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Abstract. Object-oriented modelling, using for instance the Unified Modeling Language (UML), is based on
the principles of data abstraction and data encapsulation. In this paper, we closely examine the relationship
between object-oriented models (using UML) and the classical algebraic approach to data abstraction (using
the Common Algebraic Specification Language CASL). Technically, possible alternatives for a translation
from UML to CASL are studied, and analysed for their principal consequences. It is shown that object-
oriented approaches and algebraic approaches differ in their view of data abstraction. Moreover, it is
explained how specification methodology derived from the algebraic world can be used to achieve high
quality in object-oriented models.

1 Introduction

It is a frequently made assumption that object-orientation is based on the principles of data encapsulation and
data abstraction. In this paper, we closely examine the relationship between object-oriented modelling and the
classical algebraic approach to data abstraction. Further below, we will come to the conclusion that object-
oriented specifications of software in general do not follow the classical data abstraction principles in an obvious
way. There is a concept mismatch, which leads to problems in translating semi-formal object-oriented
specifications into formal algebraic specifications.

In order to be concrete, we use throughout this paper language the international standard language UML
(Unified Modeling Language) [RJB99] as an example for a semi-formal object-oriented specification language.
We explain the concept mismatch by sketching the principles and problems of a translation from a small part of
UML to an algebraic specification language. At the algebraic side of the translation study we use the recently
developed language CASL (Common Algebraic Specification Language) [CoFI98].

 Besides a clarification and comparison of concepts, a second goal of this paper is to describe a method for
analysing a UML specification in order to find out to which extent it follows clean data abstraction principles. In
this sense, a methodology arises which uses an algebraic specification viewpoint to judge on the quality of UML
specifications.

1.1 Context of this Work

The work reported here was carried out in the framework of the European “Common Framework Initiative”
(CoFI) for the algebraic specification of software and systems. The CoFI initiative [CoFI] is a working group
that brings together research institutions from all over Europe. In CoFI, a specification language called
“Common Algebraic Specification Language” (CASL) was developed which intends to set a standard unifying
the various approaches to algebraic specification and specification of abstract data types [CoFI98]. This language
CASL is used in the examples given in this paper.

This is not a traditional paper on formal methods. It is a goal of the CoFI group to closely integrate its work
into the world of practical software engineering. As far as specification languages are concerned, this means
integration with UML. But this is neither yet another paper on the translation of UML models into a formal
specification language. This paper uses the idea of a translation from UML into CASL as a guideline to obtain
observations of more general importance.

This paper is structured as follows. In the rest of this introductory section, we discuss the principle of data
abstraction and its relationship to high-quality software architecture. Moreover we give a very brief introduction
to UML. Section 2 gives a straightforward derivation of an algebraic abstract data type from an isolated class of
a UML model. Section 3 discusses how to generalise the approach to more complex systems of classes and
points out the problems appearing in such a step. In section 4, we describe in more detail the different
philosophies behind encapsulation in UML and algebraic specification. Section 5 outlines a methodology to
improve object-oriented (UML) specifications according to insights gained through an analysis in terms of
algebraic specifications. Section 6 then draws some conclusions from this work.

                                                          
* This work was partially supported by the European Union as part of the ESPRIT Working Group CoFI.



1.2 Data Abstraction and Software Architecture

Data abstraction is the principle of specifying a data type together with its characteristic operations in such a way
that the internal structure of the data is kept hidden and that the specification has a clear meaning independent of
the context in which it is used.

The idea of data abstraction was a very successful contribution from the more theoretically oriented software
research community towards industrial practice. The principle itself, and in particular specific abstract data types
like queues or stacks nowadays belong to the basic body of knowledge of computer science and are well covered
in standard software engineering curricula. Modern class libraries like the Java libraries or STL are organised
according to the data abstraction principle. Less successful were the formal languages, which were developed for
abstract data type specification. This is partly due to the fact that there is a standard repertory of abstract data
types and only little pressure exists in daily development practice to specify completely new data types. The
strong theoretic background of abstract data types (see e.g., [LEW96]) gives the approach much power, but also
has deterred some potential users.

There is more to the data abstraction principle than just a mechanism for describing standard data types.
Abstract data types provide a useful paradigm for the construction of stable software modules [Par72]. The usage
of the principle (and again not the specification languages themselves) turned out as practically successful for
construction of very large software systems.

Another principle closely related to data abstraction is the idea of layered software architecture. Using abstract
data types, it is rather natural to think of software being organised as a structure of layers of increasing
abstraction. This principle has been investigated theoretically (e.g., in [W+83]) for abstract data types, and has
found its successful practical use in building software systems as hierarchies of software modules. Rather
recently, these principles are getting high attention in the context of software architecture research [SG96].

