
f g

1 Introduction

coseva,reggio disi.unige.it

Deontic Concepts in the Algebraic Speci�cation of

Dynamic Systems: The Permission Case

Dynamic systems

permission prohibition duty

obligation

descriptive prescriptive

ideal actual real

violation

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a di Genova, Italy

Viale Dodecaneso, 35 { Genova 16146 { Italy

@

Eva Coscia, Gianna Reggio

The aim of our work is to analyse deontic logic to build up a formalism for the

speci�cation of dynamic systems. are generic systems that are

able to modify their own state during time, so processes and concurrent/reactive/

distributed systems are typical examples. Several researchers have recently pointed

out how the applications of the deontic notions of , and

or are very useful in formal system modelling, see, e.g. [18] (for a survey

and further references) and [11, 14, 15].

The most interesting feature of deontic logic is the clear separation between the

and the aspects of a speci�cation: deontic formalisms allow

us not only to describe how a system behaves, which is the external environment,

which are the interactions with other components or users, but also to make a formal

representation of which are the activities it is permitted or ought to do, which are the

prohibitions that it ought not to violate. It is important to note how the prescriptive

aspect of a speci�cation gives us the possibility to make a distinction between the

and the (or) behaviour of a system. Indeed, through deontic concepts

we can impose norms describing what we expect from the system, what should be

the optimal reactions in some cases and which activities ought to be (or ought not

to be) executed: in one word, we make a picture of what is the ideal behaviour of the

system. At the same time, since our norms just describe our concept of ideality, we

leave open the possibility that a behaviour does not comply with the imposed norms,

as in the real world something could go wrong and so real behaviours do not coincide

with ideal ones. In a certain sense, even if we would like that the introduction of a

token in a vending machine will be followed by the provision of a co�ee, we know

that such a request is unrealistic and just describes our concept of a perfect vending

machine.

Another very useful concept related to norms is the concept of , see

e.g. [14, 10]. When we are able to detect if a particular norm has been violated, we

can specify error handling policy or introduce sanctions too.

We do not want to build a new formalism from scratch, but to introduce the

deontic concepts into ADSs (Algebraic Dynamic Speci�cations, see, e.g. [1, 5, 9]), a

framework to give algebraic (i.e. logic) speci�cations of dynamic systems at di�erent

levels of abstraction from the initial requirements till the complete design; ADSs are

equipped with a speci�cation methodology, software tools and have been applied to

some relevant case studies, see e.g. [3, 20, 21].

1 k

: � :

:

:

:

P O

P

P O

P O

P O

P� O �;

P O �

� �

�

P� �

� O �

�

activities states

abstract events

there is

is not performed

there is not

In such applications we have frequently met the problem to specify: { that

a system behaves di�erently in the normal cases and in the abnormal ones; {

that a property holds except when some part breaks down; { what the system

has to do when a user does not follow the instruction either by doing not al-

lowed thing or by forgetting to do something (e.g. by pressing a button at the

wrong time or by forgetting to re�ll). The last point is relevant for reactive sys-

tem, which are usually intended to interact with users whose behaviour follows spe-

ci�c norms. These cases can be handled within ADSs, but result in very complex

and long speci�cations, since normal and abnormal cases have to be considered to-

gether; for example, we may get a speci�cation s.t. all formulae have the form either

\if normal case then . . . " or \if abnormal case then . . . " and all liveness properties

have the form \. . . eventually (. . . or part breaks or . . . or part breaks)".

An interesting point is that ADSs give a formal way to describe the dynamic

aspect of system behaviour, by means of an arrow-predicate representing labelled

transition capabilities of the system. Since we have already a complete and formal

description of the evolution of a system, obligation, permission and prohibition can

deal with as well as with of the system, where the word activity

may denote either simple interactions with the external world (labels) or transitions

or sequences of transitions, called in [2].

A consequence of this assumption is that permission and obligation are com-

pletely independent, and unlike most deontic logics, where we have

with and deontic modalities for permission and obligation and formula, one

cannot be derived from the other one. Indeed, if on the one hand the violation of the

permission consists of the execution of a non-permitted transition and so we detect a

violation every time a particular non-permitted activity, on the other hand,

the violation of an obligation occurs when what has been requested ,

i.e. when in the behaviour of the system a requested activity. Thus, the

negation of the permission on the activity is not equal to the obligation on

(any activity di�erent from), since we are dealing with activities rather than with

formulae. means that someone is not allowed to do , so it can do everything

except but it is allowed to stay idle too. On the other hand, forces the

system to move and to perform any activity except , so it cannot stay idle.

For this reason we do not develop a framework dealing with both the deontic

concepts, but treat them separately; this allows us to analyse each concept in more

detail, without being bothered by the relations with the other one. We have thus

developed one framework for permission (called) and one for obligation (called).

For lack of room, in this paper we present only ; for a complete presentation of

both and see [7, 6].

A relevant feature of and is that the classical paradoxes that have bothered

a great deal of deontic logicians (see, e.g. [17, 16]) disappear. This is due mainly to

the fact that activity and norms are separated and handled explicitly in the logics:

we can express both that a system may perform some activity, and, apart, that an

activity is permitted/obliged.

Both and formalisms are equipped with a deductive system, to be able

to reason about speci�cations given using such logics. Furthermore such logics are

sound formalisms, in the sense that they correspond to institutions, see [7].

l

l

P

P

0 0

0

0

0 0

�!

�! � � �

�!

�!

�!

2

�!

�!

; ;

s; l; s

s s

; ;

s s

s s s s

l l

2 Algebraic Dynamic Speci�cations

2.1 The formal model for dynamic systems

De�nition1.

ought to do ought to

be

dynamic system

labelled transition system LTS S L

S L states

labels S L S transition relation

transition

S L

S S

is able

It is worthwhile to note that these formalisms are rich and very powerful, as

they supply operators to express di�erent kinds of norms and, at the same time, to

specify most of the requirements on dynamic systems. Moreover, in our opinion the

use of deontic concepts makes it more easy and intuitive to formalize a system and

to read a speci�cation, since we are able to factorize normal and abnormal cases in

a natural way.

To understand the real meaning of deontic logic and the usefulness of deontic

concepts in formal system speci�cation, we have analysed a great deal of work based

on deontic concepts applied to computer science (see [10, 11, 14, 15, 18]). All these

works gave us interesting hints for our formalisms.

In particular, our interpretation of deontic concepts is similar to the one in [10]

in regard to the necessity for a clear distinction between and

(i.e. between norms on state and norms on activities) and the use of violations

associated with norms ([10, 14]); furthermore, as in [11], our aim is to associate a

temporal dimension with norms.

In Sect. 2 we briey summarize ADSs, in Sect. 3 we present the formalism and

in Sect. 4 we give the avor of using a speci�cation formalism based on ; some

concluding remarks are in Sect. 5.

Algebraic Dynamic Speci�cations, shortly ADSs, extend the algebraic speci�cation

of abstract data types, see [22], to the speci�cation of types of dynamic systems.

In this paper, with the term we denote generic systems that are

able to modify their own state during time, so processes and concurrent/reactive/

distributed systems are typical examples.

