zero,i)) Abs(n)

7

with many di�erent meanings. For example , that in the previous examples represented

the sum of natural numbers, can be used also for representing other operations, as the

sum of integer numbers, the lists concatenation, or the adding of an element to a table.

The advantage of using the overloading is that we can choose names for the operations/

predicates which are really meaningful without be too long. In this way we can write more

clear and compact speci�cation. The disadvantage is that, since a name may have various

interpretations, sometime it is hard to understand which is the right one; in some cases

it is the context to establish it, in other cases the context is not su�cient and so we have

ambiguous terms and atoms.

However we cannot abuse of the overloading, otherwise we risk of getting speci�cations

of di�cult comprehension for two reasons: the �rst is that a nonambiguous term/atom

containing names with several meanings can be di�cult to interpret for a human reader;

the second is that for eliminating the ambiguity sometime we have to rewrite terms and

atoms in a complex and not natural way.

Consider the following signature, for a data type putting together natural and integer

numbers:

Notice that some operations over naturals, di�erent from that on the integers, are

denoted by the same symbols (, ,).

The following are ambiguous terms: , , ;

while these one are not ambiguous: , and

the following are wrong terms: , .

The syntax used until now for terms (and atoms) is called functional, or pre�x with

parenthesis, and it is based on writing the name of the operation (or of the predicate)

followed by the arguments between parentheses, separated by commas. Usually in mathe-

matics more compact and expressive notations are used, as for example the binary in�xed

notation used for the adding and multiplication operations between numbers. This since

Version 4.2

Example 1.7

??

End example

1.2.4 Ambiguity of terms and atoms

1 + Zero Sum(1,Zero)

sort nat pair

var n m: nat

var p: pair

cn 0: nat

op Succ _ : nat -> nat

op _ + _ : nat nat -> nat

op _ * _ : nat nat -> nat

op _ ! : nat -> nat

pr _ <= _ : nat nat

op < _ _ >: nat nat -> pair

op _ 1: pair -> nat

op _ 2: pair -> nat

pr _ In _ : nat pair

nat 0 Succ 0 0 + Succ n

p 1 < Succ 0 0 > 1 n! nat n

+ 0 + m Succ n ! pair p < n m >

0 = 0 Succ 0 = 0 0 In p n + m + 0 = n

+ m

8

is more clear of .

METAL allows to de�ne together the names of constants, operations and predicates

also the syntax for using them. The notations binary in�x, unary pre�x, polish pre�x

and polish post�x are particular cases of the general mechanism of syntactic de�nition

supported by METAL. This mechanism is called \mixed in�x notation".

In the declarations of constants, operations and predicates we give the syntax with we

intend to use tehm in terms and atoms. The character underscore \ " denotes the place of

the arguments, following the declaration order. There are as many \ " as the arguments

(and then in the declarations of constants no). Building terms and atoms, each \ " is

replaced by a term of the corresponding sort.

Pairs of naturals with mixed in�x syntax

For giving an example of mixed syntax, we consider a signature for the data type \pairs of

natural numbers" (another signature for the same data type, but with functional syntax,

is in the Ex.).

The following are correct and non ambiguous terms of sort : , , ,

, , ; the following are correct but ambiguous terms of sort :

, and those are correct terms of sort : , .

The following are correct atoms: , , ; while

is an ambiguous atom.

Notice that some of these terms and atoms are ambiguous also if there is no overload-

ing.

The ambiguity of the terms can be caused by the overloading, by the mixed in�x syntax,

or by a combination of them, and sometime we can solve it using the context in which

the term is inserted; for this reason ambiguous terms are allowed by the language. The

ambiguity of the atoms is caused by the ambiguity of the component terms, and cannot

be solved using the context; for this reason the ambiguous atoms are wrong.

Version 4.2

Example 1.8

??

End example

Example 1.9

??

End example

1.2.5 Implicit embeddings

Example 1.10

s s: s -> s

s

Zero nat(Zero) int(Zero)

Succ(Zero) Succ(nat(Zero)) int(Succ(Zero))

Sum(Zero, Succ(Zero)) Sum(int(Zero),Succ(Zero))

Sum(nat(Zero),Succ(Zero))

nat(Sum(Zero,Succ(Zero)))

0 < 0 Succ 0 > 0 + n p 1

0 + n + m 0 + (n + m) (0 + n) + m

Succ 0 + n (Succ 0) + n Succ(0 + n)

Succ n ! (Succ n)! Succ(n!)

p In 0 Succ < 0 0 > < < 0 Succ 0 > n > n 1 p! < < 0 0 > 0>

-> s -> s'

sort nat seq

var n: nat

var q: seq

cn 0: nat

op Succ _ : nat -> nat

op _ : nat -> seq

op _ _ : nat seq -> seq

pr _ In _ : nat seq

9

The ambiguity caused by the overloading can be eliminated stating explicitly the sort

of the terms. It is as if for each sort there is an operation , called explicit

typing operation, or casting. This operation is used for coercing a term to have sort .

Overloading and ambiguous terms

Consider the signature of the Ex. .

ambiguous term corresponding non ambiguous terms

,

,

,

,

The ambiguity caused by the mixed in�x syntax is solved putting round parentheses

around the terms to whom we want to give precedence.

Mixed syntax and ambiguous terms

Referring to the signature of the Ex. , consider the following terms.

{ , , , are correct and nonambiguous.

{ is ambiguous: it can be or .

{ is ambiguous: it can be or .

{ is ambiguous: it can be or .

{ , , , , , are wrong.

The unary operations of the kind are called implicit embeddings; in the

terms they are invisible and can cause ambiguities. Consider the following example.

Sequences of natural numbers

n

n

n

n

1

1

1

1

Version 4.2

�

�

�

j

j

j j

j

j j j

End example

Syntax

1.3 Properties and axioms

seq

0 Succ 0 Succ 0 0 Succ 0 0 0

0 nat seq

nat

seq

: a -> b

: b -> c : c -> a

(t)

t t

s(t) s t

cn :

op : ... ->

pr : ...

...

()

...

()

tL = tR tL tR

SignatureDec Mix�xRepr Sort

Mix�xRepr Sort Sort Sort

Mix�xRepr Sort Sort

Mix�xRepr Mix�xReprElem Mix�xReprElem

Mix�xReprElem Symbol UpIdent

Term Mix�x Sort Term

Atom Mix�x

Mix�x Mix�xElem Mix�xElem

Mix�xElem UpIdent Symbol Term Mix�x

10

The following are correct terms of sort over the above signature:

, , , ,

The term is ambiguous since it can be of sort or of sort ; also the other

terms of sort are ambiguous, since due to the implicit embedding they are also terms

of sort .

The ambiguities caused by the implicit embedding operations are extremely dangerous,

and sometime are very di�cult to solve; thus the use of these operations is limited by the

following restrictions.

No cycles of implicit embeddings. For example the three operations \ ",

\ ", \ " cannot coexist in the same signature.

An implicit embedding operation cannot be applied to a term having form ,

when is a term. In the case they are applied to before to put the parentheses.

An implicit embedding operation cannot be applied to the result of an operation of

explicit typing, i.e. to a term having form , where is a sort and is a term.

::=

::=

::=

::=

::=

::=

::=

The number of the \ " in an declaration of an operation or of a predicate must be equal

to the number of the arguments; and the \ " cannot appear in a constant declarations.

A term is obtained from a constant name, or from an operation name with mixed

in�x syntax by replacing the with terms of sorts corresponding to the arguments; or by

enclosing between parentheses another term; or by coercing the sort of another term.

An atom is obtained by the name of a predicate with in�x mixed syntax by replacing

the \ " with terms of sorts corresponding to the arguments; or by enclosing between

parentheses a correct atom; moreover is an atom if and are terms of the

same sort, and no one of the two is obtained with the application to the outer level of an

operation of implicit embedding. The ambiguous atoms are wrong.

The signatures are used to de�ne the syntax of the data types, but not to expressing the

semantic properties of the interpretations of the symbols of the signature. In particular,

the signature cannot express:

�

�

�

Version 4.2

Example 1.11

??

??

End example

1.3.1 Logic combinators

??

+

n n + 0 = n

n m n + (m + 1) = (n + m) + 1

ax n + 0 = n

ax n + Succ m = Succ(n + m)

ax n + 0 = n

n nat n + 0 = n

<=

A1 A2

not A1 A1 and A2 A1 or A2 A1 if A2 if A1 then A2 A1 iff A2

not not A1 A1

and A1 and A2 A1 A2

or A1 or A2 A1 A2

11

which are really the elements of the carries;

which is the result of the application of an operation to some arguments;

if a predicate applied to some arguments is true or false.

For specifying these aspects of the data types we give the properties of its components

(constants, operations and predicates). Such properties are expressed in METAL with

particular constructs called axioms.

Axioms of the sum of naturals

Referring to the Ex. of the pairs of natural numbers, we want to specify with some

axioms the meaning of the sum, i.e. which is the result of the application of the function

associated to the operation to two generic natural numbers.

