
Improving Use Case Based Requirements Using

Formally Grounded Spei�ations

C. Choppy

1

and G. Reggio

2

1

LIPN, Institut Galil�ee - Universit�e Paris XIII, Frane

2

DISI, Universit�a di Genova, Italy

Abstrat. Our approah aims at helping to produe adequate requirements,

both lear and preise enough so as to provide a sound basis to the overall

development. We present a tehnique for improving use ase based requirements,

by produing a ompanion Formally Grounded spei�ation, that results both in

an improved requirements apture, and in a requirement validation. The Formally

Grounded requirements spei�ation is written in a \visual" notation, using

both diagrams and text, with a formal ounterpart (written in the Casl-Ltl

language). The resulting use ase based requirements are of high quality, more

systemati, more preise, and its orresponding Formally Grounded spei�ation

is available. We illustrate our approah on an Aution System ase study.

1 Introdution

While tools and tehniques are now available to support quite eÆiently software devel-

opment, one of the most diÆult part remains to produe adequate requirements, both

lear and preise enough so as to provide a sound basis to the overall development.

Formally based spei�ations are advoated sine they lead to preise, unambiguous

desriptions, but they remain diÆult to use and impratial in quite a number of ases.

We think the reason for this is twofold. One point that was often put forward is the

diÆulty to write and read suh spei�ations. Another point we see is that it may be

diÆult to start with formal spei�ations while still working on the requirements (thus,

trying to understand what is the problem about), hene our idea to take advantage of

use ases.

Use ases were introdued by Jaobson [10℄ after the earlier idea of senarios, whih

are the di�erent possible ourses that di�erent instanes of the same use ase an

take. Use ases are used to desribe/apture the requirements of software systems,

while providing an overall piture of what is happening in the system. The use ase

desription is textual (it should be \familiar", easy to read) and sums up a set of

senarios.

Use ases are popular beause they are easy to use and informal, however \use

ases are wonderful but onfusing" [7℄. A both good and bad thing is that there is

a lot of freedom in what should inlude a use ase desription, and how it should

be written. UML [17℄ proposes a diagram for use ases, states that desriptions are

needed too, and that the sequene of use ase ativities are doumented by behaviour

spei�ations (e.g., with interation diagrams). However, examples show that use ases

are often impreise, and also that the terms used are vague or ambiguous.

Sine use ases are written in the early phases of software development, it is ruial

that they should be worked out with a lot of are, so as to avoid to generate errors

that will be diÆult and ostly to orret further on. Interesting work is done to pro-

pose some guidelines on how to write use ase desriptions, e.g., Cokburn[7℄ proposes

templates for struturing their desriptions. In the following, we use an adaptation of

this template provided by Sendall[13℄.

Our idea is to �nd a way to ombine both advantages of use ases and of formal

spei�ations. Here, we present a tehnique for improving use ase based requirements,

developing a ompanion Formally Grounded spei�ation, that results both in an im-

proved requirements apture (some requirements may be updated and some may be

new), and in a requirement validation sine writing the spei�ation leads to hek

that the requirements an be further made expliit up to a preise spei�ation.

The produed requirements spei�ation is written in a \visual" notation, using

both diagrams and text, with a formal ounterpart whih is written in the Casl[11℄

and Casl-Ltl[12℄ spei�ation languages.

Being Formally Grounded, our method is systemati, and it yields further questions

on the system that will be reeted in the improved use ase desriptions. The resulting

use ase desriptions are of high quality, more systemati, more preise, and their

orresponding Formally Grounded spei�ation is available.

In Set. 2 we shortly sum up our Formally Grounded approah for writing the

requirements spei�ation of a software system (see [6℄ for a full presentation with other

examples). In Set. 3 we present our method for improving use ase based requirements

using Formally Grounded spei�ations, and in Set. 4, we then show how our method

applies to a part of the Aution System ase study (the omplete version is in [5℄),

showing how the starting use ase based requirements have lari�ed, and how many

relevant aspets of the Aution System have been enlightened, before onluding and

disussing some related work in Set. 5.

2 Our Formally Grounded Approah for Requirement

Spei�ation

Our Formally Grounded spei�ation approah (see [6℄ for a omplete presentation),

aims at helping the user to understand the system to be developed, and to write the

orresponding formal spei�ations. We also support visual presentations of formal

spei�ations, so as to \make the best of both formal and informal worlds". We devel-

oped this method for the (logial-algebrai) spei�ation language Casl [11℄ (Common

Algebrai Spei�ation Language, developed within the joint initiative CoFI

1

), and for

an extension for dynami systems Casl-Ltl

2

[12℄. Hene, for eah visual spei�ation,

its formal ounterpart in Casl or Casl-Ltl is given.

Our method aters for three di�erent kinds of modelling/spei�ation entities, (i)

a data struture, or data type, (ii) a simple dynami system, that is a single dynami

entity, and (iii) a strutured dynami system, that is omposed of mutually interating

dynami entities; while keeping a ommon \meta"-struture and way of thinking.