In order to illustrate this situation, Figure 1 shows a typical layered software architecture. The lower layers are
implementation dependent and define general mechanisms usable in any kind of software system. Higher layers
proceed to more application specific and more implementation independent information. Each layer is based on a
clear interface to other layers. In a strict interpretation of the layered architecture, each layer is only allowed to
use the layer immediately below it, but also relaxation of the principle is possible. For instance, Figure 1 follows
in spirit the architecture advocated, e.g. in [AW98].

Such a layered architecture makes use of the principle of data abstraction. Each layer can be seen as an
abstract data type which on one hand exports a clear interface to the upper layer, but on the other hand also
imports a clear interface from the underlying layer.

User interface classes

Specific application classes

Reusable application domain classes

Persistence mechanism

General-

purpose

data

structures

Fig. 1. Layered architecture

The core idea of the layering principle is that there is a hierarchic order among units such that any unit can
make use only of a well-defined set of underlying units. Cyclic dependencies of units are avoided. This principle
ensures a sound mathematical semantics (as in the theory of abstract data types) and a high level of practical
maintainability. Since the principle is well established in the coarse-grained overall software architecture, it
would only be logical to apply data abstraction principles also in the intermediate kind of granularity which is
the specification of a software unit. This leads to the question how the standard language for this purpose, i.e.,
the UML class diagram, is related to data abstraction principles.

In this paper we concentrate on the construction of UML object models in analysis and design, and show how
such models appear in the light of the data abstraction and layering/hierarchy principles. We will try the effect of
a translation into abstract data type specification for selected examples of object-oriented models, in order to
draw conclusions for the structure of the UML model. Algebraic specifications appear here indirectly as an
auxiliary tool for uncovering semantic properties of UML – we do neither define a full algebraic semantics for
UML nor do we advocate the direct use of algebraic specifications in software design. However we claim that
some background knowledge from abstract data types helps in finding a methodology for better structured UML
models.

1.3 Unified Modeling Language

The Unified Modeling Language (UML) [RJB99] is an industry standard language for specifying software systems.
UML has evolved out of an amalgamation of the central ideas of many semi-formal graphical notations for software
specification. This language is unique and important for several reasons:



• UML contains more or less all concepts that were discussed in object-oriented modelling in the past. Therefore, it
is an ideal vehicle to discuss fundamental issues scientifically.

• UML is very well accepted by the software industry, so using UML improves the practical applicability of any
scientific result.

• Compared to other pragmatic modelling notations in Software Engineering, UML is very precisely defined and
contains large portions that are similar to a formal specification language.

For reasons of limited space, we do not give a detailed introduction into UML here. However, the discussion below
will cover only one diagram type defined in UML, which is the class diagram. So for the reader, some basic
knowledge of an arbitrary object-oriented modelling notation containing class diagrams should be sufficient.

2 Understanding an Isolated UML Class as an Abstract Data Type

Most textbooks on object-oriented programming and modelling devote some introductory paragraphs to basic
principles like information hiding, function encapsulation and data abstraction. Many people seem to have the
understanding that object-oriented modelling is just an adaptation of the ideas of data abstraction to a state-based
structure. We start the investigation with simple cases where data abstraction principles are obeyed in object-
oriented specifications, but the next section will proceed to examples where this is not the case.

In standard cases, there is a one-to-one correspondence between a UML class and an abstract data type. Such
a simple example is the UML class diagram (containing a single class) shown in Figure 2. The example is taken
from the Java utility class library (java.util.Vector), with drastic simplifications. The figure shows a UML class
box, where the name of the class is in the upmost compartment, the second compartment carries the attributes of
the class (none in this case), and the third compartment contains operations (methods) together with their
signatures.

Vector

size(): Nat
isEmpty(): Bool
contains(d: Data): Bool
addElement(d: Data)
insertElementAt(d: Data, i: Nat)
setElementAt(d: Data, i: Nat)
elementAt(i: Nat): Data

Fig. 2. Utility class Vector

This is certainly an abstract data type. All information that belongs to the implementation of a vector is
encapsulated in the class, and the class only depends on primitive classes providing the data types Data, Nat and
Bool. It is also typical for such a class to provide no or only very few attributes, since the internal structure is
hidden. There is a large number of classes which follow this style, including most of the classical data type
libraries. Sometimes, these classes are called utility classes.