This can be done in several ways. One of that consists in requiring the following two

properties:

{ for each natural number , holds;

{ for each two natural numbers and , holds.

These two properties characterizes completely the sum, in the sense that completely de�ne

the result of the sum of two arbitrary numbers.

Consider the signature with variables of the Ex. : in METAL the above properties

can be expressed by means of the two axioms:

When we use variables in an axiom, we means that the axiom holds whatever values

assume the variables. For example the axiom is read \for each possible

value of in the carrier of , the equality holds".

The atoms are the simpler kind of axiom; more complex axioms can be given by

composing the atoms using the logic combinators and by quantifying the variables.

For giving the properties of the predicate of the Ex. the atoms are not su�cient;

we need more complex axioms, which are obtained by composing the atoms using the so

called logic combinators.

Let , be two axioms. Then the following are axioms:

, , , , , .

{ is the logic negation. is true when is false and vice versa.

{ is the logic conjunction. is true when and are both true.

{ is the logic union. is true when either is true, or is true, or both.

Version 4.2

Example 1.12

??

End example

if then if A1 then A2

A2 A1 A1 A2

A2 if A1 if A1 then A2

iff A1 iff A2 A1 A2

A not A

A1 A2 A1 and A2 A1 or A2 if A2 then A1 A1 iff A2

A1 if A2 if A2 then A1

A1 or A2 and A3 A1 or

(A2 and A3) not

A1 if A2 if A3

(A1 if A2) if A3 and or

(A1 or A2) and A3

ax n + 0 = n

ax n + Succ m = Succ(n + m)

ax n * 0 = 0

ax n * (Succ m) = (n * m) + n

ax 0! = 1

ax (Succ n)! = (Succ n) * (n!)

ax 0 <= n

ax Succ n <= Succ m if n <= m

ax < n m > 1 = n

ax < n m > 2 = m

ax n In p if n = p 1 or n = p 2

12

{ is the logic implication, i.e. the conditional form. is true

when either is true, or is false. Notice that if and are both false, the

implication is true.

The alternative form is equivalent to and depending on

the cases may be clearer.

{ means \if and only if". is true when and are either both true,

or both false.

The meaning of the logic combinators is synthesized by the following tables:

false true

true false

false false false false true true

false true false true false false

true false false true true false

true true true true true true

The axiom is equivalent to , but it has the arguments swapped.

By a syntactic point of view the logic combinators have a mixed in�x syntax, so

axioms may be ambiguous; in this case some precedence between the logic combinators

are given for establishing how to interpret an axiom in case of ambiguity; the rule is that

the combinators which are more at left in the previous table have bigger precedence and

have to be applied �rst: for example \ " has to be interpreted \

". The has precedence over all the binary combinators.

The binary combinators associate on the left: for example \ " has to

be interpreted \ ". In the case of and this is irrelevant since the

result does not change.

If we want an interpretation di�erent from that established by the precedence rules,

we can use the parentheses for enclosing the axioms to be evaluated �rst. For example

we can write \ ".

For showing the use of the logic combinators, we give some axioms on the signature of

the Ex. :

n

n

j j j

j j

j j

j

Version 4.2

1 2 1 2

1 2 1 2 1 2

1

1

1.4 Speci�cation of data types

Syntax

1.3.2 Quanti�ers

Example 1.13

End example

Syntax

ax

() not

and or

if then if iff

forall exists

ax not exists n: not exists m: n + n = (m + m) + Succ 0

forall

exists

m n

ax exists m: Sum(n,m) = n

** or equivalently

ax forall n: exists m: Sum(n,m) = n

m

n

ax exists m: forall n: Sum(n,m) = n

forall ... :

exists ... :

AxiomDec Axiom

Axiom Atom Axiom Axiom

Axiom Axiom Axiom Axiom

Axiom Axiom Axiom Axiom Axiom Axiom

there does not exists a natural number that added with itself gives an odd result

Axiom LowIdent LowIdent Axiom

LowIdent LowIdent Axiom

LowIdent

13

::=

::=

We require that each atom appearing in an axiom must have one and only one inter-

pretation, i.e. it must be correct and not ambiguous.

The variable quanti�ers are and and are applied to build some types of

axiom. For example for expressing

\ "

we can write

The quanti�er used to the outer level is useless, since the variables are al-

ready considered \for each value', instead used with allows to express interesting

properties.

In this axiom, the value of can be chosen depending on the value given to :

Instead this axiom is stronger since says that there is a value for which works

independently from the value given to :

::=

is a variable identi�er, and must be declared before to be used in the axioms.

The speci�cation of a data type consists of a signature, a set of variables and a set of

axioms. The signature includes declarations of sorts, constants, operations and predi-

cates. The axioms de�ne the properties that the interpretation of the components of the

signature (constants, operations and predicates) must have.

1

1

Version 4.2

s

C s

O s sn s

P s sn

Spec

Spec

: : :

: : :

�

� 2

�

� �

�

� �

�

2

2

�

�

1.4.1 Speci�cation and data types.

Example 1.14

Ax

DT

DT DT

DT DT

DT DT DT DT DT

DT DT DT DT

Ax DT

Ax

DT DT

Ax Ax

DT

DT

s

C: s

O: s1 ... sn -> s

: ->

P: s1 ... sn

:

A

A A

A1 A2

A1 and A2

<=

sort nat

var n m: nat

cn 0: nat

op Succ _ : nat -> nat

pr _ <= _ : nat nat

ax 0 <= m

ax if n <= m then Succ n <= Succ m

14

Consider the relationship between a speci�cation and the data type that it is denoting.

Given a speci�cation consisting of the signature � and of the axioms , we say

that is a model of if:

to each sort of � corresponds a carrier of ;

to each symbol of constant of � corresponds an element ;

to each symbol of operation of � corresponds a function

of ;

to each symbol of predicate of � corresponds a predicate

of ;

the axioms in hold in .

This means that taken an axiom , for each assignment of values to variables

of the interpretation of in is true; moreover in also all the axioms which

are logic consequences of that in hold. For example, if , then also the

axiom holds in .

Notice that in general in also other formulae, not derivate by the axioms, may

hold.

In general a speci�cation can have either several models, or no one. If a speci�cation

has many di�erent models, all of them have the structure imposed by the signature, and

satisfy the axioms. A speci�cation has not models if its axioms are contradictory, and so

there does not exist a data type satisfying all of them.

Sometime there is a particular model that it is interesting; other times instead there

are di�erent models equally interesting.

Consider the following two examples, that show two completely di�erent ways of con-

sidering the meaning of the speci�cation of a data type.

Naturals with ordering relationship

The following declarations specify the natural numbers with the ordering relationship ,

denoted by the predicate .

�

�

�

Version 4.2

End example

Example 1.15

End example

??

??

1.4.2 Order of the declarations

sort toset

var x y z: toset

pr _ <= _ : toset toset

ax x <= x ** reflexivity

ax if x <= y and y <= z then x <= z ** transitivity

ax if x <= y and y <= x then x = y ** antisimmetry

ax x <= y or y <= x ** totality

15

This speci�cation de�nes a precise data type, consisting of a set isomorphic to the set

of the natural numbers, with the constant zero, the operation that taken a number gives

the successor and the predicate corresponding to the increasing order of the naturals.

In this case, we want that the data type denoted by the speci�cation is uniquely

determined (up to isomorphism); and so the axioms give all and only the properties of

constants, operations and predicates.

Sets with an order relation

The following declarations specify the general properties that whatever total order relation

must satisfy.

This speci�cation intends to de�ne a class of data types, i.e. not a unique data type,

but several ones. Indeed all sets with a total ordering relation are models of this speci-

�cation; for example the natural numbers, the real numbers, the english words with the

lexicography ordering and so long.

These are two completely di�erent approaches to the problem of giving a meaning to

a speci�cation. Precisely there are two kinds of speci�cations.

Design speci�cation, as the speci�cation of the natural numbers of the Ex. , which

denote a unique data type.

Requirement speci�cation, as the speci�cation of the ordered sets of the Ex. ,

which denote a very large class of data types.

The crucial di�erence between these two approaches is in the way the axioms are

considered: in the �rst case the axioms completely characterizes all the properties of the

data type; in the second case the axioms give the properties which surely must hold,

leaving open the possibility that other properties hold.

In METAL the declarations composing a signature can be mixed with the declarations of

the variables and of the axioms, whenever each symbol is declared before to be used. This

freedom allows to structure the speci�cation in a proper way, and must be used carefully;

in general we recommend of following one of the two schemas:

Separation between signature and axioms: �rst we declare the sorts; followed by

the constants, the operations and the predicates; then the variables and at last the

axioms. In this way the signature of the data type is put in evidence.

SP

SP

�

�

�

�

Version 4.2

??

Example 1.16

1.5 Design speci�cations

exactly

satis�es all and only the properties

DT

Ax

DT

DT

DT

DT

Ax

Succ Succ 0 = 0 2 = 0

nat

0 Succ

A A A

design end

design

sort nat

var x y: nat

cn 0: nat

op Succ _ : nat -> nat

op _ + _ : nat nat -> nat

ax x + 0 = x

ax x + Succ y = Succ(x + y)

end

16

Integration between signature and axioms: �rst we declare the sort, followed by the

variables, and after the constants, the operations and the predicates together with

the relative axioms. In this way the link between axioms and relative operations is

in evidence; there is the risk of loosing the view of the signature, which is spread

out in the speci�cation.

