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Dynamic-data types are (modelled by) dynamic algebras, which are a partic-

ular kind of algebras with predicates. These, in turn, are just the algebraic

structures that are needed to interpret many-sorted 1 order logic: a family

of sets (the carriers) together with a set of operations and predicates on the

carriers [30]; here the operations are partial in order to model situations like

trying to get the �rst element of an empty list.

The distinguishing feature of dynamic algebras is that for some of the car-

riers (the dynamic ones) there are special ternary predicates , where

A concrete dynamic-data type is just a partial algebra with predicates such that

for some of the sorts there is a special predicate de�ning a transition relation.

An abstract dynamic-data type (ad-dt) is an isomorphism class of such algebras.

To obtain speci�cations for ad-dt's, we propose a logic which combines many-sorted

1 order logic with branching-time combinators.

We consider both an initial and a loose semantics for our speci�cations and give

su�cient conditions for the existence of the initial models. Then we discuss struc-

tured speci�cations and implementation.

abstract data types, algebraic speci�cations, speci�cations of dynamic

systems, temporal logic, abstract dynamic-data types.
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( ) , usually written as , means that the element may

perform a transition labelled by into the element . The label is used to

describe the interaction with the environment, by specifying both the con-

ditions (on the environment) for the transition to become enabled and the

transformations this transition induces on the environment. The elements

and are called dynamic elements, because we regard them as (descriptions

of) entities that can evolve in time. Processes or concurrent/reactive systems

are typical examples, but our framework can be applied to other situations as

well; in [44], for instance, it is used to describe parts of a hydroelectric power

station.

Following a well established pattern, see e.g. [40], we identify a dynamic entity

with its (initial) state. Therefore sorts/carriers/elements could also

be called sorts/carriers/elements.

If we use a dynamic algebra to model processes, then we may have transitions

corresponding to \send" and \receive" actions. A dynamic algebra for lists may

have transitions corresponding to the tail operation; thus ( )

is true, for some appropriate label . Of course we are not forced to have

such predicates: when modelling processes it is natural to use them (one could

even say we need them); in the case of list we have a choice: we can use the

(classical) static view, or a dynamic one (closer to the way we regard lists when

programming within the imperative paradigm). The crucial point is that if we

want to model, say, processes which can send and receive structured data,

we can use a single algebra to describe both processes and data. Some of the

examples in the main text should clarify this point.

The basic idea behind dynamic algebras is very simple. There are some tech-

nical problems; but they are orthogonal w.r.t. the dynamic features, as they

concern partial operations, and have been dealt with in the literature, see

[16,2] for instance. The name seems appropriate, even though it has already

been used to denote structures for interpreting dynamic logic, see e.g. [42],

which are di�erent from the ones we consider here.

The question is whether dynamic algebras are of any use; we think the answer

is yes. Indeed, they are a basic formal tool of the SMoLCS methodology, which

has been used in practice, and for large projects, with success (see e.g. [7,5,10]).

SMoLCS is a methodology for specifying dynamic systems that provides a

framework for handling both ordinary (static) data types and dynamic data

types. One of the main ideas in SMoLCS is indeed that this aim can be

achieved within the algebraic framework developed by the adt-community,

provided that transitions can be referred to (and this is precisely the role of

transition predicates). There are other signi�cant features in SMoLCS: great


exibility in de�ning the kind of composition and/or interaction of processes

(there are no prede�ned operations); methodological guidelines for modular
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speci�cations of complex systems; software tools; ; but they are not central

to this paper; interested readers can refer to [7].

The logical language originally used in SMoLCS is (partial) many-sorted 1

order logic with equality and transition predicates. Such a language allows

reasonable speci�cations for many properties of concurrent systems, however it

becomes cumbersome and inadequate when dealing with properties involving

the transitive closure of the transition relations such as (some) liveness or

safety properties [38]. A really signi�cant example would take up too much

space here; a simple, but still interesting, one can be cooked up using bu�ers

containing natural numbers.

To model bu�ers we use a dynamic algebra where the carriers are the set of

natural numbers, a set of bu�er states , a set of labels; the operations

are , , , , and . denotes the empty bu�er,

( ) adds number to bu�er ; ( ) yields the \�rst" element in , if

any; ( ) removes this �rst element from returning a new bu�er, ( )

and ( ) are the labels corresponding, respectively, to returning and receiving

number . Finally, consists of the triples: ( ), for all and

all , and ( ), whenever is not empty (see Ex. 3 for a

more precise account).

As examples of properties we can consider:

(i) The bu�ers follow a LIFO policy, i.e.:

( ( )) = and ( ( )) = .

(ii) If is non-empty, then there is an elementary transition from to ( )

corresponding to \output ( )". Using the transition predicate, we can

phrase this by saying that ( ) is true.

(iii) The bu�ers will return any number that they receive.

(iv) The bu�ers have the capability of returning any number, say , that they

receive and maintain this capability until is actually delivered.

Condition (i) is standard and does not need any comment. (iii) is a liveness

constraint: once a bu�er inputs it will evolve (through input/output tran-

sitions) in such a way that at a certain \state" (or moment) will be output.

Notice one important di�erence between (i) and (iii): the �rst speci�es the

structure of our bu�ers, while the other speci�es their behaviour, without

constraining the internal structure. (iv) is a weaker form of (iii): once a bu�er

inputs it will evolve in such a way that at any moment either is output

or another state can be reached in which can be output. Notice also that

(iv) is about the future capabilities of the bu�ers to perform some output

actions, so it does not require anything about possible external receivers of

the output number; while (iii) implicitly requires the existence of a receiver.
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Finally, one way of reading (ii) is: if is nonempty then it can always output

the last (stored) value; thus we have an example of a simple safety property.

Properties (i) and (ii) can be easily expressed using a 1 order logic (with

transition predicates). This is not the case for the other two properties. Let

us consider (iv): the natural way of expressing it refers, more or less explicitly,

to the (future) behaviour of bu�ers, behaviour that is usually described by

transition sequences. In other words, the straightforward formalization of (iv)

using the \usual language of mathematics" would look like this (if we assume

for simplicity that a bu�er always holds distinct elements):

(iv ) if then 2, , s.t.

, , , ,

either 1 1 s.t. = ( ) or

there exist , s.t.

, , .

It is hard to derive a simple 1 order formula from (iv )! This is one of the

reasons why we decided to use a \richer" logic: one well suited to express

properties such as (iii) and (iv), but also (i) and (ii).

Various modal and temporal logics have been proposed as a tool for specifying

properties of concurrent/reactive systems. As pointed out in [49] modal logics

allow to express in concise form properties which refer to transitions.

In most cases, multi-modal logics (where modalities are labelled by actions)

are used, interpreting them over labelled transition systems (which generalize

Kripke frames). However, when the main interest is in describing the on-going

behaviour of a system (as in our case), temporal logics are preferred as they are

interpreted over paths (in transition systems) and such paths indeed describe

the evolution of the process/system in question.

temporal logics refer to paths (thus a formula is satis�ed by a

set of paths i� it is satis�ed by each path in the set), while

temporal logics refer to arranged in a tree (or part of a tree)

thus taking the branching structure of the behaviour into account. (For an

overview of modal and temporal logics see for instance [49] and [25]).

Manna and Pnueli have, over the years, carried out the most extensive investi-

gation in using temporal logics for describing reactive systems. Their approach

(see [37,38]) has been followed, with minor changes, by many authors. Essen-

tially, they model the behaviour of systems by maximal (i.e. non-extendable)

. The -th state in the sequence describes the overall state

of the system after \steps" of activity. The logic they use (in its more recent

formulation, see [38]) is a 1 order linear temporal logic; with minor di�er-
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ences it is the same logic presented in [33,25,1]. In this logic, state-formulae

are the basic building blocks; they are (or can be regarded as) ordinary 1

order formulae and describe the properties of the system under investigation

at a given instant in time. Temporal formulae are obtained from state formu-

lae by using temporal combinators (such as \henceforth", \eventually", \at

the next instant", ), together with classical propositional connectives and

quanti�ers; they allow to express, for instance, safety and liveness properties.

Semantically, states (and the interpretation of non-logical symbols) provide

the equivalent of classical 1 order structures, while the interpretation of the

temporal combinators refers to a maximal sequence of states (recall that it is

a temporal logic). At the semantic level, therefore, the basic picture is

a . As there is system to describe/specify

these structures must have a lot in common; on the other hand something

change, as times 
ows. (This is also connected with some problems about the

meaning of 1 order quanti�cation within temporal logic, see [29].) A solu-

tion is obtained by considering just a single 1 order structure, but allowing

function and/or predicate symbols to be (or local): their inter-

pretation (or the assignment of values to them, in the case of variables) is

time-dependent (i.e. state-dependent), moreover quanti�cation over 
exible

variables is distinguished from quanti�cation on ordinary ( /global) vari-

ables. Nevertheless, in this approach 1 order and temporal features do not

mix really well; in particular the temporal dimension remains to the

1 order world.

The 1 order logic used in speci�cations of concurrent/reactive systems fol-

lowing the SMoLCS methodology suggested a di�erent approach, in which

individual elements, operations, predicates and (modelled by a

special predicate) are all contained within a single algebraic structure: a dy-

namic algebra. (As a side bene�t, the semantic problems related to quanti�-

cation vanish.) In other words, the evolution of a system is not described by

a sequence of snapshots of a structure with \
exible components", but by a

sequence of elements belonging to a single algebra and related by transition

predicates. We shall be more precise on this point in Sect. 4.

We use a branching-time logic, instead of the simpler linear one, because it

allows to express, in a natural way, properties about the choices available at

a given moment of time.

Another important di�erence between our approach and the one by Manna

and Pnueli (and other authors) is that rather than specifying single systems

we specify of systems (dynamic-data types), usually having several com-

ponents of other (possible dynamic) types; each type is characterized by its

properties expressed through logical axioms. For instance, rather than spec-

ifying a computer network, we specify a type \computer network", together

with the types corresponding to the components of a network: a type \node",

5
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a type \server", a type \storage unit", .

Many authors have limited the strength of the logic they use in order to

preserve nice properties such as decidability or, at least, existence of complete

deductive systems. We have privileged 
exibility and expressiveness instead;

therefore we have a full 1 order branching-time logic. The price we pay for

this is incompleteness: in our logic validity is not even semi-decidable.

Actually, the logic presented here does not have all the desirable features:

past-time operators are not included, for simplicity. It has been argued, see

e.g. [37], that they allow to write speci�cations which are simpler and more

natural than those using future-time operators only. We share this view and

in the applications we actually use an extension of the logic presented here,

containing the usual operators referring to the past: since, last-time, sometime,

, see e.g. [27].

As stated above, our choices have been motivated by previous experience of

the problems involved in the speci�cations of concurrent systems [6,7,11]. In

this paper we show that the logical framework we propose is sound. Not only

it corresponds to an institution [17] but, more importantly, we have been able

to extend to our setting, and in a natural way, the main concepts and results

concerning \classical" speci�cations of abstract data types (see e.g.: [53]). In

other words, we may go through the well known basic concepts and results

about abstract data types replacing algebras with dynamic algebras and 1

order logic with our logic. In Sect. 5 we exemplify this procedure on structured

speci�cations and implementation of speci�cations.

The formalism presented in this paper is based on the institution of partial

algebras with predicates, but this choice is not essential. Indeed in [18] it

is shown how to de�ne an operation that given an \appropriate" algebraic

institution (total, order-sorted, non-strict, ) produces the corresponding

institution of dynamic speci�cations.

In Sect. 2 we summarize the main de�nitions and facts about partial algebras

with predicates and in Sect. 3 we introduce dynamic algebras. In Sect. 4 we

de�ne our logical language and introduce dynamic speci�cations; moreover

we give some results concerning initial models. Sect. 5 deals with structured

speci�cations and implementations of speci�cations. Finally, Sect. 6 contains

some concluding remarks and comparisons with other approaches.