In the ADS approach a dynamic system is modelled by a labelled transition system.

A (shortly) is a triple (),

where and are two sets whose elements are, respectively, the and the

of the system, while represents the .

A triple () belonging to is called a and is usually written as

.

A dynamic system D can be modelled by an LTS () and an initial state

. The elements in that can be reached starting from are the intermediate

interesting states in the life of D, while the transition relation describes the

capabilities of D to pass from one intermediate state to another one. So a transition

has the following meaning: D in the state to pass to the state

by performing a transition whose interaction with the external world is described by

the label ; thus provides information both on the conditions on the external world

making e�ective this capability and on the changes in the external world caused by

this transition.

ds ds

st

0 0 1 1 2 2

0 0 1 1 2 2

+1

DA

DA

state label

A

D� �

n n

n n k

n n l n n n

k

�! � �

�!

�

� �

� 2 2 �

�! � � 2

�

2 2 2 2 �!

2 �!

2.2 Dynamic algebras

De�nition2.

{

{

state

label

state label state

; ;

D� �;

� ; ;

l

l

D� �

T X T X X D�

D� D�

;

d l d l d l d l

d l d l d l d l d k

n d l d ; l ; d

d l d ; l; d

�

dynamic algebras

dynamic signature DS

S OP PR

DS S dynamic sorts

ds DS ds S DS

ds ds ds PR

dynamic algebra

ds

PATH ds paths ds

Concurrent dynamic systems, i.e. dynamic systems having cooperating compo-

nents that are in turn other dynamic systems, can be modelled through particular

LTSs obtained by composing other LTSs describing such components. In this paper,

we do not put much emphasis on the fact that a system may have an internal con-

current structure, since we are interested in the analysis of its behaviour and the

same considerations on deontic concepts can be applied even if the transitions of the

systems are combinations of transitions of the components (for example a message

exchange). See [5, 1] for handling concurrent systems by using ADSs.

An LTS can be represented trough a many-sorted algebra with predicates (just

a many-sorted 1 order structure) A on a signature with two sorts, and

, whose elements correspond to states and labels of the system, and a pred-

icate : representing the transition relation. In Appendix A

we report the main de�nitions about algebras with predicates. The triple

(A A) is the corresponding LTS. Obviously we can have LTSs whose

states are built by states of other LTSs (for modelling concurrent dynamic systems);

in such a case we use algebras with di�erent sorts corresponding to states and labels

and with di�erent predicates corresponding to transition relations.

In a formal model for dynamic systems we may need static elements too (for

example, the data manipulated by the dynamic systems such as natural numbers);

to handle these cases our algebras may have also sorts that just correspond to data

and not to states or labels of LTSs.

The algebras corresponding to LTSs are called and are formally

de�ned as follows.

A is a pair (), where:

= () is a predicate signature (see Appendix A);

is the set of the , i.e. sorts corresponding to dynamic

systems (states of LTSs);

for all there exist a sort - (the sort of the labels) and

a predicate : - (the transition predicate).

A on is just a -algebra with predicates; the term algebra

() is just (), where is a sort assignment on .

We give now some technical de�nitions on dynamic algebras that will be used

in the following. Let DA be a -dynamic algebra and a dynamic sort of .

(DA) denotes the set of the for the dynamic systems of sort , i.e.

the set of all sequences of transitions having either of the two forms below:

(1) (in�nite path)

(2) 0 (�nite path)

where for all IN: DA , DA

-

and () ; moreover,

in (2) for no , : () (there are no transitions starting from the �nal

state of a �nite path).

If is either (1) or (2) above, then

2

i

T

T

T

T

T T

T T

T T

T T

T

T

T T

T T

n n n n n n

l

s

n n i D� s

D� s

D�

;V

ds ds DS

ds ds

ds ds

ds ds

ds ds

ds ds

0

0

+1 +1 +2 +2

st

st

1 2 1 2

1 1 2 1 1 2

1 1

1 2 1 2

1 1 2 1 1 2

DA

1 2

2 1

b

f g

2

2

2 2 2

h i 2 2 2

U 2 2

: � 8 2 2 2

2 � � 2 2

2 2

: � 8 2 2 2

4 2 2 2

2

j

j

j j

j h i j

j U b

b j b j

2.3 A logic for ADSs

De�nition3.

path formulae

{

{

{

{

formulae

{

{

{

{

De�nition4.

{

{

path formulae

{

{

{

ADS (Algebraic Dynamic Speci�cation)

AX AX

AX

path formulae PF X

formulae of F X S OP PR DS

X S

ds DS

PF X X F X

PF X X F X

PF X PF X

PF X PF X X

Pr F X Pr PR

F X

F X F X X

F X X PF X

X

PATH ds

S � � d

L � � l

� n d l d l d l

D�; D�

D�

D�;

D�; D� ; ; ;

s

� x : � D�; x � D�;

�x : � D�; x � D�;

� � D�; � ; � D�;

� ; � � ; x : � D�; � ; � D�; ; x

t ; : : : ; t D�; s : : : s t T X ; i : : :n

t t D�; t ; t T X

� ; � � ; x : � D�; � ; � D�; ; x

t; � D�; t T ; � D�;

D� V

� � ; V

; V; � �

� V ; V �

t t V

; V; � � x : � ; V S � =x �

; V; � �x : � ; V L � =x � L �

; V; � � � j > � j

; V; � j � i < i < j ; V; � i �

{ () denotes the �rst element of : ;

{ () denotes the second element of : (if it exists);

{ denotes the path . . . (if it exists).

As for usual algebraic speci�cations an is

a pair DSP = () where is a dynamic signature and is a set of

formulae on .

In this case the axioms in must express both static properties of the data

and of the dynamic systems, for which 1 order logic is adequate, and properties on

the activity of the dynamic systems, such as liveness or safety requirements; for this

aim 1 order logic is enriched with the combinators of the branching-time temporal

logic with edge formulae, see [8, 9]. Below we present the resulting temporal logic

for ADSs, called .

The family of the sets of the , denoted by () ,

and of the , denoted by (), on = (()) and

a sort assignment are de�ned by multiple induction as follows. For each

and :

[] () , ()

()

-

, ()

() ()

() ()

() () : , () = 1

= () ()

() ()

() () () ()

Let DA be a -algebra and an evaluation of the variables in

in DA, then we de�ne by multiple induction:

the validity of a path formula on a path (DA) in DA w.r.t.

(written DA =),

the validity of a formula in DA w.r.t. (written DA =),

as follows (denotes the interpretation of term w.r.t. DA and):

DA = [] i� DA [()] =

DA = i� either DA [()] = or () is not de�ned.