A design speci�cation of a data type includes as usually a signature and some axioms;

we want that denotes a data type with the sorts, the constants, the operations

and the predicates declared in the signature, and that

expressed by the axioms and their consequences.

If we consider the speci�cation of the Ex. , we do not want that in the denoted type

the property , i.e. hold. This property is not a logic consequence

of the axioms and thus it must not hold in the model in which we are interested.

Moreover we want that the carrier of the sort does not contain elements not

expressible with the constants and the operations: the data type of the real numbers is

not appropriate since the irrational numbers cannot be expressed using only and .

The data type denoted by a design speci�cation with signature � and axioms

is characterized by the following properties.

is a model of .

For expressing all the elements of the carries of the constants and the operations

of � are su�cient; in other word, is generated by �.

Let be an axiom over �; holds in if and only if is a logic consequence of

some axioms .

In general a speci�cation has many models, but there only one (up to isomorphism)

satisfying these three properties; such data type is said the initial model of the speci�ca-

tion.

In METAL we have a design speci�cation enclosing the signature declarations and

axioms between the key words and .

Models of the speci�cation of the naturals

Consider the following speci�cation:

n

n

n

1

1

1

�

�

2

�

�

�

j j

Version 4.2

n �

atom

atom atom atom

atom atom atom

End example

1.5.1 Existence of the initial model

Syntax

Real

Real

BasicDec SignatureDec VarDec AxiomDec

Spec BasicDec BasicDec

design

end

nat

Succ 0 = 0

nat

0 Succ +

if and and

if and and then

A B

C

if A or B then C

if A then C if B then C

A and B A B

A and B A B

if A then B and C

if A then B if A then C

A or B (A or B) if C not A exists x: A

design ... end

17

This speci�cation denotes the data type of the natural numbers (which is its initial

model), since the declarations of signature and axioms are enclosed between and

.

But the same set of declarations has many models; in the following we give two ex-

amples of data types di�erent from the initial model.

In the trivial model the carrier of contains a unique element and all the operations

have as result . Obviously the equation holds in this model, also if it is not

a consequence of the axioms: thus this model is not initial.

In the model of the real numbers the carrier of is and includes positive and

negative real numbers, with fractions, algebraic roots and so long. This model satis�es

the �rst and the third requirement, but not the second: indeed there exists a number

which cannot be represented with , and , e.g. , and thus this model

does not satis�es the second requirement.

Depending on the form of the axioms of a speci�cation, it can happen that the initial model

determined by a design speci�cation, i.e. the data type satisfying the three requirements

given previously, does not exist. However it can be shown that if the axioms have a certain

form, called positive conditional, then the initial model exists. In other words if we use

only positive conditional axioms, we are guaranteed that the initial model does exist; for

this reason in the design speci�cation we can only use positive conditional axioms. An

axiom is positive conditional if has one of the following forms:

. . . ;

. . . .

Some kinds of axioms which are not positive conditional can be reformulated in an

equivalent way as a set of positive conditional axioms. For giving some examples, let ,

and be some atoms.

The axiom \ " is equivalent to the pair of positive conditional ax-

ioms \ ", \ ".

The axiom \ " is equivalent to the pair of positive conditional axioms \ ", \ ";

since means that both and must hold.

Analogously the axiom \ " is equivalent to the pair of positive

conditional axioms \ ", \ ".

Instead the following axioms in general are not equivalent to other positive conditional

axioms: \ ", \ ", \ ", \ ".

::=

::=

1

1

DT DT

DT

DT

Version 4.2

Example 1.17

End example

1.6 Requirement speci�cation

In the scienti�c literature this way of interpreting a speci�cation is known as loose approach.

requirement

end

requirement ** properties of the groups

sort group

var x y z: group

cn Id: group ** identity

op _ + _ : group group -> group ** sum

ax x + (y + z) = (x + y) + z ** associativity

** Id is the identity}

ax x + Id = x

ax Id + x = x

ax forall x: exists y: x + y = Id ** existence of the inverse

end

not or

18

All the axioms appearing in a design speci�cation must be positive conditional. The

sorts, the constants, the operations, the predicates and the variables must be declared

before to be used.

In some cases it is desirable to specify only very general properties of a class of data types.

A speci�cation of this kind denotes the class of all its models, i.e. the class of the data

types such that has the sorts, the constants, the operations and the predicates

of the signature of the speci�cation, and satis�es all its axioms.

The other constraints for the initial model in this case are not required. In particular

it is not necessary that the carries of are generated by constants and operations of

the speci�cation: elements non represented by terms can be in the carriers; clearly the

axioms and their logic consequences must hold in ; however it is possible that other

properties, which are are not consequences of the axioms hold.

In METAL we have a requirement speci�cation i.e. interpreted in the above way by

enclosing the declarations of signature and the axioms between the keywords

and .

Group requirements

In mathematics a group is a set with a binary operation, called sum, which has a neutral

element and is associative, and for whom each element has an inverse. The real numbers

w.r.t. the product, the integers w.r.t. the sum are examples of groups.

Whatever model of the following speci�cation is a group, and whatever group can be

seen as a model of the following speci�cation.

In the requirement approach the axioms may have whatever form and so we can use

freely the , the combinators and the quanti�ers.

n1

Version 4.2

Syntax

Example 1.18

1.7 Two �nal examples

Spec BasicDec BasicDec

19

::=

The sorts, the constants, the operations, the predicates and the variables must be

declared before to be used.

This paragraph contains two �nal examples including all the features of METAL presented

in the section. The �rst is a design speci�cation, the second a requirement speci�cation.

Data type \priority queues of natural numbers"

requirement ... end

design ** natural numbers

sort nat

var n m: nat

cn 0: nat

op Succ _ : nat -> nat

op _ + _ : nat nat -> nat

ax 0 + n = n

ax (Succ m) + n = Succ(m + n)

pr _ <= _ : nat nat

ax 0 <= n

ax if n <= m then Succ n <= Succ m

op Max: nat nat -> nat

ax if n <= m then Max(n,m) = m

ax if m <= n then Max(n,m) = n

pr _ =/= _ : nat nat

ax if x <= y then x =/= Succ y

ax x =/= y if y =/= x

sort queue ** priority queues

var q: queue

cn <> : queue

op Add : nat queue -> queue

pr _ Is Empty: queue

ax <> Is Empty

� 6 6

�

Version 4.2

f

a b a b f a

f b

c a

f a c

f

DOM CODOM

DOM CODOM

DOM

CODOM

DOM

End example

Example 1.19

End example

2 Speci�cations structured in modules

op Max _ : queue -> nat ** computes the maximum

ax Max <> = 0

ax Max Add(n,q) = Max(n,Max q)

op Rest _ : queue -> queue ** gets the maximum

ax Rest <> = <>

ax Rest Add(n,q) = q if n = Max Add(n,q)

ax Rest Add(n,q) = Rest q if n =/= Max Add(n,q)

end

=/=

requirement

sort dom codom ** domain and codomain

op F: dom -> codom ** bijective operation

var x y: dom

var n: codom

ax if not x = y then not F(x) = F(y) ** injectivity

ax exists x: F(x) = n} ** surjectivity

end

20

Notice that the last axiom is positive conditional, due to the introduction of the

auxiliary predicate on naturals.

Class of the data types with a bijective operation

Consider two sets, say and , linked by a function which taken an element

of returns an element of , such that:

(injectivity) whatever two elements and of we take, if = then () =

();

(surjectivity) whatever element of we take, there exists an element of

such that () = .

A function having this two properties is said bijectivity. This situation can be

speci�ed as follows:

In METAL it is possible to split a speci�cation in several separated modules; each module

corresponds to an isolated aspect of the problem, and its reduced dimension makes its

content immediately understandable. Each module is connected to the other in a clear

and ordered way; the division of a speci�cation in modules allows to reuse the same

components in various di�erent situations, with a consistent save of time and of work.

Version 4.2

Example 2.1

End example

NAT

NAT =

design

sort nat

cn 0: nat

op Succ _: nat -> nat

STACK OF NATURAL

STACK_OF_NATURAL =

design

use NAT

var n: nat

sort stack

var s: stack

cn Empty: stack

op Put: nat stack -> stack

op Get: nat stack -> stack

ax Get(Put(n,s)) = s

ax Get(Empty) = Empty

op First: nat stack -> nat

ax First(Put(n,s)) = n

** be careful: First(Empty) is different from all naturals of NAT

pr _ Is Empty: stack

ax Empty Is Empty

STACK OF NATURAL

NAT

21

In METAL we give a name to each module by means of an association with an identi�er

called \bind"; in this way we de�ne an environment associating modules with identi�ers.