This paper supersedes [19], whose material is contained in Sect. 3 and 4.
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n srt ::: srt

srt srt

srt

n srt srt srt

n srt srt
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srt srt

srt

srt srt

partial algebras with

predicates

predicate signature signature SRT OP PR

SRT sorts

OP OP Op OP operation

symbol (of arity and target

PR PR Pr PR predicate symbol (of

arity

Op Op OP

Pr Pr PR Op OP Pr PR

partial -algebra with predicates algebra

A A Op Pr

carriers interpretation of the operation symbols

interpretation of the predicate symbols

SRT A

Op Op A A A

Pr Pr A A

Pr Pr

SRT sort assignment

X SRT X

SRT X

X X

X term algebra T X

T X

X T

Here we summarize the main de�nitions and facts about

, which are derived from the partial algebras of Broy and Wirsing

([16]) and from the algebras with predicates of Goguen and Meseguer ([30]).

A (shortly, a ) is a triple � = ( ),

where

{ is a set (the set of the );

{ is a family of sets: ; is an

);

{ is a family of sets: ; is a

).

We shall write : for and

: for ; but also and

(when sorts are irrelevant).

A � (shortly a �- ) is a triple

= ( )

consisting of the , the and the

. More precisely:

{ if , then is a set;

{ if : , then : is a

partial function;

{ if : , then .

Usually we write ( ) instead of ( ) .

The class of all the �-algebras is denoted by .

Assume that is a given in�nite denumerable set of variable symbols and let

� be a signature with set of sorts . A for w.r.t. � is

a partial function : ; in what follows we shall also regard as an

-indexed family , where

= and ( ) =

Given a sort assignment , the ( ) is the �-algebra de�ned

as follows, using to denote ( ):

{ implies ;
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Op OP Op T

T Op OP

Op T

Op Op Op OP
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X SRT T X T

ground terms

A variable evaluation X A

A all X T X interpretation

of in A w.r.t.

A term-generated SRT A

T

nonempty carriers

A B homomorphism A B

A B total A B

Op OP

Op Op

Op Op

Pr PR Pr Pr

isomorphism

A

true in A w.r.t. a variable evaluation

{ implies ;

{ for = 1 and imply

( ) ;

{ ( ) = ( ) for all ;

{ = for all .

If = for all , then ( ) is simply written and its

elements are called .

If , a : is a sort-respecting assign-

ment of values in to the variables in . If ( ), the

is denoted by and given as usual; note however that

here it may be unde�ned. When is a ground term, we use the notation .

A �-algebra is i� for all and all there

exists ( ) such that = .

In what follows we assume that sorts and arities are respected and also that

our algebras have (as this applies to term algebras as well,

we have an implicit assumption on signatures: that they contain \enough

constants symbols").

If and are �-algebras, a from into , written

: , is a family of functions = : s.t.:

{ for all :

if ( ) is de�ned, then so is ( ( ) ( ))

and moreover ( ( )) = ( ( ) ( ));

{ for all : if ( ), then ( ( ) ( )).

An is a homomorphism that admits an inverse.

It is well known that there are several possible de�nitions of homomorphism

between partial algebras. The one chosen here guarantees the properties for-

malized in Prop. 5 and 6 (see Sect. 3) and that our speci�cation framework is

an institution (see Sect. 4.4).

Algebras and homomorphisms form a category, still denoted by : the

identity homomorphism is the family of identity functions and the composition

is the composition component by component.

The interpretation of a formula of (many-sorted) 1 order logic with equality

(with operation and predicate symbols belonging to �) in a �-algebra is

given as usual, but:

for , of the same sort, = is

8
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De�nition 2

Note 1
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t
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D t D t

t ; : : : ; t t ; : : : ; t

D t

srt

;

; ;

A

A A

valid A A A

I initial I

A I A

If I is initial in , then for all ground terms , , and

all predicates Pr PR:

{ I i� for all A : A ; thus

I i� for all A : A ;

{ I Pr i� for all A : A Pr .

T

A restriction of A to

A

A A

Op Op Op

Pr Pr Pr

{ A D is a pair DS where:

SRT OP PR is a predicate signature,

DS SRT (the elements in DS are the , i.e. the sorts of

dynamic elements),

for all ds DS there exist a sort lab ds SRT DS and a predicate

symbol ds lab ds ds PR.

{ A on D (shortly a D -algebra) is just a -algebra; the

term algebra T X is just T X .

In this paper, for some of the operation and predicate symbols, we

use a mix�x notation. This is explicit in the de�nition of the signatures; for

i� and are both de�ned and equal in (we say that = denotes

\existential equality").

We write = when the interpretation of the formula in w.r.t.

yields true; moreover, is in (written = ) whenever = for

all evaluations . Usually we simply write ( ) for = and use it to require

that the interpretation of is de�ned.

Given a class of �-algebras , an algebra is in i� and for

all there is a unique homomorphism : ; notice that the initial

algebra is unique up to isomorphisms.

= = = =

= ( ) = ( )

= ( ) = ( )

The condition above on ( ) implies that, in general, the term algebra is

not initial in the class .

Finally, if � � and is a � -algebra, then the � is the

�-algebra denoted by and given by:

{ ( ) = for all sorts of �,

{ = for all operation symbols of �,

{ = for all predicate symbols of �.

dynamic signature � (� )

� = ( )

dynamic sorts

( )

: ( )

dynamic algebra � � �

( ) ( )
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Example 3 Bu�ers containing natural values organized in a LIFO

way

t t

t; t ; t

d d d : : : :

;

;

d l d l d l : : : d l : : :

d l d l d l : : : d l : : : d k

n d l d ; l ; d

d l d ; l; d

�

S � � d

L � � l

� d l d l d l : : :

;

; ;

;

; ;

instance, ds lab ds ds PR means that we shall write

instead of ; i.e. terms of appropriate sorts replace underscores.

DA D ds DS ds

lab ds

maximal labelled paths

PATH DA ds

ds PATH DA ds

DA DA

D DS

SRT OP PR

DS

SRT DS lab ds ds DS OP

PR ds lab ds ds ds DS

Consider the following dynamic signature:

: ( )

( )

If is a �-algebra and , then: the elements of sort , the elements

of sort ( ) and the interpretation of the predicate correspond, re-

spectively, to the states, the labels and the transitions of a labelled transition

system. The di�erent possible evolutions of the dynamic elements are repre-

sented by the , i.e. maximal sequences of states and

labels of the form

We denote by ( ) the set of such paths for the dynamic elements

of sort . More precisely, ( ) is the set of all sequences having

either of the two forms below:

(1) (in�nite path)

(2) 0 (�nite path)

where for all IN: , and ( ) ;

moreover, in (2) for no , : ( ) (there are no transitions starting

from the �nal state of a �nite path).

If is either (1) or (2) above, then

{ ( ) denotes the �rst element of : ;

{ ( ) denotes the second element of : (if it exists);

{ denotes the path (if it exists).

In what follows � will denote a generic dynamic signature (� ), where �

= ( ); moreover we often omit the canonical sorts and predicates

and write

for the dynamic signature (� ), where � is:

( ( )

: ( ) ).

10
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0

0

nat

n

b

n

b

!

!

!

� !

!

!

!

De�nition 4

0:

:

:

:

:

:

: ( )

( )

( ( ))

( )

( ( ))

sorts

dsorts

opns

buf

BUF

I

O Get

I

O Get

nat

nat

Succ nat nat

nat

nat

; nat

�!

��! �

������! 6

�!

��!

������! 6

!

k

Symb Symb Symb

b n; b n b k

b b b

b n; b n b

b b b

k

;

: : : : : :

h

buf

Empty buf

Put buf buf

Get buf

Remove buf buf

I O lab buf

= IN

( ) 1

( ) =

( )

( ) =

= 2

( )

( ) ( )

� (dynamic) homomorphism

:

�

11

and the (term-generated) algebra BUF given as follows.

{ BUF .

{ BUF and the interpretation of the operations Empty, Put, Get and

Remove are respectively the set of stacks of natural numbers and the usual

operations empty stack, adding an element, getting the �rst element and

removing the �rst element. These stacks are precisely our bu�ers.

{ The elements built by the two operations I and O label the transitions cor-

responding to the actions of receiving and returning a value, respectively.

{ If we assume that the bu�ers are bounded and can contain elements at

most, then the interpretation of in BUF is the relation consisting

of the following triples (here and below the interpretation of a [predicate/

operation] symbol in BUF, , is simply denoted by ):

Put for all and all having elements at most,

Remove for all Empty.

If we assume, instead, that the bu�ers are unbounded, then consists

of the triples:

Put for all and all ,

Remove for all Empty.

The complete behaviour of a bounded bu�er, with , which is initially

empty (this bu�er is represented by the term Empty) is given by the tree rep-

resented in Fig. 1. Notice that the paths, starting from the root, in this three

are exactly the elements in PATH BUF buf whose initial element is Empty.

Each path describes a possible behaviour of the initially empty bu�er; the tran-

sitions labelled by I and O are, of course, triggered by requests from

the outside world. In Sect. 5 we shall present examples (of speci�cations) where

processes interact through bu�ers similar to the ones considered here.

Let DA and DA be D -algebras; a

DA DA is just a homomorphism of partial algebras with predicates, i.e.

a homomorphism from DA into DA as -algebras.
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2

0

0 0

�

( )

D

DA DA

l

h l

t t

0

0

0 0

00 00

! 2

�! ��!

D

D j �! 2 D j �!

D

DAlg

Proposition 5

Proposition 6

: : :

;

;

;

m m

m;

;

: : :: : :

: : : : : :

n

n;

n

: : :

;

n;

mm

m;

n;

: : : : : :

: : : : : :

h d l d

d d h d h d

t t t t

Fig. 1. The execution tree (in condensed format) associated with the empty un-

bounded bu�er.
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A
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@
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@
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@

@

@

@

@

@

@I

?

6 A

A

A

A

A

A

A

AUA

A

A

A

A

A

A
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6 A

A

A

A

A

A

A

AUA

A

A

A

A

A

A

AK

Empty

O

Put Empty

I

I O

Put

Put

Empty

I O

Put

Put

Empty

I

Put Empty

O

I

Put

Put

Empty

O IO

Put

Put

Empty

D D

Let DA DA be a homomorphism; for all , , DA:

if then .

If is a class of dynamic D -algebras and DI is initial in

, then DI i� for all DA : DA .

DI

(0)

(0 )

(0)

(0) (0)

(0

(0

))

( ) ( )

(

(0

))

( )

( )

( )

(0)

(0

(

))

(0) ( )( )

(

(

))

It is easy to see that, for each signature �, the class of all �-algebras and

the dynamic homomorphisms form a category, that we denote by .

:

( ) ( )

Informally: homomorphisms preserve the activity of the dynamic elements.

The proof is obvious from the de�nition of homomorphism.

�

= =

Informally: is an algebra of where each dynamic element has the mini-

mum amount of activity. The proof follows from the properties of the initial

elements in the category of partial algebras with predicates (see Prop. 1).

12



0

D

D

D

f j 2 j g

^ �

2

2 2

st

=1 0

1

�

�

1

1 �

i ;:::;n i i

n

n

n

;

� A � :

� � i �

t ; : : : ; t t t

; ; ;

F X

P X;

t : : : t

t ; : : : ; t F X

4 Speci�cations of Abstract Dynamic-Data Types

De�nition 7

abstract data type

simple speci�cation sp AX AX

axioms sp

models sp

AX sp

Mod sp A A AX

initial algebra approach sp

Mod sp

AX positive conditional axioms

atom

Pr

loose sp

Mod sp

abstract dynamic-data type ad-dt D

4.1 The Logic

D DS SRT OP PR X

The set of and the auxiliary sets

ds of of sort ds DS (on D and X ) are inductively

de�ned as follows (where , , denote terms of appropriate sort and we

assume that sorts are respected):

{ Pr if Pr PR

Following a widely accepted idea (see e.g. [53]) a (static)

(shortly adt) is an isomorphism class of �-algebras and it is usually given by a

, i.e. a pair = (� ), where � is a signature and

a set of 1 order formulae on � (the of ) representing the properties

of the adt. The of are precisely the �-algebras which satisfy the

axioms in ; more precisely, the class of models of is:

( ) = is a �-algebra and for all : =

In the de�nes the adt consisting of the (isomor-

phism class of the) initial elements of the class ( ). The principal moti-

vation for this choice is that initial models enjoy the properties mentioned in

Prop. 1. Not all speci�cations admit initial models; their existence is guaran-

teed, however, if the formulae in are , i.e. they

have the form , where, for all , is an , i.e. it is either

( ) or = .