Eah entity onsidered may be modularly deomposed - so its (sub)parts are identi-

�ed-, and is haraterized by its onstituent features. Its model/spei�ation onsists

of a visual presentation of these parts and onstituent features, and of their properties

1

http://www.ofi.info

2

LTL stands for Labelled Transition Logi[8, 2℄.

expressed in a natural-language style notation based on an appropriate underlying logi

(the variant of logi depends on the kind of entity).

One the onstituent features are identi�ed, we provide guidelines for an exhaustive

searh of the properties. To this end, we use a tableau whose ells, indexed by the

pairs of onstituent features, should be �lled. For eah ell we give a shemata for

the relevant properties it should ontain, expressing either, when the two indexes are

di�erent, the mutual relationships between the two features, or, when they are equal,

what is known on that feature. This tableau-�lling method ensures that no ruial part

of the spei�ation is forgotten, and results in produing a quite strutured/navigable

set of properties, whih should be suitable to support evolution.

Data Strutures Data strutures are haraterized by a set of values, some onstru-

tors to denote those values, and some prediates and operations. Data strutures may

be strutured, e.g., they may import other data strutures. These features and the

imported data strutures (the parts) are visually presented as in the diagram below.

Their properties are expressed in a many-sorted, �rst order logi [11℄ with a natural

language-like notation. The tableau-�lling tehnique provides a systemati way to �nd

the respetive properties of onstrutors, prediates and operations, e.g., de�nedness,

truth of prediate, et., see [6℄.

...

Data Structure Name

Predicates

Constructors

Operations

1

rData

Data

Data Struture

...

System Name

Elementary Interactions
Data

Data State Observers

1

r

Simple Dynami System

Simple Dynami Systems Simple dynami systems are haraterized by their states

and their transitions, where eah transition orresponds to a hange of state together

with a set of elementary interations with the external world. Eah elementary inter-

ation is desribed by a name and possibly by parameters (data values). The states

are abstratly haraterized by \state observers", whih, given some parameters, may

return some value (operations) or the truth of some ondition (prediates). Thus, the

onstituent features of a simple (dynami) system are its elementary interations with

the external world and its state observers. The parts of a simple system are its data

strutures needed to de�ne the parameters and the results of elementary interations

and state observers. The above diagram visually presents whih are the subparts and

the onstituent features, while the spei�ation of the parts is given separately. These

properties are expressed with a natural language -like notation derived by Casl-Ltl.

Casl-Ltl [12℄ is a Casl extension based on LTL (Labelled Transition Logi) [8, 2℄,

a branhing time temporal (many-sorted, �rst-order with edge formulae) logi. This

notation uses ombinators for expressing that elementary interations take plae (e.g.,

e happened), standard logis (if - then -else, not, and, = , exists, . . .), and also

temporal ombinators (next, eventually, before, in any ase, in one ase

3

).

A transition from one state to another is haraterized by elementary interations,

and properties about states and transitions are expressed, e.g., pre- and post-onditions

for elementary interations, or inompatibilities between them. Properties for a state

3

The last two express universal and existential quanti�ation over exeution paths.

observer explore e.g., whih elementary interations may ause a hange in its value,

or whih are its possible hanges. Again, the tableau-�lling tehnique provides a sys-

temati way to �nd these properties.

Both diagrams and text have a formal ounterpart in the Casl-Ltl language [12℄.

Strutured Dynami Systems A strutured (dynami) system is a speialized simple

system that is omposed of several dynami systems, its subsystems, whih an in

turn be simple or strutured. A transition of suh a system should reet whih are

the subsystems transitions that our. Moreover, it is neessary to desribe how the

subsystems synhronize.

We present here a simpler version of strutured systems (the general ase is given

in [6℄) that have only simple subsystems (possibly of di�erent types), where two sub-

systems may interat only pairwise by performing simultaneously the same elementary

interation, i.e., the behaviour of these strutured systems is given by transitions made

of groups of subsystem transitions, where eah elementary interation of a subsystem is

mathed by one of another subsystem. Furthermore, the onsidered strutured systems

are losed, i.e., they have no interation with the external world.

A strutured system is visually presented by :

(i) a Context View whih is a on�guration diagram showing the subsystems (in the

Con�guration) and their types (the spei�ations of all those types are given sepa-

rately), aompanied by a ooperation diagram showing the ooperations among the

subsystems (eah ooperation is given by the synhronized exeution of elementary

interations, say EI

i

).

...

System Name

Configuration
Syst

Syst

1

r

Con�guration Diagram

Id : Syst
EI ... EI

1 k1 Syst Id :k

1 n

Cooperation Diagram

(iii) a Data View whih puts together the spei�ations of all data strutures that are

parts of the system and of its subsystems.

To speify the requirements on a software System it is suÆient to speify a stru-

tured dynami system, whose subsystems are the System itself and all those entities

interating with it (ontext entities). The spei�ation of the System will be the re-

quirements, whereas the spei�ations of the ontext entities will show the assumptions

made by the System on the ontext entities.

3 The Method for High-Quality Requirements

We present in this setion our method for produing enhaned requirements. It is

organized in �ve tasks, and works on use ase based requirements while developing a

ompanion Formally Grounded spei�ation, whih results in improved requirements.