Developing a speci�cation of a system, we usually start from an informal description

of the minimal requirements that the system must satisfy. This description is formalized

with a requirement speci�cation, leaving space to di�erent interpretations. The speci�-

cation is then re�ned in several steps until we get a detailed design speci�cation of the

project. During this re�nement it is possible that some modules are terminated before

other, and thus in the intermediate steps we have requirement speci�cations with some

subcomponents already at the design level.

Speci�cation of the stacks of naturals

Consider the following modular speci�cation of the data type \stacks of natural numbers";

�rst we specify the natural numbers, then we use the naturals for specifying the stacks.

We associate the speci�cation of the data type \natural numbers" with the identi�er

by the following bind.

Then we associate the speci�cation of the data type \stacks of natural numbers" with

the identi�er by writing

Now the data type denoted by includes also the naturals denoted

by , and it is in some sense an extension of it.

??

�

�

�

�

�

�

Version 4.2

2.1 Binds and environments

use

A B B A

rename

export hide

NAT STACK OF NATURAL

STACK OF NATURAL NAT STACK OF NATURAL

NAT

22

The principal constructs of METAL about the structuring in modules of the speci�-

cations are the following.

\ " allows to de�ne a speci�cation using other speci�cations de�ned previously

as subparts. If uses , the elements of the signature of are available in , with

their semantic properties, and thus there is no need to redeclare them.

\ " allows to change name to some sorts, constants, operations and predicates

of a module. In this way we can reuse a module, by changing some of its symbols,

for adapting it to the new needs.

The parameterization is an important tool for reusing the speci�cations; it allows

to specify generic data types, that can be instantiated afterwards.

For example we can de�ne the generic the data type stack, without to say which

are the objects of the stack. After, this data type can be instantiated by creating

stacks of naturals, stacks of streams of naturals, stacks of stacks of trees of pairs of

naturals

\ " and \ " allow to control which symbols of the signature of the speci-

�cation de�ned in a module become available outside and which not.

These operations among speci�cations can be applied to the basic speci�cations both

requirement and design, for getting new speci�cations; in this way after having written

some basic modules (and using those built-in) we can build more complex speci�cations

of data types.

Together with requirement and design METAL has two other kinds of speci�cations.

The draft speci�cation are modules without any semantic, neither initial nor loose,

but which simply denote a signature and some axioms. They are used for solving

some problems of modular decomposition.

The param speci�cations are used within the parametric speci�cations, for express-

ing the requirements that their parameters must satisfy. They have loose semantic

and di�er by the requirement speci�cations only in the use.

A bind is the association of an identi�er with a speci�cation. The Ex. contains two

binds, which associate two speci�cations with the two identi�ers and .

A sequence of binds in which all the identi�ers on the left of the equalities are distinct

is an environment.

For giving the semantic to a speci�cation we need to know the binds to whom it refers;

for example refers to , and for giving a meaning to

�rst we have to give a meaning to . Among the binds of an environment there is thus

a dependence relationship, without cycles; moreover within a bind for an identi�er it is

not possible to refer to the same identi�er.

n

n

1

1

�

�

�

�

�

�

�

Version 4.2

2.2 Use of modules

Syntax

??

??

Syntax

...

=

A = SA B = SB

use B SA

B

A B

SA SB A B

SA SB SA SB

SA SB SB

SA SB

SA SB SB

SA

SA SB

SB

SA SB

SA SB

SA SB

SA

use , ...,

BindSequence Bind Bind

Bind UpUpIdent Spec

no junk no confusion

no junk no confusion

Spec UpUpIdent

BasicDec Spec Spec

23

::=

::=

The identi�ers on the left must be all distinct and each identi�er must be declared

before to be used.

Let and be two binds of an environment.

If the declaration appears in , from that point we can use the sorts, the

constants, the operations and the predicates de�ned in . The variables cannot be used,

since they are local to the modules. In such case we say that uses .

Depending on the semantic of and of there are some restrictions to using .

design, design: it is desirable that does not change the properties of .

For this reason we put two restrictions, called and , presented

in the subsection .

design, draft: it is allowed, if all the axioms of are positive conditional.

design, requirement or draft, param: error; a param speci�cation can be used

only within other param modules.

requirement or param, design: in this case the data type denoted by w.r.t.

the initial semantic is inserted in the data type denoted by , which has a loose

semantic.

Notice that whatever model of restricted to the signature of must coincide with

the initial model of . That means that the restrictions and ,

expressed in subsection , hold. This is the situation during the re�nement of

the speci�cation of a system when while we specify the requirements of the whole

system some submodules are already developed (i.e. given by design speci�cations).

requirement or param, requirement or draft: no problems.

param, param, design, requirement or draft: no problems.

draft, draft, design or requirement: it is possible, but we cannot guarantee

any properties of consistency, since has not a semantic in terms of data types.

::=

::=

The restrictions on the importing of modules are expressed by the table below.

SB

�

�

Version 4.2

no junk

no confusion

A B SA SA SA SA

SB

SB

SB

SB

2.2.1 No junk, no confusion

??

Example 2.2

??

no junk, no confusion no junk, no confusion no junk, no confusion

with only positive conditional axioms

uses design requirement draft param

design OK

requirement Error OK OK OK

draft OK OK OK

param Error Error Error OK

A = SA B = SB SB

A B B

B A

A

A B

A

B B

B A

B

SA SB

First(Empty)

nat

NAT

nat

ax First(Empty) = 0

NAT STACK OF NATURAL

STACK_OF_NATURAL' =

design ** adding one axiom

use STACK_OF_NATURAL

var s s': stack

ax s = s' if First(s) = First(s')

24

Let and be two binds, with design (with initial semantic), such that

uses . denotes uniquely a data type, and it is important that the carries and the

properties of the data type denoted by are not modi�ed by the new declarations of ,

but they are preserved within the data type denoted by . This requirement is formalized

by the two constraints:

: does not add elements to the carries of the sorts of ;

: does not contain axioms which make true properties not holding in

. An atom without variables built using the symbols of the signature of holds in

i� it holds in .

The idea of that is that we use the speci�cation determined by as it is, without

modifying the data type which de�nes.

The �rst constraints (no junk) cannot be veri�ed automatically. Indeed in general it

is allowed that in we declare constants and operations of a sort de�ned in , and so

we cannot guarantee that the terms obtained with these new constants and operations

are equivalent to some old terms.

Ex. does not satisfy the constraint no junk: indeed the term of sort

, which corresponds to read the �rst element of an empty stack, denotes an element

completely new for such sort, di�erent from all naturals de�ned in ; thus the carrier

of has been modi�ed. For �xing this problem we have to add new axioms identifying

these new term with another already existent. For example we may add:

Also the second constraint (no confusion) cannot be veri�ed automatically, since the

confusion may be caused by axioms apparently about other sorts.

Consider the environment de�ned by the binds and of the Ex.

and by the following ones.

0 1

s s

2.3 Rename

Version 4.2

End example

Example 2.3

??

End example

nat s0 = Put(0,Put(0,Empty))

s1 = Put(0,Put(Succ 0,Empty))

First(s0) = First(s1) = 0

s0 = s1 First(Get(s0)) = First(Get(s1)) 0 = Succ 0

nat

S S

S

POSET =

requirement

sort poset

var x y z: poset

pr _ <= _: poset poset

ax x <= x ** reflexivity

ax if x <= y and y <= x then x = y ** antisimmetry

ax if x <= y and y <= z then x <= z ** transitivity

TOSET

x <= y or y <= x

TOSET =

requirement

use rename sort poset to toset in POSET

var x y: toset

ax x <= y or y <= x

25

The added axiom say that two stacks are equal if they have equal the �rst element. This

axiom produces confusion in the sort . Indeed consider

and .

From the last axiom, we get = , since . On the

other hand if then and thus .

That means that one is equal to zero! Proceeding in this way we can deduce that all the

elements of sort are equal.

The result is that a wrong axiom non only ruins the stacks, but also the naturals,

which apparently were not involved. Errors of this kind can be very di�cult to �nd and

thus we need to be very careful.

The rename is a construct which allows to reuse modules written previously simply by

changing the name to some of the components of the signature (sorts, constants, opera-

tions and predicates).

By renaming a speci�cation we can change the symbols directly de�ned in , and also

that imported in from other speci�cation. The kind of the speci�cation instead remains

the same, and so we can rename design, requirement, param and draft speci�cations

getting speci�cations of the same kind.

Partial and total orders

A partial order structure (POSet, Partially Ordered Set) consists of a set, and of a partial

order (i.e. two elements may be noncomparable).

For getting the speci�cation of the totally ordered sets () we add the axiom

;

at this point it is reasonable to change the name to sort, to avoid confusion (see).

n

n

n

1

1 2

1

1

Syntax

??

Version 4.2

j

j j

j j

j

�

�

�

�

�

2.4 Parametric speci�cations

rename ... in

sort to to

cn cn :

op op : ... ->

pr pr : ...

to

to

list(elem)

list(nat)

Spec Map Map Spec

Map Sort Sort CnOpPrExpr Mix�xRepr

CnOpPrExpr Mix�xRepr Mix�xRepr Sort

Mix�xRepr Mix�xRepr Sort Sort Sort

Mix�xRepr Mix�xRepr Sort Sort

26

::=

::=

::=

The sorts, the constants, the operations and the predicates on the left of the must

be part of the signature of the renamed speci�cation.