UML contains a formal specification language to add more precision to class diagrams, the so-called Object
Constraint Language OCL [WK98]. Using OCL, the exact meaning of all operations can be described. In the
case of a utility class, this is possible without making reference to any user-defined construct outside the class.
As an example, see the following OCL specification of operation addElement.

Vector:: addElement(d: Data)
post self.size() = self.size@pre() +1 and

self.elementAt(size-1) = d and
Set{0..self.size@pre()-1}
   forAll(i | self.elementAt(i) = self.elementAt@pre(i))

The OCL specification just states a postcondition for the operation addElement making reference to the actual
object on which the operation is executed (self). The three parts of the postcondition state that

• the size is increased by 1,
• the last element in the vector after the update is equal to the parameter given to the operation, and
• all other elements in the vector remain unchanged.
It is a relatively easy task to give a formal algebraic specification for a class like Vector. Below is a

corresponding specification in CASL.

 spec VECTOR =
BOOL and NAT and DATA

then



sort Vector
op initVector: → Vector
op size: Vector → Nat
op isEmpty: Vector → Bool
op contains: Vector × Data → Bool
op addElement: Vector × Data → Vector
op insertElementAt: Vector × Data × Nat →? Vector
op setElementAt: Vector × Data × Nat →? Vector
op elementAt: Vector × Nat →? Data
vars v: Vector; d: Data; i; Nat
axioms
  size(addElement(v,d)) = size(v) + 1;
  i == size(v) ⇒  elementAt(addElement(v,d),i) = d;
  i < size(v)  ⇒   elementAt(addElement(v,d),i) = elementAt(v,i);
... axioms for other operations omitted here ...

end

We do not want to elaborate too much on the details of a translation from UML classes into algebraic
specifications, since this has been described already for other specification languages (see e.g. [BGHRS97,
EFLR99, KC99, Lano96, SF97, WK96]). However, a few hints may be helpful for the reader.

There are two different identifiers in the algebraic specification derived from the class name. “VECTOR” is
the name of a specification unit, whereas “Vector” is the name of a sort in the algebraic specification. In the
formalisation of a class, it is natural to define just one sort corresponding to the class name, which will be called
“class sort” in the following. The algebraic specification lists the primitive specifications it relies on (BOOL,
NAT, DATA). This is the point where the “imported interface” is defined which was mentioned in the above
discussion of layered architectures. Then the signature of sorts and operations is defined, followed by a number
of axioms specifying the operations precisely.

The operations are specified by argument and result sort, similar as in UML. However, operations are viewed
slightly differently in abstract data types and in object-oriented modelling.

An operation in an abstract data type (an algebraic operation) explicitly specifies all data sorts on which the
semantics of the operation depends. It is the signature of a pure function.

An operation in OO modelling (a UML operation) always has an implicit argument of class sort (self in
OCL). This sort appears as an explicit data sort in the abstract data type.

For those operations that transform the object, a result of class sort is added. If additionally a result is
delivered by the operation, it may be necessary to specify two algebraic operations in correspondence to a single
UML operation.

Constructor operations are often not shown explicitly in UML classes (although the language admits this).
The algebraic operation for the creation of an initial value (here “initVector”) corresponds to a default
constructor operation.

Attributes of a UML class box can be understood as operations in the abstract data type using get- and set-
operations. Since there are no attributes in the example, this case does not appear in the algebraic specification
above.

The semantics of the operations can be specified by standard algebraic specification techniques, as it is shown
in the example above. We have included here only those axioms which correspond exactly to the three parts of
the OCL specification from further above. In fact, it is even possible to provide a schematic transformation from
OCL pre- and postconditions to axioms of algebraic specifications, as has been shown elsewhere [HKH98].
However, in some cases a formulation of the algebraic axioms can be found, which is easier to understand than
the OCL specification. This effect can also be observed in the vector example above.

At this point of the discussion, it can be said that the translation between UML class and abstract data type
works smoothly. There is a sublanguage of UML class diagrams which corresponds to abstract data types in a
straightforward way. This sublanguage can be characterised as follows:

• Classes are isolated. There are no associations to other classes.
• For each class, it is possible to provide a full formal specification of all operations (in OCL or in an

algebraic specification language) which makes use only of the attributes and of other operations of the
class itself.

In the next section, we discuss in more detail the inclusion of associations within a class diagram.

3 Understanding Associated UML Classes as Abstract Data Types

3.1 An Example for Associated Classes

Unfortunately, the style of translation applied above does not work well for realistic class diagrams, since it is
unable to deal with associations. Associations are references to objects, and therefore they violate the principle
of locality assumed in abstract data types. The following simple class diagram illustrates this effect.



