
To appear in: Proc. MFCS’91, LNCS Springer.

ABSTRACT  DYNAMIC  DATA  TYPES:  A  TEMPORAL  LOGIC  APPROACH

GERARDO COSTA - GIANNA REGGIO

DIPARTIMENTO DI MATEMATICA - UNIVERSITÀ DI GENOVA

VIA L.B.ALBERTI 4 - 16132 GENOVA (ITALY)

INTRODUCTION

Dynamic data types are (modelled by) dynamic algebras, which are a particular kind of partial algebras

with predicates. These, in turn, are just the familiar algebraic structures that are needed to interpret (many

sorted) 1st order logic: a family of sets (the carriers) together with a set of operations and predicates on the

carriers [GM]. The operations are partial in order to model situations like trying to get the first element of

an empty list.

The distinguishing feature of dynamic algebras is that for some of the carriers there are special ternary

predicates  ____> ; d ____l 
> d' means that element  d can perform a transition labelled by  l  into element

d'. If we use a dynamic algebra to model (some kind of) processes, then we may have transition predicates

corresponding to send and receive actions.  A dynamic algebra for lists, may have a transition predicate

corresponding to the tail operation; thus: list ___l 
> list'  is true, for some appropriate label  l, whenever  list'

= tail(list). Of course we are not forced to have such predicates: when modelling processes it is natural to

use them (one could even say that we need them); in the case of lists we have a choice: we can use the

(classical) static view, or a dynamic one (closer to the way we regard lists when programming within the

imperative paradigm).

The basic idea behind dynamic algebras is very simple. There are some technical problems; but they are

orthogonal w.r.t. the dynamic features, as they concern handling partial operations, and have been dealt

with in the literature, see [BW, AC] for instance. The name seems appropriate, even though it has already

been used to denote structures for interpreting dynamic logic.

The question is whether dynamic algebras are of any use; we think the answer is yes. Indeed, they are, in

disguise, a basic tool in the SMoLCS methodology, which has been used in practice, and for large projects,

with success (see eg [AR2, AFD]). SMoLCS is a specification methodology, for specifying concurrent

systems, that provides a framework for handling both ordinary (static) data types and data types with

dynamic features (process types). The logical language used in SMoLCS is many sorted 1st order logic

with equality and transition predicates.  Such a language allows reasonable specifications for many proper-

ties of concurrent systems, however it becomes cumbersome when dealing with properties involving the

transitive closure of the transition relations such as (some) liveness or safety properties [L].  A really sig-

nificant example would take up too much space here; a simple, but still interesting, example can be cooked

up using buffers (we shall use it also in the following sections).  So let us consider a set  B  of buffers to-

gether with the operations  Put, Get  and  Remove:  Put(e, b)  adds element  e  to buffer  b;  Get(b)  yields

the “first” element in  b  and leaves  b  unchanged; Remove(b)  removes this first value from  b  producing

a new buffer.  As example of constraints on  B, Get,  Put  and  Remove  we can consider:

 This work has been supported by CNR-PF-Sistemi Informatici e Calcolo Parallelo (Italy), COMPASS-Esprit-BRA-W.G.

n 3264  and by a grant ENEL/CRA (Milano Italy).



(i) The buffers in  B  follow a LIFO policy, ie: Get(Put(e, b)) = e  and  Remove(Put(e, b)) = b.

(ii) If  b  is non-empty,  b' = Remove(b)  and  e = Get(b), then there is an elementary transition from  b

to  b'  corresponding to  “output  e”. Using a transition predicate, we can phrase this by saying that

b _____O(e)
> b'  is true  (here O(e) is a label meaning “output of  e”; see Sec. 2 for a more precise for-

mulation).

(iii) The buffers in  B are such that they have the capability of returning any element, say  e, that they
receive and mantain this capability until  e  is actually delivered.

Condition (i) is standard and does not need comments. (iii) is a liveness constraint: once a buffer  b  inputs

e it will evolve (through input/output transitions) in such a way that at any “state” (or moment) either e can

be output or another state can be reached in which e can be output. Notice one important difference be-

tween (i) and (iii): the first specifies the structure of our buffers, while the other specifies their behaviour,

without constraining the internal structure. Finally, one way of reading (ii) is: if  b  is nonempty then it can

always output a (stored) value; thus we have an example of a simple safety property.  Being a simple one it

can be easily expressed in 1st order logic (with transition predicates). Of course, with the same language

one can also express properties such as (iii); but the corresponding formulae are almost unreadable.  This

difficulty provides the principal motivation for the present work: our aim is to find a logic which is well

suited for expressing in a (reasonably) natural way properties such as (iii), but also (i) and (ii).

