
Improving Use Case Based Requirements Using

Formally Grounded Spe
i�
ations

C. Choppy

1

and G. Reggio

2

1

LIPN, Institut Galil�ee - Universit�e Paris XIII, Fran
e

2

DISI, Universit�a di Genova, Italy

Abstra
t. Our approa
h aims at helping to produ
e adequate requirements,

both
lear and pre
ise enough so as to provide a sound basis to the overall

development. We present a te
hnique for improving use
ase based requirements,

by produ
ing a
ompanion Formally Grounded spe
i�
ation, that results both in

an improved requirements
apture, and in a requirement validation. The Formally

Grounded requirements spe
i�
ation is written in a \visual" notation, using

both diagrams and text, with a formal
ounterpart (written in the Casl-Ltl

language). The resulting use
ase based requirements are of high quality, more

systemati
, more pre
ise, and its
orresponding Formally Grounded spe
i�
ation

is available. We illustrate our approa
h on an Au
tion System
ase study.

1 Introdu
tion

While tools and te
hniques are now available to support quite eÆ
iently software devel-

opment, one of the most diÆ
ult part remains to produ
e adequate requirements, both

lear and pre
ise enough so as to provide a sound basis to the overall development.

Formally based spe
i�
ations are advo
ated sin
e they lead to pre
ise, unambiguous

des
riptions, but they remain diÆ
ult to use and impra
ti
al in quite a number of
ases.

We think the reason for this is twofold. One point that was often put forward is the

diÆ
ulty to write and read su
h spe
i�
ations. Another point we see is that it may be

diÆ
ult to start with formal spe
i�
ations while still working on the requirements (thus,

trying to understand what is the problem about), hen
e our idea to take advantage of

use
ases.

Use
ases were introdu
ed by Ja
obson [10℄ after the earlier idea of s
enarios, whi
h

are the di�erent possible
ourses that di�erent instan
es of the same use
ase
an

take. Use
ases are used to des
ribe/
apture the requirements of software systems,

while providing an overall pi
ture of what is happening in the system. The use
ase

des
ription is textual (it should be \familiar", easy to read) and sums up a set of

s
enarios.

Use
ases are popular be
ause they are easy to use and informal, however \use

ases are wonderful but
onfusing" [7℄. A both good and bad thing is that there is

a lot of freedom in what should in
lude a use
ase des
ription, and how it should

be written. UML [17℄ proposes a diagram for use
ases, states that des
riptions are

needed too, and that the sequen
e of use
ase a
tivities are do
umented by behaviour

spe
i�
ations (e.g., with intera
tion diagrams). However, examples show that use
ases

are often impre
ise, and also that the terms used are vague or ambiguous.

Sin
e use
ases are written in the early phases of software development, it is
ru
ial

that they should be worked out with a lot of
are, so as to avoid to generate errors

that will be diÆ
ult and
ostly to
orre
t further on. Interesting work is done to pro-

pose some guidelines on how to write use
ase des
riptions, e.g., Co
kburn[7℄ proposes

templates for stru
turing their des
riptions. In the following, we use an adaptation of

this template provided by Sendall[13℄.

Our idea is to �nd a way to
ombine both advantages of use
ases and of formal

spe
i�
ations. Here, we present a te
hnique for improving use
ase based requirements,

developing a
ompanion Formally Grounded spe
i�
ation, that results both in an im-

proved requirements
apture (some requirements may be updated and some may be

new), and in a requirement validation sin
e writing the spe
i�
ation leads to
he
k

that the requirements
an be further made expli
it up to a pre
ise spe
i�
ation.

The produ
ed requirements spe
i�
ation is written in a \visual" notation, using

both diagrams and text, with a formal
ounterpart whi
h is written in the Casl[11℄

and Casl-Ltl[12℄ spe
i�
ation languages.

Being Formally Grounded, our method is systemati
, and it yields further questions

on the system that will be re
e
ted in the improved use
ase des
riptions. The resulting

use
ase des
riptions are of high quality, more systemati
, more pre
ise, and their

orresponding Formally Grounded spe
i�
ation is available.

In Se
t. 2 we shortly sum up our Formally Grounded approa
h for writing the

requirements spe
i�
ation of a software system (see [6℄ for a full presentation with other

examples). In Se
t. 3 we present our method for improving use
ase based requirements

using Formally Grounded spe
i�
ations, and in Se
t. 4, we then show how our method

applies to a part of the Au
tion System
ase study (the
omplete version is in [5℄),

showing how the starting use
ase based requirements have
lari�ed, and how many

relevant aspe
ts of the Au
tion System have been enlightened, before
on
luding and

dis
ussing some related work in Se
t. 5.