The arities of the symbols on the left of the can be omitted, if there is no ambiguity.

The arities of the symbols on the right are deducible by the renaming of the arities of the

symbols on the left, and thus there is no need to declare them explicitly.

Renaming a sort corresponds really to declare a new sort; it is the same thing for the

names of sorts of the subsection .

METAL supports a powerful tool for the reuse of the modules: indeed it allows to pa-

rameterize the modules over other modules. The parameterization is a construct of high

level which allows to reuse speci�cations written before, in a controlled and safe way.

The METAL approach to parametric modules it is based on the following points.

The formal parameters are identi�ers representing speci�cations.

A speci�cation (of kind param) is associated with each formal parameter, it rep-

resents the requirements that the corresponding actual parameter must satisfy for

making the correct instantiations. These requirements are both about the structure

of the signature and the properties of the interpretation of the constants, of the

operations and of the predicates.

The instantiations are obtained by associating with each formal parameter a speci-

�cation, called actual parameter, which must satisfy the relative requirements.

The association of an actual parameter with a formal one it is not trivial, since we

have to de�ne how the actual parameter satis�es the requirements of the formal

parameter. This it is done by associating with each of the components (sorts,

constants, operations and predicates) of the speci�cation de�ned in the requirement

part of the formal parameter a corresponding element of the actual parameter.

The sorts de�ned in a parametric speci�cation can have a syntax parameterized on

the sorts appearing in the requirement part of the formal parameters; for example

we can de�ne the parametric lists, having sort , and then instantiate

them with the natural numbers as elements, getting the sort .

In this way the sorts de�ned in di�erent instantiations of the same parametric

speci�cation have automatically assigned di�erent names; this is very useful to avoid

the collisions among the names of the sorts.

j

j

j

1 1 +1

1

1

1

n n n

n n

n

n

n

Version 4.2

Example 2.4

End example

Syntax

Spec UpUpIdent Spec UpUpIdent Spec Spec

UpUpIdent Instant Instant

BasicDec BasicDec

Instant Spec Map Map Spec

Sort LowIdent Sort Sort

LIST =

generic ELEM : param sort elem end in

requirement

use ELEM

sort list(elem)

var e: elem

cn <>: list(elem)

op _ & _: elem list(elem) -> list(elem)

op _: elem -> list(elem)

ax list(elem)(e) = e & <>

end

LIST ELEM

NAT

ELEM NAT elem nat

LIST_NAT =

LIST(NAT sort elem to nat)

LIST NAT nat list(nat)

LL_NAT =

LIST(LIST(NAT sort elem to nat) sort elem to list(nat))

LLL_NAT =

LIST(LL_NAT sort elem to list(list(nat)))

generic : ... :

(, ...,)

param ... end

...

(, ...,)

27

Parametric lists

In this example we specify the data type lists parameterized on the elements. This

parametric speci�cation can be instantiated producing lists of natural numbers, lists of

streams, lists of lists of naturals, or lists of whatever other data type (which has at least

a sort).

Now we want to instantiate , binding the formal parameter with the ac-

tual parameter . We have to de�ne a correspondence between the signature of the

requirements of and that of , by associating the sort with the sort .

Now the speci�cation has the sorts and . Other examples of

instantiations are:

The requirements on actual parameters allow to prove general properties of the para-

metric module, holding on all instantiations, whenever the actual parameter satis�es the

requirements. The same speci�cation can be used as actual parameter from di�erent

points of view, depending on the association among the signatures.

::=

::=

::=

�

�

�

�

�

�

Version 4.2

A P

A A A P

P P

A A A A A A A

P P P

P P P P

A A A A A

P P P P

P

2.4.1 Instantiation of the parameters

Structural constraints.

Semantic constraints.

X: P A

P A

P A

P

P

P

P

A

s A s P

Cn : s A s s

Cn : s P

Op :s1 sn s A s1 sn s

s1 sn s

Op :s1 sn s P

Pr :s1 sn A s1 sn

s1 sn Pr :s1

sn P

P

A

P

A P A

P A A

28

To instantiate a parametric speci�cation we associate with each formal parameter an

actual parameter. Each actual parameter must satisfy the requirements put in the dec-

laration of the corresponding formal parameter. These requirements are about signature

and axioms. The signature of the requirement of the formal parameter put some struc-

tural constraints on the actual parameter, while the axioms put semantic constraints. Let

be a formal parameter and the corresponding actual parameter.

They are satis�ed by de�ning a correspondence between the

symbols of the signature of and the symbols of the signature of . Taken a symbol of

the signature of we gives the corresponding element of the signature of .

The symbols which have to be associated are that visible in the signature of , origi-

nated by a speci�cation of kind param. Such symbols are usually declared directly in ,

but they can be also imported from another speci�cation of type param. Notice that if

imports the symbols from a speci�cation of di�erent kind, these symbols must be such

and that in the actual parameter. More precisely:

Each sort, constant, operation and predicate of , originated in a speci�cation not

of kind param must be present in with the same arity.

A sort of must correspond with each sort of the signature of originated

in a speci�cation of kind param.

A constant of , where corresponds to , must correspond to each

constant of the signature of originated in a speci�cation of kind param.

An operation . . . of , where the sorts , . . . , , correspond

respectively to the sorts , . . . , , , must correspond to each operation

. . . of the signature of originated by a speci�cation of kind param.

A predicate . . . of , where the sorts , . . . , correspond re-

spectively to the sorts , . . . , , must correspond to each predicate

. . . of the signature of originated in a speci�cation of kind param.

If we omit the association for a symbol of the signature of , and there exists a

symbol in the signature of with the same name and corresponding arity, these

symbols are associated by default.

The variables are local and so we do not need to associate them.

The associations de�ned between the signature of and that

of allows to translate the axioms of into axioms of . The semantic constraints are

satis�ed if the axioms of translated in the signature of hold also in .

It is not possible to verify automatically the semantic constraints.

�

�

Example 2.5

Version 4.2 29

Ordered lists

In general a speci�cation can be used as actual parameter in several di�erent ways. For

example the naturals can be considered an ordered set both w.r.t. the relation \ " and

the relation \ ".

The following parametric speci�cation gives the requirements of the parametric lists

with an ordering operation. For de�ning such operation we need a total order predicate

on the list elements.

We want to instantiate the parameter with the natural numbers: they can be

considered an ordered set both in increasing and decreasing order.

TOSET =

param

sort toset

var x u z: toset

pr _ <= _: toset toset

ax x <= x ** reflexivity

ax if x <= u and y <= x then x = y ** antisimmetry

ax if x <= y and y <= z then x <= z ** transitivity

ax x <= y or y <= x ** totality

ORDERED_LIST =

generic ELEM: TOSET

requirement

use LIST(ELEM sort toset to elem)

var h1 h2: toset

var t1 t2 l: list(toset)

** list permutations

pr _ Permute _: list(toset) list(toset)

ax (h1 h2 t) Permute (h2 h1 t)

ax (h t1) Permute (h t2) if t1 Permute t2

ax <> Permute <>

** checks if a list is ordered

pr _ Is Ordered: list(toset)

ax h1 h2 t1 Is Ordered if h1 <= h2 and h2 t1 Is Ordered}

ax h1 <> Is Ordered

ax <> Is Ordered

** ordering operation

op Order: list(toset)}{list(toset)

ax l Permute Order(l) and Order(l) Is Ordered

end

ELEM

Version 4.2

End example

Example 2.6

30

Lists with a measure on the elements

If on the elements there is de�ned an operation returning a natural number (the measure

of the elements), we can enrich the lists with an operation for computing the sum of such

numbers.

NAT =

design

sort nat

var x y: nat

cn 0: nat

op Succ _: nat -> nat

pr _ <= _: nat nat

pr _ => _: nat nat

ax 0 <= x

ax x <= Succ x

ax x => y if y <= x

end

INCREASING_LIST_OF_NATURAL =

ORDERED_LIST(NAT sort toset to nat)

** we can omit ``pr _ <= _: toset toset to _ <= _''

** since it is taken by default

DECREASING_LIST_OF_NATURAL =

ORDERED_LIST(NAT sort toset to nat pr _ <= _ to _ => _)

** we can omit the arity of ``_ <= _'' since there is no overloading

MEASURE =

param

use NAT

** NAT is not of type param and thus we do not need to associate its symbols

** with symbols of the actual parameter; they must appear in the actual parameter,

** otherwise how we can have the corresponding of Measure?

sort elem

op Measure: elem -> nat

LIST_WITH_MEASURE =

generic ELEM: MEASURE

design

use LIST(ELEM)

** we can omit ``sort elem to elem'' since such mapping is assumed by default

var h: elem

var t: list(elem)

op Measure: list(elem) -> nat

�

�

Version 4.2

End example

Example 2.7

2.5 Controlling the exported symbols

ax Measure(h & t) = Measure(h) + Measure(t)

ax Measure(<>) = 0

end

L_M_NAT =

LIST_WITH_MEASURE(NAT sort elem to nat op Measure to Succ _)

LL_M_NAT =

LIST_WITH_MEASURE(L_M_NAT sort elem to list(nat))

TREE =

generic ELEM: param sort elem end

export

sort elem

sort tree(elem)}

cn <>

op Node

pr _ Is Balanced

** the arities are omitted since there is no ambiguity

from

design

use ELEM

var k: elem

sort tree(elem)

var t1 t2: tree(elem)

31

The need of hiding some of the symbols of a speci�cation usually arose in two cases.