Task 1 Give the use ase based requirements on the System following the method

proposed by S. Sendall and A. Strohmeier in [14℄.

Task 2 Find out whih are the external entities playing the roles orresponding to the

various ators (ontext entities) and determine their types. At this point we an draw a

�rst version of the Context View (see end of previous setion), by depiting the System

and the found ontext entities together with their types; the ooperation diagram will

have only ars onneting the System with the ontext entities.

Task 3 By examining the use ase desriptions, one after the other, look for elementary

interations and state observers of the System; the former should model the interations

between the System and the ators appearing in the use ase senarios, whereas the

latter should model information reorded in the System examined or updated in the

use ase senarios. Both of them should be depited in the visual presentation of the

System spei�ation (together with the type of their arguments and/or results); the

elementary interations should also be reported in the ooperation diagram to show

whih ontext entities are taking part in that interations.

In the meantime put in the Data View any data struture that is used as an argument

or a result by a found elementary interation or state observer. The assoiation between

use ases and the elementary interations and state observers related to it (i.e., whih

are needed to desribe it) should be reorded. During this task, it is possible to �nd

new entities interating with the System that do not orrespond to already known

ators; they should be added to the Context View, together with their spei�ations.

Whenever, there are relevant assumptions on the ontext entities they should be made

expliit by giving their Formally Grounded spei�ation (they are just simple dynami

systems).

Task 4 Find all the properties about the System following our tableau-�lling method.

When �lling a ell related to some onstituent features (elementary interations and

state observers), the desriptions of the assoiated use ases should be examined as a

soure of inspiration. During this task, probably, new state observers and data stru-

tures will be added, and perhaps the parameters of the existing elementary interations

and state observers may be modi�ed.

Task 5 During the tasks 3 and 4 many questions about the System will arise, many

aspets of the System that need to be investigated will be highlighted, and many aspets

of the System preisely desribed by the use ases will be found not onvining. These

points may be settled following the usual ways, e.g., by interating with the lient,

if available, by doing more investigation on the appliation domain, or by looking at

existing similar systems. The produed Formally Grounded spei�ation should reet

the System where all these points have been settled.

The original use ase based requirement spei�ation should then be revised so as

to be oherent with the Formally Grounded one. In general use ases and/or senarios

may be added or removed, senarios may be modi�ed by adding/removing steps or

by making more preise the terminology used to desribe them. In this way the �nal

outome of our method will be not only a better and more systemati understanding of

the System reeted in a Formally Grounded spei�ation of the requirements, but also

a more preise and sound use ase based spei�ation of the same requirements.

Clearly task 5 will be performed in parallel with tasks 3 and 4.

4 The Aution System Case Study

In this paper we present a part of the appliation of our method to the ase study of

an Aution System proposed in [13℄ by S. Sendall; the remaining parts are in [5℄. The

desription of the problem (from [13℄) solved by the Aution System is shown in Fig. 1.

Your team has been given the responsibility to develop an online aution system that allows

people to negotiate over the buying and selling of goods in the form of English-style autions

(over the Internet). The ompany owners want to rival the Internet autioning sites, suh as,

eBay, and uBid. The innovation with this system is that it guarantees bid plaed are solvent,

making for a more serious marketplae.

All potential users of the system must �rst enroll with the system; one enrolled they have to

log on to the system for eah session. Then, they are able to sell, buy, or browse the autions

available on the system. Customers have redit with the system that is used as seurity on

eah and every bid. Customers an inrease their redit by asking the system to debit a

ertain amount from their redit ard.

A ustomer that wishes to sell initiates an aution by informing the system of the goods to

aution with the minimum bid prie and reserve prie for the goods, the start period of the

aution, and the duration of the aution, e.g., 30 days. The seller has the right to anel

the aution as long as the aution's start date has not been passed, i.e., the aution has not

already started.

Customers that wish to follow an aution must �rst join the aution. Note that it is only

possible to join an ative aution. One a ustomer has joined the aution, (s)he may make a

bid, or post a message on the aution's bulletin board (visible to the seller and all ustomers

who are urrently partiipants in the aution). A bid is valid if it is over the minimum bid

inrement, and if the bidder has suÆient funds, i.e., the ustomer's redit with the system

is at least as high as the sum of all pending bids. Bidders are allowed to plae their bids until

the aution loses, and plae bids aross as many autions as they please. One an aution

loses, the system alulates whether the highest bid meets the reserve prie given by the

seller, and if so, the system deposits the highest bid prie minus the ommission taken for

the aution servie into the redit of the seller (redit internal with the system).

The aution system is highly onurrent{lients bidding against eah other in parallel, and a

lient plaing bids at di�erent autions and inreasing his/her redit in parallel.