Person

name: String

numMeetings():  Nat
numConfirmedMeetings(): Nat

Meeting

title: String
start: Date
end: Date

isConfirmed: Bool

duration(): Time
checkDate()

cancel()

 participates

participants meetings

 2..* *

Fig. 3. Two associated classes

The intuitive explanation of this example is that we have meetings in which a number of people may
participate. Participants know about the meetings they are involved with, and meetings (meeting objects) “know”
their participants. So associations like participates are relations between objects of the involved classes.

The meaning of the attributes used in this example is self-explaining, with the possible exception of
isConfirmed: A meeting may have an unconfirmed status or it may be confirmed which means that none of the
participants has a time conflict with another meeting. The operations of the example are explained further below.

3.2 Problems in Translating Associated Classes to Abstract Data Types

An interesting semantic question is whether an association is a local part of an object or whether it belongs to the
surrounding environment in which an actual instance of the class (an object) is embedded. A translation into
abstract data types shows that the first interpretation is problematic. A naive translation gives the following
(faulty!) CASL specification:

spec FAULTY_PERSON =
FAULTY_MEETING and STRING and NAT and SET_OF_MEETINGS

then
sort Person
op initPerson: → Person
op getName: Person →? String
op setName: Person × Name → Person
op meetings: Person → Set [Meeting]
op numMeetings: Person → Nat
op numConfirmedMeetings: Person → Nat
axioms
  ...

end

spec FAULTY_MEETING =
FAULTY_PERSON and STRING and BOOL and DATE and SET_OF_PERSONS

then
sort Meeting
op initMeeting: → Meeting
op getTitle: Meeting →? String
op setTitle: Meeting × String → Meeting
op getStart, getEnd: Meeting →? Date
op setStart, setEnd: Meeting × Date → Meeting
op getIsConfirmed: Meeting →? Bool
op setIsConfirmed: Meeting × Bool → Meeting
op participants: Meeting → Set [Person]
op duration: Meeting → Time
op checkDate: Meeting → Meeting
op cancel: Meeting → Meeting
axioms
  ...

    end



This is not a proper modular definition of two abstract data types. The main problem is that there is a cyclic
import structure  among the two specifications. In order to make the sort Meeting visible, FAULTY_PERSON
imports the specification FAULTY_MEETING, and in order to make the sort Person visible,
FAULTY_MEETING imports FAULTY_PERSON. This is not admitted in algebraic specification languages,
for good reasons. There is no clear layered structure here. Instead, it would be adequate to merge together the
two specifications into one specification defining two sorts. This is the first hint for the fact that we do not deal
with two well-encapsulated units here, but with a complex mixture of local and global aspects.

By the way, the problem encountered here is not due to the CASL language or algebraic specifications. This
can be seen from the following quotation, which discusses a translation from a differnt object-oriented modelling
language (OMT) to a different formal specification language (B): “Cycles A → B, B → A are not allowed (they
would lead to cycles in the machine inclusion relation, which are not allowed). If such cycles are required in the
system [...], then the entities must all be placed in a single abstract machine.” [Lano96, p. 79]. It should be noted
that B is a so-called model-based specification language with support for implicit states, so the essential problem
remains if a specification language closer to the object-oriented paradigm is used.

A related problem is that UML allows non-local operations. The UML Reference Manual states clearly that
“an operation specifies a transformation of the target object (and possibly the state of the rest of the system
reachable from the target object) ....” [RJB99, p.369]. This means that UML objects have a “global” view of their
environment in contrast to the items described by an abstract data type. In our example, the only truly local
operation is duration in class Meeting. All the other operations use information outside the object:

• The numMeetings operation in Person needs to know about the set of Meeting objects to which the
current Person object is linked. In the faulty translation from above, this would be a local operation, since
there is local access to the set of all object references linked to a Person through the participates
association. However, given the mentioned problems with the translation from above, access to the
association information has to be considered as global to the object.

• The numConfirmedMeetings operation in Person, counting the number of confirmed meetings for a
person, is clearly non-local, since it has to read the isConfirmed attribute of foreign Meeting objects.

• The checkDate operation in Meeting is meant to actually check whether the current Meeting object has a
date conflict. For this purpose, it has to query other Meeting objects for their dates, and has to find out
which of these Meeting objects belong to persons, which participate in the current meeting. This is
absolutely non-trivial and non-local. An OCL specification for this operation is given below in Figure 4.