Various temporal logics have been proposed as an adequate tool for specifying the behaviour of concurrent

systems, see eg [P, Em, K]. They allow to write concise formulae corresponding to (iii), but are not well

suited for properties such as (i) or even (ii). Therefore we have been brought to a language which is, more

or less, a 1st order version of CTL* with explicit transition predicates (notice that with these predicates the

accessibility relations used in Kripke frames are - or can be referred to - within the language). Our choices,

both for syntax and semantics, have been motivated by previous experience with the problems involved in

the specification  of concurrent systems [AR1, AR2].  We are now experimenting with our framework (as

part of a larger project aimed at extending the algebraic approach to the specification of dynamic systems)

and comparing it with similar ones, such as those reported in [FL, FM, SFSE].   We hope that a better in-

sight into the problems will either allow us to switch to a more established setting, or provide strong argu-

ments in favour of ours.  Presently we can at least say that our framework is a sound one, indeed it forms

an institution [GB].

One part of the experiment consists in testing our approach against “real” problems, in an industrial envi-

ronment; the other concerns the theoretical side.  In the first place we are going through the well known

concepts and results concerning specifications for abstract data types (see eg [W90]) and replacing 1st

order logic with ours, algebras with dynamic algebras, and so on: it appears that many concepts and results

can be extended to our setting and in a natural way. Here we give a first, and concise, account of what

happens in connection with existence of initial models and related proof systems. In a more complete

paper [CR] we consider also structured and hierarchical specifications and implementations of

specifications, in the style of [W89].

 Acknowledgements. The present work is strictly connected with other researches carried out in

Genova.  Thanks to  Egidio Astesiano for many fruitful discussions on this and related topics. Thanks also

to the referees for helpful comments.



1 PARTIAL  ALGEBRAS  WITH  PREDICATES

Here we summarize the main definitions and facts about partial algebras with predicates, which are

derived from the partial algebras of Broy and Wirsing (see [BW]) and from the algebras with predicates of

Goguen and Meseguer (see [GM]).

A predicate signature (shortly, a signature) is a triple  Σ = (SRT, OP, PR), where:  SRT  is a set (the set

of the sorts);  OP  is a family of sets: {OPw,srt}w∈SRT*,srt∈SRT   and  PR  is a family of sets:

{PRw}w∈SRT*.

We shall write  Op: srt1 ×  … ×  srtn →  srt  for  Op ∈  OPsrt1…srtn,srt,  Pr: srt1 ×  … ×  srtn  for

Pr ∈ PRsrt1…srtn  and also, when sorts are irrelevant, Op ∈ OP,  Pr ∈ PR.

A partial  Σ-algebra with predicates  (shortly a Σ-algebra) is a triple

A = ({Asrt}srt∈SRT, {OpA}Op�∈OP, {PrA}Pr∈PR)

consisting of the carriers, the interpretation of the operation symbols and the interpretation of the

predicate symbols; ie:

 – if  srt ∈ SRT, then  Asrt  is a set;

 – if  Op: srt1 × … × srtn → srt, then  OpA: Asrt1 × … × Asrtn → Asrt  is a (partial) function;

– if  Pr: srt1 × … × srtn, then  PrA ⊆ Asrt1 × … × Asrtn.

Usually we write  PrA(a1, …, an)  instead of  (a1, …, an) ∈ PrA.

Given an  SRT-indexed family of sets of variables  X, the term algebra  TΣ(X)  is the Σ-algebra defined as

as usual, with the condition that PrTΣ(X) = ∅  for all  Pr ∈ PR.  If  Xsrt = ∅  for all  srt ∈ SRT, then

TΣ(X)  is simply written  TΣ and its elements are called ground terms.

If  A is an algebra,  t ∈ TΣ(X)  and  V: X → A  is a variable evaluation, ie a sort-respecting assignment of

values in  A  to all the variables in  X, then the interpretation of  t in  A w.r.t.  V, denoted by  tA,V, is given

as usual, but note that now it may be undefined; if  t  is a ground term  then we use the notation  tA.

In what follows we assume that sorts and arities are respected and also that our algebras have nonempty

carriers .