In the approach, instead, is viewed as a description of the main

properties of an adt; thus it represents a class, consisting of all the adt's

satisfying the properties expressed by the axioms (more formally: the class of

all isomorphism classes included in ( )).

The above de�nition of adt can be easily adapted to the dynamic case: an

(shortly ) is an isomorphism class of �-

algebras. In order to extend the de�nition of speci�cation, the problem is

choosing the appropriate logical framework. We have already discussed some

of the problems in the introduction, therefore we �rst de�ne our logic and then

comment on it.

Recall that � = (� ) and � = ( ); moreover let be a

�xed sort assignment as in Sect. 2.

( ) dynamic formulae

( ) path formulae �

dynamic formulae

( ) ( )

13
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Remark 8

De�nition 9

;V

i

n

;V

;V

n

;V ;V

srt

;V

;V

srt

j

D

D D

D D

D D ds D

D ds D

D
lab ds

D

D D

D D

D D

D

D

DA

DA

DA

DA

DA DA

DA

DA

1 2 �

1 1 2 � 1 2 �

� �

� � �

� �

�
( )

�

1 1 2 � 1 2 �

� �

1 2 � 1 2 �

�

�

1

1

1 2

1 2

1 2 1 2

1 2 1 2

1 2

2

: � 2 2

8 2 2 2

4 2 2 2 2

2 2 2

h i 2 2 2

: � 2 2

8 2 2 2

U 2 2

h i

!

2

j 2

2 j

j 2

j

j : 6j

j � 6j j

j 8 2

j

j 4

2

j

j j

j h i j

j : 6j

j � 6j j

j 8 2

j

j U

= ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

path formulae

[ ] ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

[ ]

� :

( ) holds in under

= ( ) holds in on a path

( ) under =

( ) ( )

dynamic formulae

= ( ) ( )

= = =

= =

= = =

=

[ ] =

= ( )

( )

( ) = =

path formulae

= [ ] [ ( ) ] =

= [ ( ) ] = ( )

= =

= = =

=

[ ] =

= 0
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t t F X

� � � F X � ; � F X

x : � F X � F X x

t; � F X t � P X;

�x : � P X; x � F X

�x : � P X; x � F X

� � � P X; � ; � P X;

x : � P X; � P X; x

� � P X; � ; � P X;

V

� F X V

; V � � P X;

� ; V ; �; V �

t V t S � L �

�

; V t ; : : : ; t t ; : : : ; t

; V t t t t

; V � ; V �

; V � � ; V � ; V �

; V x : � v srt x

; V v=x �

; V t; � t

� ; t

S � t ; �; V �

; �; V �x : � ; V S � =x �

; �; V �x : � ; V L � =x � L �

; �; V � ; �; V �

; �; V � � ; �; V � ; �; V �

; �; V x : � v srt x

; �; V v=x �

; �; V � � j > �

{

{ , if

{ if , X

{ if T X , ds , ds DS

{ ds if X ,

{ ds if X ,

{ , ds if ds

{ ds if ds , X

{ ds if ds .

The symbols and that appear in path formulae are just

brackets and do not represent modalities.

Let DA be a D -dynamic algebra and X DA be a variable

evaluation (i.e. an SRT-family of total functions). We now de�ne by multi-

ple induction when a formula DA (written

DA ) and when a formula ds DA

PATH DA ds (written DA ). Recall that the interpre-

tation of a term in DA w.r.t. is denoted by and that , and

have been de�ned in Sect. 3.

{ DA Pr i� Pr

{ DA i�

(both sides must be de�ned and equal)

{ DA i� DA

{ DA i� either DA or DA

{ DA i� for all DA , with sort of ,

DA

{ DA i� is de�ned and

for all PATH DA ds , with ds sort of ,

if then DA

{ DA i� DA

{ DA i� either DA or is not de�ned

{ DA i� DA

{ DA i� either DA or DA

{ DA i� for all DA , with sort of ,

DA

{ DA i� there exists s.t. is de�ned,



j

j

D

DA

DA

j

i

;V

;V

2

1

�

st

def

Remark 10

true false

j

j

2 j j

4

4 5

4 5

h i

U

_ ^ 9 6 9 � 9 8

5 : 4 :

j 5 2

j

; � ; V �

i < i < j ; � ; V �

� F X � ; V �

V �

t; � �

t � �

�x:� � � �

�x : � � �

� �

x; y; z : : : : x; y; z : : : :

t; � t; �

; V t; � t � ;

t S � t ; �; V �

=

0 =

( ) valid = =

� �

model �

�

( )

[ ]

In the above de�nitions we have used a minimal set of combinators; in practice,

however, it is convenient to use other, derived, combinators; we list below

those that we shall use in this paper, together with their semantics (formal or

informal according to which is clearer).

{ , , , , , , , , de�ned in the

usual way

{ ( ) = ( )

= ( ) i� is de�ned and there exists ( ),

with sort of , s.t. ( ) = and =

15

DA and

for all s.t. DA .

A formula is in DA (written DA ) i� DA for

all evaluations . If is a set of formulae and every in is valid in DA,

then DA is a for .

Dynamic formulae include the usual (static) formulae of many-

sorted 1 order logic with equality; if D contains dynamic sorts, they include

also formulae built with the transition predicates.

Notice that the formulae of our language are the dynamic ones; indeed the

axioms of our speci�cations are dynamic formulae. Path formulae are just an

ingredient, though an important one.

The formula can be read as \for every path starting from the state

denoted by , (the path formula) holds on ". We have borrowed , and

below, from [48]. We anchor these formulae to states, following the ideas in

[37]. The di�erence is that we do not model a single system but, in general, a

group of systems, so there is not a single initial state but several of them, hence

the need for an explicit reference to states (through terms) in the formulae built

with and .

The formula holds on a path whenever holds at the �rst state of ;

similarly the formula holds on if either consists of a single state

or is true of the �rst label of . The need for both state and edge formulae

has been already discussed in [35].

Here labels can be arbitrarily complex, one can also have operations to com-

pose/decompose them. This allows to model in a direct way the interaction of

an open system with its environment, or between parts of a system.

Finally, is the so called strong future until operator.

Validity is preserved by isomorphisms.

DA PATH DA ds

ds DA
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3
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2
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0

0 0

0 0 0 0 0 0

0 0 0 0

true

false

false

false

Example 11

def

def

def def

1 2 def 1 2 1

1 2 1

2 2

def

1 1

def

U

j j

: :

j j

^ _

W U _

W W

U


 W

j 
 j

hh ii h i ^ : h i

j hh ii j

h i

� �

4 h i

h i

5

4 5

5 8

^ h i ^ 
 �

�!

5 8 ^ h i � 


� � �

; �; V � i > � ; � ; V �

� � �

; �; V � ; � ; V � i > �

� � � � � �

� � � � �

� � � �

� �

� � �

; �; V � � ; � ; V �

�x : � �x : � �x :

; �; V �x : � L � ; V L � =x �

�

L � � �x :

�x

Q x x

z z y y

: : :

; �y : y

�y : y

; �x : x

; �x : x; �z : z �

x � x

z

; x; y; z :

�x : x x �y : y y �z : z z Q x; y; z

�

x z Q x; y; z

; x; y : �x : x x �y : y y �z : Q x; y; z

{ = (eventually )

= i� there exists 0 s.t. is de�ned and =

{ = (always )

= i� = for all 0 s.t. is de�ned

{ = and =

and are, respectively, the \always" and \eventually" operators that

include the initial (or present) moment

{ = ( )

is the weak until operator holds on a path if holds until

becomes true; the di�erence with is that may never become true.

{ = (next )

= i� either is not de�ned or =

{ =

= i� ( ) is de�ned and [ ( ) ] = .

In other words we require that in there is an initial transition labelled

by ( ) and that this label satis�es . (Notice that can be

satis�ed only by a path which consists of a single state, the initial one.)

( ) ( )

( )

( ( ) )

( )

( [ ( ) ])

( [ ( [ ( ) ]) ])

(

([ = ] = [ = ]) ( ))

( )

( ([ = ] = ) [ ( ) ])
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DA DA

DA DA

DA DA

DA DA

We give here a few sketchy examples, that should clarify the meaning of the

non-standard constructs in our language; in particular, examples c) and d)

should explain the role of the binders ; more signi�cant examples can be

found in the following sections. We assume that: Cs is a constant symbol

of dynamic sort ds; Ps and Pl are unary predicate symbols of arity ds and

lab ds , respectively; is a predicate symbol of arity ds lab ds ds; , ,

, and , are variables of sort ds and lab ds respectively. Moreover, for

simplicity, we do not distinguish between the symbols Cs, Ps, Pl , and their

interpretations.

a) Cs Pl

can be read as: on every in�nite path from the state Cs there exists a label

that satis�es Pl; (all �nite paths trivially satisfy Pl ).

b) Cs Ps

can be read as: there exists a path from the state Cs that contains in�nitely

many states satisfying Ps.

c) Cs Ps can be read as: for every path from

Cs, for every state on , there is a path from such that along this path

there is a state satisfying Ps.

d) Cs

can be read as: there exists a path from Cs along which any transition

is such that is true. A more concise formula expressing

the same property is:

Cs .
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1
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1
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0

0
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! � � !
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�! � � �! � �

!

DSign

DSign

Cat

The signature category

DSign

The sentence functor DSign Set Set

; ; ;

� � � srt

srt

; ;

; ; �

�; ';  

�

' s : : : s s

' � s : : : � s � s

 s : : : s

 � s : : : � s

� '  �

; ;

� �

�

� �

� � � �

4.2 The institution of algebraic temporal logic

D

SRT sort assignment D X

SRT X SRT X

X X X

SRT OP PR

SRT OP PR (predicate) signature morphism

SRT SRT

OP OP Op

Op

PR PR Pr

Pr

D DS D DS dynamic

signature morphism D D

DS DS

ds DS lab ds lab ds

ds lab ds ds ds lab ds ds

Dynamic signatures, dynamic algebras, dynamic homomorphisms and the for-

mulae of our logic form an institution , as de�ned in [17]. This can be

seen by adapting to our case de�nitions in [3]; however here we assume only

that the reader is familiar with the main de�nitions in [17].

We shall prove that = ( DSen DAlg =) is an institution, where

the four ingredients , DSen, DAlg, = are de�ned as follows.

Recall that: is a �xed set of variable symbols; if � is a signature with set

of sorts , a for w.r.t. � is a partial function :

; moreover we also regard as an -indexed family ,

where = and ( ) = . We also assume that is in�nite

and denumerable for every . Finally, let be a category \su�ciently

large" to include, as objects, all categories of algebras.

Given two (predicate) signatures � = ( )

and � = ( ), a : � � is a

triple ( ) such that:

{ : is a total map;

{ : is a total map s.t. if : then

( ): ( ) ( ) ( );

{ : is a total map s.t. if : then

( ): ( ) ( ).

In what follows we shall confuse , and , therefore we simply use instead.

Given two dynamic signatures � = (� ) and � = (� ), a

: � � is a predicate signature morphism :� �

such that:

{ ( ) ;

{ for all : ( ( )) = ( ( )) and

( : ( ) ) = : ( ) ( ( )) ( ).

It is easy to see that dynamic signatures and dynamic signature morphisms

form a category that we call .