• The cancel operation of Meeting most clearly is non-local. The associations between Meeting and Person
objects are even modified by this operation.

context Meeting ::  checkDate()
post: isConfirmed =

               self.participants ->
                  collect(meetings) ->
                     forAll(m | m <> self and m.isConfirmed implies

         (after(self.end,m.start) or after(m.end,self.start)))

Fig. 4. OCL constraint for checkDate()

On the algebraic specification level, this poses the question where to locate the corresponding algebraic
operations in the structure of specification units. As an example, consider the operation checkDate. In order to
specify axioms equivalent to the OCL constraint in Figure 4, operations defined in the FAULTY_MEETING
specification needs to be visible, for instance to talk about accesses to the isConfirmed attribute and navigation
over participants to Person objects. On the other hand, of course, the operations from FAULTY_PERSON have
to be visible, for the purpose of navigating from Person objects to their meetings. So this analysis shows again
that the operation has to be placed at some global level where it is able to access information from both involved
classes.

Interestingly, current work on the integration of algebraic specification with the object-oriented paradigm (e.g.
[DF98, BHTW99]) essentially ignores the kind of problem described here, and makes the implicit assumption
that there is one-to-one correspondence between a class in the object-oriented specification and a sensible
specification unit in the algebraic specification.

From the methodological and architectural viewpoint we are taking here, it is an obvious conclusion that a
UML class in general does not encapsulate its local data according to the same data abstraction principles, which
are used in algebraic specifications.

Different conclusions may be drawn at this point:
• The example from above may be regarded as showing bad style of specification, i.e. not properly

encapsulating private data. However, it is quite obvious that both classes contain the characteristic
information for their objects, and as can be seen from the OCL sample above, this style of specification is
perfectly admissible in UML. In the next two sections we will discuss two ways how the insight gained
by the analysis of non-locality can be used to better understand or improve the object-oriented (UML)
specification.

• The translation from object-oriented specifications to abstract data types may be “lifted” to a global view
of the overall object community instead of the compositional approach from above. We give the basic
ideas for such a translation in the subsection just below.



3.3 A More Adequate Translation for Associated Classes

In order to show that a translation of general UML class diagrams into an algebraic language like CASL is
possible, even in presence of the mentioned problems, we briefly outline the basic idea of such a translation. A
more detailed technical definition of the translation is currently being worked out within the CoFI working
group.

In this approach, one global abstract data type is constructed out of the overall class diagram. The central
concept is here a sort for a global system state. The following CASL fragments show the overall approach for the
running example:

spec STATE =
PERSON_ID and MEETING_ID and ...

then
sort State

op initState: → State

pred containsPerson: State × PersonId
op getPersonName: State × PersonId →? String
op setPersonName: State × PersonId × String →? State
op numMeetings: State × PersonId →? Nat
op numConfMeetings: State × PersonId →? Nat

pred containsMeeting: State × MeetingId
op getMeetingTitle: State × MeetingId →? String
op setMeetingTitle: State × MeetingId × String →? State
... other attributes omitted ...
op duration: State × MeetingId →? Time
op checkDate: State × MeetingId →? State
op cancel: State × MeetingId →? State

pred getParticipates: State × PersonId × MeetingId
op setParticipates: State × PersonId × MeetingId →? State

axioms
  ...

    end

All class definitions are translated jointly into one big abstract data type. For each class of the UML class
diagram, a separate specification of object identifiers is assumed (PERSON_ID, MEETING_ID providing the
sorts PersonId, MeetingId). For each class C, there is a containsC predicate which asks for a given object
identifier whether an object is currently known in the object configuration. Attributes and operations of the class
are now translated in a style that adds two arguments to the algebraic operation, which are the global state and
the referred object identifier (self). Using global operations and predicates on the state, like getParticipates and
setParticipates, association links (in this case for participates) can be set and queried among concrete object
identifiers.

This approach is definitely adequate to UML class diagrams. However, from an algebraic point of view, it
essentially gives up the data encapsulation principle for the individual classes. There are variants of the scheme
which build up the global specification in a more structured and modular way, but due to the problems of the
cyclic import mentioned above they are semantically equivalent to the global approach shown above.

4 Encapsulation Philosophies

The most important observation from the preceding analysis is that object-oriented specification and algebraic
specification seem to deal differently with the concept of data encapsulation. In this chapter, we will try to point
out a difference in philosophy between the classical abstract data type approach and object-oriented modelling
which has its roots in a distinction between abstract specification and concrete implementation1. The idea for
making this distinction is taken from [CD94].