Fig. 1. Aution System Problem Desription

4.1 Aution System Task 1 { Use Case Based Requirement Spei�ation

Here we report the use ase based spei�ation of the requirement on the Aution

System given following the method of [14℄ as found in [13℄. The only di�erene with

[13℄ is that we summarize the ators and the use ases by means of a UML use ase

diagram, see Fig. 2, below, showing also the \inlude" relationships among the use

ases (depited by dotted lines). In the following use ase desriptions **" means that

the details about some aspets of the Aution System (e.g., data format or rules to

follow to perform some ativity) are given in an aompanying doument, not present

in [13℄ and thus not onsidered here. Here we do not detail the shema for the use ase

desription followed in this example and presented in [14℄. For lak of room, we present

only the main use ase buy item under aution, the other ones are in [5℄.

User

buy and sell goods
by auction

Customer

Seller

buy item
under auction

sell item
by auction

increase credit identify userclose auction search for
auction item

Fig. 2. Aution System: Use ases and ators

Use Case buy item under aution

Intention in Context: The intention of the Customer is to follow the aution, whih may

then evolve into an intention to buy an item by aution, i.e., (s)he may then hoose to bid

for an item. The Customer may bid in many di�erent autions at any one time. (Also the

ator Partiipant means the Seller and all the Customers that are joined to the aution).

Primary Ator: Customer

Preondition: The Customer has already identi�ed him/herself to the System.

Main Suess Senario: Customer may leave the aution and ome bak again later to

look at the progress of the aution, without e�et on the aution; in this ase, the

Customer is required to join the aution again.

1. Customer searhes for an item under aution (searh item).

2. Customer requests System to join the aution of the item.

3. System presents a view of the aution** to Customer.

Steps 4-5 an be repeated aording to the intentions and bidding poliy of the Customer

4. Customer makes a bid on the item to System.

5. System validates the bid, reords it, seures the bid amount from Customer's redit**,

releases the seurity on the previous high bidder's redit (only when there was a previous

standing bid), informs Partiipants of new high bid, and updates the view of the aution

for the item** with new high bid to all Customers that are joined to the aution.

Customer has the high bid for the aution.

6. System loses the aution with a winning bid by Customer.

Extensions:

2a. Customer requests System not to pursue item further:

2a.1. System permits Customer to hoose another aution, or go bak to an earlier point

in the seletion proess; use ase ontinues at step 2.

3a. System informs Customer that aution has not started: use ase ends in failure.

3b. System informs Customer that aution is losed: use ase ends in failure.

4a. Customer leaves aution:

4a.1a. System asertains that Customer has high bid in aution:

4a.1a.1. System ontinues aution without e�et; use ase ontinues at step 6

4a.1b. System asertains that Customer does not have high bid in aution: use ase ends

in failure.

4jja. Customer requests System to post a message to aution and provides the message

ontent**.

4jja.1. System informs all Partiipants of message; use ase ontinues from where it was

interrupted.

5a. System determines that bid does not meet the minimum inrement**:

5a.1. System informs Customer; use ases ontinues at step 4.

5b. System determines that Customer does not have suÆient redit to guarantee bid:

5b.1. System informs Customer; use ases ontinues at step 4.

6a. Customer was not the highest bidder:

6a.1. System loses the aution; use ase ends in failure.

4.2 Aution System: Task 2

The Aution System has any number of ontext entities all of the type Person (anyone

aessing the system by Internet). A Person may play three roles: User (plain Internet

user), Customer (a User identi�ed by the Aution System and onneted with it)

and Seller (a Customer selling some goods using the Aution System). We give a

�rst version of the Context View showing the Aution System and the Persons (the

inomplete ooperation diagram just shows that the a Person interats only with the

Aution System).

Universe

AuctionSystem AuctionSystem

Person P1:Person
......

0 =< n
Pn:Person

AuctionSystem

Person

4.3 Aution System: Task 3

We examine the various use ases, one after the other, looking for the elementary ations

and the state observers of AutionSystem, together with the needed data strutures and,

possibly new ontext entities. Note that, for eah use ase, we do not give the features

used by the inluded sub-use ases.

We name eah elementary interation made by the Aution System with an identi�er

of the form AS . . . , whereas those made by a person ontext entity will be named

User . . . , Customer . . . and Seller . . . , depending on the role.

For eah use ase we produe a fragment of the Context View, of the Data View

and of the spei�ation of the Aution System. At the end, all these fragments will be

put together getting the initial view of the strutural part of the Formally Grounded

requirement spei�ation of the Aution System. To be able to support the evolution of

the requirements, however, we require to keep trak of the features of the spei�ation

(elementary interations, state observers, and data strutures) that are related with

eah use ase.

Already, during this task many questions about the Aution System may arise that

should be settled with the lient; we use the following annotation for these questions

and the way hosen to settle them Q: problem A: settled in this way.

Use Case buy item under aution The elementary interations of AutionSystem,

shown in the �rst ompartment of the above diagram, orrespond either to an inter-

ation made in the use ase by the Aution System towards a ontext entity (e.g.,

AS Bid Ok for ommuniating that the plaed bid was ok) or to an interation re-

eived by a ontext entity (e.g., Customer Bid for a Customer plaing a bid). Instead,

the state observers, in the seond ompartment, orrespond to information reorded

inside the Aution System either tested or updated during the use ase (e.g., redit :

the atual redit of a Customer denoted by an identi�ation; infoAbout : the urrent

information about an aution).