DSen: ( is the category of sets)

is the functor de�ned as follows:

17
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� � � � � �

� sym � sym

� � �

�

srt

�
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; � � :

�

; �

� ; � � ; �

� � � � :

V
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The algebra functor DSign Cat Cat

Cat

DAlg DAlg

DAlg DAlg

The satisfaction relations

DAlg

Proposition 12

Proof.

DAlg

D

X X D

D D D D

X X X

D X X

D

D D

D D

D DA D DA

DA DA SRT

Op Op Op OP Pr PR

D

DA X

D

DA X DA

is an institution.

All we have to prove is that for each D D the

holds: for each DA in , for each X in D

DA X i� DA X

i.e.

DA i� DA where DA DA

First of all, we need a canonical transformation of variable evaluations. If

is a variable evaluation X DA , let denote the variable

{ on objects:

DSen( �) =

( ) is a sort assignment for w.r.t. � and ( ) ;

{ on morphisms:

DSen( : � � ):DSen( �) DSen( � ) is the mapping sending

( ) into ( ( ) ( )); where ( ) is the sort assignment for w.r.t.

� de�ned by ( )( ) = ( ( )) and ( ) is the formula obtained by

replacing in each symbol � with ( ). Notice that in going

from to ( ) variables do not change; their sorts, however, do change and

in the appropriate way (sort assignments have been introduced precisely to

this purpose).

It is trivial to see that DSen is a functor.

DAlg: ( is the opposite of

the category ) is the functor de�ned as follows:

{ on objects: DAlg( �) = ( is the category of �-algebras,

see Sect. 3);

{ on morphisms: DAlg( : � � ): is the mapping

sending a � algebra into the � algebra given by:

= for all ;

= ( ) for all in and similarly for all in .

It is easy to see that DAlg is a functor.

For each dynamic signature �, the satis-

faction relation = is s.t. for each in , and each ( ) in

DSen( �):

= ( ) i� = (see Def. 9)

: � � satisfaction

condition ( ) DSen( �)

= DSen( )( ) DAlg( )( ) = ( )

= ( ) = = DAlg( )( )

: ( ) DAlg( )( )
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Step.

srt
� srt

� srt

srt

;V ;V

n

n n

;V

n

;V

;V

;V

n

n

;V

;V

!

2 ) 2 )

2

2

2

j j

j j 2

j j

2

2 j

4

j 4 j 4

j 2

j 2

j 4

� : 8 � : 8

j j

j

j j

j j

h i

U

j U j U

0 0 0

0

0

0

0

0

0

0

0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0

0

0

0 0 0

0

0

0

0 0

0

0 0

0 0

0 0

0

0 0

0

0 0

DAlg( )( ): DAlg( )( )( ) = ( )

DAlg( )( ) ( )

( ) =

DAlg( )( )

( ) ( ) = ( )

� ( )

= ( ) =

= ( ) = ( )

( ( )) = ( )

= ( )

= ( ( )) = ( )( ( ) ( ))

( ( ) ( ) ) ( )

( ) = ( )

= =

= ( )

= ( ( )) = ( ( ) ( ))

= ( ) ( ( )) ( ) = ( )

( ( )) = ( )

= ( ) ( ) =

= ( )

= =

= [ ]

= ([ ]) = [ ( ) ]

[ ( ) ] = ( )

DAlg( )( [ ( ) ]) = DAlg( )( )[ ( ) ] =

[ ( ) ] = = [ ]

=

=

= ( ) = ( ) ( )
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� V � V � V �

� V � � �

V �

V � V

t � t t � t

t sym � sym

t

; V � � ; V �

; � ; V � � ; � ; V � � P X; �

; � ; �

� �

� t ; : : : ; t

; V � t ; : : : ; t ; V � � t ; : : : ; � t

� t ; : : : ; � t �

t ; : : : ; t ; V t ; : : : ; t

� t t

� �

� t; � t

; V � t; � ; V � t ; � �

; � ; V � � � ; � S � � t

; � ;

�

; � ; V � � ; S � t

; V t; �

� � � � x:� � � � � x:�

� �x : �

; � ; V � �x : � ; V ; � �x : � �

; V S � =x � �

; � V S � =x � ; � V S � =x �

; V S � =x � ; � ; V �x : �

� �x : �

� � �

; � ; V � � � ; � ; V � � � �

evaluation X DA de�ned as follows: .

Notice that is well-de�ned, since X X

DA DA . Then we need the following lemmas, where we use

instead of .

For all T X : , where is the term

obtained by replacing, in , each symbol D with .

Straightforward, by induction on .

(i) DA i� DA ;

(ii) DA i� DA , when ds and is

a path on DA ; note that the r.h.s. above is well-de�ned since

PATH DA ds PATH DA ds and so may be used in both sides.

By multiple induction on and .

{ Pr .

DA Pr i� DA Pr i�

Pr i�

(by Lemma 13 and the de�nition of DA)

Pr i� DA Pr .

{ . Analogously to the above case.

By cases on the main logical combinator in (or ).

{ , with term of sort ds.

DA i� DA i�

DA for all PATH DA ds s.t.

i� (since PATH DA ds PATH DA ds , by Lemma 13 and by

the inductive hypothesis applied to )

DA for all PATH DA ds s.t. i�

DA .

{ , , ; , , . Easy veri�cations.

{ .

DA i� DA i�

DA i� (by the inductive hypothesis)

DA i� DA i�

DA i� DA .

{ . Analogously to the above case.

{ .

DA i� DA i�



2

2

D

ds

j

i

j

i

Lemma 15

2

1

2

1 1 2

st

nd

�n �

�n

0

0

j

0

0

0

j

0

0

j

0

j

0

0

0

0

0 0

0

0

0

0

0

0

0

j

j

j

j j U

j j

j

! j

! j

!

!

! j j

A

�! � �

2

j

j > ; � ; V � �

; � ; V � � i < i < j

j > ; � ; V �

; � ; V � i < i < j ; � ; V � �

� � �

� �

V � ; V � �

V � ; V � V � V

V � V

V �

V ; V � �

p

�

� F X

�

there exists s.t. DA and

DA for all , , i�

(by the inductive hypothesis) there exists s.t. DA and

DA for all , , i� DA .

Coming back to the main proof, we show that DA i� DA ,

thus concluding the proof.

DA i� (by de�nition of validity)

for all X DA , DA i� (by Lemma 14)

for all X DA DA where i�

(since all X DA can be obtained as for some

X DA )

for all X DA, DA , i.e. DA .

4.3 Deductive Systems

4.3.1 Strong incompleteness result

strongly incomplete

any signature

global rigid local 
exible

D

ds D lab ds

ds lab ds ds X

There is a closed formula s.t. for any D -algebra

DA, if DA then DA is a �nite set.

0 = ( )

= ( ) 0

0 =

= 0 =

= ( ) =

= ( )

: ( ) = ( )

: ( ) = = DAlg( )( )

: DAlg( )( )

: ( )

: = =

Our logic does not admit a sound and complete e�ective deductive system.

Here \e�ective" means that: the set of axioms is recursive, proofs are �nite

objects (hence the system is �nitary) and the relation \ is a proof of formula

from the set of axioms" is decidable. The set of theorems of an e�ective

deductive system is recursively enumerable, see e.g. [20, Chapt. 8, Sect. 2].

Following [51] we can say that our logic is : the set of valid

sentences over , provided it contains one dynamic sort (and the

relative label sort and transition predicate), is not recursively enumerable.

In [51] the result is proved for a 1 order linear temporal logic with until, where

variables can be ( ), as they are in our logic, or ( ):

variables that can change their value as time 
ows. Local variables are an

essential ingredient in the incompleteness proofs in [51] (and also in those

given in [34] and [1]) and we do not have them in our language. However (as

it is done in [51]) we can follow the pattern used to prove the incompleteness

of 2 order logic in [21].

For the rest of this paragraph, let � be any dynamic signature containing a

dynamic sort, . Hence � contains also the sort ( ) and the predicate

symbol : ( ) . Moreover let be as in Sect. 2.

( ) �

=

20
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lab ds
ds

D

0 0 0

0 0

0 0 0

0 0

�

0 0

Proof.

false

false

Theorem 16

�n def

def

def

def

def

def

nat def

def

def

nat

( )

�

^ ^ ^ ^

9

8

8 �! ^ �! �

�!

9 8 5

!

8 4 h i

h i

^

^

^ ^ ^ ^ ^

8 4 6

8 9 �!

^ ^ ^

j

VS

�

x x y y z z

x : x x

x; x : x x

y; z; z ; x : y z y z z z

y : z : y; �z : z z

y : y; �x :

�x :

�

y : y; �z : z y

y : y ; x : y y

�

F X

= EL UL FUN REACH FIN

( )

EL = =

UL = =

FUN = (( ) = )

REACH = ( [ = ])

FIN = ( )

EL UL

( ) FUN REACH

FIN

As an aside we also show that we can characterize (up to bijections) the set

of natural numbers.

Let = EL UL FUN REACH DIFF INF,

where EL, UL, FUN and REACH are as above and

DIFF = ( [ = ])

INF =

EL UL FUN REACH requires that all the elements of sort can be

arranged in a unique non-empty sequence. Then DIFF forces all elements to be

di�erent and INF forces the sequence to be in�nite. Therefore: if = ,

then is a singleton set and is in bijection with the set of the

natural numbers.

Coming back to the main issue in this paragraph, we show that, in our logic,

validity is not even semi-decidable.

( )

�

21

,

where assuming that , are variables of sort lab ds and , , , are

variables of sort ds:

(existence of labels)

(uniqueness of labels)

( is a function)

(every element can be reached using from a single one)

(every path is �nite; recall that is satis�ed at the end point of a

path, because there is no \next label").

simpli�es the picture: it requires the existence of a unique label of

sort lab ds (uniqueness is needed later); implies that the

elements of sort ds can be arranged along a (unique) non-empty sequence and

forces it to be �nite, allowing for just a �nite number of elements of sort

ds.

ds

DA

DA DA

The set of closed formulae in that are valid in

every D -algebra is not recursively enumerable.
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2

8

>

<

>

:

Proof.

false

ds

ds ds

ds

ds

D D

ds

ds

ds

�n

�n

�n

�n

st

�n

� �

�n

�n

�n

: � 8 �! �

f j 2 j � g

VS

VS !

62

� 2

2 � 2 VS

U

4

4

h i

6

h i

x

� � � � ;

�

� F X F X

� �

�

� � �

� � �

x t t; �

x � x

t; �

x �x : � �x : �

x y x �

x �y : � �y : �

Let be a (�xed) variable of sort lab ds and F be the set of sen-

tences (closed formulae) of our logic built using only: variables of sort ds, ,

, , and the predicate symbol ds ds. Moreover let

F F and

where is the formula exhibited in Lemma 15.

F is therefore isomorphic to the set of 1 order sentences built

using one binary predicate symbol which are valid in all structures with �nite

(non-empty) domain. This last set is not recursively enumerable ([21, pg. 164,

bottom lines]).

To show that is not recursively enumerable it su�ces to show that we can

reduce F to . This is obtained using the function

s.t.

if F

if F

(indeed F i� ).

in�nitary

4.3.2 A sound deductive system for our logic

( )

=

binary :

= =

classical

: ( ) ( )

( ) = ( )

As an immediate corollary of this theorem we have the incompleteness result:

our logic does not admit a complete e�ective deductive system.

To overcome this problem we could look for complete systems (but

we have not tried yet) or consider interesting fragments of our logic that are

more manageable. In subsection 4.4.1 we shall present a complete (�nitary)

system for \dynamic positive conditional formulae". A third way out is dis-

cussed in the next paragraph.

Even if completeness cannot be achieved, it is worthwhile to have a (sound)

system where the rules express signi�cant basic properties of the various com-

binators. First of all we must extend some standard de�nitions.