2 Our Formally Grounded Approa
h for Requirement

Spe
i�
ation

Our Formally Grounded spe
i�
ation approa
h (see [6℄ for a
omplete presentation),

aims at helping the user to understand the system to be developed, and to write the

orresponding formal spe
i�
ations. We also support visual presentations of formal

spe
i�
ations, so as to \make the best of both formal and informal worlds". We devel-

oped this method for the (logi
al-algebrai
) spe
i�
ation language Casl [11℄ (Common

Algebrai
 Spe
i�
ation Language, developed within the joint initiative CoFI

1

), and for

an extension for dynami
 systems Casl-Ltl

2

[12℄. Hen
e, for ea
h visual spe
i�
ation,

its formal
ounterpart in Casl or Casl-Ltl is given.

Our method
aters for three di�erent kinds of modelling/spe
i�
ation entities, (i)

a data stru
ture, or data type, (ii) a simple dynami
 system, that is a single dynami

entity, and (iii) a stru
tured dynami
 system, that is
omposed of mutually intera
ting

dynami
 entities; while keeping a
ommon \meta"-stru
ture and way of thinking.

Ea
h entity
onsidered may be modularly de
omposed - so its (sub)parts are identi-

�ed-, and is
hara
terized by its
onstituent features. Its model/spe
i�
ation
onsists

of a visual presentation of these parts and
onstituent features, and of their properties

1

http://www.
ofi.info

2

LTL stands for Labelled Transition Logi
[8, 2℄.

expressed in a natural-language style notation based on an appropriate underlying logi

(the variant of logi
 depends on the kind of entity).

On
e the
onstituent features are identi�ed, we provide guidelines for an exhaustive

sear
h of the properties. To this end, we use a tableau whose
ells, indexed by the

pairs of
onstituent features, should be �lled. For ea
h
ell we give a s
hemata for

the relevant properties it should
ontain, expressing either, when the two indexes are

di�erent, the mutual relationships between the two features, or, when they are equal,

what is known on that feature. This tableau-�lling method ensures that no
ru
ial part

of the spe
i�
ation is forgotten, and results in produ
ing a quite stru
tured/navigable

set of properties, whi
h should be suitable to support evolution.

Data Stru
tures Data stru
tures are
hara
terized by a set of values, some
onstru
-

tors to denote those values, and some predi
ates and operations. Data stru
tures may

be stru
tured, e.g., they may import other data stru
tures. These features and the

imported data stru
tures (the parts) are visually presented as in the diagram below.

Their properties are expressed in a many-sorted, �rst order logi
 [11℄ with a natural

language-like notation. The tableau-�lling te
hnique provides a systemati
 way to �nd

the respe
tive properties of
onstru
tors, predi
ates and operations, e.g., de�nedness,

truth of predi
ate, et
., see [6℄.

...

Data Structure Name

Predicates

Constructors

Operations

1

rData

Data

Data Stru
ture

...

System Name

Elementary Interactions
Data

Data State Observers

1

r

Simple Dynami
 System

Simple Dynami
 Systems Simple dynami
 systems are
hara
terized by their states

and their transitions, where ea
h transition
orresponds to a
hange of state together

with a set of elementary intera
tions with the external world. Ea
h elementary inter-

a
tion is des
ribed by a name and possibly by parameters (data values). The states

are abstra
tly
hara
terized by \state observers", whi
h, given some parameters, may

return some value (operations) or the truth of some
ondition (predi
ates). Thus, the

onstituent features of a simple (dynami
) system are its elementary intera
tions with

the external world and its state observers. The parts of a simple system are its data

stru
tures needed to de�ne the parameters and the results of elementary intera
tions

and state observers. The above diagram visually presents whi
h are the subparts and

the
onstituent features, while the spe
i�
ation of the parts is given separately. These

properties are expressed with a natural language -like notation derived by Casl-Ltl.

Casl-Ltl [12℄ is a Casl extension based on LTL (Labelled Transition Logi
) [8, 2℄,

a bran
hing time temporal (many-sorted, �rst-order with edge formulae) logi
. This

notation uses
ombinators for expressing that elementary intera
tions take pla
e (e.g.,

e happened), standard logi
s (if - then -else, not, and, = , exists, . . .), and also

temporal
ombinators (next, eventually, before, in any
ase, in one
ase

3

).

A transition from one state to another is
hara
terized by elementary intera
tions,

and properties about states and transitions are expressed, e.g., pre- and post-
onditions

for elementary intera
tions, or in
ompatibilities between them. Properties for a state

3

The last two express universal and existential quanti�
ation over exe
ution paths.

observer explore e.g., whi
h elementary intera
tions may
ause a
hange in its value,

or whi
h are its possible
hanges. Again, the tableau-�lling te
hnique provides a sys-

temati
 way to �nd these properties.

Both diagrams and text have a formal
ounterpart in the Casl-Ltl language [12℄.

Stru
tured Dynami
 Systems A stru
tured (dynami
) system is a spe
ialized simple

system that is
omposed of several dynami
 systems, its subsystems, whi
h
an in

turn be simple or stru
tured. A transition of su
h a system should re
e
t whi
h are

the subsystems transitions that o

ur. Moreover, it is ne
essary to des
ribe how the

subsystems syn
hronize.