AuctionSystem

is_Identified(Identification,Session_Key)
credit(Identification): Int
infoAbout(Auction_Id): Auction_Info
joined(Session_Key,Auction_Id)

CUSTOMER_JOIN_AUCTION(Session_Key,Auction_Id)
AS_S HOW_AUCTION(Session_Key,Auction_View)
CUSTOMER_B ID(Session_Key,Auction_Id,Int)
AS_B ID_OK(Session_Key,Auction_Id,Int)
CUSTOMER_LEAVE_AUCTION(Session_Key,Auction_Id)
AS_B ID_TOO_LOW(Session_Key,Auction_Id,Int)
AS_NO_CREDIT_FOR_B ID(Session_Key,Auction_Id,Int)
CUSTOMER_POST_MESSAGE(Session_Key,Auction_Id,Message)

AS_S END_MESSAGE(Address,String)

The Context View, see below, shows whih ontext entities take part in the use ase

(e.g., the person), and whih are the interations of the Aution System with them

(e.g., Customer Join Aution is an interation between Aution System and the

person).

Universe

AuctionSystem

Person

Mail

Mail

P1:Person
0 =< n

Pn:Person

AuctionSystem

AuctionSystem

Person

CUSTOMER_JOIN_AUCTION
AS_S HOW_AUCTION
CUSTOMER_B ID
AS_B ID_OK
CUSTOMER_LEAVE_AUCTION
AS_B ID_TOO_LOW
AS_NO_CREDIT_FOR_B ID
CUSTOMER_POST_MESSAGE

Mail

AS_S END_MESSAGE

Q: This use ase requires that the Aution System informs the partiipants to an aution

about various fats (e.g., when there is a new higher bid or a message of another

partiipant), but nothing is said on how that will be performed. In the desription of

the use ase lose aution there is a note saying that this is an open issue and that it

will be likely made by email. A: It is assumed the existene of an external mail servie,

not further detailed, able to deliver messages to User identi�ed by some kind of address

(beause the lient will deide in future among email, SMS, messaging systems). The

mail servie will be then a NEW ontext entity (and a new seondary ator).

The Data View shows all the data used as parameters by the found elementary

interations and state observers, and whih prediates/operations we need to perform

all the alulations over them required by the use ase. For example, Aution Info,

the information about an aution, has an operation, view, for reovering a view of the

aution to be shown to its partiipants, whereas Aution View is not further detailed.

address: Address

Registration_Info

Address Message

Session_Key

Auction_Id Auction_View

IdentificationAuction_Info

id: Auction_Info -> Auction_Id
view: Auction_Info -> Auction_View

4.4 Aution System: Task 4

This task onsists in �nding the properties about the Aution System by �lling the

tableau generated by the elementary interations and state observers found in the

previous task, and by ompleting the spei�ations of the data strutures. Clearly,

while doing this ativity, new state observers may be added, whih will have then to

be introdued in the tableaux and onsidered while looking for the properties. The

original use ase based spei�ation may be modi�ed by reeting the better insights

on the Aution System gained while looking for properties.

Here we show only some properties, together witht he arisen questions, about a few

elementary interations and state observers needed for the use ase buy item under au-

tion; eah property is both expressed in our notation, and aompanied by a omment.

The full set of the properties an be found in [5℄.

Elementary interation Customer Join Aution Looking for the pre/postondi-

tions of Customer Join Aution for �lling the tableau ell whose both indexes are

that elementary interation, we found the following unlear points about the Aution

System.

Q: Does the use ase searh item ends having seleted one aution or one item? This is

relevant beause there may be many di�erent autions for the same item, e.g., a used

ar. The desription of searh item suggests some autions, whereas that of buy item

under aution suggests one item. A: The searh item ends with some seleted autions,

as in other aution systems.

Q: Can an aution seleted by the searh item be in any status (e.g., losed or not yet

started)? A: Yes, and this is quite sensible, sine a Customer may be interested in

knowing that some item has been sold in the past and at whih prie, or whih are the

urrent starting pries of some items, or that some items will be soon autioned.

Q: Can a Customer try to join a losed or not-started aution? A: No, the Aution

System should not provide this possibility, and answers with an error.

The above problems lead us to revise the use ase searh item. As a result, we

now have the NEW browse autions use ase ending with a seleted group of autions.

Moreover, the use ase buy item under aution may start only when there is one seleted

aution that is ative. Then, we introdue a new state observer seleted Autions that

assoiates with eah identi�ed Customer (referred to by a session key sk) the identities

of the urrently seleted autions.

Q: Can a Customer join an aution to whih (s)he is already joined? A: Yes, sine

there is no problem. A better hoie may be that the Aution System sends a warning

to Customer.