If  A  and  B  are Σ-algebras, a homomorphism  h  from  A  into  B (written  h: A  →  B) is a family of

total  functions  h = { hsrt }srt∈SRT  where for all  srt ∈ SRT  hsrt: Asrt  → Bsrt  and

• for all  Op ∈ OP:  if  OpA(a1, …, an)  is defined, then so is  OpB(hsrt1(a1), …, hsrtn(an))  and 

hsrt(OpA(a1, …, an)) = OpB(hsrt1(a1), …, hsrtn(an));

• for all  Pr ∈ PR: if  PrA(a1, …, an), then  PrB(hsrt1(a1), …, hsrtn(an)).

The interpretation of a formula of (many sorted) 1st order logic with equality (with operation and predicate

symbols belonging to Σ) in a  Σ-algebra  A  is given as usual, but:  for  t1, t2  of the same sort, t1 = t2  is

true in  A w.r.t.  a variable evaluation  V iff  t1A,V  and  t2A,V  are both defined and equal in  A  (we say

that  =  denotes “existential equality”).

We write  A, V‘ θ  when the interpretation of the formula  θ  in  A  w.r.t.  V  yields true; then  θ  is

valid in  A  (written  A‘ θ)  whenever  A,V ‘θ  for all evaluations  V.

Usually we simply write  D(t)  for  t = t  and use it to require that the interpretation of  t  is defined.

Given a class of  Σ-algebras  C,  an algebra  I  is initial in  C

iff  I ∈ C  and for all  A ∈ C  there exists a unique homomorphism  h: I  → A.  The following holds:

if  I  is initial in C, then for all ground terms  t1, …, tn  and all predicates  Pr ∈ PR:

• I‘ t1 = t2  iff  for all  A ∈ C :  A‘ t1 = t2;  thus  I ‘D(t1)  iff  for all  A ∈ C: A‘D(t1); 

therefore, in general, the term algebra  TΣ  is not initial in the class  of all Σ-algebras;

•  I ‘  Pr(t1, …, tn)  iff  for all  A ∈ C :  A‘  Pr(t1, …, tn).



2 DYNAMIC ALGEBRAS

A dynamic signature  DΣ  is a couple  (Σ, STATE)  where:

 – Σ = (SRT, OP, PR)  is a predicate signature,

 – STATE ⊆ SRT  (the elements in  STATE  are the dynamic sorts, ie the sorts of  dynamic

elements),

 – for all  st ∈ STATE

there exist a sort  lab(st) ∈ SRT - STATE  such that  lab(st') = lab(st")  iff  st' = st"

and a predicate  _ _____ >_: st × lab(st) × st ∈ PR.

A (dynamic) DΣ-algebra is just a Σ-algebra; the term algebra TDΣ(X)  is just TΣ(X).

Notation: in this paper, for some of the operation and predicate symbols, we use a mixfix notation. This is

explicit in the definition of the signatures: for instance,  _ _____ >_: st × lab(st) × st ∈ PR  means that we

shall write  t _____t'
> t"  instead of  ___>(t, t', t"); ie terms of appropriate sorts replace underscores.

If  DA  is a  DΣ-algebra and  st ∈ STATE, then the elements of sort  st, the elements of sort  lab(st)  and

the interpretation of the predicate  _ _____ >_  are respectively the states, the labels and the transitions of a

labelled transition system, describing the activity of the dynamic elements of sort  st. The whole activity of

the dynamic elements is represented by the maximal labelled paths, such as

s0 _____l0 >DA s1 _____l1 >DA s2 … .  (either finite, and non-extendable, or infinite).

We denote by  PATH(DA, st)  the set of such paths for the dynamic elements of sort  st.

If  σ is the path above, then: S(σ)  denotes  s0, L(σ)  denotes  l0, σ|n  denotes the subpath  from sn  on-

wards (if it exists).

In what follows  DΣ  will denote a generic dynamic signature  (Σ, STATE),  where  Σ = (SRT, OP, PR);

moreover we often write: sorts  S  dsorts  STATE  opns  OP  preds  PR for the dynamic signature  (Σ,
STATE), where Σ is:

( S ∪ STATE ∪ { lab(st) | st ∈ STATE }, OP, PR ∪ {_ _____ >_: st × lab(st) × st | st ∈ STATE}).