Free and bound occurrences of variables in state and path formulae are de�ned

as usual by adding the clauses:

{ and all its derived temporal connectives behave like the propositional

connectives;

{ all occurrences of in are free in ( );

{ all free/bound occurrences of in are free/bound occurrences of in

( );

{ all occurrences of in [ ] and are bound;

{ if = , all free/bound occurrences of in are free/bound occurrences of

in [ ] and .
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1 order

0 0 0

0

0

0 0

n n

n �

n i

n i

1 1

1

st

st

1

1

4 U h i 4 U h i

� ^ ^ �

f g `

�

DS

4

48

h i

U 4

� �

� � �

� � �

8 � �

conversion

tautologically valid

tautological consequence

Op

Pr

t; �x : � �y : � t =x t t =x ; �x : � �y : � t =x

x y

: : : t=x

� �

� � �

� � : : : � n � : : : � �

� ; : : : ; � �

n n

x; � �

�

�x : : : :

�x : : : :

D t t t

x x

t t � t=x � t =x

D t ; : : : ; t D t i n

t ; : : : ; t D t i n

x : � D t � t=x

Then substitution is extended in the obvious way; for instance:

( [ ] )[ ] is ( [ ] [ ] [ ] );

notice that here and must be di�erent because they have di�erent sorts.

When writing \ [ ]" we shall assume that substitution is legal: sorts are

respected and there is no capture of free occurrences of variables.

If is obtained from by consistently changing the names of bound variables

then we say that is obtained from by .

A formula is i� it is obtained from a propositional tau-

tology by consistently replacing propositional variables with formulae. It is

straightforward to verify that tautologically valid formulae are valid in any

algebra.

is a of , , ( 1) i� ( )

is tautologically valid. We use to denote tautological conse-

quence ( 1) or tautological validity ( = 0). Analogous de�nitions apply

to path formulae.

As dynamic formulae are the main ones in our language, the system below,

, refers to them. However some rules express properties of path formulae

(indeed ( ) holds i� holds on every path).

There are three groups of rules. The �rst one de�nes a sound and complete

system for 1 order logic with partial functions; its core is in [52] Chapter 2,

Section 2. Notice that axiom [ ] is useful in connections with axioms like [ ].

In the second group we have axioms that \de�ne" the combinators ,

[ ] and (recursively) , together with the strictness property for .

The last group consists of axioms and rules describing the interaction of the

temporal combinators with propositional connectives and quanti�cation.

We recall that ( ) stands for = .

[ref] =

[rep] = ( [ ] [ ])

[str1] ( ( )) ( ) , 1

[str2] ( ) ( ) , 1

[part] ( ) ( ( ) [ ])
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n �

y

y y

n

1

1

st

1 2 1 2

1

0 0

0

0

0

0 0

0 0

0 0

De�nition of the temporal connectives

Interaction between temporal and 1 order connectives

8 � 8 � � � 8

8

f g ` �

4 �

4 � ^

4 h i � ^ 8 �! �

4 U �

^ 9 �! ^ 8 �! � 4 _ ^ U

4

4

4: 4 : � : 4

4 � 4 � � 4 � 4

48 4 8 � 8 4

: 4 h : i � 4 : h i

� 4 h � i � 4 h i � h i

8 4 h 8 i � 4 8 h i 6

: � 8 : � 8 h i

� 4 � � 4 �

4 ^ ^ 4 � 4

x : � � � x : � x �

�

x : �

� : : : �

�

� ; : : : ; � � n

�

�

�

� � �

t; � D t

t; �x : � D t � t=x

t; �x : � D t y; z : t z � y=x

t; � �

D t y; z : t z y; z : t z z; � � � �

z y

x; �

x; �

t; � t; �

t; � � t; � t; �

t; x : � x : t; � x t

t; �x : � t; �x : �

t; �x : � � t; �x : � �x : �

t; �x : y : � t; y : �x : � x y

t; � � t; � �

� t; � : : : t; � t; �

[ ] ( ) ( ) , where does not appear free in

[gen]

[taut] where , 0

[ ] where is obtained from by -conversion

[str3] ( ) ( )

[D1] ( [ ]) ( ( ) [ ])

[D2] ( ) ( ( ) ( [ ]))

[D3]

( )

( ) ( ) ( ( ( )))

in [D2] and [D3]: and are \new" variables

[ Gen]

( )

( )

[ ] ( ) ( )

[ ] ( ) ( ( ) ( ))

[ ] ( ) ( ) , where does not appear in

[L ] ( ) ( )

[L ] ( ) ( )

[L ] ( ) ( ) , where =

[S ], [S ], [S ] obtained from [L ], [L ], [L ] respectively by changing

into [ ]

[ ] ( ( )) ( ( ) )

[ taut] ( ( ) ( )) ( ) ,
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0
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n �
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0 0

0 0

0 0

0

DS

2

2
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2 2

2 2

Theorem 17

Proof.

Example 18 Proofs in

f g ` �

^ � 4 8 �

8 � � 4 8 � � � 8

U 8 4 8 U � 4 8 U

U 4 U ^ ^ 4 U � 4 U

f g ` �

DS

`

DS

DS

� ` 4 � 4

^

�

�

^ �

^ � � 4 �

4 �

4 � � 4 �

�

4 �

4 �

4 � �

4 � �

4 � 4 4 �

4 � 4

4 � 4

� ; : : : ; � � n

� D t D t t; x : � � t =x

� D t t; x : � � � x : �

x �

t; x : � � t; x : � �

x �

t; � � : : : t; � � t; � �

� ; : : : ; � � n

� �

� x  x y; �x : � x y; �x :  x

� � �

� x  x

� y  y

D y

D y � y  y

D y � y  y y; �x : � x  x

y; �x : � x  x

y; �x : � x  x y; �x : � x �x :  x

y; �x : � x �x :  x

y; �x : � x �x :  x

y; �x : � x �x :  x

y; �x : � x �x :  x

y; �x : � x y; �x :  x

y; �x : � x y; �x :  x

y; �x : � x y; �x :  x

The deductive system is sound: when is a set of dynamic

formulae, if , then holds in all the models of .

It is straightforward to verify that for each of the above rules: the

consequence holds in an algebra DA whenever all the premises hold in DA.

As an example, we show that in we can prove:

(recall that stands for .

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

In a similar way we obtain (from hypothesis (1)):

(13)

Then the proof goes on as follows.

where , 0

[ part] ( ( ) ( )) ( ( ) [ ])

[ ] ( ) ( ( ) ( )) ,

where is not free in

[ ] ( ( ) ) ( ) ,

where is not free in

[ taut] ( ( ) ( )) ( ) ,

where and 0.

�

� �

( ) ( ) ( [ ( ) ]) ( [ ( ) ])

( ) )

( ) ( ) hypothesis

( ) ( ) straightforward, from (1) and the 1 order rules

( ) by [Ref]

( ) ( ( ) ( )) by (2), (3) and [taut]

( ( ) ( ( ) ( ))) ( [ ( ) ( ) ]) by [D1]

( [ ( ) ( ) ]) by (4), (5) and [taut]

( [ ( ) ( ) ]) ( [ ( ) ] [ ( ) ])

by [S ]

( [ ( ) ] [ ( ) ]) by (7), (6) and [taut]

( ([ ( ) ] [ ( ) ])) by (8) and [ Gen]

( ( [ ( ) ]) ( [ ( ) ])) by (9) and [ ]

( ( [ ( ) ]) [ ( ) ])

( [ ( ) ]) ( [ ( ) ]) by [ ]

( [ ( ) ]) ( [ ( ) ]) by (10), (11) and [taut]

( [ ( ) ]) ( [ ( ) ])
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De�nition 19

Notation:

axiom

Example 20 Unbounded bu�ers with a LIFO policy

y; �x : � x �x : � x y; �x : � x �

y; �x : � x �x : � x y; �x :  x

y; �x : � x y; �x : � x y; �x : � x

�

y; �x : � x �x : � x y; �x :  x

y; �x : � x �x : � x

y; �x :  x y; �x :  x

y; �x :  x y; �x :  x

y; �x :  x �x :  x �

y; �x : � x �x : � x

y; �x :  x �x :  x

;

F X

;

;

Succ n

D D Succ n

n; b n n; b b

D b b b

b n; b

n; b n

( [ ( ) ] [ ( ) ]) ( [ ( ) ]) by [ taut]

( [ ( ) ] [ ( ) ]) ( [ ( ) ])

by (13), (14) and [taut]

( [ ( ) ]) ( [ ( ) ]) ( [ ( ) ])

by [ taut]

( [ ( ) ] [ ( ) ]) ( [ ( ) ])

by (12), (16) and [taut]

( [ ( ) ] [ ( ) ])

( [ ( ) ]) ( [ ( ) ]) by (15), (17) and [taut]

( [ ( ) ]) ( [ ( ) ])

( [ ( ) ] [ ( ) ]) by [ taut]

( [ ( ) ] [ ( ) ])

( [ ( ) ] [ ( ) ]) by (18), (19) and [taut]

(simple) dynamic speci�cation ( � )

( )

usually the dynamic speci�cation ( � ) will be written as:

� .

In the three examples below we use the signature BUF� de�ned in Ex. 3; in

Ex. 20 we refer to the initial semantics and in Ex. 21 and 22 to the loose one.

BUF = (BUF� )

0 ( )

(0) ( ( ))

( ( )) = ( ( )) =

( ( )) ( )

( )

( ( )) =

26

(14)

(15)

(16)

(17)

(18)

(19)

(20)

4.4 (Simple) Dynamic Speci�cations

A is a pair D AX , where

AX and X is an appropriate sort assignment (see Sect. 2).

D AX

D AX

BUF AX where BUF AX consists of the following ax-

ioms:

{ properties of the data contained in the bu�ers (the terms and are

always de�ned):

{ static properties (LIFO organization of the bu�ers)

Get Put Remove Put

{ de�nition of the dynamic activity of the bu�ers

Get Remove

a bu�er can always return its �rst element (if it exists)

Put

a bu�er can always receive a value and put it on its stack.

This speci�cation admits initial models (see Prop. 24 below): algebras where

the carrier of sort buf is the set of unbounded stacks of natural numbers.

Notice that, given our interpretation of =, the axiom Get Put
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buf

I

I

0 0

0 0

0 0

0 0

2 2 2

( )

( )

1

2

3

2

( )

( )

Example 21

Example 22

: �

: :

���! � ^

��! �

��! � 4 h : i W h i

��! � 4 hh ii

D n; b D n; b

;

D D Succ n Succ n Succ n Succ m n m

D D

b b n b b b

b b b b; n
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implies Get Put , hence also Put , while Get Empty and

Remove Empty are unde�ned.

A very abstract speci�cation of bu�ers containing natural values; we only re-

quire the essential properties; clearly this is a \loose speci�cation".

BUF AX where BUF AX consists of the following ax-

ioms:

{ properties of the data contained in the bu�ers:

{ static properties (the operations Get and Remove are not de�ned on the

empty bu�er):

Get Empty Remove Empty

{ dynamic properties (safety properties):

Get Remove

(speci�es the action of returning a value)

Put (speci�es the action of receiving a value)

Here we do not give the de�nition of the operations Get, Put and Remove,

as we did in , but we only specify some of their properties; clearly such

a speci�cation is oriented to a loose semantics. If DA is an algebra which

is a model of , the set DA may contain, for instance, unbounded or

bounded bu�ers, FIFO or LIFO bu�ers, but also bu�ers which \loose" any

value that they receive.

A very abstract speci�cation of bu�ers containing natural values where the

received values are always returned. is obtained by adding the axioms

below to .

(1) I O

This is a safety property: a bu�er that has received a value must return it

before it can receive another copy of ; this ensures that the bu�er contains

distinct values.

(2) O

This is a liveness property: eventually, a received value will be returned; recall

that the elements in a bu�er are distinct, so we know that it is the same

which appears in I and O .