Specifying a data type, we can use auxiliary operations (or sorts or constants or

predicates), for being able to write the axioms, which are not meaningful from the

global point of view. These elements of the signature have to be hidden, so that

cannot be visible outside.

Importing a speci�cation, we can have the intention of using only some of the

symbols of the signature.

METAL allows to put a �lter for hiding the symbols which must not be visible outside.

The �lter can be positive (export) or negative (hide).

Export �lter

Consider the following speci�cation of the parametric data type \binary trees" with bal-

ancing test.

n n1 1

j

j

Version 4.2

End example

Example 2.8

??

End example

Syntax

Spec Filter Filter Spec Filter Filter Spec

Filter Sort CnOpPrExpr

cn <>: tree(elem)

op Node: elem tree(elem) tree(elem) -> tree(elem)

use NAT

op Height: tree(elem) -> nat

ax Height(<>) = 0

ax Height(Node(k,t1,t2)) = Max(Height(t1),Height(t2)) + 1

pr _ Is Balanced: tree(elem)}

ax <> Is Balanced

ax Node(k,t1,t2) Is Balanced if

t1 Is Balanced and t2 Is Balanced and

(Height(t1) = Height(t2) or

Height(t1) = Succ Height(t2) or

Succ Height(t1) = Height(t2))

end

TREE Is Balanced

Height

Height

ORDERED LIST

Order Permute <=

ORDERED_LIST' =

hide

pr _ Permute _

pr _ <= _ -> list(elem) list(elem)

in

ORDERED_LIST

<= : list(elem) list(elem)

<= : elem elem

hide ... in export ... from

sort

32

The speci�cation de�nes parametric binary trees, with a predicate

checking if a tree is balanced; for de�ning this predicate we have to use an auxiliary

function computing the height of a tree, and which uses the naturals, and thus we

have to import also the naturals, which apparently have no relationship with the trees.

But both the natural numbers and the auxiliary function are not visible outside,

since the export �lter blocks them.

Hide �lter

Consider the speci�cation of the Ex. : for de�ning the properties of the

operation we need to introduce the binary predicates on lists and . We

hide these predicates by writing

Notice that the predicate has been denoted with

the whole arity, otherwise it could be confused with .

::=

::=

1 n

�

�

Version 4.2

Spec BasicDec BasicDec

2.6 Draft speci�cations

Syntax

2.6.1 Collision of the names of the sorts

Example 2.9

draft ... end

A1 = design sort a . . . end

A2 = design sort a . . . end ** until here Ok

B =

design

use A1, A2

** now there is a collision among distinct sorts with the same name

cn C: a

end

33

The semantics of the speci�cations of kind draft does not associate any data type with

them. Sometime these speci�cations are useful for splitting a large speci�cation in smaller

pieces, which by themselves have not interesting models. Typically they are used for

solving problems as the collision of the names of sorts, or for anticipating some declarations

useful for de�ning recursive data types in a modular way.

In METAL it is allowed to introduce in physically distinct declarations sorts with

the same name, and constants, operations and predicates with the same name and the

same arity, but these symbols cannot be put in the same signature, since the may cause

ambiguity not solvable in any way. The only exceptions are the objects declared in the

draft modules, which are identi�ed with any other object of the same type identi�ed by

the same name, without giving problems.

::=

To declare in di�erent speci�cations two sorts with the same name but with di�erent

meanings makes confusion and makes the speci�cation unreadable. In general it is correct

to proceed as follows:

for denoting the same carrier in two di�erent speci�cations we declare once the sort

in a third speci�cation, which will be used by the �rst two ones;

for denoting di�erent carries we use sorts with di�erent names.

METAL allows of declaring in two di�erent places two di�erent sorts with the same

name, but these two sorts never have to be shared by the same signature. The only

exceptions are the sorts declared in the draft speci�cations, which are identi�ed with

whichever sort having the same name.

Collision of sorts

In the following example we has a collision among sorts:

End example

Version 4.2

A = draft sort a end

A1 = design use A . . . end

A2 = design use A . . . end

B =

design

use A1, A2

cn C: a

end

a A

B

A1 = draft sort a . . . end

A2 = draft sort a . . . end ** until here Ok

B =

design

use A1, A2

** now there is not a collision since being A1 draft the sort a of A1 is

** identified with the sort a of A2

cn C: a

end

A1 = design sort a1 end

A2 = design sort a2 end

B =

design

use A1, A2

cn C: a1

cn C: a2

end

34

This problem can be solved in several ways. If we want that the two sorts being the

same, i.e. corresponding to the same carrier we can write

In this case the sort has been declared once in the speci�cation , and thus the

speci�cation is correct. Alternatively we can write

If instead we want that the two sorts are distinct, i.e. which correspond to distinct

carries we must write for example:

Version 4.2

2.6.2 Recursive data types

Example 2.10

End example

Example 2.11

M =

design

sort m

use NAT

op _ : nat -> m

use LIST(M sort elem to m) ** error

op [_]: list(m) -> m

M' = draft sort m end

M =

\design

use M', NAT

op _ : nat -> m

use LIST(M' sort elem to m)

op [_]: list(m) -> m

end

LABEL_NODES = ** requirements on the labels of the nodes

param

35

The situation is the same for constants, operations and predicates. Two of these

symbols, having exactly the same name and the same arity, but coming from distinct

declarations, cannot stay in the same signature, except that at least one of the two is

declared in a draft speci�cation.

There exist and they are often used data types which are de�ned in terms of themselves;

to give a speci�cation split in modules of these data types can be a problem, due to the

impossibility of having cycles in the dependence among the modules. The point can be

solved predeclaring some symbols in a draft speci�cation.

Multilists of naturals

We want to model the data type of the lists containing elements which in turns can be

lists, or natural numbers. We want to specify such a data type as follows:

Unfortunately this cannot be done, since it is in contrast with the rule for which the

dependencies among modules cannot have loops and cycles. This point can be solved by

using an auxiliary draft speci�cation.

Trees

We consider the parametric trees, with labelled nodes and arcs. Each node can have

whatever number of sons, which in turn are trees. A set of trees is a forest, and thus the

set of the sons of each node can be seen as a forest.

End example

Version 4.2 36

We predeclare the sort tree in a draft speci�cation.

The draft speci�cation is used to predeclare the sort for

de�ning the forests, and thus the trees.

sort e_nodes

end

LABEL_ARCS = ** requirements on the labels of the arcs

param

sort e_arcs

end

TREE =

generic E_NODES: LABEL_NODES

E_ARCS: LABEL_ARCS

draft

use E_NODES, E_ARCS

sort tree(e_nodes,e_arcs)

end

FOREST =

generic E_NODES: LABEL_NODES

E_ARCS: LABEL_ARCS

draft

use TREE(E_NODES, E_ARCS)

sort forest

var x y z: forest

cn <>: forest

op _ : tree(e_nodes,e_arcs) -> forest

op _ + _: forest forest -> forest

ax x + (y + z) = (x + y) + z

ax x + y = y + x

ax x + <> = x

end

TREE =

generic E_NODES: LABEL_NODES

E_ARCS: LABEL_ARCS

design

use FOREST(E_NODES, E_ARCS)

** finally we can give an initial semantic to the carrier of the sort tree,

** redeclaring it in a design specification

sort tree(e_nodes,e_arcs)

op Tree: e_nodes forest -> tree(e_nodes,e_arcs)

end

TREE tree(e nodes,e arcs)

Version 4.2

Syntax

Example 3.1

3 Dynamic speci�cations

3.1 Dynamic signatures

3.2 Design and requirement dynamic speci�cations

SignatureDec Sort Mix�xRepr

Sort Sort

Sort Mix�xRepr

Sort

Mix�xRepr Sort SortSort

Sort

Mix�xRepr

dsort :

lab

dsort :

sort lab

pr : lab

lab

BUFFER =

design

use NAT ** predefined data type specification (see the appendix)

dsorts buffer: _ -- _ --> _

var b: buffer

var n: nat

cn Empty: buffer

op C: nat -> buffer

** the sort lab_buffer and the predicate _ -- _ --> _ are implicitly

** declared

cn INT: lab_buffer op SEND: nat -> lab_buffer

op REC: nat -> lab_buffer

ax Empty -- REC(n) --> C(n)

ax C(n) -- SEND(n) --> Empty

ax b -- INT --> b

end

37

A dynamic signature is a sequence of declarations of sorts, dynamic sorts, constants,

operations and predicates.