Example: buffers containing natural values organized in a LIFO way

Consider the dynamic signature  BUFΣ

sorts nat
dsorts buf
opns 0:   →  nat

Succ: nat →  nat
Empty:   → buf
Put: nat × buf → buf
Get: buf → nat
Remove: buf → buf
I, O: nat → lab(buf)

The elements built by the two operations  I  and  O  label the transitions corresponding to the actions of re-

ceiving and returning a value, respectively.

The buffers are modelled by the  BUFΣ- algebra  STACKBUF, where:

 – STACKBUFnat = N;  STACKBUFbuf  and the interpretation of the operations  Empty, Put, Get  and

Remove  are respectively the set of stacks of natural numbers and the usual operations  EmptyStack,

Push, Top  and  Pop.

 – If we assume that the buffers are bounded and can contain  k  elements at most, then the interpretation

of  ___> in  STACKBUF  is the relation consisting of the following triples (here and below the inter-



pretation of a [predicate / operation] symbol  Symb  in  STACKBUF,  SymbSTACKBUF, is simply de-

noted by  Symb):

b ____I(n)
> Put(n, b) for all  n  and all  b  having  k-1 elements at most,

b ________O(Get(b))
> Remove(b) for all  b  s.t.  Get(b)  is defined.

– If we assume that  buffers are unbounded, then  ___>  consists of the triples:

b  ____I(n)
> Put(n, b) for all  n  and all  b,

b ________O(Get(b))
> Remove(b) for all  b  s.t.  Get(b)  is defined.

The activity of a bounded buffer, with k = 2, which is initially empty (represented by the term  Empty) is

given by the set of paths starting from the root of the following tree; notice that they are exactly the ele-

ments of  PATH(STACKBUF, buf)  with initial element the empty buffer.

Empty

Put(0, Empty)

.  .  . 
I(0)

Put(n, Empty)

I(n)

.  .  . 

Empty

O(0)

Put(0, Put(0, Empty))

I(0) .  .  . 

Empty

O(n)

Put(0, Put(n, Empty))

I(0) .  .  . 

.  .  . .  .  . 
O(0)

Put(0, Empty)

.  .  . 

O(0)

Put(n, Empty)

.  .  . 
   End of Example

Let  DA  and  DA'  be  DΣ-algebras; a (dynamic) homomorphism h: DA  →  DA'  is just a homomor-

phism from  DA  into  DA' as  Σ-algebras.  It is easy to see that, for each signature  DΣ,  DΣ-algebras and

dynamic homomorphisms form a category, that we denote by  DAlgDΣ.

Homomorphisms between dynamic algebras preserve the activity of the dynamic elements; formally:

if h is as above, for all  s, l, s' ∈ DA:  if  s _____l
>DA s', then  h(s) _____h(l)

>DA' h(s').

If  DI  is initial in  a class  D of  DΣ-algebras then its element have the minimum amount of activity:

 DI‘  t _____t'
> t"   iff   for all  DA ∈ D:  DA‘  t _____t'

> t".

3 A LOGIC FOR SPECIFYING DYNAMIC DATA TYPES

Following a widely accepted idea (see eg [W90]) a (static) abstract data type (shortly ADT) is an isomor-

phism class of Σ-algebras and it is usually given by a specification, ie a couple  sp = (Σ, AX), where  Σ  is

a signature and  AX  a set of 1st order formulae on  Σ (the axioms of  sp) representing the properties of the

ADT.  The models of sp are precisely the Σ-algebras which satisfy the axioms in  AX; more precisely:

Mod(sp) = { A |  A  is a Σ-algebra and for all  θ ∈ AX:  A‘  θ }.

In the initial algebra approach  sp  defines the ADT consisting of the (isomorphism class of the) initial

elements of the class  Mod(sp).  In the loose approach, instead,  sp  is viewed as a description of the main

properties of an  ADT; thus it represents a class, consisting of all the ADT’s satisfying the properties ex-

pressed by the axioms (more formally: the class of all isomorphism classes included in  Mod(sp)).

The above definition of ADT can be easily adapted to the dynamic case: an abstract dynamic data type

(shortly ADDT) is an isomorphism class of  DΣ-algebras.  In order to extend the definition of specifica-



tion, the problem is choosing the appropriate logical framework. We have already discussed some of the

problems in the introduction, therefore we first define our logic and then comment on it.

Recall that  DΣ = (Σ, STATE)  and  Σ = (SRT, OP, PR); moreover let  X  be a fixed  SRT-sorted family of

variables s.t. for each sort srt  Xsrt  is a denumerable set.