If a Customer joins an aution, then

(s)he is identi�ed,

Customer has seleted one aution that is ative;

and after (the Customer has joined that aution, and

the Aution System shows to her/him all the detail of the seleted aution)

if Customer Join Aution(sk,aid) happen then

exists id :Identi�ation s.t. is Identi�ed(id,sk) and

status(infoAbout(aid)) = ative and

joined

nxt

(sk,aid) and

in any ase next AS Show Aution(sk,view(infoAbout(aid))) happen

Elementary interation AS Bid Ok While looking for its postondition whih

onerns also the future behaviour of the Aution System after having performed the

elementary interation we deteted the following problem.

Q: Is it true that a Customer joined to an aution is informed twie of eah new bid,

one by reeiving a view of the aution with the new bid and one by some kind of

message? Moreover, if a Customer plaes a bid, and after leaves the aution, will (s)he

be ever informed of a new higher bid? More generally, whih is the intended duration

of an aution? a few hours when the partiipants bid many times, and ontinuously

look at the urrent view of the aution? or several days, when the partiipants from

time to time plae their bids and look at the situation of the aution? A: The lient

deided that an aution handled by the Aution System should last a few hours with all

partiipants logged on; thus there is no need to inform the joined ustomers and the

seller of the various bids, beause they ontinuously examine the urrent view of the

aution that the Aution System keeps updated.

If the Aution System informs a Customer that her/his bid is ok, then

the Customer plaed suh bid,

(s)he had suÆient redit, and the bid met the minimum inrement; and after

the bid is reorded,

the amount is seured by the Customer redit,

the seurity on the previous high bid is released (if any), and

the updated aution view is sent to all the Customers joined to the aution.

if AS Bid Ok(sk,aid,i) happen then

in any ase before Customer Bid(sk,aid,i) happened and

i� redit(identityOf (sk)) and

ibid Ok(infoAbout(aid),i) and

high Bidder(infoAbout

nxt

(aid)) = identityOf (sk) and high Bid(infoAbout

nxt

(aid)) = i

and redit

nxt

(identityOf (sk)) = redit(identityOf (sk)) - i and

(if is de�ned (high Bidder(infoAbout(aid))) then

redit

nxt

(high Bidder(infoAbout(aid))) =

redit(high Bidder(infoAbout(aid))) + high Bid(infoAbout(aid))) and

for all sk

1

:Session Key

� if joined(aid,sk

1

) then AS Show Aution(sk

1

,view(infoAbout(aid)))

State Observer redit The �rst version of the property about the dereasing of the

redit (part of the tableau ell indexed by redit :redit) based on what is written in

the various use ase desriptions is the following, and points out a problem.

If the redit of a Customer dereases, then the Customer made a bid in an aution.

if redit

nxt

(id) = redit(id) - i and i> 0 then exists sk :Session Key, aid :Aution Id s.t.

AS Bid Ok(sk,aid,i) happened and is Identi�ed(id,sk)

Q: It is true that a Customer using the Aution System only for selling items will be

never able to ollet her/his money? Moreover, an a buying Customer reover her/his

money when (s)he is no more interested in buying? A: Yes; thus we have to add a

NEW use ase derease redit for allowing a Customer to reover her/his redit.

The new version we propose is then

If the redit of a Customer dereases, then

either the Customer asked the Aution System to derease it, (NEW)

or the Customer made a bid in an aution.

if redit

nxt

(id) = redit(id) - i and i> 0 then

exists sk :Session Key, tdCredit Transfer Detail s.t.

AS Dereased Credit(sk,td) happened and

i= amount(td) and is Identi�ed(id,sk)

or exists sk :Session Key, aid :Aution Id s.t.

AS Bid Ok(sk,aid,i) happened and is Identi�ed(id,sk)

4.5 Aution System Task 5 { New Use Case Based Requirement

Spei�ation

Here we report only the new use ase diagram and the new desription of the use ase

buy item under aution, see [5℄ for the omplete new use ase based requirements. Two

new use ases were identi�ed when following our approah (see the previous setion),

browse autions (thus, point 1. was removed from the buy item under aution desription

below) and derease redit. The questions brought up by our work led to several modi-

�ations, e.g., the work on AS Bid Ok in Set. 4.4 led to remove one part of point 5.

in the new buy item under aution desription below.

User

buy and sell goods
by auction

Customer

Seller

buy item
under auction

sell item
by auction

increase
credit

identify user
close auction

browse
auctions

decrease
credit

Use Case buy item under aution

Intention in Context: UNCHANGED

Primary Ator: Customer

Preondition: The Customer has already identi�ed him/herself to the System

NEW: and seleted one ative aution.

Main Suess Senario: UNCHANGED

REMOVED: 1. Customer searhes for an item under aution (searh item).

2. Customer requests System to join the seleted aution.

3. System presents a view of the aution** to Customer.

Steps 4-5 an be repeated aording to the intentions and bidding poliy of the Customer

4. Customer makes a bid on the item to System.

5. System validates the bid, reords it, seures the bid amount from Customer's redit**,

releases the seurity on the previous high bidder's redit (only when there was a previous

standing bid), (REMOVED: informs Partiipants of new high bid,) and updates the view

of the aution for the item** with new high bid to all Customers that are joined

to the aution. Customer has the high bid for the aution

6. System loses the aution with a winning bid by Customer.

Extensions:

UNCHANGED: 2a, 5a, 5b, 6a

3a. NEW: The Customer is the Seller of the aution; System informs Customer that (s)he

annot join the aution. Use ase ends with failure.