                                                          
1 It is not exactly correct to use the words “analysis” and “design” instead of “specification” and implementation”. The specification

style meant here is usually already part of the design model, whereas the implementation style is used in a design model close to
the end of the design phase, in transition to coding.



In an object-oriented specification framework like UML/OCL, a distinction between specification and
implementation is made, but is not very clearly explained in the standard literature. In an object-oriented
specification, only the overall effect of an operation is described, without taking care of details like visibility and
access rights. Just for the purpose of specifying the result of an operation, navigation towards foreign objects is
absolutely natural, and access to global information is helpful for specification of any local operation. As it is
observed in [Civ98], modern object-oriented modelling in languages like UML takes a very system-centric
approach and focuses on the collaboration of objects rather than on an object-centric specification of individual
classes.

In object-oriented implementation, however, aspects like access rights and visibility have to be observed.
Moreover, the model is enhanced by additional information and possibly refined by auxiliary classes and
operations.

Person

–name: String

+numMeetings():  Nat
+numConfirmedMeetings(): Nat

+confirmDate(d.Date):Bool

Meeting

–title: String
–start: Date
–end: Date

+ isConfirmed: Bool

+duration(): Time
+checkDate()

+cancel()

 participates

participants meetings

 2..* *

Fig. 5. Associated classes, closer to implementation

In figure 5, the running example is used to explain the effect of a more implementation-oriented view for the
object-oriented model. The plus and minus signs indicate visibility of attributes and operations in UML syntax
(public and private). In an object-oriented implementation of the example system, it would be necessary to make
the attribute isConfirmed of Meeting publicly visible. In fact, an implementation method for the
numConfirmedMeetings operation would be allowed to send a message to a Meeting object for retrieving its
status. Moreover, in order to implement the checkDate operation, a new confirmDate operation should be added
to the Person class. Now the effect of checkDate on a Meeting object is essentially to send messages to all
participating Person objects to confirm the date. Figure 6 visualises the differing degrees of encapsulation
achieved in the specification and the implementation views.

Meeting X Meeting YPerson A

Navigation through
participates association and
access to isConfirmed attribute

Meeting X Meeting YPerson A

Message sent to invoke
confirm operation

Specification:

Implementation:

Message sent to retrieve
isConfirmed attribute

Fig. 6. Encapsulation principles in specification and implementation

In the specification view, the overall, system-oriented effect of the operation checkDate() is described by
making free use of information from almost anywhere in the current system state. In contrast, in the
implementation view with its enhanced specification, each object deals only with its local data, including locally
known references to other objects, and sends out requests to neighbouring objects when it needs to know about
“foreign” data.

The key point is here that a higher degree of locality and encapsulation is achieved than in the specification,
by enriching the operation lists of the classes and by switching to a message-passing semantics. Sending a
message to a locally known object and reading the result may be the equivalent to a complex navigation over the
object community – however, the global actions, which are caused by sending a message, are invisible to the



invoking object. It seems to be one of the key advantages of the object-oriented approach to modelling and
implementation that this smooth transition between a global, system-based view and a local, interaction-oriented
view exists.

So the object-oriented approach clearly distinguishes two different encapsulation philosophies for the
specification view and the implementation view of operations. In the algebraic specification methodology,
however, strict encapsulation principles are already highly recommended on the specification level. These
principles are of the same strength as in the implementation view of the object-oriented approach. By enforcing
modularity very early, the algebraic approach achieves better-structured specifications but somehow misses the
elegant transition between global view and local realisation that is possible in the object-oriented modelling
approach.

When seen from the perspective of algebraic specification, this analysis shows some clear deficiencies in
current formal specification practice:

• First, an approach is needed for providing a “weak” structuring of high-level specifications, as it can be
done in object-oriented modelling. The CASL translation of the UML class diagram using a global state
clearly has much less structure than the original diagram. This seems not to be a question of language
constructs but of methodology. Current practice of algebraic specifications seems to enforce a relatively
strict modularity already rather early in the development life cycle, maybe too early for obtaining an
overall view of the system.

• Second, the seamless transition from a structural definition of classes into a specification of a system of
active objects is a key factor for the success of object-oriented specifications. In order to deal adequately
with object-orientation, algebraic methodologies and languages would be helpful which allow studying
the refinement relationship and transformations between a system-oriented, global view and a view of co-
operation of locally active objects. This, of course, is closely related with the integration of reactiveness
and concurrency into algebraic specification approaches.

5 Layered Architectures

The last section left a rather negative impression about the modelling power of algebraic specifications. Nevertheless,
we will show in this section that an analysis of an object-oriented specification in terms of a traditional hierarchical
abstract data type system may give fruitful hints towards a better structure of the object-oriented specification.