If the bu�er interacts with its users in a synchronous way, the last axiom is

not very appropriate: indeed in case no one wants to accept the returned value,



I

O

D

3

3

2

0 0 00 00

0 0

( )

( )

3

2

1

1 2 3 4

1 2 1

�

=1

1 =1

n

y

n

i ;:::;n i

i

n i ;:::;n i

��! � 4

� 4 W hh ii

9 ���!

_ 9

5

4

2

^ �

^ � �

4

h i 
 h i

f g ) ^ �

b b b ; �b : b ; n

b; n b; �b : b ; n �y : y n

x; y z : x z

t t t t x : x

t; �

t; �

t t t ; : : : ; t

� F X

�  

n �

 t; � � : : :

: : : : : : : : :

 

� ; : : : ; �  �  

this axiom prescribes that the whole system, including the bu�er and its users,

will eventually deadlock. The problem can be avoided by replacing this last

axiom with the two formulae below. They just require that a bu�er will have

the capability of returning any value it receives (2i) and that such capability

remains until the value is actually returned (2ii).

(2i) Out Cap

(2ii) Out Cap Out Cap O

where Out Cap stands for .

, where we use (2i) and (2ii), speci�es a subclass of the bu�ers de-

�ned by : the bu�ers where received values are returned (if someone

requests them). It includes bounded FIFO bu�ers, but also, say, unbounded

LIFO bu�ers where the \fair behaviour" is obtained by using auxiliary struc-

tures. On the other hand, the initial models of are not included, since

there each bu�er admits paths where condition (2i) is violated.

4.4.1 Initial models

Pr

atom Pr

dynamic positive conditional

positive conditional formulae

safety properties

( [ ( ) ])

( ) ( [ ( ) ] = ( ) )

( )

BUF

BUF

BUF

Not all dynamic speci�cations admit initial models. Classical (static) speci�-

cations are a particular case and it is well known that axioms like

= = or ( )

do not allow initial models, because none of their models can satisfy the

properties in Prop. 1. Using Prop. 6, one can show that the same happens

with formulae including existential temporal operators; for instance: ( )

or ( ). However, as in the case of classical speci�cations, we can guar-

antee the existence of initial models by restricting the form of the axioms.

An is any formula which is either = or ( ). A formula

( ) is i� it has the form

,

where: we assume that binds tighter than , 0, is an atom

and is either an atom or has the form ( ) with built using [ ],

, , only, and the formulae inside [ ] and are themselves

dynamic positive conditional. Usual , see Sect. 3,

are a particular case: when is an atom. Sometimes it is convenient to write

dynamic positive conditional formulae in clausal-form, then we shall use the

sequent instead of .

The properties that can be speci�ed using axioms of this kind include \usual"

static properties, described using ordinary positive conditional formulae, and

many (see the examples above).
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Proof.
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 ^ 8 �! � 4

4
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^ �
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j j

;

;

x z w y

x z x; z x; z z; w x;w :

�

T �

T � �

T �  � T  

T t; �x : � D t T � t=x

T t; �x : � D t y; z : t z T � y=x

y z T � t

T t; � D t z : t; z T z; �

z � t

T t; � D t y; z : t z T z; �

z � t y t T z; �

;

T � �

V � F X

; V T � ; V �

� �  

;  

 �

j ; : : : ; n ; V � ; V �

dsp D AX AX

dsp

ds D

Trans ds ds

TRANS TRANS ds DS

ds lab ds

TRANS

Trans Trans Trans Trans

Trans

Trans

dsp D AX D

Trans D AX

TRANS AX

For every D -algebra DA in Mod dsp , every variable evalua-

tion and every dynamic positive conditional formula :

DA i� DA .

Assume ; then we use induction on the maximum

depth of nesting of the temporal combinators , and in .

.

Obvious, since for : DA i� DA .

Let = ( � ) be a dynamic speci�cation s.t. the formulae in are

dynamic positive conditional. We are going to show that admits initial

models. To this end, consider for each dynamic sort of � a (new) predicate

symbol : and the set of (positive conditional) axioms

=

where, if , , are variables of sort and is a variable of sort ( ):

=

( ) ; ( ) ( ) ( )

Using the predicates we can translate dynamic positive conditional

formulae into standard many sorted 1 order logic. If is a dynamic positive

conditional formula, its translation, ( ), is de�ned inductively as follows.

( ) =

( ) = ( )

( ( [ ])) = ( ) ( )[ ]

( ( )) = ( ) ( ( )[ ])

, not appearing in ( ) and ;

( ( )) = ( ) ( ( ) ( ( )))

not appearing in and ;

( ( )) = ( ) ( ( ( )))

not appearing in and ; not appearing in and ( ( )).

Finally, let be ( � ) where: � is the signature obtained by adding

the predicates to � and is the set of axioms

( ) .

We have the following lemma:

� ( )

( )

= ( ) =

=

( )

=

= 0 = =
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( ( )) ( ( ))

= ( ) = ( ( ))

= ( )

=

� = = ( )

=

= 0

=

= ( ) ( )

= ( ) ( )

= ( )

= ( ) ( ) �

= ( ( )) ( )

=

= ( ) ( )

= ( ) ( ( ))

= ( ) ( ( ))

= ( )

= ( ) = ( ( )

= ( )

= ( [ ]) = ( )

The translation of a dynamic positive conditional is not a positive condi-

tional formula, in general; however, clearly, it is equivalent to a set of positive

conditional formulae. We think an example should su�ce and omit the formal

de�nition. If is

( )

then ( ) is

( ( ) ( ( )[ ]))

which is equivalent to the set

( ) ( ) ( )[ ]

30

We proceed by cases, according to the shape of .

{ .

We have shown in the basis that:

DA i� DA .

As = , all we have

to show is:

DA i� DA .

DA i� has a de�ned value, say , in DA

w.r.t. and DA for all paths from . As is on the

signature D , , hence DA . Moreover:

DA for all paths from i�

DA for all paths from and all i�

DA for all paths from , with s.t. there exists a path

from to i� DA Trans i�

DA Trans for every which coincides with

everywhere but in .

Now: DA i�

DA , as contains only symbols in D , i�

DA , by inductive hypothesis on .

Therefore, (using the properties of and ):

DA Trans for every which coincides with

everywhere but in i�

DA Trans for every which coincides with

everywhere but in i�

DA Trans .

Recalling that DA , we thus obtain:

DA i� DA , as required.

{ .

Similar to the case above.

{ , .

Straightforward.
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Let dsp D AX be a dynamic speci�cation;

if the formulae in AX are dynamic positive conditional, then Mod dsp has

initial models.

Consider dsp D AX as de�ned above. As we have seen, each

axiom in AX is equivalent to a set of positive conditional axioms and thus

there exists I initial in Mod dsp . By Lemma 23,

Mod dsp DA DA Mod dsp ; thus I is initial in Mod dsp .

dsp

Mod dsp

Op

Op Op

Pr

Pr

Op

Pr

i.e. ( ) ( )[ ] .

= ( � )

( )

= ( � )

( )

( ) = ( ) ( )

If the axioms of are dynamic positive conditional formulae, we also have

a deductive system which is sound and complete for dynamic positive con-

ditional formulae with respect to ( ). The �rst step is to consider a

deductive system, , for 1 order positive conditional formulae with partially

de�ned terms (but recall that algebras have nonempty carriers). This can be

obtained, specializing to our case a system in [41]. In the rules below: � is a

�nite set of atoms; , , possibly with subscripts, are atoms; �, abbreviates

� ; �[ ] means substitution applied to all the atoms in �.

is given by the following axioms and rules:

[base] [aug]

�

�

[ref] = [sym]

� =

� =

[tr]

� = � =

� =

[cong1]

� ( ( )) � = = 1

� ( ) = ( )

[cong2]

� ( ) � = = 1

� ( )

[str1]

� ( ( ))

� ( )

1

[str2]

� ( )

� ( )

1

[sub]

� � ( )

�[ ] [ ]

[cut]

� �

� �

is a particular instance (obtained by using the axioms for equality) of a

31



2

2

P

DP

n n

y

y

y

y

st

1 0 1 0

AX

Mod AX AX

Trans

Trans

Elimination rules:

Introduction rules:

P

P

j ^ ^ � ` )

) 4

)

)4

)

)4 h i

�! )

)4 


�! )4

)4

) 4

) )

)4

)
�!

)

)4 h i

) �! )4

)4 


) )4

)4

DP `

� : : : � � � ; : : : ; � � :

t; �

D t

t; �x : �

� t=x

t; �x : �
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y z � t

t; �

; t z z; �

y z � t

t; �

; t; z z; �

z � t
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t; �x : �
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t; �x : �
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D t ; t z z; �

t; �

y z � t

D t ; t; z z; �

t; �

z � t

\parametric" deductive system for 1 order logic that is sound and complete

w.r.t. the intuitionistic semantics ([41, sect. 3.2]). On the other hand (see e.g.

[41, sect. 3.1]) the intuitionistic semantics and the classical one coincide when

we restrict ourselves to positive conditional formulae. Therefore is sound

and complete: if is a set of positive conditional axioms (that we regard as

written in clausal form when used in connection with ) then

( ) = i�

The second step is to extend the system by adding rules for translating dy-

namic positive conditional formulae into positive conditional formulae and

conversely. So we have two sets of rules: one for the elimination and the other

for the introduction of the temporal combinators.

[str3]

� ( )

� ( )

� ( [ ])

� [ ]

� ( )

� [ ]

, not appearing in �, and

� ( )

� ( )

, not appearing in �, and

� ( )

� ( ) ( )

not appearing in �, and

� ( ) � [ ]

� ( [ ])

� ( ) � [ ]

� ( )

, not appearing in �, and

� ( ) � ( )

� ( )

, not appearing in �, and

� ( ) � ( ) ( )

� ( )

not appearing in �, and

Let us call the full system and the associated deduction relation.
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Proposition 25

Proof.

5 Classical Results and Techniques in the Dynamic Case

If dsp D AX is a dynamic speci�cation where the

formulae in AX are dynamic positive conditional, then for every which is

dynamic positive conditional:

Mod dsp i� AX TRANS

It is easy to verify the soundness of , therefore we omit this part.

To see its completeness, let dsp D AX be as above.

From Lemma 23, if Mod dsp then Mod dsp . We have seen

that is equivalent to a �nite set of positive conditional formulae that

we denote by ; the same holds for the axioms in AX , thus we obtain

the set AX AX TRANS. If

then Mod dsp , . The completeness of the system ensures

that AX , . Consider the deduction trees for , ,

from AX in (where we picture the root below the leaves). From the roots we

can obtain by using (downwards) the introduction rules. Similarly, from the

leaves, belonging to AX , we can obtain axioms in AX by going upwards and

using the elimination rules (while leaving the axioms in TRANS unchanged).

Thus, AX TRANS .

= ( � )

( ) =

= ( � )

( ) = ( ) = ( )

( )

( )

= ( ( ) ) ( ) =

( ) = = 1

= 1 = 1

In the last years a body of concepts, results and techniques has been de-

veloped in the �eld of algebraic speci�cations of adt's: parameterized spec-

i�cations, constructs for building complex speci�cations in a modular way,

behavioural/observational semantics, notions of \correct implementation", de-

velopment processes, theoretical tools (as deductive systems and transforma-

tional rules), software tools (as parsers, type checkers and rapid prototypers),

: see, e.g. [53]. Most of them can be lifted up to work on our dynamic spec-

i�cations and this usually can be done easily enough and in a sound way: the

dynamic features are handled in a coherent and appropriate way.

Here, as sample instances, we discuss structuring constructs and implementa-

tions for dynamic speci�cations, following [54,13]. The related concepts and

results have been successfully used in the speci�cation of several case studies,

see e.g. [44,45,10].

33



D

0

�

;

:

: : :
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; F X

;

; � �

;

MOD

MOD

S !