REMOVED: 3a. System informs Customer that aution has not started: use ase ends

in failure.

REMOVED: 3b. System informs Customer that aution is losed: use ase ends in failure.

4a. Customer leaves aution:

4a.1a. System asertains that Customer has high bid in aution:

4a.1a.1. System ontinues aution without e�et; use ase ontinues at step 5

4a.1b. System asertains that Customer does not have high bid in aution: use ase

ends in failure.

4jja. Customer requests System to post a message to aution and provides the message

ontent**.

4jja.1. MODIFIED: System updates the view of the aution with the added message to all

Customers that are joined to the aution; use ases ontinues from where it was interrupted.

5 Conlusion and related works

In this paper we have proposed a method to review use ase based requirements for

a system by building a ompanion Formally Grounded spei�ation. As a result the

initial requirements are examined in a systemati way through the study of the various

aspets of the onsidered system, modelled in terms of elementary interations and

state observers. For example, the possible interferenes among di�erent use ases may

be revealed (elementary interations relative to di�erent use ases may yield a hange

of the same state observer), the ommuniations between the system and the ators

beome more preise (they are modelled by elementary interations, whih require a

preise de�nition of their parameters), the seondary ators (that help the system to

satisfy the primary ators goals) are disovered and their features are lari�ed (all

entities interating with the system must be de�ned and modelled).

The produed Formally Grounded spei�ation has a user-friendly notation (dia-

grams plus textual annotations in a natural-like language), and so it ould be used as the

requirement doument. The proposed method also requires to update the original use

ase based requirements whenever a new aspet of the system is brought to light, thus,

at the end, new improved use ase based requirements are available. In the meantime,

the formal Casl/Casl-Ltl spei�ation orresponding to the Formally Grounded one

is also available, e.g., for formal analysis (but we have not yet investigated this point).

We think that starting to build diretly the Formally Grounded spei�ation from

the desription of the problem may be not as muh as e�etive as the proposed om-

bination of use ases and Formally Grounded spei�ation, beause the ingredients of

the Formally Grounded spei�ation (elementary interations and state observers) are

in some sense at a �ner grain than the funtionalities of the system, and so may be

diÆult to �nd by just onsidering the problem.

As an example, we have used our method on a medium-size ase study, an eletroni

aution system. For lak of room, we have desribed here only parts of the various tasks

and shown only some fragments of the produed artifats; the omplete development

and the resulting artifats an be found in [5℄. The advantages shown by our method

on this ase study seem quite positive. Indeed, we have deteted many problemati or

not ompletely lari�ed aspets in the original use ase based requirements. Among

them, we reall (i) expliit autions browsing funtionality (blurred in the initial re-

quirements: the information on all autions were available but not shown), (ii) the fat

that the autions should be performed in a hat-like way, (iii) disovered the need for a

derease-redit funtionality, (iv) made expliit that when a Customer unregisters any

left redit goes to the Aution System owner.

Moreover, we would like point out that we did not write the starting use ase require-

ments (given by Sendall[13℄ who, as of now, has no relationship with our group and our

method), and we found them quite aurate, presented using a well-organized template

and produed following a good method.

Conerning the possibility to use e�etively the proposed method we would like to

make the following positive points.

- It is possible, using ommon existing tehnologies, to build software tools to support

the onstrution of the Formally Grounded spei�ation, not only a graphial editor,

but also wizards guiding the properties searh.

- Eah use ase is linked with the elementary interations, the state observers and

the data strutures used for its spei�ation. This, together with the preise struture

of the properties, may also help to support the evolution of the initial requirements;

indeed a modi�ation in one use ase may be only reeted in a preise part of the

assoiated Formally Grounded spei�ation.

- The inspetion and revision of the requirements proposed by our method onern

only the nature of the system to be developed, and does not require to make any

hoie about the tehnology and methods that will be used to realize the system; thus

it may be used in ombination with many di�erent methods.

In the literature there are other approahes to build a formal spei�ation of the

requirement of a system, but in general they do not aim at produing an improved

non-formal spei�ation. Among them, we reall the nie work of A. van Lamsweerde

and his group[18℄, whih o�ers a way to formally speify goal-oriented requirement

spei�ations, and then to analyze them by means of formal tehniques. R. Dromey[9℄

proposes to use \Behaviour Tree", a formal-visual notation to speify the requirements,

then the resulting requirement spei�ation will be used to derive the arhitetural

struture of the system. Our approah, in the line of the well-founded methods [4℄,

uses the underlying formal foundation to get a rigorous method to preisely speify the

requirements, with the aim of ahieving a areful inspetion and a kind of validation

of those requirements.

One of the authors, together with E. Astesiano, proposed another use ase based

method for the preise spei�ation of the requirements [3℄, but using the (non-formal)

UML stateharts as a notation to desribe the use ases. However, beause it does not

o�er a systemati way to analysis the System under di�erent viewpoints, some aspets

of the System aptured by our method may not ome under light.