We present here a simpler version of stru
tured systems (the general
ase is given

in [6℄) that have only simple subsystems (possibly of di�erent types), where two sub-

systems may intera
t only pairwise by performing simultaneously the same elementary

intera
tion, i.e., the behaviour of these stru
tured systems is given by transitions made

of groups of subsystem transitions, where ea
h elementary intera
tion of a subsystem is

mat
hed by one of another subsystem. Furthermore, the
onsidered stru
tured systems

are
losed, i.e., they have no intera
tion with the external world.

A stru
tured system is visually presented by :

(i) a Context View whi
h is a
on�guration diagram showing the subsystems (in the

Con�guration) and their types (the spe
i�
ations of all those types are given sepa-

rately), a

ompanied by a
ooperation diagram showing the
ooperations among the

subsystems (ea
h
ooperation is given by the syn
hronized exe
ution of elementary

intera
tions, say EI

i

).

...

System Name

Configuration
Syst

Syst

1

r

Con�guration Diagram

Id : Syst
EI ... EI

1 k1 Syst Id :k

1 n

Cooperation Diagram

(iii) a Data View whi
h puts together the spe
i�
ations of all data stru
tures that are

parts of the system and of its subsystems.

To spe
ify the requirements on a software System it is suÆ
ient to spe
ify a stru
-

tured dynami
 system, whose subsystems are the System itself and all those entities

intera
ting with it (
ontext entities). The spe
i�
ation of the System will be the re-

quirements, whereas the spe
i�
ations of the
ontext entities will show the assumptions

made by the System on the
ontext entities.

3 The Method for High-Quality Requirements

We present in this se
tion our method for produ
ing enhan
ed requirements. It is

organized in �ve tasks, and works on use
ase based requirements while developing a

ompanion Formally Grounded spe
i�
ation, whi
h results in improved requirements.

Task 1 Give the use
ase based requirements on the System following the method

proposed by S. Sendall and A. Strohmeier in [14℄.

Task 2 Find out whi
h are the external entities playing the roles
orresponding to the

various a
tors (
ontext entities) and determine their types. At this point we
an draw a

�rst version of the Context View (see end of previous se
tion), by depi
ting the System

and the found
ontext entities together with their types; the
ooperation diagram will

have only ar
s
onne
ting the System with the
ontext entities.

Task 3 By examining the use
ase des
riptions, one after the other, look for elementary

intera
tions and state observers of the System; the former should model the intera
tions

between the System and the a
tors appearing in the use
ase s
enarios, whereas the

latter should model information re
orded in the System examined or updated in the

use
ase s
enarios. Both of them should be depi
ted in the visual presentation of the

System spe
i�
ation (together with the type of their arguments and/or results); the

elementary intera
tions should also be reported in the
ooperation diagram to show

whi
h
ontext entities are taking part in that intera
tions.

In the meantime put in the Data View any data stru
ture that is used as an argument

or a result by a found elementary intera
tion or state observer. The asso
iation between

use
ases and the elementary intera
tions and state observers related to it (i.e., whi
h

are needed to des
ribe it) should be re
orded. During this task, it is possible to �nd

new entities intera
ting with the System that do not
orrespond to already known

a
tors; they should be added to the Context View, together with their spe
i�
ations.

Whenever, there are relevant assumptions on the
ontext entities they should be made

expli
it by giving their Formally Grounded spe
i�
ation (they are just simple dynami

systems).

Task 4 Find all the properties about the System following our tableau-�lling method.

When �lling a
ell related to some
onstituent features (elementary intera
tions and

state observers), the des
riptions of the asso
iated use
ases should be examined as a

sour
e of inspiration. During this task, probably, new state observers and data stru
-

tures will be added, and perhaps the parameters of the existing elementary intera
tions

and state observers may be modi�ed.

Task 5 During the tasks 3 and 4 many questions about the System will arise, many

aspe
ts of the System that need to be investigated will be highlighted, and many aspe
ts

of the System pre
isely des
ribed by the use
ases will be found not
onvin
ing. These

points may be settled following the usual ways, e.g., by intera
ting with the
lient,

if available, by doing more investigation on the appli
ation domain, or by looking at

existing similar systems. The produ
ed Formally Grounded spe
i�
ation should re
e
t

the System where all these points have been settled.

The original use
ase based requirement spe
i�
ation should then be revised so as

to be
oherent with the Formally Grounded one. In general use
ases and/or s
enarios

may be added or removed, s
enarios may be modi�ed by adding/removing steps or

by making more pre
ise the terminology used to des
ribe them. In this way the �nal

out
ome of our method will be not only a better and more systemati
 understanding of

the System re
e
ted in a Formally Grounded spe
i�
ation of the requirements, but also

a more pre
ise and sound use
ase based spe
i�
ation of the same requirements.

Clearly task 5 will be performed in parallel with tasks 3 and 4.