S

MOD MOD

2 �

S

f j 2 j g

reach

Simple Speci�cations

axiom

5.1 Structured speci�cations

loose semantics

D D

D

LOOSE ADDT SPEC EXPR

SPEC EXPR LOOSE ADDT

SPEC EXPR

dsp dsp

D Mod D

SRT OP PR DS

D AX SPEC EXPR D AX

D AX

D DA DA D AX DA

D AX

D AX

A su�ciently powerful language for writing dynamic speci�cations in a mod-

ular way can be obtained by considering three constructs only: sum, rename

and hide/export, following the pattern proposed in the literature, see [53] for

a survey. Here we do not consider constructs, as the ASL , for restricting

the models of a speci�cation to those generated by some constructors, even if

this restriction may be useful for dynamic speci�cations. Moreover we do not

consider constructs, such as the ASL observe, that are used to take observa-

tional equivalence into account; the experience in applying our approach to a

range of test cases suggests that we can dispense with such constructs since

our logic is powerful and 
exible enough to express, directly and at the right

level of abstraction, the wanted properties. On the other hand, notice that the

dynamic features add an extra \dimension" to some of the operators, namely

sum and export, as discussed below.

Here we assume a for our speci�cations, therefore each lan-

guage expression denotes a pair ( � ), where � is a dynamic sig-

nature and is a class of dynamic �-algebras which is closed w.r.t.

isomorphisms.

Let be the class of all pairs of the above form and

be the set of all language expressions (speci�cation expressions); then the se-

mantics of the language is given by a function

:

and are de�ned inductively by the rules given below. For

simplicity we do not distinguish between speci�cations and speci�cation ex-

pressions, using , , for both. We use the following notation: if

= ( � ), we write ( ) and ( ) for � and respectively.

Moreover, union and containment of signatures are taken componentwise (and

w.r.t. the four components: , , and ).

Simple (or 
at) speci�cations are the basic building

blocks.

( � ) , for all dynamic signatures � and ( )

[[ ( � ) ]] =

( � is a �-algebra and for all : = )

In the examples we shall use the mix�x notation � , for the

simple speci�cation ( � ).
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1 2 2
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def

1

1

( )

2 2

S

f j 2 S g

[ S

2

62 2 2

[ [ [ [

2

2

S

S

f j 2 S g

S

;

; i ;

Sig i ;

; ; ; i ; srt srt

srt srt srt

srt

: : :

�

�

�

� Sig

; �

Sig �

srt

�

�

Sum of speci�cations

enrich

enrich by sorts dsorts opns preds axiom

sorts dsorts opns preds

axiom

Rename

dsp dsp SPEC EXPR dsp dsp SPEC EXPR

dsp dsp

D DA DA D DA Mod dsp

D D D D dsp

D

SRT OP PR DS SRT

DS DS SRT

dsp

dsp dsp dsp

dsp SRT DS OP PR AX

dsp

SRT SRT DS DS OP OP PR PR

AX

dsp SPEC EXPR

dsp SPEC EXPR

dsp

dsp D

D DA DA D DA Mod dsp

D dsp DA DA D

DA DA D

Op Op Op D

Pr Pr Pr D

The sum is the basic construct for putting speci�-

cations together to build a larger one.

+ , for all

[[ + ]] =

( � is a �-algebra and ( [[ ]] ) for = 1 2 )

where � = � � and � = ( [[ ]] ) for = 1 2.

Notice that this construct allows us to specify static and dynamic features

separately (and then combine them). More precisely, let � be

(( ) ), = 1 2, and be a sort such that: ,

and (hence ). Then we may specify the

static structure of the elements of sort in and the dynamic one in

; when we consider + we obtain the wanted speci�cation.

In practice it is often useful to use a derived construct, , de�ned by:

+

.

This construct is used to avoid name-clashes when putting speci-

�cations together. We shall consider bijective renamings only. The concept of

signature isomorphism is needed here; the intuitive idea is very simple: a bi-

jective renaming of sorts, operation and predicate symbols which \preserves"

arities, static/dynamic distinctions, labels, ; see Sect. 4.2 for a formal def-

inition.

for all and all signature isomorphisms

[[ ]] =

if is an isomorphism from ( [[ ]] ) into � then

( � is a � -algebra and ( ) ( [[ ]] ) )

else unde�ned,

where if � = ( [[ ]] ), then = ( ) is the �-algebra de�ned

by:

{ = for all sorts of �,

{ = ( ) for all operation symbols of �,

{ = ( ) for all predicate symbols of �.
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!
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Sig ;

H

H

Sig H

;

2

2

S

� S f j 2 S g

S �

TAU lab proc

SEND REC lab proc

spec

enrich by

dsorts

opns

axioms

proc

; com mem proc

; nat

D c;m

: : : : : :

PROC =

COM+MEM

:

: ( )

: ( )

( )

other axioms

rename with

Export

export from

hide

hide in export from

export

Example 26

dsp

dsp SPEC EXPR

dsp SPEC EXPR D

dsp

D dsp D DA DA Mod dsp

DA

D dsp

dsp D dsp

D dsp

ds

ds

D DS

ds DS

ds

Here, we specify concurrent systems where several processes, speci�ed by

below, interact by exchanging messages through a shared bu�er, speci�ed by

of Ex. 21. We assume that and specify, respectively, the

commands executed by the processes and their local memory (containing nat-

ural values). We assume a loose semantics.

A process is a pair whose components are a command-list and a local memory;

it can perform internal actions, i.e. transitions labelled by TAU , or visible

actions: sending and receiving natural numbers.

In the examples we use the mix�x notation .

This construct is used to specify which parts of a speci�cation (sorts,

operations and predicates) should be \visible from outside". Alternatively, it

speci�es which parts should be hidden (namely, the non-exported ones).

for all and all dynamic signatures �

[[ ]] =

if � ( [[ ]] ), then ( � ( [[ ]] ) )

else unde�ned (see Sect. 2 for the de�nition of ).

In the examples we use the mix�x notation � and also

the dual construct, , de�ned by:

= � ,

where: is a set of sorts, dynamic sorts, operation symbols, predicate symbols

and � = ( [[ ]] ) .

With these constructs we can act on a dynamic sort, say , in two ways: we

can hide completely (as in the classical setting); or hide its dynamic features

only (this can be obtained, when using , by taking � = (� ) where

appears in � but not in and moreover � does not contain the label-sort

and the transition predicate for ; see below for an example).

PROC

BUF COM MEM
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buf

lab proc

Tau

n n

Tau

n O n

Tau

l

n n

n n

TAU

SEND I

REC

TAU

SEND I

REC O

2

1 2 3

1

( ) ( )

( ) ( )

1

2

( ) ( )

( ) ( )

2

SYST

SYST SYST SYST

SYST

SYST
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0 0

0 0

0 0 0 0

0 0 0 0

0

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

spec

enrich by

sorts

dsorts

opns

axioms

spec

enrich by

axioms

spec

enrich by

axioms

SYST =

PROC + BUF

:

:

:

: ( )

( ) ( ) ( )

- - the order of the component processes does not matter

=

SYST =

SYST

SYST =

SYST

( = = )

(

= = )

(

= = )

; !

j � !

j � !

!

; j j

j j j j

���! � j j ��! j j

������! ^ ��! � j j ��! j j

�����! ^ ���! � j j ��! j j

�! �

9 ���! ^ j j ^ j j _

9 ������! ^ ��! ^

j j ^ j j _

9 �����! ^ ���! ^

j j ^ j j

procs

syst

procs

proc procs procs

procs syst

Tau

D D p ps D ps b

p p ps p p ps

p p p ps b p ps b

p p b b p ps b p ps b

p p b b p ps b p ps b

s s

p; p ; ps; b : p p s p ps b s p ps b

n; p; p ; ps; b; b : p p b b

s p ps b s p ps b

n; p; p ; ps; b; b : p p b b

s p ps b s p ps b

de�nes the structure of our systems: in term-generated models, these are

composed by a bu�er and zero or more processes. , and ,

below, specify how the single components of a system contribute to its overall

behaviour.

In the models of , and within a system, we allow the bu�er and any pro-

cess to synchronize. Moreover any transition of a process-bu�er pair produces

a transition of the whole system and the same happens for a TAU -transition

of a single process, i.e. interleaving is allowed. But this is not the only way

in which the system can evolve: the axioms do not forbid, say, that two pro-

cesses synchronize and exchange messages directly. (This is a consequence of

adopting a loose semantics.)

In the models of , if a system makes a transition this must be the result
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Sig

; syst; ; proc ; syst

; ; ; ; ; ; O

proc proc

�

>

� :

SYST

SYST = SYST + SYST

SYST SYST SYST

i�

the

SYST

SYST

SYST implementation

SYST

(SYST )

(� ) � (� )

� � ( ( ) ( )

( ) ( ) )

SYST = � SYST

Here we follow once more the approach in [54], see also [53] and the references

in [53]. Let and be two classical (or static) speci�cations; when is

implemented by ? There are, at least, two criteria to consider:

{ implementing means , thus must be a re�nement of , i.e.

\things" not �xed in are made precise in by adding further require-

ments;

{ implementing means the data and the operations abstractly spec-

i�ed in , using the data and the operations of .

Formally, we have that is by with respect to , a function

from speci�cations into speci�cations, (written ) i�

( ( )) ( )
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either of the TAU -move of a single process, or of the synchronized move of a

process-bu�er pair. Thus, idleness is the only alternative to interleaving (and

indeed has models with systems which do nothing).

A model of must satisfy the axioms in and those in ;

therefore, now, a system performs a transition so does a component process

(alone or together with the bu�er) and interleaving is rule.

Finally, we can hide the dynamic features of the components (processes and

bu�er) of the systems speci�ed by . Then, the resulting speci�cation,

below, describes (a class of) non-deterministic sequential systems. In

Sect. 5.2, we shall see that can be regarded as an of

(corresponding to the implementation of sequential systems by groups

of parallel processes). Notice that this is just a simple example showing the

possibilities of our framework, it is not an example on how one should proceed

in designing a complex system. Hiding is obtained as follows: is

buf ; then let D be , where

= lab proc lab buf TAU SEND REC I

of type lab proc and buf lab buf buf .

Then the wanted speci�cation is:

D

5.2 Implementation of Dynamic Speci�cations

sp sp sp

sp

re�ning sp sp

sp sp

realizing

sp sp

sp implemented sp

sp sp

Mod sp Mod sp
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De�nition 27

Example 28 Implementations of dynamic speci�cations

sp sp

sp sp

Given two dynamic speci�cations dsp and dsp and a func-

tion , from dynamic speci�cations into dynamic speci�cations, de�ned by a

combination of the constructs of Sect. 5.1:

dsp is by dsp w.r.t. (or dsp is an of dsp

w.r.t. ), written dsp dsp , i� Mod dsp Mod dsp .

dsp

static

dsp

dsp dsp action-re�ning

dsp

dsp

dynamics-preserving

cannot be implemented by for any static , since in the

bu�ers may go on forever in receiving new values, thus violating two of the

requirements in : not receiving a new copy of a value until the previous

one has been returned, and eventually returning the received values. On the

other hand, can be statically implemented by below (bu�ers which

The function describes how the parts of are realized in (implemen-

tation as realization); while implementation as re�nement is obtained by re-

quiring inclusion of the classes of models.

Clearly not all speci�cation functions are acceptable; for example if adds

all predicates and operations of to we have a kind of trivial implemen-

tation. However, the de�nition above includes as particular cases the various

de�nitions proposed in the literature. Usually is a combination of the various

operations for structuring speci�cations (see Sect. 5.1). When is a compo-

sition of a renaming, an enrichment with derived operations and predicates,

an export and an enrichment with axioms, we have the so called implemen-

tation by rename-enrich-restrict-identify of [22,23] which corresponds, within

the framework of abstract data types, to Hoare's idea of implementation of

concrete data types.