::=

::=

To a dynamic sort declaration of the form are implicitly added

the following declarations:

and

.

It is prohibited to declare twice the same dynamic sort; instead it is possible to rede-

clare dynamic a sort already declared as usual static sort; moreover if the sort or

the predicate have been already declared no error is signalled and the new

ones coincide with the old ones.

Design dynamic speci�cation are just as the usual METAL design speci�cations; but

now the axioms may involve the transition predicate and thus de�ne the activity of the

dynamic elements.

Speci�cation of a bu�er

We give the speci�ation of a simple bu�er containing natural numbers.

Version 4.2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

End example

Syntax

Truth values

A Prede�ned data type speci�cations

in each case in one case

()

not

and

or

if then

if

iff

until

wuntil

always

now and always

eventually

now or eventually

after

[.]

[]

[]

< . >

< >

< >

BOOL

BOOL =

design

sort bool

var b: bool

cn True: bool

cn False: bool

Axiom Term PathAxiom Term PathAxiom

PathAxiom PathAxiom

PathAxiom

PathAxiom PathAxiom

PathAxiom PathAxiom

PathAxiom PathAxiom

PathAxiom PathAxiom

PathAxiom PathAxiom

PathAxiom PathAxiom

PathAxiom PathAxiom

PathAxiom

PathAxiom

PathAxiom

PathAxiom

PathAxiom

LowIdent Axiom

Axiom

Term

LowIdent Axiom

Axiom

Term

38

The axioms of requirement dynamic speci�cations are extended with combinators of

the temporal logic for expressing requirements on the activity of the dynamic elements.

::=

::=

The speci�cation of some data types used very frequently are prede�ned in METAL; some

of them are basic data types, as the natural numbers and the integers; while others are

parametric data types, as lists and sets. Some of these speci�cations are expressed by

using the standard features of METAL, other use particular syntactic features.

The prede�ned speci�cation models the data type \truth values".

Version 4.2

Natural numbers

39

The prede�ned speci�cation models the data type of the nat-

ural numbers, with carrier IN, and the operations of sum, product and the comparison

predicates.

The constants , , , . . . , , . . . of sort are prede�ned built-in.

op Not _ : bool -> bool

ax Not True = False

ax Not False = True

op _ And _ : bool bool -> bool

ax True And b = b

ax False And b = False

op _ Or _ : bool bool -> bool

ax True Or b = True

ax False Or b = b

end

NAT

0 1 2 1967 nat

NAT =

design

use BOOL

sort nat

var n m: nat

** built-in

** cn 0 : nat

** cn 1 : nat

** . . .

op Succ: nat -> nat

** built-in

** ax Succ(0) = 1

** ax Succ(1) = 2

** . . .

op _ + _: nat nat -> nat

ax 0 + n = n

ax Succ(n) + m = Succ(n + m)

op _ * _: nat nat -> nat

ax 0 * n = 0

ax Succ(n) * m = (n * m) + m

pr _ <= _: nat nat

ax n <= n

=

Version 4.2

Integers numbers

ax if n <= m then n <= Succ(m)

pr _ < _ -> nat nat

ax n < m if Succ(n) <= m

pr _ => _: nat nat

ax n => m if m <= n

pr _ > _: nat nat

ax n > m if m < n

pr _ =/= _ : nat nat

ax 0 =/= Succ(m)

ax Succ(n) =/= 0

ax if n =/= m then Succ(n) =/= Succ(m)

end

INT

+

INT =

design

use NAT

var n: nat

sort int

var i j: int

op _ : nat -> int

op Succ: int -> int

ax Succ(int(n)) = int(Succ(n))

op Pred: int -> int

ax Succ(Pred(i)) = i

ax Pred(Succ(i)) = i

op + _ : int -> int

ax + i = i

op - _ : int -> int

40

The speci�cation models the data type \integer numbers", with

carrier Z, and various operations and predicates.

The integers use the naturals, taking advantage of the built-in representation due to an

operation of implicit embedding. This implicit operation is not understood by the parser

if it is applied to the outer level of one of the two terms of an equality. For this reason it

is advisable to use the unary operation when writing positive integers constants.

Identi�ers

Version 4.2 41

The speci�cation gives a convenient wayfor handling identi�ers, as

atomic unit.

An in�nite number of constants are built-in, that we write putting between single

primes whatever non empty sequence of alphabetic lower case and upper case letters.

ax -0 = + 0

ax - Succ(i) = Pred(- i)

ax - Pred(i) = Succ(- i)

op _ + _ : int int -> int

ax 0 + i = i

ax Succ(i) + j = Succ(i + j)

ax Pred(i) + j = Pred(i + j)

op _ - _ : int int -> int

ax i - j = i + (- j)

op _ * _ : int int -> int

ax 0 * i = + 0

ax Succ(i) * j = (i * j) + j

ax Pred(i) * j = (i * j)- j

pr _ <= _ : int int

ax i <= i

ax if i <= j then i <= Succ(j)

pr _ < _ : int int

ax i < j if Succ(i) <= j

pr _ => _ : int int

ax i => j if j <= i

pr _ > _ : int int

ax i > j if j < i

pr _ =/= _ : int int

ax if i > j then i =/= j

ax if i < j then i =/= j

end

IDENT

IDENT =

design

sort ident

** cn '*': ident

** where * is a nonempty sequence of upper case or lower case letters

Version 4.2

Parameters requirements

Lists

42

Some common requirements for the speci�cation parame-

ters are prede�ned.

The following parametric speci�cation is prede�ned. It can be instantiated

for modelling the set of the �nite sequences of elements of any data type. We require that

such data type should have a special value, to be returned by the operation when

applied to the empty list.

end

ELEMENT = param sort elem end

ERROR_ELEMENT =

param

use ELEMENT

cn ErrorElement -> elem

end

DIFFERENT_ELEMENT =

param

use ELEMENT

pr _ =/= _: elem elem

var e1 e2: elem

ax e1 =/= e2 iff not e1 = e2

end

POSET =

param

use ELEMENT

pr _ <= _: elem elem

var x y z: elem

%

ax x <= x

ax if x <= y and y <= x then x = y

ax if x <= y and y <= z then x <= z

end

TOSET =

param

use POSET

var x y: elem

ax x <= y or y <= x

end

LIST

Head

LIST =

Finite sets

Version 4.2 43

The following parametric speci�cation is prede�ned. It can be instan-

tiated for modelling the data type �nite sets of elements of another data type.

The operations and are useful for simply expressing sets with 2 or

3 elements.

generic ELEM: ERROR_ELEMENT

draft

use NAT, ELEM

var h: elem

sort list(elem)

var t l: list(elem)

cn Empty: list(elem)

op _ ^ _ : elem list(elem) -> list(elem)

op _ : elem -> list(elem)

ax h = h ^ Empty

op _ & _ : list(elem) list(elem) -> list(elem)

ax Empty & l = l

ax (h ^ t) & l = h ^ (t & l)

op Head: list(elem) -> elem

ax Head(Empty) = ErrorElement

ax Head(h ^ t) = h

op Tail: list(elem) -> elem

ax Tail(Empty) = Empty

ax Tail(h ^ t) = t

pr _ Is Empty: list(elem)

ax Empty Is Empty

pr _ Is Not Empty: list(elem)

ax h ^ t Is Not Empty

op Length: list(elem) -> nat

ax Length(Empty) = 0

ax Length(h ^ t) = Succ(Length(t))

end

SET

; ; ;

SET =

generic ELEM: ELEMENT

draft

Record

Version 4.2

use ELEM

sort set(elem)

var x y z: elem

var s s' s'': set(elem)

cn {}: set(elem)

op { _ }: elem -> set(elem)

op _ U _: set(elem) set(elem) -> set(elem)

ax s U {} = s

ax s U (s' U s'') = (s U s') U s''

ax s U s' = s' U s

ax s U s = s

pr _ In _: elem set(elem)

ax x In { x } U s

op {_ ; _}: elem elem -> set(elem)

ax {x;y} = {x} U {y}

op {_ ; _ ; _}: elem elem elem -> set(elem)

ax {x;y;z} = {x} U {y;z}

end

record rec ** sort of the record

F1: s1 of S1

. . .

Fn: sn of Sn

** fields, with name, sort and specification of the relative values

end

44

The data type record (or cartesian product of various components enriched by

operations for selecting and modifying the components) are very common and frequently

used; thus in METAL there is a special construct, with ad hoc syntax, for specifying

record types, putting in evidence:

{ the sort of the record type;

{ the �elds (the components of the product), each one with the relative name, and

the speci�cation de�ning the relative values; clearly, since in general a speci�cation

has di�erent sorts we have to indicate also which sort of such speci�cation de�nes

the values of the component.

This construct declares automatically the constructor of the record as tuple of el-

ements, and the operations of access and modi�cation of the �elds. The speci�cation

expression

n1

Version 4.2

Syntax

Enumeration types

Spec Sort Field Field

Field UpIdent Sort Spec

45

is equivalent to

::=

::=

Given the �eld the sort must be in the signature of the speci�cation .