4 The Au
tion System Case Study

In this paper we present a part of the appli
ation of our method to the
ase study of

an Au
tion System proposed in [13℄ by S. Sendall; the remaining parts are in [5℄. The

des
ription of the problem (from [13℄) solved by the Au
tion System is shown in Fig. 1.

Your team has been given the responsibility to develop an online au
tion system that allows

people to negotiate over the buying and selling of goods in the form of English-style au
tions

(over the Internet). The
ompany owners want to rival the Internet au
tioning sites, su
h as,

eBay, and uBid. The innovation with this system is that it guarantees bid pla
ed are solvent,

making for a more serious marketpla
e.

All potential users of the system must �rst enroll with the system; on
e enrolled they have to

log on to the system for ea
h session. Then, they are able to sell, buy, or browse the au
tions

available on the system. Customers have
redit with the system that is used as se
urity on

ea
h and every bid. Customers
an in
rease their
redit by asking the system to debit a

ertain amount from their
redit
ard.

A
ustomer that wishes to sell initiates an au
tion by informing the system of the goods to

au
tion with the minimum bid pri
e and reserve pri
e for the goods, the start period of the

au
tion, and the duration of the au
tion, e.g., 30 days. The seller has the right to
an
el

the au
tion as long as the au
tion's start date has not been passed, i.e., the au
tion has not

already started.

Customers that wish to follow an au
tion must �rst join the au
tion. Note that it is only

possible to join an a
tive au
tion. On
e a
ustomer has joined the au
tion, (s)he may make a

bid, or post a message on the au
tion's bulletin board (visible to the seller and all
ustomers

who are
urrently parti
ipants in the au
tion). A bid is valid if it is over the minimum bid

in
rement, and if the bidder has suÆ
ient funds, i.e., the
ustomer's
redit with the system

is at least as high as the sum of all pending bids. Bidders are allowed to pla
e their bids until

the au
tion
loses, and pla
e bids a
ross as many au
tions as they please. On
e an au
tion

loses, the system
al
ulates whether the highest bid meets the reserve pri
e given by the

seller, and if so, the system deposits the highest bid pri
e minus the
ommission taken for

the au
tion servi
e into the
redit of the seller (
redit internal with the system).

The au
tion system is highly
on
urrent{
lients bidding against ea
h other in parallel, and a

lient pla
ing bids at di�erent au
tions and in
reasing his/her
redit in parallel.

Fig. 1. Au
tion System Problem Des
ription

4.1 Au
tion System Task 1 { Use Case Based Requirement Spe
i�
ation

Here we report the use
ase based spe
i�
ation of the requirement on the Au
tion

System given following the method of [14℄ as found in [13℄. The only di�eren
e with

[13℄ is that we summarize the a
tors and the use
ases by means of a UML use
ase

diagram, see Fig. 2, below, showing also the \in
lude" relationships among the use

ases (depi
ted by dotted lines). In the following use
ase des
riptions **" means that

the details about some aspe
ts of the Au
tion System (e.g., data format or rules to

follow to perform some a
tivity) are given in an a

ompanying do
ument, not present

in [13℄ and thus not
onsidered here. Here we do not detail the s
hema for the use
ase

des
ription followed in this example and presented in [14℄. For la
k of room, we present

only the main use
ase buy item under au
tion, the other ones are in [5℄.

User

buy and sell goods
by auction

Customer

Seller

buy item
under auction

sell item
by auction

increase credit identify userclose auction search for
auction item

Fig. 2. Au
tion System: Use
ases and a
tors

Use Case buy item under au
tion

Intention in Context: The intention of the Customer is to follow the au
tion, whi
h may

then evolve into an intention to buy an item by au
tion, i.e., (s)he may then
hoose to bid

for an item. The Customer may bid in many di�erent au
tions at any one time. (Also the

a
tor Parti
ipant means the Seller and all the Customers that are joined to the au
tion).

Primary A
tor: Customer

Pre
ondition: The Customer has already identi�ed him/herself to the System.

Main Su

ess S
enario: Customer may leave the au
tion and
ome ba
k again later to

look at the progress of the au
tion, without e�e
t on the au
tion; in this
ase, the

Customer is required to join the au
tion again.

1. Customer sear
hes for an item under au
tion (sear
h item).

2. Customer requests System to join the au
tion of the item.

3. System presents a view of the au
tion** to Customer.

Steps 4-5
an be repeated a

ording to the intentions and bidding poli
y of the Customer

4. Customer makes a bid on the item to System.

5. System validates the bid, re
ords it, se
ures the bid amount from Customer's
redit**,

releases the se
urity on the previous high bidder's
redit (only when there was a previous

standing bid), informs Parti
ipants of new high bid, and updates the view of the au
tion

for the item** with new high bid to all Customers that are joined to the au
tion.

Customer has the high bid for the au
tion.