The sets of dynamic formulae and of path formulae of sort  st ∈ STATE  on  DΣ  and  X, denoted respec-

tively by  FDΣ(X)  and  PDΣ(X, st), are inductively defined as follows (where  t1, …, tn  denote terms of

appropriate sort and we assume that sorts are respected):

dynamic formulae

– Pr(t1, …, tn) ,  t1 = t2  ∈ FDΣ(X)  if Pr ∈ PR

– Æ  φ,  φ1 ⊃ φ2 ,  ∀ x . φ  ∈ FDΣ(X) if φ, φ1, φ2 ∈ FDΣ(X), x ∈ X

– ∆(t, π) ∈ FDΣ(X) if t ∈ TDΣ(X)st, π ∈ PDΣ(X, st)

path formulae

– [ λ x . φ] ,  < λ y . φ>  ∈ PDΣ(X, st) if x ∈ Xst, y ∈ Xlab(st), φ ∈ FDΣ(X)

– Æ  π,  π1 ⊃ π2 ,  ∀ x . π ,   π1 U π2  ∈ PDΣ(X, st) if π , π1, π2 ∈ PDΣ(X, st), x ∈ X.

Let  DA  be a  DΣ-dynamic algebra and  V: X → DA  be a variable evaluation (ie an SRT-family of total

functions). We now define by multiple induction when a formula  φ ∈ FDΣ(X)  holds in  DA under  V

(written  DA, V‘ φ)  and when a formula  π ∈ PDΣ(X, st)  holds on a path σ ∈ PATH(DA, st) under  V

(written  DA, σ, V‘ φ). Recall that the interpretation of a term  t  in  DA  w.r.t.  V  is denoted by  tDA,V

and that, for a path  σ, S(σ) and L(σ) have been defined in Sec. 2.

dynamic formulae

– DA, V‘ Pr(t1, …, tn) iff (t1DA,V, …, tnDA,V) ∈ PrDA;

– DA, V‘ t1 = t2 iff t1DA,V = t2DA,V  (both sides must be defined and equal);

– DA, V‘ Æ φ iff DA, V’  φ;

– DA, V‘ φ1 ⊃ φ2 iff either  DA, V’φ1  or  DA, V‘ φ2;

– DA, V‘ ∀ x . φ iff for all  v ∈ DAsrt, with  srt  sort of  x,  DA, V[v/x]‘ φ;

– DA, V‘ ∆(t, π) iff for all  σ ∈ PATH(DA, st), with  st  sort of  t,

if  S(σ) = tDA,V  then  DA, σ, V‘π;

path formulae

– DA, σ, V‘ [ λ x . φ] iff DA, V[S(σ)/x]‘ φ;

– DA, σ, V‘ < λ x . φ> iff either  DA, V[L(σ)/x]‘φ   or  L(σ)  is not defined;

– DA, σ, V‘ Æ π iff DA, σ, V’  π;

– DA, σ, V‘ π1 ⊃ π2 iff either  DA, σ, V’π1 or  DA, σ, V‘ π2;

– DA, σ, V‘ ∀ x . π iff for all  v ∈ DAsrt, with  srt  sort of  x,  DA, σ, V[v/x]‘ π;

– DA, σ, V‘ π1 U π2 iff there exists  j > 0  s.t.  σ|j  is defined and  DA, σ|j, V‘π2 

and for all  i  s.t.  0 < i < j  DA, σ|i, V‘ π1.

A formula  φ ∈ FDΣ(X)  is valid in  DA  (written  DA‘ φ)  iff  DA, V‘φ  for all evaluations  V.

Validity is preserved under isomorphisms.



Remarks.  Dynamic formulae include the usual (hence static) many-sorted 1st order logic with equality; if

DΣ contains state-sorts, they include also formulae built with the transition predicates.

The formula  ∆(t, π)  can be read as “for every path  σ starting from the state denoted by  t, (the path for-

mula)  π  holds on  σ”. We have borrowed  ∆  and  ∇   below from [S].  We anchor those formulae to

states because we do not refer to a single transition system but to a whole set of them.

The formula  [λ x . φ]  holds on a path  σ  whenever  φ  holds of the first state of  σ; similarly the formula

< λ x . φ>  holds on  σ  whenever  φ  holds of the first label of  σ.  The need for both state and edge for-

mulae has been already discussed in [L]. Finally,  U  is the so called strong until operator.  End remarks

In the above definitions we have used a minimal set of combinators; in practice, however, it is convenient

to use other, derived, combinators; the most common are:

true, false, ∨, ∧, ∃,  defined in the usual way; ∇(t, π) =def Æ ∆(t, Æ π);

� π =def  true U  π  (eventually  π); Þ π  =def Æ�  Æ π  (always  π);

π1 WU π2 =def π1 U π2 ∨ Þ π1  (π1  weak until  π2 );  m π =def  false WU π  (next  π).