DA = i� there exists 0 s.t. is de�ned,

DA = and for each s.t. 0 , DA =

T

ds

3

3

3

n

;V

;V

n

;V ;V

s

;V

;V

Pr Pr

PATH ds ds

valid

PATH ds ds

models Mod AX

1 2 1 2

1 1

1

DA

1

DA

DA

1 2

DA

1

DA

2

1 2 1 2

DA

st

def

DA

def

def

def

{

{

{

formulae

{

{

{

{

{

{

{ true false

{

{ true

{

{ false false

false

j : 6j

j � 6j j

j 8 2 j

j 2

j

j : 6j

j � 6j j

j 8 2 j

j 4

2 j

j j

4

4

h i

U

_ ^ 9 �

5 : 4 :

j 5 2

j

U

j b b j

: :

j b j b

 h i _ U

j b b j

h i

h i h i

h i h i

; V; � � ; V; � �

; V; � � � ; V; � � ; V; � �

; V; � x : � v ; ; V v=x ; � �

; V t ; : : : ; t t ; : : : ; t

; V t t t t

; V � ; V �

; V � � ; V � ; V �

; V x : � v s x ; V v=x �

; V t; �

� ; t S � t ; V; � �

� � ; V � V

D�

t; � � t

� �

�x :� � � � �x :�

� � � �

t; � t; �

; V t; � � ; t

S � t ; V; � �

� � �

; V; � � i > � i ; V; � i �

� � �

; V; � � ; � i; V � i > � i

� �x : � �

; V; � � � ; V; � �

�x:

� x � x : �

� s t t �x : � l t

� t

D�

DA = i� DA =

DA = i� either DA = or DA =

DA = i� for each DA DA [] =

DA = () i� ()

DA = = i� =

DA = i� DA =

DA = i� either DA = or DA =

DA = i� for each DA , with sort of , DA [] =

DA = () i�

for each (DA), with sort of , s.t. () = , DA =

is in DA (written DA =) i� DA = for all evaluations .

The formulae of include the usual (hence static) ones of many-sorted 1 order

logic with equality; if contains dynamic sorts, they include also formulae built

with the transition predicates.

() can be read as \for every path starting from the state denoted by , the

path formula holds on ". We do not model a single system but, in general, a type

of systems, so there is not a single initial state but several of them, hence the need

for an explicit reference to states (through terms) in the formulae built with .

[] holds on a path whenever holds at the �rst state of ; similarly

holds on if either consists of a single state or holds at the �rst label of .

Finally, is the so called strong future until operator.

In the above de�nitions we have used a minimal set of combinators; in practice,

however, it is convenient to use other, derived, combinators; we list below those that

we shall use in this paper.

, , , , , , de�ned in the usual way

() = ()

DA = () i� there exists (DA), with sort of , s.t.

() = and DA =

= (eventually)

DA = i� there exists 0 s.t. is de�ned and DA =

= (always)

DA = i� DA = for all 0 s.t. is de�ned

= () (next)

DA = i� either 1 is not de�ned or DA 1 = .

Notice that can be satis�ed only by a path which consists of a single

state, the initial one.

Each time in there are no free variables of dynamic sort except , []

is abbreviated to [] and [=] to []; analogously and = are

abbreviated to and .

The of DSP, (DSP), are the -algebras DA s.t. the axioms in

are valid in DA.

P3 The Formalism

_ 9

^ ^ �

2 j `

2 2

j `

`

^ ^ �

!

�

0

0

0

0 0 00

00

0

0

0

0

0

0

0

0

0

0

n i

n

D�

n D�

n n

i

i

n

n

i

i

n

n

n i

�

{

{

Proposition5.

3.1 Motivations

1 2 1 3

1

1

DSP

1 2 DSP 1 2 1 2

1

DSP 1 1

1

1

1

1

1

t t t t x : x

� : : : � � � �

t ; : : : ; t t t

D�;

t ; t t t t t

t ; : : : ; t

t ; : : : ; t t ; : : : ; t

t t

t t

t t

t t t t

t t

t t i ; : : : ; n

t ; : : : ; t t ; : : : ; t

t t i ; : : : ; n t ; : : : ; t

t ; : : : ; t

� : : : � � � i ; : : : ; n

�

F

V F

V

V F F x V x

�

� �

requirement

design

Pr

conditional

Pr

Given an ADS AX whose axioms are conditional,

then there exists (unique up to isomorphism) initial in Mod characterized

by

{ for all of the same sort i� AX ;

{ for all Pr PR and all of appropriate sorts

Pr i� AX Pr ;

where denotes provability in the Birkho� sound and complete deductive system for

conditional axioms, whose rules are:

Op Op

Pr

Pr

X X

is where each occurrence of a variable, say , has been replace by .

implemented

Mod Mod

We consider two di�erent kinds of ADSs: (for the starting and in-

termediate requirements of a system) and (for the speci�cation of the �nal

design of a system), characterized by di�erent semantics:

the semantics of a requirement speci�cation is the class of its models (loose

semantics);

the semantics of a design speci�cation is the initial element in the class of its

models, if any (recall that initial element is unique up to isomorphism).

A dynamic speci�cation may not have an initial model, since it might contain

axioms like: = = or (); so we have to restrict the form of the

axioms used in design speci�cations, by considering only axioms having

the following form: , where and are atoms i.e. either

() or = .

DSP = ()

I (DSP)

T I = = =

T

I = () ()

=

=

=

= =

=

= = 1

() = ()

= = 1 ()

()

= 1

()

: T ()

() ()

A notion of \correct implementation" between ADSs has been given (see [5]) as

follows: DSP is by DSP with respect to , a function from speci�ca-

tions into speci�cations, i� ((DSP)) (DSP). The function describes

how the parts of DSP are realized in DSP (implementation as realization); while

implementation as re�nement is obtained by requiring inclusion of the classes of

models. Notice that this de�nition applies whatever is the semantics for DSP , if it

is initial, then it has just one up to isomorphism model.

We want to extend ADSs with the possibility to establish exactly what are the

activities of a system that, according to particular criteria not further speci�ed, may

T

st

P

P

P

P

P

NP

NP

NP

NP

NP

Safe

ideal

unsafe

recovered

�! �!

�! �! �! �!

�! �!

�! �!

�! �!

be considered permitted (or acceptable). We can, therefore, \divide" the transitions

of the system into permitted and non-permitted; where permitted/non-permitted

may be intended: either right/wrong, or normal/abnormal, or usual/exceptional.

The most immediate solution is to factorize the transitions of the system through

two predicates and that, as the intuition suggests, characterize re-

spectively the permitted and non-permitted transitions.

This distinction, obviously, leaves unchanged the capabilities of the system de-

�ned by means of , since the predicate is the union of and ,

i.e. each transition of the system has to be quali�ed either as permitted or non-

permitted. In a similar way, the intersection of and must be the

empty set, thus we exclude any conict between permission and prohibition, as it

is not meaningful to qualify a transition as permitted and prohibited at the same

time.

This choice does not force in any way the system to perform only the permitted

transitions. If on the one hand, the execution of permitted transitions guarantees

the conformity of a behaviour to the ideal representation of the system we have,

on the other hand we have also the possibility to completely de�ne the capabilities

of evolution that are less agreeable but nevertheless real. In a real system some

activities may happen even if they are not desired by the designer, for example

activities caused by bad uses, technological limits (and, thus, due to possible bad

working, failures, breakdowns) or by the external world from which non-permitted

intrusions could come.