6. System
loses the au
tion with a winning bid by Customer.

Extensions:

2a. Customer requests System not to pursue item further:

2a.1. System permits Customer to
hoose another au
tion, or go ba
k to an earlier point

in the sele
tion pro
ess; use
ase
ontinues at step 2.

3a. System informs Customer that au
tion has not started: use
ase ends in failure.

3b. System informs Customer that au
tion is
losed: use
ase ends in failure.

4a. Customer leaves au
tion:

4a.1a. System as
ertains that Customer has high bid in au
tion:

4a.1a.1. System
ontinues au
tion without e�e
t; use
ase
ontinues at step 6

4a.1b. System as
ertains that Customer does not have high bid in au
tion: use
ase ends

in failure.

4jja. Customer requests System to post a message to au
tion and provides the message

ontent**.

4jja.1. System informs all Parti
ipants of message; use
ase
ontinues from where it was

interrupted.

5a. System determines that bid does not meet the minimum in
rement**:

5a.1. System informs Customer; use
ases
ontinues at step 4.

5b. System determines that Customer does not have suÆ
ient
redit to guarantee bid:

5b.1. System informs Customer; use
ases
ontinues at step 4.

6a. Customer was not the highest bidder:

6a.1. System
loses the au
tion; use
ase ends in failure.

4.2 Au
tion System: Task 2

The Au
tion System has any number of
ontext entities all of the type Person (anyone

a

essing the system by Internet). A Person may play three roles: User (plain Internet

user), Customer (a User identi�ed by the Au
tion System and
onne
ted with it)

and Seller (a Customer selling some goods using the Au
tion System). We give a

�rst version of the Context View showing the Au
tion System and the Persons (the

in
omplete
ooperation diagram just shows that the a Person intera
ts only with the

Au
tion System).

Universe

AuctionSystem AuctionSystem

Person P1:Person
......

0 =< n
Pn:Person

AuctionSystem

Person

4.3 Au
tion System: Task 3

We examine the various use
ases, one after the other, looking for the elementary a
tions

and the state observers of Au
tionSystem, together with the needed data stru
tures and,

possibly new
ontext entities. Note that, for ea
h use
ase, we do not give the features

used by the in
luded sub-use
ases.

We name ea
h elementary intera
tion made by the Au
tion System with an identi�er

of the form AS . . . , whereas those made by a person
ontext entity will be named

User . . . , Customer . . . and Seller . . . , depending on the role.

For ea
h use
ase we produ
e a fragment of the Context View, of the Data View

and of the spe
i�
ation of the Au
tion System. At the end, all these fragments will be

put together getting the initial view of the stru
tural part of the Formally Grounded

requirement spe
i�
ation of the Au
tion System. To be able to support the evolution of

the requirements, however, we require to keep tra
k of the features of the spe
i�
ation

(elementary intera
tions, state observers, and data stru
tures) that are related with

ea
h use
ase.

Already, during this task many questions about the Au
tion System may arise that

should be settled with the
lient; we use the following annotation for these questions

and the way
hosen to settle them Q: problem A: settled in this way.

Use Case buy item under au
tion The elementary intera
tions of Au
tionSystem,

shown in the �rst
ompartment of the above diagram,
orrespond either to an inter-

a
tion made in the use
ase by the Au
tion System towards a
ontext entity (e.g.,

AS Bid Ok for
ommuni
ating that the pla
ed bid was ok) or to an intera
tion re-

eived by a
ontext entity (e.g., Customer Bid for a Customer pla
ing a bid). Instead,

the state observers, in the se
ond
ompartment,
orrespond to information re
orded

inside the Au
tion System either tested or updated during the use
ase (e.g.,
redit :

the a
tual
redit of a Customer denoted by an identi�
ation; infoAbout : the
urrent

information about an au
tion).

AuctionSystem

is_Identified(Identification,Session_Key)
credit(Identification): Int
infoAbout(Auction_Id): Auction_Info
joined(Session_Key,Auction_Id)

CUSTOMER_JOIN_AUCTION(Session_Key,Auction_Id)
AS_S HOW_AUCTION(Session_Key,Auction_View)
CUSTOMER_B ID(Session_Key,Auction_Id,Int)
AS_B ID_OK(Session_Key,Auction_Id,Int)
CUSTOMER_LEAVE_AUCTION(Session_Key,Auction_Id)
AS_B ID_TOO_LOW(Session_Key,Auction_Id,Int)
AS_NO_CREDIT_FOR_B ID(Session_Key,Auction_Id,Int)
CUSTOMER_POST_MESSAGE(Session_Key,Auction_Id,Message)

AS_S END_MESSAGE(Address,String)

The Context View, see below, shows whi
h
ontext entities take part in the use
ase

(e.g., the person), and whi
h are the intera
tions of the Au
tion System with them

(e.g., Customer Join Au
tion is an intera
tion between Au
tion System and the

person).