A few examples should clarify the meaning of the non-standard constructs in our language; in particular,

example 3) should explain the role of the binders  λ x. We assume that:  Cs  is a constant symbol of state-

sort  st;  Ps  and  Pl  are unary predicate symbols of sort  st  and  lab(st), respectively;  x,  x'  and  y  are

variables of sort  st  and  lab(st)  respectively.  Moreover, for simplicity, we do not distinguish between the

symbols  Cs, Ps, Pl, … and their interpretations.

1) ∆ (Cs,� < λ y.Pl(y)>) can be read: on each path from the state  Cs  there exists a label satisfying  Pl;

2) ∇ (Cs,Þ� [ λ x . Ps(x)])  can be read: there exists a path from the state  Cs  that has infinitely many

states satisfying  Ps;

3) ∆(Cs,Þ[λ  x.∇ (x,� [ λ x'. Ps(x')])])  can be read: for every path  σ  from  Cs, for every state  x on

σ, there is a path from  x  such that along this path there is a state  x' satisfying  Ps.

Our framework corresponds to an institution [GB]; here we just outline the basic definitions; full details

will appear in [CR]. dyn = (DSign, DSen, DAlg, ‘ ) is an institution, where:

DSign  is the category whose objects are dynamic signatures and whose morphisms are the subclass of

the morphisms of predicate signatures respecting the dynamic features (ie: dynamic sorts are mapped into

dynamic sorts, special sorts and predicates are mapped into the corresponding special sorts and predicates);

DSen  is the sentence functor: DSen(DΣ)  is the set of formulae in  FDΣ(X); DAlg  is the algebra functor:

DAlg(DΣ)  is the category  DAlgDΣ; ‘   is our validity relation.

4 DYNAMIC SPECIFICATIONS

A dynamic specification  is a couple  sp = (DΣ, AX), where  AX ⊆ FDΣ(X).  The loose semantics for  sp

is the class of all isomorphism classes in  Mod(sp); its initial semantics is the isomorphism class of the

initial elements of  Mod(sp).

Notation: usually the dynamic specification  (DΣ, AX)  will be written as: DΣ  axioms  AX.

Examples: we use the signature  BUFΣ  defined in Sec. 2; in ex. 1 we refer to the initial semantics and in

ex. 2, 3 to the loose one.

Example 1: unbounded buffers with a LIFO policy

BUF = (BUFΣ, BUF-AX1),  where  BUF-AX1  consists of the following axioms:



-- properties of the data contained into the buffers (the terms  0  and  Succ(n)  are always defined):

D(0) D(Succ(n))

-- static properties (LIFO organization of the buffers)

D(Put(n, b)) Æ  D(Get(Empty)) Æ  D(Remove(Empty))

Get(Put(n, b)) = n Remove(Put(n, b)) = b 

-- definition of the dynamic activity of the buffers

D(Get(b))  ⊃  b __________O(Get(b))
> Remove(b)   a buffer can always return its first element (if it exists)

b _____I(n)
> Put(n, b) a buffer can always receive a value.

This specification admits initial models (see Propostion below): algebras where the carrier of sort  buf  is

the set of unbounded stacks of natural numbers.

Example 2: a very abstract specification of buffers containing natural values; we only require the essential

properties.

BUF2 = (BUFΣ, BUF-AX2)  where  BUF-AX2  consists of the following axioms.

-- properties of the data contained into the buffers (natural numbers):

D(0) D(Succ(n)) Æ  0 = Succ(n) Succ(n) = Succ(m)  ⊃  n = m

-- static properties (the operations  Get  and  Remove  are not defined on the empty buffer):

Æ  D(Get(Empty)) Æ  D(Remove(Empty))

-- dynamic properties (safety properties):

b _____O(n)
> b'  ⊃  n = Get(b) ∧ b' = Remove(b) specifies the action of returning a value

b _____I(n)
> b'  ⊃  b' = Put(b, n) specifies the action of receiving a value

Here the operations  Get, Put  and  Remove  are not defined as in  BUF1: we only specify some of their

properties; clearly such a specification is oriented to a loose semantics. If  A  is an algebra which is a

model of  BUF2, the set  Abuf  may contain, for instance, unbounded and bounded buffers, FIFO and

LIFO buffers.