From the distinction of transitions made via and , we can derive

several de�nitions and concepts, listed below, on the paths (behaviours) of a system,

which are useful to express relevant properties.

paths, �rst introduced in [11], are the ones composed only of permitted

transitions, so that they are considered w.r.t. our classi�cation of the system

activity. With the term , we generically mark paths containing at least one

non-permitted transition. This quali�cation seems to be too loose, as we do not make

a distinction based on the kind and the quantity of non-permitted transitions made

within unsafe paths; so it is also useful to characterize the paths, i.e. the

ones in which any non-permitted transition is eventually followed by a permitted

one. We are thus guaranteed that the system does not continue to pass from an

unsafe state to another one, behaving in an uncontrollable way; indeed after each

sequence of non-permitted transitions, a permitted transition is performed, which

restores an acceptable situation for the system.

Since we have to take into account that several non-permitted transitions might

occur consecutively, it is too restrictive to require that the action of recovery occurs

immediately, while it seems to be more realistic to require that it will occur in the

future, without any temporal constraints.

If we limit ourselves to de�ne transition capabilities of the system and to qual-

ify them by means of and , again we are not able to express \be-

havioural" properties of the system, that is properties of liveness, fairness, . . . about

the whole behaviour of the system. Since these properties cannot be formulated us-

ing the 1 order logic, it is necessary to use a logic that allows us to tie the validity

of particular formulae to paths of the system. In our particular case we have chosen

to use the logic presented in Sect. 2.3.

P

P

P

3

3

NP

NP NP

P P

P

P

P P

PA PA PA PA PA

P

P P

P

P P

P P P

P P

P

Safe

Safe

Safe

Rec

Safe Rec

st; Poker

� �;

� ; ;

; l

� �

� �

�;

� V ; V �

3.2 The logic

De�nition6.

De�nition7.

4

5

5

h i

4

4 4

U

� 2

�! �! � � 2

2

�! �! [�! �! \ �! ;

j

at least one

eventually next

only permitted transitions in a permitted

way

-signature DS

S OP PR DS S ds DS

ds ds ds PR

ds DS

-formulae F X

validity of a formula in w.r.t.

From the combination of temporal concepts and the deontic quali�cation we

derive some new combinators, presented below.

(in all safe paths) allows us to construct formulae requiring conditions only

on safe paths of the system. The operator (there exists a safe path), used in the

following example, has a similar meaning. The ideal system simulating poker that

allows the users to win money lacking breakdowns, failures or bugs, behaves in an

\honest" way with respect to each user (i.e. it does not swindle tokens and pays for

each winnings). For this system we can require that among all the safe paths, there

exists in which the user gets the biggest prize, corresponding to poker:

()

In a similar way, (in all recovered paths) allows us to express properties that

must be satis�ed by paths in which failures had been recovered.

While allows us to completely describe the ideal system, by using we can

de�ne in a complete way what we expect from a real system, i.e. of a system that,

even if subject to failures, is able to remedy them and to behave correctly again.

So far, we have used the quali�cation safe and recovered to introduce particular

properties on particular classes of paths. These properties are expressed by temporal

path operators that allow us to formalize expressions like or and so

on. Now it may be useful to enrich these expressions by imposing the condition

that the properties are satis�ed without infringing the permission structure de�ned

on transitions. We may require that a property associated with a state is always

satis�ed by performing or eventually but

and so on. This kind of properties is expressed by means of , , ,

associating with the primitive temporal combinators the concept of permission.

A is a dynamic signature (), where

= (), , s.t. for each , there exist two predicates:

: - .

The models of are particular dynamic algebras, in which each transition is

quali�ed either as permitted or non-permitted and no transition is, at the same

time, permitted and non-permitted.

A -algebra PA is a -dynamic algebra s.t. for all :

= and = .

Since a -signature and a -algebra are, respectively, a dynamic signature

and a dynamic algebra, the set of the , denoted by (), is de�ned

as in Def. 3, and the PA , written PA = , is

de�ned as in Def. 4.

Above we have just given the basic logic; but the interesting formulae of are

combinations of temporal combinators with the predicates denoting the permitted

and non-permitted transitions. Below we report the most relevant and frequently

used, together with their semantics (formal or informal according to which is clearer).

P

P

T

P

3

3 3

3

3

3

3

TOKEN

TOKEN

0 0 0

P

P

P

0 0

0 0

0

0

Safe Rec

Safe

Safe

Safe

P

l

P

P

P

P P

P P P

P

P

P P

P

P P

y

NP

P

P

P P

def

PA

1 2 def 1 2

1 2

def

def

def

def

def

def

def def

safe path

recovered path

vm vm vm SUPPLY

vm vm vm SUPPLY

vm

vm

h i

8 ^ h i ^ � �! ^

j h i j

b 2 �!

U h i ^ h i ^ U

h i ^ ^ h i

h i U

 U

h i ^ h i

h i ^ : _ _

: 9 �!

4

4 �

4

4 �

4

4

�����! �

4

h i

�����! � 4 h i

4

{

{ true true

{ true true

{ true

{ false

{ safe true true

{ rec true stop stop stop

stop

{ safe rec

3.3 A deductive system for

�y : �

d; d ; l : �x:x d �y :y l �x:x d d d � l=y

; V; � �y : � ; V L � =y �

S � ; L � ; S � L �

� � � �

� �

� �

�

� �

�

� �

�

� x : y; z : x z

�

�

t; � t; � t; � t; �

�

t

t; �

t; �

; d

; d

=

(([=] = [=]) ([]))

PA = i� either (PA [()] = and

(() () (1))) or () is not de�ned.

= ()

this formula holds on a path whenever the path is (composed by permitted

transitions and satis�es) until becomes true.

= ()

this formula holds on a safe path always satisfying .

=

this formula holds on a path whenever it has a point for which holds and it is

composed of permitted transitions until such a point.

= []

this formula holds on a path whenever it starts with a permitted transition and

holds at the next point.

=

this formula holds on a , i.e. on a path consisting only of permitted

transitions.

= (() () (),

where = []

this formula holds on a , i.e. on a path s.t. either at each point there

is always a subsequent permitted transition or, eventually there is a permitted

transition reaching a state from which the system cannot make more moves.

Obviously we may de�ne in the same way all the temporal combinators associated

with non-permitted transitions; for example, holds on a path whenever it

starts with a non-permitted transition and holds at the next point.

() = () () = ()

these formulae hold if the path formula holds, respectively, on all safe and on

all recovered paths starting with the state represented by the term .

Now let us point out the di�erence between a formula like () and

(). For example, consider how to formalize that a vending machine must

give a drink after it receives a token in a correct way:

1) (())

2) (())

While in 1) the use of helps us to describe completely the ideal behaviour of a

vending machine (we impose that eventually will give a drink in each safe path),

2) requires that has only paths that are safe at least until it safely gives a drink

and that surely it will give the drink.

First we show how any deductive system that is sound (complete) for , see Sect. 2.3,

may be extended to a system that is sound (complete) for too.

P

P

3 3

3 3

1 2 1 2

1 2 1 2

NP

NP

NP

NP

0 0 0

0 0

0 0 0

0 0 0 0

P

P

0

0 0

AX

Mod Mod AX

Mod

AX Mod AX

P P

P P T P P

P P

P

P

P

P

T P

T

P P

T

P

P

P

P

P

P

l l

P

l

l

P

l

P

l l

P

l l

P

P

P P

P

P

P P

P

l

l

P

l

P

Safe Rec Safe Rec

Safe Safe Safe Safe

Safe Safe Safe Safe

Safe Safe

safe safe

safe rec

3.4 Existence of the Initial Model for -design Speci�cations

[f g

�! � �! _ �!