Universe

AuctionSystem

Person

Mail

Mail

P1:Person
0 =< n

Pn:Person

AuctionSystem

AuctionSystem

Person

CUSTOMER_JOIN_AUCTION
AS_S HOW_AUCTION
CUSTOMER_B ID
AS_B ID_OK
CUSTOMER_LEAVE_AUCTION
AS_B ID_TOO_LOW
AS_NO_CREDIT_FOR_B ID
CUSTOMER_POST_MESSAGE

Mail

AS_S END_MESSAGE

Q: This use
ase requires that the Au
tion System informs the parti
ipants to an au
tion

about various fa
ts (e.g., when there is a new higher bid or a message of another

parti
ipant), but nothing is said on how that will be performed. In the des
ription of

the use
ase
lose au
tion there is a note saying that this is an open issue and that it

will be likely made by email. A: It is assumed the existen
e of an external mail servi
e,

not further detailed, able to deliver messages to User identi�ed by some kind of address

(be
ause the
lient will de
ide in future among email, SMS, messaging systems). The

mail servi
e will be then a NEW
ontext entity (and a new se
ondary a
tor).

The Data View shows all the data used as parameters by the found elementary

intera
tions and state observers, and whi
h predi
ates/operations we need to perform

all the
al
ulations over them required by the use
ase. For example, Au
tion Info,

the information about an au
tion, has an operation, view, for re
overing a view of the

au
tion to be shown to its parti
ipants, whereas Au
tion View is not further detailed.

address: Address

Registration_Info

Address Message

Session_Key

Auction_Id Auction_View

IdentificationAuction_Info

id: Auction_Info -> Auction_Id
view: Auction_Info -> Auction_View

4.4 Au
tion System: Task 4

This task
onsists in �nding the properties about the Au
tion System by �lling the

tableau generated by the elementary intera
tions and state observers found in the

previous task, and by
ompleting the spe
i�
ations of the data stru
tures. Clearly,

while doing this a
tivity, new state observers may be added, whi
h will have then to

be introdu
ed in the tableaux and
onsidered while looking for the properties. The

original use
ase based spe
i�
ation may be modi�ed by re
e
ting the better insights

on the Au
tion System gained while looking for properties.

Here we show only some properties, together witht he arisen questions, about a few

elementary intera
tions and state observers needed for the use
ase buy item under au
-

tion; ea
h property is both expressed in our notation, and a

ompanied by a
omment.

The full set of the properties
an be found in [5℄.

Elementary intera
tion Customer Join Au
tion Looking for the pre/post
ondi-

tions of Customer Join Au
tion for �lling the tableau
ell whose both indexes are

that elementary intera
tion, we found the following un
lear points about the Au
tion

System.

Q: Does the use
ase sear
h item ends having sele
ted one au
tion or one item? This is

relevant be
ause there may be many di�erent au
tions for the same item, e.g., a used

ar. The des
ription of sear
h item suggests some au
tions, whereas that of buy item

under au
tion suggests one item. A: The sear
h item ends with some sele
ted au
tions,

as in other au
tion systems.

Q: Can an au
tion sele
ted by the sear
h item be in any status (e.g.,
losed or not yet

started)? A: Yes, and this is quite sensible, sin
e a Customer may be interested in

knowing that some item has been sold in the past and at whi
h pri
e, or whi
h are the

urrent starting pri
es of some items, or that some items will be soon au
tioned.

Q: Can a Customer try to join a
losed or not-started au
tion? A: No, the Au
tion

System should not provide this possibility, and answers with an error.

The above problems lead us to revise the use
ase sear
h item. As a result, we

now have the NEW browse au
tions use
ase ending with a sele
ted group of au
tions.

Moreover, the use
ase buy item under au
tion may start only when there is one sele
ted

au
tion that is a
tive. Then, we introdu
e a new state observer sele
ted Au
tions that

asso
iates with ea
h identi�ed Customer (referred to by a session key sk) the identities

of the
urrently sele
ted au
tions.

Q: Can a Customer join an au
tion to whi
h (s)he is already joined? A: Yes, sin
e

there is no problem. A better
hoi
e may be that the Au
tion System sends a warning

to Customer.

If a Customer joins an au
tion, then

(s)he is identi�ed,

Customer has sele
ted one au
tion that is a
tive;

and after (the Customer has joined that au
tion, and

the Au
tion System shows to her/him all the detail of the sele
ted au
tion)

if Customer Join Au
tion(sk,aid) happen then

exists id :Identi�
ation s.t. is Identi�ed(id,sk) and

status(infoAbout(aid)) = a
tive and

joined

nxt

(sk,aid) and

in any
ase next AS Show Au
tion(sk,view(infoAbout(aid))) happen

Elementary intera
tion AS Bid Ok While looking for its post
ondition whi
h

on
erns also the future behaviour of the Au
tion System after having performed the

elementary intera
tion we dete
ted the following problem.