The above de�nition, when used in our setting, yields a reasonable notion of

implementation for dynamic speci�cations, covering relevant applications, see

e.g. [10] and there is no need for a notion of observability.

implemented implementation

( ( )) ( )

If we impose some conditions on the function we get particular types of

implementations; for example:

{ does not add axioms de�ning the transition predicates of ; then we

have a implementation, which concerns just the static parts of the

speci�cation (for example, the states and the labels of the transitions);

{ rede�nes the transitions of composing them sequentially, by adding

axioms like = ( transition pred-

icate in and = transition predicate in ); we have an

implementation, because the transitions of the dynamic elements of are

realized by sequences of transitions in .

{ does not change dynamic sorts into static ones, nor static sorts into dy-

namic ones: we have a implementation.

BUF BUF BUF

BUF

BUF BUF
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export from
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C nat

; O nat

Succ n Succ n Succ m n m

C n C n

C n b n : l n b

b n : l n b C n

nat

nat

D C n n

D n;C m n; C n

D C n

BUF =

NAT

:

:

: ( )

0 = ( ) ( ) = ( ) = - - as in BUF

( ) ( )

( ) ( = ( ) = )

( = ( ) = ( ))

BUF =

BUF

:

:

:

( ( )) ( ( )) =

( ( ( ))) ( ) = ( )

( ( )) ( ( )) =

buf

Empty buf

buf

I lab buf

Empty Empty

O Empty

Empty I

Get buf

Put buf buf

Remove buf buf

Get Empty Get

Put Put Empty

Remove Empty Remove Empty

can contain one value at most).

Consider now and given by:

nat buf .

It is easy to see that Mod Mod ; thus is implemented

by w.r.t. which is the composition of buf

and

Get buf Get Empty .

is an implementation of , where is D . Here

does not satisfy any of the conditions listed above. This example is interest-

ing because it shows that our de�nition covers cases such as: implementation

of a sequential system by another composed of several processes in parallel;

however, it is an example of good design-methodology.

Now we give an example of action-re�ning implementation: is imple-

mented by a low-level bu�er which interacts with the external world by

sending and receiving sequences of \units" represented by the symbol . Thus

is also an implementation of .
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spec

sorts

opns

spec

enrich by

dsorts

opns

axioms

spec

enrich by

opns

preds

axioms

spec

hide in

R; S; C

R S C

;

;

;

C u S u S u S u S C

C R R u R u R u C u

Succ nat nat

; nat

Succ u u C

C b b b : : : b C

C ;

b : : : b C C C

n

; ; ; ; R; S; ; ; ; ; ;

is an implementation (action-re�ning of ); indeed consider the

following speci�cations: units

where stands for

times

.

units

units

units units

buf

units buf

IU OU lab buf

START I END I lab buf

START O END O lab buf

I O lab buf

Empty buf

buf lab buf buf

Empty

Empty

Empty Empty

IU OU START I START O END I END O

UNITS =

�:

1 :

BUF =

UNITS

:

- - here there are only 3 possibel \states" for a bu�er:

- - receiving/sending a sequence of units ( , ) and idling ( )

: ( )

- - input/output of one unit

: ( )

- - starting/ending the input of a sequence of units

: ( )

- - starting/ending the output of a sequence of units

( ) ( ) (1 ) ( ) (�) (�)

(�) (�) ( ) (1 ) ( ) ( )

BUF =

BUF

:

: ( )

:

: ( )

( ) = 1 = (�)

(1 ) ======== === ====== (�)

(1 )

======= == ===== (1 ) ( ) (1 )

1

BUF =

= � 1 BUF



2� �

D D

�

�

10 4

� �

0

0

0 0

0 00

0

00 0 00

j

0

j

0

� >

> >

�

> >�

>

>

Sig �

>

>

>

� >�

Proposition 29

6 Concluding Remarks
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Now it is easy to see that Mod Mod .

dsp dsp

dsp dsp

dsp dsp dsp dsp

(i) is a partial order (i.e. it is re
exive, antisymmetric and transi-

tive).

(ii) All speci�cation operators are monotonic w.r.t. : if dsp, dsp , dsp

are speci�cations, D is contained in dsp , is a signature isomor-

phism and dsp dsp , then

dsp dsp dsp dsp ;

dsp dsp ;

dsp dsp .

extension

(BUF ) (BUF )

Once we have a de�nition of implementation, it is interesting to study its re-

lations with the structure of speci�cations. We limit ourselves to implementa-

tions where is the identity function, using for this the notation

(notice that and must have the same signature). This is not a restric-

tion: from the properties of we can derive properties about ,

because is de�ned as a combination of the structuring operations; indeed,

i� ( ).

It is easy to verify the following

� ( )

+ +

We have presented an algebraic framework allowing to specify, in what we

think is a convenient way, both \classical" (or \static") and \dynamic" data

types. These last can model concurrent/parallel/reactive processes/systems.

In our opinion there are some strong points in our approach.

{ Speci�cations follow the well established pattern of algebraic speci�cations

for adt's; indeed what we have is an of the classical framework.

This extension is \conservative" as classical de�nitions, properties and re-

sults are a particular case of ours (precisely the case when there are no

dynamic sorts). It is also sound as it results in an institution.

{ It has been tested in practice on non-trivial examples and it has proved

successful: it is easy to write speci�cations and in many cases it is rather

straightforward to prove properties of the speci�ed systems, either using the

deductive systems we have provided, or in the style of ordinary mathematics.

As examples of applications of the proposed formalism: in [8] it supports

a metalanguage for expressing requirement of reactive systems, in [44,45]

it has been used for the speci�cations of two industrial case studies and
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types of systems

one system

de�ne

Comparisons with other approaches

recently in [10] it has been satisfactorily used to solve a speci�cation problem

proposed by Lamport and Broy as a common case study at a Dagstuhl

Seminar [15].

{ With respect to other approaches used in the speci�cation of concurrent/

reactive systems, ours

o�ers (and this is a well known bene�t of the

algebraic approaches);

allows to express, within the same formalism, both

(i.e. speci�cations with a loose semantics) and

(i.e. those with an initial semantics);

concerns the speci�cation of rather than the speci�cation

of ;

allows to the kind of parallelism and process-interaction that we

want.

An apparent weakness is that we do not address the issue of observational (or

behavioural) semantics; indeed, here we have considered only the initial and

the loose semantics. Actually, observational semantics for processes, de�ned on

the associated labelled transition systems, may be used to de�ne models for a

dynamic speci�cation of such processes. This is shown in [4,11] for conditional

dynamic speci�cations: given an observational semantics for the dynamic ele-

ments (e.g. strong or weak bisimulation) one obtains a model where two terms

of dynamic sort are identi�ed i� they are observationally equivalent. On the

other hand, the experience in using the SMoLCS method (see e.g. [44,45,10])

suggests that we do not need observational semantics to express requirements

over processes or to reason about implementation. This is due to the power

and 
exibility of our logic, when used to express properties in requirement

speci�cations.

In the last years, several authors have proposed the use of modal or tem-

poral logics for the speci�cation of data types or have considered algebraic

speci�cations for describing and modelling processes, concurrent systems and

\objects".

In some cases, like in [36,50], the aim is exploiting the power of temporal

logics to obtain speci�cations of classical data types which are \stronger", in

the sense that the class of models is smaller; in particular, one can obtain

monomorphic speci�cations [36]. More frequent is, however, the use of tempo-

ral or modal logics to express time-dependent properties of data types or object

types. For instance, in [26] usual speci�cations (with positive-conditional ax-

ioms) are considered and a temporal logic (CTL, [25]) is used just to express

properties of data types related to some operations which are singled out as
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\update operations".

However, we cannot restrict ourselves here just to the work where tempo-

ral or modal logics are used in connection with algebraic speci�cations, but

must consider also the di�erent approaches to using algebraic speci�cations

for describing and modelling processes, concurrent systems and/or objects.

In relating these approaches to our work we think that we can distinguish,

roughly, three groups, characterized by , and below.

Just the data used by the processes are given by means of algebraic spec-

i�cations of adt's, while concurrency is handled in other ways (e.g. by using

a CCS like language as in LOTOS [32], stream processing functions as in

[14] or Petri nets as in [46]).

Processes are elements of one (or some of) the sorts of algebraic structures,

of some kind, that are speci�ed axiomatically; here a speci�cation de�nes

either one structure or a class of structures. (Clearly our approach falls

within this category.)

Data types themselves are regarded as dynamically changing. This is the

so-called \dynamic adt's" approach, see e.g. [12,24].

In this last approach models are sequences of algebraic structures (thus there is

a similarity with the way linear 1 order temporal logic is usually interpreted

{ see Sect. 1). The reason is that these models are primarily intended to

capture entities (like Ada packages or objects) with a local state and where

the meaning of (some of) the operations is state-dependent. Alternatively, the

operations are regarded as parts of the elements, rather than something shared

by all elements; this is a view which is typical to object-oriented languages:

an object stack has its own operation as opposed to the usual situation

where there is a (single) operation acting on all stacks. The point of view

and the main concern are therefore di�erent from ours; indeed objects cannot

be modelled within our framework in a straightforward way (but see [43] for

an operational model for an object-oriented language using a restricted form

of our formalism). However, when the aim is to model concurrent systems

we think that our framework has at least the advantage that it is simpler to

reason on a single algebra, especially at the logical level.

For the approaches characterized by either or , one can consider an

additional distinction according to whether their main concern are design or

requirement speci�cations. A survey of these approaches, mainly for what

concerns design speci�cations, can be found in [9], while [11] contains a detailed

comparison between our formalism and other proposals. Here we discuss only

some of the proposals in the literature: those that seem more signi�cant w.r.t.

the topics presented in this paper.

Fiadeiro and Maibaum, in several papers { see e.g. [28], have presented a
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speci�cation formalism for processes and objects that combines temporal logics

and algebraic speci�cations. The main di�erences with our proposal are: they

specify systems rather than types of systems (see above); there is a separation

between the algebraic and the temporal part: the �rst is used for the data

handled by the processes and the second for the process properties (thus their

approach belongs to group ); parallel composition of (the speci�cations of)

several processes is usually obtained by \external (i.e. out of the formalism)

tools" such as limits of diagrams in an appropriate category of speci�cations,

while in our approach parallel composition is just an operation de�ned by

axioms in our logic (see the examples in Sect. 5.1).

The work by Fiadeiro and Maibaum is mainly about requirement speci�ca-

tions. Another example of requirement speci�cations within is the work of

Broy in [14]. There the requirements on processes are expressed by formulae of

a linear time temporal logic, whose models are functions over streams (stream

processing functions).

The object speci�cation logic of [47] is based on a variant of linear temporal

logic and covers requirement speci�cations; at least it supports . The un-

derlying models for single objects and for systems of objects are linear Kripke

structures, where the states/situations are sets of open atomic formulas (stat-

ing that the objects { represented by free variables { are either performing

some actions or have some attribute). Clearly, the choice of linear models

implies that nondeterminism cannot be handled appropriately, except by con-

fusing nondeterminism within a process with the one arising from the various

ways of realizing a requirement (one cannot write a speci�cation whose only

model is a process that can perform either or , but only a speci�cation

which has two models: a process that can perform only and a process that

can perform only ; then, these two processes can be regarded as two di�erent

behaviours of some \higher level" process). This formalism does also contain

some of the features in : one can express temporal properties of di�erent

objects in a system of objects (but cannot use equations over objects).

A formalism for design speci�cations ful�lling is Meseguer's Rewriting

Logics, see [39]. Rewriting Logics allows to specify types of dynamic elements,

whose activity is characterized by a transition relation. Here, however, tran-

sitions correspond to rewriting steps, thus they have no labels and do not

represent action-capabilities but e�ective actions (whose occurrence cannot

be conditioned by the external world). Moreover the static part (the data)

is fully speci�ed before the dynamic one. Also the semantics is di�erent: the

structure associated with a speci�cation in Rewriting Logic, expressed in term

of category theory, does not model processes through labelled transition trees,

but by means of the sets of their possible behaviours (sequences of transitions,

i.e. linear proofs) modulo the ordering of independent transitions. In the end

we can say that speci�cations in Rewriting Logics correspond to a proper sub-
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