We would like also to quote the work by S. Sendall and A. Strohmeier [15, 16℄ who

promote the use of operation shemas (pre- and postonditions written in OCL) and

system interfae protools (UML state diagrams) to omplement use ases; our goal is

di�erent, that is to improve the use ase based requirements.

Inspetion tehniques for improving the quality of a requirement spei�ation (quite

popular in Software Engineering pratie, see e.g., [1℄) are either based on ad ho teh-

niques or on hek-lists. The main di�erenes with our approah is that our \inspetion"

based on the underlying formal spei�ation and the tableau-�lling tehnique leads to a

more systemati and preise examination of the requirements, whereas standard teh-

niques lead to more generi heking. For instane, ompare

\�nd and list all the ways the redit state observer may be updated in the various

senarios of all use ase" (whih helped to disover the laking funtionality of redit

dereasing), with

\Is there any missing funtionality, that is, do the ators have goals that must be

ful�lled, but that have not been desribed in use ases?" taken from [1℄'s hek-list.

Referenes

1. B. Anda and D. Sjoberg. Towards an Inspetion Tehnique for Use Case Models. In Pro.

SEKE 2002. ACM Press, 2002.

2. E. Astesiano and G. Reggio. Labelled Transition Logi: An Outline. Ata Informatia,

37(11-12):831{879, 2001.

3. E. Astesiano and G. Reggio. Tight Struturing for Preise UML-based Requirement

Spei�ations. In Pro. of Monterey Workshop 2002: Radial Innovations of Software

and Systems Engineering in the Future. Venie - Italy., LNCS. Springer Verlag, 2003. To

appear.

4. E. Astesiano, G. Reggio, and M. Cerioli. From Formal Tehniques to Well-Founded

Software Development Methods. In Pro. of The 10th Anniversary Colloquium of the

UNU/IIST: Formal Methods at the Crossroads from Panaea to Foundational Support.

Lisbon - Portugal, 2002., LNCS. Springer Verlag, 2003. To appear.

5. C. Choppy and G. Reggio. Improving Use Case Based Requirements Us-

ing Formally Grounded Spei�ations (Complete Version). Tehnial Re-

port DISI-TR-03-45, DISI { Universit�a di Genova, Italy, 2003. Available at

ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio03.ps and pdf.

6. C. Choppy and G. Reggio. Towards a Formally Grounded Software Development Method.

Tehnial Report DISI{TR{03{35, DISI, Universit�a di Genova, Italy, 2003.

7. A. Cokburn. Writing E�etive Use Cases. Addison-Wesley, 2000.

8. G. Costa and G. Reggio. Spei�ation of Abstrat Dynami Data Types: A Temporal

Logi Approah. T.C.S., 173(2):513{554, 1997.

9. R. Dromey. From Requirements to Design: Formalizing the Key Steps. In Pro. of

SEFM'03, Brisbane - Australia. IEEE Computer Soiety, 2003.

10. I. Jaobson, M. Christerson, P. Jonnson, and G. Overgaard. Objet-Oriented Software

Engineering: A Use-Case Driven Approah. Addison-Wesley, 1992.

11. P. Mosses, editor. CASL, The Common Algebrai Spei�ation Language - Referene

Manual. Leture Notes in Computer Siene. Springer-Verlag, 2003. To appear. Available

at http://www.ofi.info/CASL RefManual DRAFT.pdf.

12. G. Reggio, E. Astesiano, and C. Choppy. Casl-Ltl : A Casl Extension for Dynami

Reative Systems Version 1.0{ Summary. Tehnial Report DISI-TR-03-36, DISI { Uni-

versit�a di Genova, Italy, 2003.

13. S. Sendall. Case studies for RE A2 ourse "Requirements Analysis with Use Cases".

http://lglwww.epfl.h/researh/use ases/RE-A2-ase-studies/index.html, 2001.

14. S. Sendall and A.Strohmeier. Requirements Analysis with Use Cases.

http://lglwww.epfl.h/researh/use ases/RE-A2-theory.pdf, 2001.

15. S.Sendall and A.Strohmeier. From Use Cases to System Operation Spei�ations. In

S. K. A. Evans and B. Seli, editors, Pro. UML'2000, number 1939 in Leture Notes in

Computer Siene, pages 1{15. Springer Verlag, 2000.

16. S.Sendall and A.Strohmeier. Speifying Conurrent System Behavior and Timing on-

straints using OCL and UML. In M. Gogolla and C. Kobryn, editors, Pro. UML'2001,

number 2185 in LNCS, pages 391{405. Springer Verlag.

17. UML Revision Task Fore. OMG UML Spei�ation 1.3, 2000. Available at

http://www.omg.org/dos/formal/00-03-01.pdf.

18. A. van Lamsweerde. Building Formal Requirements Models for Reliable Software (Invited

paper). In 6th International Conferene on Reliable Software Tehnologies, Ada-Europe

2001, number 2043 in Leture Notes in Computer Siene. Springer Verlag, 2001.