�! � : �!

4 h i � 8 �! � �! ^

4 � 8 �! � �! ^ 4

4 � 4

4

�

4

4 �

4

^

4

4 h i � 4 h i 4 U � 4 U

4 � 4 4 � 4

4 � 4

4

h i �

4

h i

4

U �

4

U

4

�

4 4

�

4

4

 �

4

�!

�! �!

�! �!

�!

�

� �

�

�;

�; ;

�

d d d d d d

d d d d

t; �x : � d ; l : t d t d � l=x

t; d ; l : t d t d d ;

x; x;

x; � x; � x; � x; � x; �

x; �x : � x; �x : � x; � � x; � �

x; � x; � x; � x; �

x; � x; �

x; �x : � x; �x : � x; � � x; � �

x; � x; � x; � x; �

x; � x; �

t t

t t t t

Recall that a -signature is just a particular dynamic signature, that the

formulae over are just the formulae over and that the models are a

strict subclass of the -dynamic algebras. Precisely, given a -speci�cation DSP =

(), then it is easy to prove that

(DSP) = (((1) (2)))

where: (DSP) is the set of the models of DSP (i.e. all -dynamic algebras

satisfying) and (DSP) is the set of -algebras satisfying ;

(1) ;

(2) .

Thus any sound deductive system for can be extended to a sound one for just by

adding (1) and (2), and the incompleteness result for in [9] can be easily extended

to , so that does not admit a complete e�ective deductive system.

The sound system for presented in [9] and extended with the axioms (1) and

(2) could be taken as the basic system for reasoning over speci�cations. Below we

present some formulae expressing sample properties of the deontic combinators of

which can be proved using the above deductive system.

() ([])

() (())

() ()

() () () () ()

() () () ()

() () () ()

() ()

() () () ()

() () () ()

() ()

As we have seen in Prop. 5, a dynamic speci�cation admits an initial model only

if we restrict the form of the axioms: they should be conditional. However, these

restrictions are no longer enough to guarantee that such an initial model is a

model: an axiom like admits two di�erent non-isomorphic models, since in

a model either holds or holds but not both.

So another restriction becomes necessary: we consider only conditional formu-

lae which do not contain the predicate , but clearly may contain and

. Thus when one specify the design of a system he must just de�ne the

permitted and the non-permitted activities.

Finally, note that, while conditional speci�cations on a dynamic signature cannot

be inconsistent, conditional speci�cations satisfying the above restrictions may

be so, since it is possible to specify that a transition is both permitted and non-

permitted (and that cannot happen in a model).

P

st

0 0

0

P P

P

ds ds

NP

NP

NP

P P

P

P

P

P

P

P

P

P

P

� � l

l

P

l

y

P

y y y

P

4 An Example of Use of

�;

t; t T X l T X t t

t t

x z x z x z x z

�!

2 2 2 ` �!

6` �! `

�! � �! �! � �!

�! �! �!

Proposition8.

{

{

Requirement speci�cation

Given a conditional speci�cation AX . If

the formulae in AX do not contain the predicates;

for each ds DS, ,

-

, if then

, where denotes provability in the Birkho� system of Prop. 5

extended with the axioms and

(asserting that is the union of and of),

then there exists an initial element in Mod .

DSP = ()

() () DSP

DSP

(DSP)

Under the assumptions of Prop. 8, the above extended Birkho� system is now

sound and complete w.r.t. atoms and -models.

We want to specify using the following vending machine.

The vending machine accepts tokens and is able to provide di�erent drinks.

The price of each drink is �xed and equal to the value of the token. Each time a

token is inserted, the current credit is incremented by the token value. It is possible

to insert several tokens in a row, but when the \maximum credit" has been reached,

the extra tokens have to be returned.

Subsequently to the selection of a drink, if the credit is positive, then the vending

machine starts to ful�ll the request, supplying cup and drink. It is permitted to do

a selection only when the vending machine is not ful�lling any request; the selection

can be modi�ed if vending machine has not started the procedure to supply a drink.

The vending machine is switched on and o� by the external world and could be

repaired.

If we use the ADS/ framework to specify the requirements on the vending machine,

then we determine the class of all -algebras (LTSs) formally modelling acceptable

realizations of the vending machine by giving a -requirement speci�cation as fol-

lows. Recall that a -requirement speci�cation has loose semantics, i.e. its semantics

is the class of its models, which are -algebras.

We �rst determine which are the interactions of the vending machine with the

external world (the labels of the LTS modelling the machine) and give some oper-

ations for representing them; afterwards we give the operations and predicates on

the vending machine intermediate states (LTS states) and their properties using 1

order formulae; and �nally the properties on the vending machine activity (LTS

transitions) by a set of formulae, split in several groups.

For a generic ADS we have found that it is convenient to group together all

formulae about a speci�c kind of interactions; since we are specifying a reactive

system, in this way, we are guided by its interactions; for the variant, the formulae

about a kind of interactions are further split into:

!

!

!

!

�

�

l

l

l

l

l

l

l

nat

nat

Interactions

* *

* *

* *

* *

* *

* *

* *

States

* *

* *

* *

* *

* *

* *

* *

vending machine

TOKEN vending machine

SELECT drink vending machine

SUPPLY drink vending machine

BREAK DOWN vending machine

RETURN TOKEN vending machine

RESET vending machine

REPAIR vending machine

Credit vending machine

Price vending machine

Price vm

Serving vending machine

Broken vending machine

O� vending machine

Selection vending machine drink

{ about normal execution,

{ about abnormal execution,

{ recovery from abnormal executions,

{ general properties, that do not depend on the normal/abnormal distinction.

Here, for lack of room, we do not give the complete speci�cation of the re-

quirement of the vending machine, which can be found in [7], but report only

some fragments of the various parts. In this case we have just one dynamic sort

.

The interactions of the vending machine with the external world are:

A token is introduced in the vending machine

: -

A drink is selected

: -

To supply a drink

: -

To break down

: -

To return a token

: -

To be reset

: -

To be repaired

: -

...........

There are the following operations and predicates on the vending machine inter-

mediate states.

Return the value of the current credit

:

Return the current price of the drinks

:

The price of drinks is always less than 1000 (an axiom)

() 1000

Check if the vending machine is serving (a predicate)

:

Check if the vending machine is broken

:

Check if the vending machine is o�

:

Check if a drink has been selected

:

...........

3

3 3

3

3

()

()

()

P

P

d

d

P

d

Activity

Safe

Safe

Rec

Safe

0 0

0 0

0

0

0

0 0

0 0

0

0 0

0 0

0 0

0 0

:

: vm;

; d : l d

; d : l d

;

:

d

d

d

d : ; d

; d Credit ; d

d : ; d ; d

:

TOKEN

TOKEN

TOKEN

TOKEN

NP

SELECT

SELECT

SELECT

NP

RESET

() ()

Notice that is equivalent to ()

() () = () + ()

(= ())

(() (= ()))

()

()

() () ()

() (() () (()))

(() ())

(general cases)

(normal cases)

(recovery)

(general cases)

(normal cases)

(abnormal cases)

(general cases)

�

9 �����! � :

9 �����! 5 h i

�����! �

: ^ ^

4

h9 i

4

h i � h9 i

�����! �

5

h i

�

: � 9 ��������!