Q: Is it true that a Customer joined to an au
tion is informed twi
e of ea
h new bid,

on
e by re
eiving a view of the au
tion with the new bid and on
e by some kind of

message? Moreover, if a Customer pla
es a bid, and after leaves the au
tion, will (s)he

be ever informed of a new higher bid? More generally, whi
h is the intended duration

of an au
tion? a few hours when the parti
ipants bid many times, and
ontinuously

look at the
urrent view of the au
tion? or several days, when the parti
ipants from

time to time pla
e their bids and look at the situation of the au
tion? A: The
lient

de
ided that an au
tion handled by the Au
tion System should last a few hours with all

parti
ipants logged on; thus there is no need to inform the joined
ustomers and the

seller of the various bids, be
ause they
ontinuously examine the
urrent view of the

au
tion that the Au
tion System keeps updated.

If the Au
tion System informs a Customer that her/his bid is ok, then

the Customer pla
ed su
h bid,

(s)he had suÆ
ient
redit, and the bid met the minimum in
rement; and after

the bid is re
orded,

the amount is se
ured by the Customer
redit,

the se
urity on the previous high bid is released (if any), and

the updated au
tion view is sent to all the Customers joined to the au
tion.

if AS Bid Ok(sk,aid,i) happen then

in any
ase before Customer Bid(sk,aid,i) happened and

i�
redit(identityOf (sk)) and

ibid Ok(infoAbout(aid),i) and

high Bidder(infoAbout

nxt

(aid)) = identityOf (sk) and high Bid(infoAbout

nxt

(aid)) = i

and
redit

nxt

(identityOf (sk)) =
redit(identityOf (sk)) - i and

(if is de�ned (high Bidder(infoAbout(aid))) then

redit

nxt

(high Bidder(infoAbout(aid))) =

redit(high Bidder(infoAbout(aid))) + high Bid(infoAbout(aid))) and

for all sk

1

:Session Key

� if joined(aid,sk

1

) then AS Show Au
tion(sk

1

,view(infoAbout(aid)))

State Observer
redit The �rst version of the property about the de
reasing of the

redit (part of the tableau
ell indexed by
redit :
redit) based on what is written in

the various use
ase des
riptions is the following, and points out a problem.

If the
redit of a Customer de
reases, then the Customer made a bid in an au
tion.

if
redit

nxt

(id) =
redit(id) - i and i> 0 then exists sk :Session Key, aid :Au
tion Id s.t.

AS Bid Ok(sk,aid,i) happened and is Identi�ed(id,sk)

Q: It is true that a Customer using the Au
tion System only for selling items will be

never able to
olle
t her/his money? Moreover,
an a buying Customer re
over her/his

money when (s)he is no more interested in buying? A: Yes; thus we have to add a

NEW use
ase de
rease
redit for allowing a Customer to re
over her/his
redit.

The new version we propose is then

If the
redit of a Customer de
reases, then

either the Customer asked the Au
tion System to de
rease it, (NEW)

or the Customer made a bid in an au
tion.

if
redit

nxt

(id) =
redit(id) - i and i> 0 then

exists sk :Session Key,
tdCredit Transfer Detail s.t.

AS De
reased Credit(sk,
td) happened and

i= amount(
td) and is Identi�ed(id,sk)

or exists sk :Session Key, aid :Au
tion Id s.t.

AS Bid Ok(sk,aid,i) happened and is Identi�ed(id,sk)

4.5 Au
tion System Task 5 { New Use Case Based Requirement

Spe
i�
ation

Here we report only the new use
ase diagram and the new des
ription of the use
ase

buy item under au
tion, see [5℄ for the
omplete new use
ase based requirements. Two

new use
ases were identi�ed when following our approa
h (see the previous se
tion),

browse au
tions (thus, point 1. was removed from the buy item under au
tion des
ription

below) and de
rease
redit. The questions brought up by our work led to several modi-

�
ations, e.g., the work on AS Bid Ok in Se
t. 4.4 led to remove one part of point 5.

in the new buy item under au
tion des
ription below.

User

buy and sell goods
by auction

Customer

Seller

buy item
under auction

sell item
by auction

increase
credit

identify user
close auction

browse
auctions

decrease
credit

Use Case buy item under au
tion

Intention in Context: UNCHANGED

Primary A
tor: Customer

Pre
ondition: The Customer has already identi�ed him/herself to the System

NEW: and sele
ted one a
tive au
tion.

Main Su

ess S
enario: UNCHANGED

REMOVED: 1. Customer sear
hes for an item under au
tion (sear
h item).

2. Customer requests System to join the sele
ted au
tion.

3. System presents a view of the au
tion** to Customer.

Steps 4-5
an be repeated a

ording to the intentions and bidding poli
y of the Customer

4. Customer makes a bid on the item to System.

5. System validates the bid, re
ords it, se
ures the bid amount from Customer's
redit**,

releases the se
urity on the previous high bidder's
redit (only when there was a previous

standing bid), (REMOVED: informs Parti
ipants of new high bid,) and updates the view

of the au
tion for the item** with new high bid to all Customers that are joined

to the au
tion. Customer has the high bid for the au
tion

6. System
loses the au
tion with a winning bid by Customer.

Extensions:

UNCHANGED: 2a, 5a, 5b, 6a

3a. NEW: The Customer is the Seller of the au
tion; System informs Customer that (s)he

annot join the au
tion. Use
ase ends with failure.