In fact, the attempt to translate the object-oriented specification from Figure 3 into the “faulty” algebraic
specifications included a thorough analysis of the locality of operations. In order to obtain a good system
structure, it is the next step to separate the operations into groups that can be specified locally. For the example,
this proceeds as follows:

Class Person:
Attribute name: 

Can be specified locally, as in FAULTY_PERSON
Operation numMeetings:

Requires information about participates association
Operation numConfMeetings:

Requires information about participates association and isConfirmed attribute.
Class Meeting:

Attributes title, start, end:
Can be specified locally

Attribute isConfirmed:
Can be specified locally, but needs to be made available to Person operations

Operation duration:
Can be specified locally

Operation checkDate:
Requires extensive information about participates association.

Operation cancel:
Requires access to participates association

Formal specifications are used here as a tool to derive the degree of locality. In the following examples we use
the FAULTY_PERSON and FAULTY_MEETING specifications from above for this purpose. For instance, the
only axiom required for specifying the operation duration is:

duration(m) = timeDifference(getEnd(m),getStart(m));

This axiom needs only the locally declared operations to access the attributes. For this axiom, there is no need
to import a Person-related specification into the local specification. So it can be called truly local. For the
operation numMeetings, however, we write the axiom:

numMeetings(m) = size(meetings(m));



In this case, we need the meetings operation, which makes use of the Person sort and requires a Person-related
specification to be imported. However, nothing more than the sort Person is used, so it is not the full
specification of the Meeting class we need but just the association participates towards Meeting objects.

Based on the results of the analysis sketched above, a regrouping of operations can be achieved, which leads
to the following result:

Local to Person:
Attribute name:

Local to Person+participates:
Operation numMeetings

Local to Meeting:
Attributes title, start, end:
Operation duration

Local to Person+participates+Meeting:
Attribute isConfirmed
Operation checkDate
Operation numConfMeetings
Operation cancel

These four levels correspond to a classical layered architecture, since each level makes use only of the
underlying levels. In algebraic specification terms, this means each of the four levels can be written as a separate
specification (in the style of the specification introduced in section 3.3). As a starting point, we define a “zero”
level, which just introduces the State sort. This leads to a specification of the following shape:

%% Level 0
spec STATE =

sort State
op initState: → State

end

%% Level 1: Person
spec PERSON =

STATE and PERSON_ID
then

pred containsPerson: State × PersonId
op getPersonName: State × PersonId →? String
op setPersonName: State × PersonId × String →? State
axioms  ...

    end

%% Level 2: Person+participates
spec PERSON_PART =

PERSON and MEETING_ID
then

pred getParticipates: State × PersonId × MeetingId
op setParticipates: State × PersonId × MeetingId →? State
op numMeetings: State × PersonId →? Nat
axioms  ...

    end

%% Level 3: Meeting
spec MEETING =

STATE and MEETING_ID
then

pred containsMeeting: State × MeetingId
op getMeetingTitle: State × MeetingId →? String
op setMeetingTitle: State × MeetingId × String →? State
op getMeetingStart: State × MeetingId →? String
op setMeetingStart: State × MeetingId × String →? State
op getMeetingEnd: State × MeetingId →? String
op setMeetingEnd: State × MeetingId × String →? State
op duration: State × MeetingId →? Time
axioms  ...



    end

%% Level 4: Person+participates+Meeting
spec PARTICIPATION =

PERSON_PART and MEETING
then

op getIsConfirmed: State × MeetingId →? String
op setIsConfirmed: State × MeetingId × String →? State
op numConfMeetings: State × PersonId →? Nat
op checkDate: State × MeetingId →? State
op cancel: State × MeetingId →? State
axioms  ...

    end

This is a perfectly legal structured algebraic specification without any circular import problem. When looking
at the import structure in more detail, it can be observed that the structure is a bit more complex than just four
(five including the basis) consecutive layers. The actual architecture is shown in Figure 7.

STATE

PERSON

PERSON_PART
MEETING

PARTICIPATION

Fig. 7. Layered structure derived from formal analysis

This way, the attempt to translate into a formal specification notation has uncovered very important structural
properties of the object-oriented specification. It should be noted that a similar analysis could be made based on
the OCL language ([CKMWW99] makes first steps in this direction). However, OCL is missing any structuring
concepts, so the result of the analysis is much more difficult to describe than in, e.g., CASL.