Example 3: a very abstract specification of buffers containing natural values where the received values are

always returned.

BUF3  is given by adding the following axioms to  BUF2.

b _____I(n)
> b'  ⊃  ∆(b', (Æ <λ x. x = I(n)>) WU  <λ x. x = O(n)>)

(a safety property) a buffer that has received a value  n  must return it before it can receive another copy

of   n  (this ensures that the buffer contains distinct values)

b _____I(n)
> b' ⊃  ∆(b', �  <λ x. x = O(n)>)

(a liveness property) eventually, a received value will be returned (recall that the elements in a buffer 

are distinct, so we know that it is the same n which appears in  I(n)  and  O(n)).

If a buffer interacts with its users in a synchronous way, the last axiom is not very appropriate: indeed in

case no one wants to accept the returned value, this axiom prescribes that the whole system, including the

buffer and its users, will eventually deadlock. This problem can be avoided by replacing this last axiom

with the two formulae below. They just require that a buffer will have the capability of returning any  value

it receives (*) and that such capability remains until the value is actually returned (**).

(*) b _____I(n)
> b' ⊃  ∆(b', �  [ λ b" . Out_Cap(b", n) ])

(**) Out_Cap(b, n)  ⊃ ∆(b, [ λ b' . Out_Cap(b', n)] WU <λ x. x = O(n)>)

where  Out_Cap(x, y)  stands for  ∃ z . x _____O(y)
> z.



BUF3  specifies a subclass of the buffers defined by  BUF2: the buffers where received values will,

eventually, be returned (if someone requests them). It includes bounded FIFO buffers, but also, say, un-

bounded LIFO buffers where the “fair behaviour”  is obtained by using auxiliary structures.  On the other

hand, the intial models of  BUF1 are not included, since there each buffer  admits an infinite path com-

posed of input (push) actions only.     End of examples

Not all dynamic specifications admit initial models.  Classical (static) specifications are a particular case

and it is well known that axioms like t1 = t2  ∨  t3 = t4  or  ∃ x . Pr(x)  do not allow initial models. One

can show that the same happens with formulae including existential temporal operators; for instance: ∇(t,

π )  or  ∆ (t,� π).  However, as in the case of classical specifications, we can guarantee the existence of

initial models by restricting the form of the axioms.

A formula  φ ∈ FDΣ(X)  is dynamic positive conditional  iff it has the form ∧ i = 1, …, n α i  ⊃  ψ, where:

n ≥ 0, αi  is an atom (ie of one of the forms:  t1 = t2;  Pr(t1, …, tn)) and  ψ  is either an atom or has the

form  ∆(t, π)  with  π  built using  […],  <…>, Þ, m  only, and the formulae inside  […]  and <…>  are

themselves dynamic positive conditional.  The properties that can be specified using axioms of this kind

include “usual” static properties and safety properties.

Proposition. Let  dsp = (DΣ, AX)  be a dynamic specification; if the formulae in  AX  are dynamic

positive conditional, then  Mod(dsp)  has initial models.  

Under the hypotheses of the above proposition, we have also a deductive system which is sound and

complete with respect  Mod(dsp). The first step is to consider a deductive system for equational logic with

partially defined terms (but recall that algebras have nonempty carriers). This can be obtained, as in  [C],

by considering a system which is sound and complete for the total case and modifying it as follows: sup-

press reflexivity of equality; allow substitution of  t  for  x  only when  t  is defined (rule SUB below); add

rules to assert that operations and predicates are strict (rules STR below).

One such system is given by the following rules:

t = t'
t' = t

 
t = t'       t' = t"

 t = t"
 (SUB)

φ[x]  D(t)
φ[t]

D(Op(t1,…,tn))  ti = ti'  (i=1,…,n) 
 Op(t1,…,tn) = Op(t1',…,tn')

 
 Pr(t1,…,tn) ti = ti'  (i=1,…,n) 

 Pr(t1',…,tn') 

(∧i=1,…,n φi) ⊃ φ φi  (i=1,…,n)
 φ  (STR)

D(Op(t1, …, tn))
 D(ti)

Pr(t1, …, tn)
D(ti)

The second step is to extend the system by adding rules for the temporal operators (in the context of dy-

namic positive conditional formulae).  Let us consider for each dynamic sort, st, of  DΣ  a (new) predicate

symbol  Transst: st × st  and the set of axioms  TRANS = ∪ { TRANSst  |  st ∈ STATE },  where, if  x, z,

w  are variables of sort  st  and  y  is a variable of sort  lab(st):

TRANSst = { x_____y
> z  ⊃  Transst (x, z), Transst (x, z) ∧  Transst (z, w)  ⊃  Transst (x, w) }.