��������! �

6 9 ^ : ^ : ^

^ � �

4

h i

��������! � 8 �

�

9 �����!

TOKEN

If a token may be (normally/abnormally) introduced in the vending machine, then

the vending machine is not broken

vm vm vm Broken vm

vm vm vm TOKEN

If a token is normally introduced in the vending machine, then the vending machine

is not serving, the credit will be incremented, and if nothing wrong occurs it will

surely supply a drink

vm vm

Serving vm Credit vm Credit vm Price vm

vm SUPPLY

If a token is normally introduced in the vending machine in�nite times, then, if

nothing wrong occurs, the vending machine will surely supply a drink in�nite times

vm TOKEN SUPPLY

If a token is abnormally introduced in the vending machine, then the vending machine

will return the token along a recovered path

vm vm vm RETURN TOKEN

SELECT

If the vending machine is not o�, then any drink may be selected

O� vm vm vm vm

If a drink is normally selected, then neither the vending machine has a valid

selection, nor is serving nor is broken, and the current selection will be ; moreover

if the credit is more than the price, if nothing wrong occurs, the vending machine

will supply

vm vm

Selection vm Broken vm Serving vm

Selection vm vm Price vm vm SUPPLY

If a drink is abnormally selected, then the current selection is not changed

vm vm Selection vm Selection vm

RESET

The vending machine may always be reset

vm vm vm

P

P

P

P P

P

0

0 0 0

0 0

RESET

RESET

NP

d: ; d d : ; d

d : ; d ; d

� l

nat

nat

nat

�����! �

^ 9 ^ : ^ : 9

�����! � 8 �

!

!

� !

!

(normal cases)

(abnormal cases)

Design speci�cation

Labels

States

* *

* *

* *

* *

* *

If the vending machine is normally reset, then the credit is null, it has a current

selection and is not broken; after there will be no current selection

vm vm

Credit vm Selection vm Broken vm Selection vm

If the vending machine is abnormally reset, then the current selection is not changed

vm vm Selection vm Selection vm

vending machine

Wait vending machine

Selected drink vending machine

Serv drink vending machine

O� vending machine

Br vending machine

() = 0 () () ()

(() ())

.

If we use the ADS/ framework to specify the design of the vending machine, then

we determine one -algebra (LTS) formally modelling the designed vending machine

by giving a -design speci�cation as follows. Recall that a -design speci�cation has

the initial semantics, i.e. its semantics is the (unique up to isomorphism) initial

element in the class of its models.

We �rst determine which are the interactions of the vending machine with the

external world and give some operations for representing them; afterwards we give

operations to represent the states, one operation for each kind of states; and �nally

the axioms de�ning the transitions of the LTS (the vending machine activity) by

using conditional formulae satisfying the conditions of Prop. 8.

For ADSs we have found that it is convenient to group together the axioms

de�ning the activity starting from states of a speci�c kind (i.e. all those de�ning

transitions with starting state of such kind); for the variant for each state kind

we de�ne also which are the non-permitted transitions starting from states of such

a kind and the related recovery activity using a special syntactic format.

Here, as before for the requirement speci�cation, for lack of room, we do not give

the complete speci�cation, which can be found in [7], but report only some fragments

of the various parts.

As for the requirement speci�cation, plus : - which cor-

responds to a null interaction with the external world (i.e. internal activity).

The vending machine may be in one of the following states.

Waiting characterized by the credit

:

After having received a valid selection characterized by a drink

:

Serving a request characterized by the credit and a drink

:

O�

:

Broken but on (a constant, i.e. a zero-ary operation)

:

...........

()

()

l

P

P

d

P

d

P

P

P

P

Activity

Wait

Selected

l

l; s

l s

l; s s

c < c c

c c c; d

d

c c

c c ; c

c �; c

c ;

d

d ; d

(permitted activity)

(nonpermitted activity)

(permitted activity)

TOKEN

SELECT

SELECT

SWITCH OFF

TOKEN

NP

RESET

NP

BREAK DOWN

NP

RESET

TOKEN

!

�!

�

� �����!

� � ��������!

��������!

����������!

� � �����!

�����!

�����������!

�

�����!

�����!

We use also a special operation

: -

describing the states in which something of abnormal has happened and that a

recovery is necessary: () represents a recovery state starting from which the

only transition is permitted and has label and �nal state . So, in the activity part

we have implicitly the axiom () .

() (+)

() ()

(0) ()

() ()

() (())

() (())

() ((0))

() (0)

() ()

Rec vending machine vending machine vending machine

Rec

Rec

If the credit is less than the maximum, then a token may normally be introduced

in the waiting vending machine and the credit is incremented (here the price is a

constant)

Max Credit Wait Wait Price

If the credit is more than the price, then a drink may normally be selected in the

waiting vending machine which passes to serve

Price Wait Serv

If the credit is null, then a drink may normally be selected in the waiting vending

machine which passes to selected

Wait Selected

The waiting vending machine may normally be switched o�, keeping recorded the

current credit

Wait O�

If the credit is maximum, the introduction of a token is abnormal. Recovery consists

of returning the token without changing the credit

Max Credit Wait Rec RETURN TOKEN Wait

A reset is abnormal in the waiting status. Recovery consists of an internal action

restoring the waiting status

Wait Rec Wait

A breakdown is abnormal. Recovery consists of being repaired restoring the waiting

status with no credit

Wait Rec REPAIR Wait

The selected vending machine may normally be reset passing to wait

Selected Wait

A token may normally be introduced into the selected vending machine, which passes

to serve, while the credit becomes the price of a drink

Selected Serv Price

0

()d

P

l

P

P

P

P

O

SELECT

NP

��������!

�! �!

f g

f �! j g

(nonpermitted activity)

d �; d

�x; l; y : � x; l; y

x y � x; l; y

5 Concluding Remarks and Further Work

A selection is abnormal. Recovery consists of an internal action restoring the selected

status

Selected Rec Selected

regulation

ought to do

() (())

.

In this example the recovery activity is simple and immediately performed, but

we can also consider more complex cases where several violations may occur and

we have to establish a policy for deciding which violations must recovered �rst and

whether some violation imposes to forget other ones.

It is worthwhile to say that the above design speci�cation has been proved correct

w.r.t. the above requirements, see [7].

We have presented a way to extend the ADSs logic formalism for the speci�cation

of dynamic systems with the deontic concept of permission. This attempt seems

worthwhile both from a theoretical and a methodological point of view.

The resulting formalism is sound, indeed it turns out to be an institution (see

[7]) and it is really an extension of ADSs (an ADS is a -speci�cation in which all

transitions are permitted, i.e. =). The usual theoretical tools equipping

ADSs have been uplifted to speci�cations, as requirement and design speci�cations,

a notion of when a speci�cation correctly implements another one, sound/complete

deductive systems and so on. Moreover, does not have the paradoxes which fre-

quently bother other deontic logics.