In object-oriented modelling, the layered structure can be depicted also within a revised UML class diagram.
The main features of UML used in such a restructuring are generalisation (inheritance) and, in some cases,
restriction of associations from bi-directional to unidirectional interpretation. Figure 8 gives a UML diagram
refined according to the results of the formal analysis. The hollow arrow symbol depicts inheritance in UML
notation. So, for instance, any object of class PERSON_PART has the name attribute of class Person, but in
addition it may have an association to a Meeting object.

Person

name: String

OrganizedMeeting

isConfirmed: Bool

checkDate()
cancel()

 participates

participants meetings

 2..* *
Meeting

title: String
start: Date
end: Date

duration(): Time

Participant

numMeetings(): Nat

OrganizedParticipant

numConfMeetings(): Nat

 participates

participants meetings

 2..* *

PARTICIPATION

PERSON_PART

PERSON

MEETING

Fig. 8. Revised, layered class diagram

The object-oriented model depicted in Figure 8 clearly corresponds to the results of the formal analysis described in
the preceding chapter. Nevertheless, it is perfectly reasonable from the common-sense point of view. There is a class



of persons which is independent of the concept of meetings. This highly improves reusability of the Person class. Also
the level of a “person who goes to a meeting” (PERSON_PART) makes practical sense. Finally, there are sophisticated
mechanisms of meeting organization which have impact to persons and meetings, and those are encapsulated in the
highest layer. Simpler architectures, merging some of the layers, may be more adequate in practical situations, but are
not in contradiction to the general results of the analysis.

Of course, a very experienced modeler is able to arrive at the same conclusion easily and probably much faster.
However, the question in such a case always is what the exact knowledge was which led to the actual conclusion. It is
a nice feature of the approach presented here that a purely formal semantic analysis technique gives hints for
restructuring a class model.

6 Conclusion and Outlook

6.1 Related Work

There is plenty of literature on mapping object-oriented models to formal specification languages (e.g.
[BGHRS97, DF98, EFLR99, GR98, HKH98, Hus97, KC99, L96, SF97, WK96]). However, in most of this
literature, the problem discussed in detail in this paper, i.e. the interrelationship between global/association-based
and local views of classes is not in the focus of interest. Therefore, most of these approaches also are not very
adequate for the application to large, realistic cases. One exception from this rule if the work of [KC99], where
the built-in mechanisms of the chosen language Object-Z exactly provide the dual local/global view which was
discussed above.

The work presented here is on the borderline between adjacent and somehow competing areas of computer
science. For instance, some techniques developed purely in the area of object-oriented programming
methodology (e.g. [Civ98] are very similar to the techniques developed here. However, the approach sketched
above contains the promise for a much higher degree of formality, i.e. supportability in tools, than purely
informal concepts.

6.2 Main Insights

Using an object-oriented analysis and design method does not automatically improve the quality of software – it
is a craft if not an art to write good UML specifications and designs. Structuring principles according to data
abstraction will provide help for adequate design of class structures in many (but of course not all) cases.
Thinking about the ADT “meaning” of a UML class helps in understanding the level of modularity which has
been achieved in the OO model. In this paper, we have indicated some basic ideas for an automated analysis that
helps in restructuring a UML class model to achieve higher cohesion, lower coupling and therefore higher
stability of the structures.

The results described here can be taken as a starting point for several kinds of further investigations. There is
a “UML/OCL” branch for further work, since it is interesting to further develop the idea of a “semantic context”
for an OCL constraint (based e.g on the work of [CKMWW99]) and to provide prototypical tools for structure
analysis of object-oriented specification. In particular, the aspect of specification structuring by enrichment
(algebraic style) vs. inheritance (object-oriented style) seems to be worth a more thorough investigation.

On the other hand, there are several branches of further work related to algebraic specification languages. The
close integration between an algebraic specification language and UML, which was sketched above, may form
the basis for extensions or experimental alternatives to OCL. This can be motivated by the fact that for the
specification of utility classes like generally used data types, an algebraic style may lead to more readable
specifications than using OCL, so one could think of a combination of algebraic specification, UML and OCL.
This aspect will be further followed within the CoFI initiative.

Another insight from this work, which will be further followed with the CoFI group is the question to extend
the algebraic semantics to the aspects of active objects and object communication [RACH99]. As it was
explained above, this may lead to a similarly elegant integration of global, system-oriented and local, interaction-
oriented aspects of a system specification as it is available in object-oriented languages. The long-term
perspective of this work is to build a bridge between object-oriented UML specifications and the powerful
animation and verification tools that are available for algebraic specifications and term rewriting systems.
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