Then, we consider the 4 rules below plus the 4 rules obtained by reversing them (ie exchanging premise

with consequence):

 ∆(t, [λ x . φ]) 
 φ[t/x] 

 ∆(t, <λ x . φ>) 

 t ________
y

> z ⊃ φ[y/x] 

 ∆(t, Þ π) 
 Trans(t, z) ⊃ ∆(z, π) 

 ∆(t, m π) 

 t ________
y

> z ⊃ ∆(z, π) 



Proposition. Let  dsp = (DΣ, AX)  be a dynamic specification and “  the deduction relation associated

with the full system. If the formulae in  AX  are dynamic positive conditional, then:  Mod(dsp)‘φ    iff

AX ∪ TRANS “   φ.   

REFERENCES (“LNCS x”  stands for  Lectures Notes in Computer Science vol. x)

[AC] Astesiano E.- Cerioli M. “On the existence of initial models for partial (higher order) conditional
specifications”, TAPSOFT’89, LNCS  351, 1989.

[AFD] Astesiano E. - Bendix Nielsen C. - Botta N. - Fantechi A. - Giovini A. - Inverardi P. - Karlsen E.
- Mazzanti F. - Storbank Pedersen J. - Zucca E. “The Draft Formal Definition of Ada”
Deliverable of the CEC MAP project: The Draft Formal Definition of ANSI/STD 1815A Ada,
1987.

[AR1] Astesiano E. - Reggio G. “On the Specification of the Firing Squad Problem” Workshop on The
Analysis of Concurrent Systems, Cambridge, 1983, LNCS  207, 1985.

[AR2] Astesiano E. - Reggio G. “An outline of the SMoLCS methodology” Advanced School on
Mathematical Models of Parallelism 1987, LNCS  280, 1987.

[BW] Broy M. - Wirsing M. “Partial abstract data types” Acta Informatica 18 (1982).

[C] Cerioli M. “A sound and equationally-complete deduction system for partial conditional (higher
order) types” 3rd Italian Conf. on Theoret. Comp. Sci. Mantova 1989, World Scientific Pub.,
1989.

[CR] Costa G.- Reggio G. “Specification and implementation of abstract dynamic data types: a
temporal logic approach” Technical Report, University of Genova 1991.

[Em] Emerson A.E. “Temporal and modal logic” in Handbook of Theoret. Comp. Sci. Elsevier 1990.

[FL] Feng Y. - Liu J. “Temporal approach to algebraic specifications” Concur 90, LNCS 485, 1990.

[FM] Fiadeiro J. - Maibaum T. “Describing, Structuring and Implementing Objects”, Draft, presented
at the REX School/Workshop on Foundations of Object-Oriented Languages, May, 1990.

[GB] Goguen J.A. - Burstall R. “Institutions: abstract model theory for specification and program-
ming” LFCS Report Jan.’90, Dept. of Comp. Sci. Univ. of Edinburgh.

[GM] Goguen J.A. - Meseguer J. “Models and equality for logic programming” TAPSOFT’87, LNCS
250, 1987.

[K] Kröger F. “Temporal logic of programs” EATCS Monographs, Springer 1987.

[L] Lamport L. “Specifying concurrent program modules” ACM TOPLAS 5 (1983).

[P] Pnueli A. “Applications of temporal logic to the specification and verification of reactive sys-
tems: a survey of current trends” in Current Trends in Concurrency, LNCS  224 (1986).

[S] Stirling C. “Comparing linear and branching time temporal logics” in Temporal Logic of
Specification, LNCS 398 (1989).

[SFSH] Sernadas A. - Fiadeiro J. - Sernadas C. - Ehrich H.D. “Abstract object types: a temporal
perspective” in Temporal Logic of Specification, LNCS 398 (1989).

[W89] Wirsing M. “Proofs in structured specifications” Preprint 1989.

[W90] Wirsing M. “Algebraic specifications” in Handbook of Theoret. Comput. Sci. vol.B, Elsevier
1990.