Frequently we have to specify a data type with only one carrier, a

�nite number of constants and nothing other; these are the enumeration types. METAL

gives a built-in construct for rapidly de�ning the enumeration types. The speci�cation

expression

is equivalent to

design

use S1, S2, . . . , Sn

sort rec

var v1 v1': s1

. . .

var vn vn': sn

op < _ ; _ ; . . . ; _ >: s1 . . . sn -> rec

** constructor of the record

** operations for field access

op F1: rec -> s1

ax F1(< v1 ; . . . ; vn >) = v1

. . .

** operations for field modification

op _ [_ / F1]: rec s1 -> rec

ax < v1 ; . . . ; vn > [v1'/ F1] = < v1' ; . . . ; vn >

. . .

end

record ... end

: of

F: s of S s S

enum s : Id1 Id2 . . . Idn end

design

sort s

cn Id1: s

. . .

cn Idn : s

pr _ =/= _ : s s

ax Idi =/= Idj for i, j =1, . . . , n, i =/= j

end

end

�

1 n

Version 4.2

B.1 Lessical level

B The syntax of METAL

Spec LowIdent UpIdent UpIdent

Character

Terminal Character

UpCase

LowCase

Digit

Syntax

Basic characters:

Separators.

Terminal symbols:

Upper case letters:

Lower case letters:

Digit:

enum : ... end

1 2 3 4 5 6 7 8 9 0

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

~ ` ! @ # $ % ^ & * () - _ + = | / \ { }

[] : ;

' " < > . ?

**

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

1 2 3 4 5 6 7 8 9 0

46

::=

In this section we de�nes the set of the terminal symbols used in the pattern rules, which

are particular sequences of basic characters.

the set includes all the characters used in METAL:

There are also the space, the tab character and the end of line.

The space character, the tab character and the new line character, are

considered separators. The separators are not part of the terminals; they are used to

separate the terminal symbols among them, when they are needed, and for giving a

better form to the code.

Another separator is the comment. The comment starts with in each context and

ends with the end of line character.

the set is a subset of .

the set consists of the characters

the set consists of the characters

the set consists of the characters

�

�

�

Version 4.2

[[[f g

f j 2 2 g �

f j 2 2 g [

f 2 j g

n

[[[[

; ; ;

lt l t

ut u t

u u

KeySymbol

KeySymbol

Special characters:

Identi�er tails:

Lower case identi�ers:

Upper case identi�ers:

Completely upper case identi�ers:

Symbols:

Reserved symbols:

Reserved words:

Terminal:

~ ` ! @ # $ % ^ & * - + = \ /

| { } [] : ; " ' < > . ?

() ,

` ' "

() : , -> **

and ax cn

design draft enum end exists export forall

from generic hide if iff in not of op or

param pr record rename requirement sort then to use var

SpecialCharacter

IdentTail UpCase LowCase Digit

IdentTail KeyWord

LowIdent LowCase IdentTail KeyWord

IdentTail

UpIdent UpCase IdentTail Digit

UpUpIdent UpIdent

SpecialCharacter

KeySymbol

Symbol SpecialCharacter

KeySymbol

KeyWord

Terminal UpIdent LowIdent KeyWord Symbol

47

the set consists of the characters

notice that the characters \ ", \ ", \ " and \ " have been excluded.

whatever sequences (also empty) of upper and lower case letters,

digits, primes and underscores can be the tail of an identi�er.

= () .

they either start with a lower case letter, followed by an

. The key words are excluded.

= (and)

they either starts with a upper case letter, followed by an

, or are sequences of decimal digits.

= and

they are the subset of upper case identi�ers

which do not include lower case letters.

= does not include lower case letters

they are sequences of the special characters ; the reserved

symbols are excluded.

= .

the set includes the terminal symbols

\ ", \ ", \ ", \ = ", \ ", \ " and \ ".

the set includes the terminal symbols

=

Version 4.2

1

1

1

1

1 1 +1

1

1

1

1

1

1

1

n

n

n

n

n n n

n

n n

n

n

n

n

n

n

j

j

j

j

j

j

j

j

j

j

j

j

j j

j j

B.2 Concrete syntax

Note.

??

The initial symbol

Speci�cation expressions.

() ,

+

+ F(x,y) F (x , y) AA BB

AA BB

...

=

design ... end

requirement ... end

rename ... in

generic : ... :

param ... end

(, ...,)

hide ... in

export ... from

draft ... end

record ... end

enum : ... end

sort to to

cn cn :

op op : ... ->

UpIdent UpUpIdent LowIdent Symbol

BindSequence

BindSequence Bind Bind

Bind UpUpIdent Spec

Spec BasicDec BasicDec

BasicDec BasicDec

UpUpIdent

Map Map Spec

UpUpIdent Spec UpUpIdent Spec Spec

BasicDec BasicDec

UpUpIdent Instant Instant

Filter Filter Spec

Filter Filter Spec

BasicDec BasicDec

Sort Field Field

LowIdent UpIdent UpIdent

Map Sort Sort CnOpPrExpr Mix�xRepr

CnOpPrExpr Mix�xRepr Mix�xRepr Sort

Mix�xRepr Mix�xRepr Sort Sort Sort

48

{ The identi�ers available to the users are distinguished in three categories: upper

case, lower case and symbols. The upper case identi�ers have in turn a subclass,

that of the completely upper case identi�ers.

{ The upper case identi�ers include the numbers.

{ The characters , , and are not part of the symbols, and do not need to be

preceded and followed by an explicit separator. Thus for example is equivalent

to and is equivalent to . Instead is di�erent from

since the underscore can be part of the identi�ers.

In this section we gives the grammar by means of pattern rules. The pattern rules are

a variant of the well-known formalism BNF commonly used for de�ning context free

grammars.

The nonterminal symbols , , and are de�ned in

the section .

of the grammar is , which derives in sequences of

associations name-speci�cation.

::=

::=

They include the base speci�cations, the instantiations of

the generic speci�cations, the export/hide �lters and the rename of speci�cations, and

further derived constructs.

::=

::=

::=

Version 4.2

n

n

n

n

n

n

n

n

n L R

n

n

1

1

1

1

1

1

1

1

1 2 1 2

1 2 1 2

1 2

1

1

1

j

j

j

j j

j

j

j

j

j j

j j

j

j j

j j

j j

j j j

j

j

j

j

Basic declarations.

Signature declarations.

Axioms:

Terms

pr pr : ...

...

sort

: of

var ... :

sort ...

cn :

op : ... ->

pr : ...

(, ...,)

...

ax

()

not

and or

if then if

iff

(, ...,) =

...

()

(, ...,)

()

49

::=

::=

::=

::=

::=

::=

::=

::=

::=

they are obtained by the atoms (equalities or built by predicates) by applying

the logic combinators and quanti�ers.

For giving a more readable grammar, the precedences among the combinators are

given a part, as contextual constraints.

::=

::=

::=

::=

::=

::=

Mix�xRepr Mix�xRepr Sort Sort

Instant Spec Map Map Spec

Filter Sort CnOpPrExpr

Field UpIdent Sort Spec

BasicDec SignatureDec VarDec AxiomDec

VarDec LowIdent LowIdent Sort

SignatureDec Sort Sort

Mix�xRepr Sort

Mix�xRepr Sort Sort Sort

Mix�xRepr Sort Sort

Sort LowIdent LowIdent Sort Sort

Mix�xRepr Mix�xReprElem Mix�xReprElem

Mix�xReprElem Symbol UpIdent

AxiomDec Axiom

Axiom Atom Axiom

Axiom

Axiom Axiom Axiom Axiom

Axiom Axiom Axiom Axiom

Axiom Axiom

Atom UpIdent Term Term Term Term Mix�x

Mix�x Mix�xElem Mix�xElem

Mix�xElem UpIdent Symbol Term Mix�x

Term UpIdent

UpIdent Term Term

LowIdent

Mix�x

Sort Term

1

n

n

j

�

L R

L R

n

Version 4.2

B.3 Pattern rule

design : ->

=

design ... end

Bind BasicDec Sort

NonTerm RightBb RightAa

NonTerm RightBb RightAa

Atom Term Term

Term Term

Spec BasicDec BasicDec

Spec BasicDec

50

Here we introduce the pattern rules, which are a variant of the well-known formalism

B.N.F. commonly used for de�ning the syntax of programming languages.

The pattern rule are more concise, and allow to easily express context constraints.

The terminal symbols are identi�ers written in typewritten font or sequences of special

characters.

For example , and are terminal symbols.

The nonterminal symbols are written with the italic style and starts with upper case

letters.

For example , , are nonterminals.

Writings as

::=

denote that from the nonterminal we can derive or .

Subscripts and superscripts on the nonterminal are used for enumerating distinct oc-

currences of the same nonterminal within the same rule.

For example, consider

::=

here the sequences derived from and can be di�erent.

Lists and sequences are conveniently expressed with suspensive dots.

For example

::=

means that from we can derive a sequence of a certain number 1 of ,

when is not speci�ed.

51

Contents

Version 4.2