From a methodological point of view, we have that the requirement and design

speci�cations of a dynamic system can be split in parts concerning respectively: { the

normal cases without considering any failure of the system; { the possible failures

(internal, due e.g. to the breaking of parts of the system, or external, due e.g. to

wrong usages from the outside world, recall that dynamic systems are open and that

usually assume that external users behave following some norms); { the recovery, if

any, from each failure.

Moreover, we can give a syntactic format explicitly corresponding to such modu-

lar structure to the speci�cations; and that can help to write, to read and to modify

complex speci�cations.

With regard to the future development of this work we plan to go along the

following lines.

Obviously, we will have to analyse how to build up a complete deontic formalism,

i.e. a formalism dealing with permission and obligation at the same time.

A formalism for obligation (called , see [6]) has already been developed, whose

main features are as follows. First of all, obligations are elements of a that

may be associated with the states of the LTSs. Such a regulation gives a picture of

what the system starting from a particular state. For homogeneity with

permission, obligations are applied over transitions, described by particular terms

having form () which denotes the set of transitions

() .

0

0

O

P

TOKEN

imm

imm

imm

R B

B

R B R B

l

P

Ob Rev Before

Ob

Vi Ob

Ob

Ob

�����! ^ : �

f g

f g �

f _ g

f ^ �! g

s; tr tr tr s

tr tr

tr tr tr tr tr

; �x; l; y : l

; �x; l; y : l

; �x; l; y : l l

; �x; l; y : � x y

Reg

violation

vm vm Wait vm

Reg vm RETURN TOKEN

RETURN TOKEN

vm RETURN TOKEN

Reg vm OVERHAUL REPAIR

ideal acceptable faulty

structures

Reg vm

Using di�erent operators, we may express immediate/non-immediate obligations

and associate with them revocation as well as deadline conditions. For example, the

atom (() () ()) says that in the regulation of there is

the non-immediate obligation to perform a transition in before one in , unless

one in has been performed before one in (, , are terms represent-

ing sets of transitions). The deadline condition allows to associate the concept of

with non-immediate obligations too.

The fact that explicitly handles violations makes possible to describe which

is the recovery from particular non-ideal behaviours (behaviours not satisfying obli-

gations introduced along them), simply by putting new obligations on the violation

states.

For example, in the vending machine speci�cation we can have the axiom

()

((=))

saying the vending machine has the immediate obligation to return a token inserted

when it is not waiting (i.e. to perform a transition with label).

If the token is not returned (i.e. the above obligation has been violated), the vend-

ing machine ought to be eventually either overhauled or repaired. This is expressed

by the formula

((=))

((= =))

As for the permission case, from the description of a regulation and the analysis

of the system behaviours, we may associate some quali�cations with states: a state

is , and i� it satis�es all its own obligations, respectively, in

all behaviours, in some behaviour and in no behaviour. We can also make these

quali�cations relative to a particular obligation. It is worthwhile to note that, each

time we require a state to be ideal (acceptable) w.r.t. an obligation, we force the

state to satisfy it in every (at least one) future behaviour.

A complete formalismmight be constructed starting from by adding the above

constructors for expressing obligations and regulations, as well as the relative qual-

i�cations. In the complete formalism there are two di�erent and completely inde-

pendent (permission and obligation), that are used to describe di�erent

aspects of ideal and real behaviour of a system. In such a way, we do not impose

any particular relationship between permissions and obligations (e.g. we can oblige

a system to perform non-permitted transitions).

However, it is possible, and from a methodological point of view advisable, to con-

sider a subformalismwithin which, e.g., obligations are only on permitted transitions;

thus where it is only possible to express that a transition ought to be performed, im-

mediately or eventually, but in a permitted way. This is really a subformalism, since

the new combinators for \permitted obligations" may be expressed by particular

formulae of the complete formalism, as e.g.

(()).

A relevant point for the proposed formalisms based on deontic concepts is to

experiment them on real case studies, to �nd out which are most common forms of

recovery and to determine a class of formats large enough to cover them; so that

handling of such cases becomes simple and natural.

�

T

n

n

+

1

1

2 2

2

2 2 2

2

S S

S

S Op OP Pr PR

S

st

st

A A

1

A

1

A

A

1 1

A

A Algebras with Predicates

w;s w ;s

w

w

s s

s

n s s s

n s s

n n

s s

�

f g

f g

f g f g f g

2

� � ! � � !

� � � � �

2

f g

� ; ;

�

; ;

s

s : : : s s : : :

s : : : s : : :

a ; : : : ; a a ; : : : ; a

� �

�

algebras with predicates

many-sorted predicate signature signature

S OP PR

S sorts

OP OP operation symbols

PR PR predicate symbols

-algebra

Op Pr

carriers interpretation of the operation symbols inter-

pretation of the predicate symbols

S

Op Op

Pr Pr

Pr Pr

S sort assignment S

X X

X term algebra X

nonempty carriers

The temporal logic for ADSs of Sect. 2.3 has been extended to express safety

and liveness properties concerning not just single states and single transitions but

more complex activities; such activities are represented by whole sequences of tran-

sitions and are called abstract events, see [19, 2]. We want to extend both permission

and obligation to act on abstract events, as it has been done in a di�erent context

in [15, 11].

The speci�cation method founded over basic ADSs o�ers a friendly speci�cation

language, methodological guidelines for writing speci�cations, how to associate with

formal speci�cations corresponding informal speci�cations (see [4, 3]), software tools

to help to asses the correctness of a speci�cation; moreover, there are also graphical

tools helping in the use of such formalism, which avoid to write a long list of axioms

that could become very complicated especially for not specialized users. We need to

extend them to cover the new speci�cations using the deontic concepts.

Finally we want just to mention a di�erent use of deontic concepts as a basis

for speci�cation formalisms (see e.g. [13]), worthwhile of further investigations, that

consists of using the concepts of permission and obligation to restrict the activities

of a system and to formalize properties it must absolutely satisfy. Such use is not

properly deontic, since there is no distinction between real and ideal behaviour, but

it gives us a very natural way to formulate the requirements of a system (see [6] for

an example of such formalisms).

Here we summarize the main de�nitions and facts about ,

see [12].

A , shortly, a , (just a 1 order language)

is a triple = (), where

{ is a set (the set of the);

{ is a family of sets: ;

{ is a family of sets: ;

A , just a 1 order structure, is a triple

A = (A)

consisting of the , the and the

. More precisely:

{ if , then A is a set;

{ if : , then :A A A is a function;

{ if : , then A A .

Usually we write () instead of () .

Given a signature with set of sorts , a on is an -indexed

family of sets = .

Given a sort assignment , the T () is the -algebra de�ned as

usual.

In this paper we assume that algebras have (as this applies

to term algebras as well, we have an implicit assumption on signatures: that they

contain \enough constants symbols").

S2

1

1

n

n

References

Proposition9.

A

A

1

B

1

A

1

B

1

A

1

1 2 1 2

1 1

�

;V

s s s s

s n s s n

n s s n

n

n n

!

2

! f ! g

2

2

C C 2 C

2 C !

C

2

j 2 C j

j 2 C j

ftp.disi.unige.it pub/reggio

ftp.disi.unige.it

/pub/reggio

� V

t t

V t

� h

h h h

h a ; : : : ; a h a ; : : : ; h a

a ; : : : ; a h a ; : : : ; h a

�

h

t t

t t t t

t ; : : : ; t t ; : : : ; t

Proc. TAPSOFT'87, Vol. 1

Proc.

of Seventh International Workshop on Software Speci�cation and Design (IWSSD-7)

Proc. MFCS'91

T.C.S.

variable evaluation X

all X X interpretation of

in w.r.t.

homomorphism

Op OP Op Op

Pr PR Pr Pr

initial

If is initial in , then for all ground terms , . . . , and all

predicates Pr PR:

{ i� for all : ;

{ Pr i� for all : Pr .

If A is a -algebra, a : A is a sort-respecting assign-

ment of values in A to the variables in . If T (), the

A is denoted by and given as usual.

If A and B are -algebras, a from A into B, written

:A B, is a family of total functions = :A B s.t.:

{ for all : (()) = (() ());

{ for all : if (), then (() ()).

Given a class of -algebras , an algebra I is in i� I and for all

A there is a unique homomorphism : I A; notice that the initial element is

unique up to isomorphism.

I

I = = A A = =

I = () A A = ()

1. E. Astesiano and G. Reggio. SMoLCS-Driven Concurrent Calculi. In H. Ehrig,

R. Kowalski, G. Levi, and U. Montanari, editors, , num-

ber 249 in Lecture Notes in Computer Science, pages 169{201. Springer Verlag, Berlin,

1987.

2. E. Astesiano and G. Reggio. Specifying Reactive Systems by Abstract Events. In

.

IEEE Computer Society, Los Alamitos, CA, 1993.

3. E. Astesiano and G. Reggio. A Case Study in Friendly Speci�cations of Concurrent

Systems (Lamport & Broy's Speci�cation Problem Presented at the Dagstuhl Seminar

\Speci�cation and Re�nement of Reactive Systems { A Case Study"). Technical Report

DISI{TR{94{21, Dipartimento di Informatica e Scienze dell'Informazione { Universit�a

di Genova, Italy, 1994.

4. E. Astesiano and G. Reggio. Formally-Driven Friendly Speci�cations of Concurrent

Systems: A Two-Rail Approach. Technical Report DISI{TR{94{20, Dipartimento di

Informatica e Scienze dell'Informazione { Universit�a di Genova, Italy, 1994. Presented

at ICSE'17-Workshop on Formal Methods, Seattle April 1995.

5. E. Astesiano and G. Reggio. Algebraic Dynamic Speci�cations: An Outline. Technical

Report DISI{TR{95{08, Dipartimento di Informatica e Scienze dell'Informazione {

Universit�a di Genova, Italy, 1995.

6. E. Coscia. Utilizzo di Concetti Deontici nella Speci�ca Formale di Sistemi Dinamici.

Master Thesis. In Italian, 1995.

7. E. Coscia and G. Reggio. Deontic Concepts in the Speci�cation of Dynamic Systems:

the Permission Case. Technical Report DISI{TR{95{14, Dipartimento di Informatica e

Scienze dell'Informazione { Universit�a di Genova, Italy, 1995. Available by anonymous

ftp at , directory .

8. G. Costa and G. Reggio. Abstract Dynamic Data Types: a Temporal Logic Approach.

In A. Tarlecki, editor, , number 520 in Lecture Notes in Computer

Science, pages 103{112. Springer Verlag, Berlin, 1991.

9. G. Costa and G. Reggio. Speci�cation of Abstract Dynamic DataTypes: A Temporal

Logic Approach. , 1996. Avaible by anonymous ftp at ,

directory .

A

Acknowledgement We warmly thank Roel Wieringa and Jos�e Fiadeiro, for

having introduced us to the realm of deontic logic and the referees for their careful

reading and helpful comments.

J. Logic

Computation

Proc.

TAPSOFT'87, Vol. 2

Deontic Logic in Computer Science: Normative System Speci�cation

Proc. of International Symposium on Requirements

Engineering RE'93

System Speci�cation: a Deontic Approach

Studia Logica

Deontic Logic in Computer Science: Nor-

mative System Speci�cation

Recent Trends in Data Type Speci�cation

Handbook of Theoret.

Comput. Sci.

10. P. D'Altan, J.-J.Ch. Meyer, and R.J. Wieringa. An Integrated Framework for Ought-

to-Be and Ought-to-Do Constraints. Technical Report IR-342, Faculty of Mathematics

and Computer Science, Vrije University, Amsterdam, 1993.

11. J. Fiadeiro and T. Maibaum. Temporal Reasoning over Deontic Speci�cation.

, 1(3):357{395, 1991.

12. J. Goguen and J. Meseguer. Models and Equality for Logic Programming. In

, number 250 in Lecture Notes in Computer Science, pages 1{22.

Springer Verlag, Berlin, 1987.

13. A.J.I. Jones and M. Sergot. On the Characterization of Law and Computer Systems:

The Normative Systems Perspective. In J.-J.Ch. Meyer and R.J. Wieringa, editors,

. John Wiley &

Sons, 1993.

14. S.J.H. Kent, T.S.E. Maibaum, and W.J. Quirk. Formally Specifying Temporal Con-

straints and Error Recovery. In

. IEEE Computer Society, Los Alamitos, CA, 1993.

15. S. Khosla. . PhD thesis, Imperial College,

London, 1988.

16. J.-J. Ch. Meyer, F.P.M. Dignum, and R.J. Wieringa. The Paradoxes of Deontic Logic

Revisited: A Computer Science Perspective. Technical Report UU-CS-1994-38, De-

partment of Computer Science, Utrecht University, 1994.

17. J.-J. Ch. Meyer, F.P.M. Dignum, and R.J. Wieringa. A Solution to the Free Choice

Paradox by Contextually Permitted Actions. , 1995. To be published.

18. J.-J.Ch. Meyer and R.J. Wieringa, editors.

. John Wiley & Sons, 1993.

19. G. Reggio. Event Logic for Specifying Abstract Dynamic Data Types. In M. Bidoit and

C. Choppy, editors, , number 655 in Lecture

Notes in Computer Science, pages 292{309. Springer Verlag, Berlin, 1993.

20. G. Reggio and E. Crivelli. Speci�cation of a Hydroelectric Power Station: Revised

Tool-Checked Version. Technical Report DISI{TR{94{17, Dipartimento di Informatica

e Scienze dell'Informazione { Universit�a di Genova, Italy, 1994.

21. G. Reggio and V. Filippi. Speci�cation of a High-Voltage Substation: Revised Tool-

Checked Version. Technical Report DISI-TR-95-09, Dipartimento di Informatica e

Scienze dell'Informazione { Universit�a di Genova, Italy, 1995.

22. M. Wirsing. Algebraic Speci�cations. In J. van Leeuwen, editor,

, volume B, pages 675{788. Elsevier, 1990.

This article was processed using the LT

E

X macro package with LLNCS style