REMOVED: 3a. System informs Customer that au
tion has not started: use
ase ends

in failure.

REMOVED: 3b. System informs Customer that au
tion is
losed: use
ase ends in failure.

4a. Customer leaves au
tion:

4a.1a. System as
ertains that Customer has high bid in au
tion:

4a.1a.1. System
ontinues au
tion without e�e
t; use
ase
ontinues at step 5

4a.1b. System as
ertains that Customer does not have high bid in au
tion: use
ase

ends in failure.

4jja. Customer requests System to post a message to au
tion and provides the message

ontent**.

4jja.1. MODIFIED: System updates the view of the au
tion with the added message to all

Customers that are joined to the au
tion; use
ases
ontinues from where it was interrupted.

5 Con
lusion and related works

In this paper we have proposed a method to review use
ase based requirements for

a system by building a
ompanion Formally Grounded spe
i�
ation. As a result the

initial requirements are examined in a systemati
 way through the study of the various

aspe
ts of the
onsidered system, modelled in terms of elementary intera
tions and

state observers. For example, the possible interferen
es among di�erent use
ases may

be revealed (elementary intera
tions relative to di�erent use
ases may yield a
hange

of the same state observer), the
ommuni
ations between the system and the a
tors

be
ome more pre
ise (they are modelled by elementary intera
tions, whi
h require a

pre
ise de�nition of their parameters), the se
ondary a
tors (that help the system to

satisfy the primary a
tors goals) are dis
overed and their features are
lari�ed (all

entities intera
ting with the system must be de�ned and modelled).

The produ
ed Formally Grounded spe
i�
ation has a user-friendly notation (dia-

grams plus textual annotations in a natural-like language), and so it
ould be used as the

requirement do
ument. The proposed method also requires to update the original use

ase based requirements whenever a new aspe
t of the system is brought to light, thus,

at the end, new improved use
ase based requirements are available. In the meantime,

the formal Casl/Casl-Ltl spe
i�
ation
orresponding to the Formally Grounded one

is also available, e.g., for formal analysis (but we have not yet investigated this point).

We think that starting to build dire
tly the Formally Grounded spe
i�
ation from

the des
ription of the problem may be not as mu
h as e�e
tive as the proposed
om-

bination of use
ases and Formally Grounded spe
i�
ation, be
ause the ingredients of

the Formally Grounded spe
i�
ation (elementary intera
tions and state observers) are

in some sense at a �ner grain than the fun
tionalities of the system, and so may be

diÆ
ult to �nd by just
onsidering the problem.

As an example, we have used our method on a medium-size
ase study, an ele
troni

au
tion system. For la
k of room, we have des
ribed here only parts of the various tasks

and shown only some fragments of the produ
ed artifa
ts; the
omplete development

and the resulting artifa
ts
an be found in [5℄. The advantages shown by our method

on this
ase study seem quite positive. Indeed, we have dete
ted many problemati
 or

not
ompletely
lari�ed aspe
ts in the original use
ase based requirements. Among

them, we re
all (i) expli
it au
tions browsing fun
tionality (blurred in the initial re-

quirements: the information on all au
tions were available but not shown), (ii) the fa
t

that the au
tions should be performed in a
hat-like way, (iii) dis
overed the need for a

de
rease-
redit fun
tionality, (iv) made expli
it that when a Customer unregisters any

left
redit goes to the Au
tion System owner.

Moreover, we would like point out that we did not write the starting use
ase require-

ments (given by Sendall[13℄ who, as of now, has no relationship with our group and our

method), and we found them quite a

urate, presented using a well-organized template

and produ
ed following a good method.

Con
erning the possibility to use e�e
tively the proposed method we would like to

make the following positive points.

- It is possible, using
ommon existing te
hnologies, to build software tools to support

the
onstru
tion of the Formally Grounded spe
i�
ation, not only a graphi
al editor,

but also wizards guiding the properties sear
h.

- Ea
h use
ase is linked with the elementary intera
tions, the state observers and

the data stru
tures used for its spe
i�
ation. This, together with the pre
ise stru
ture

of the properties, may also help to support the evolution of the initial requirements;

indeed a modi�
ation in one use
ase may be only re
e
ted in a pre
ise part of the

asso
iated Formally Grounded spe
i�
ation.

- The inspe
tion and revision of the requirements proposed by our method
on
ern

only the nature of the system to be developed, and does not require to make any

hoi
e about the te
hnology and methods that will be used to realize the system; thus

it may be used in
ombination with many di�erent methods.

In the literature there are other approa
hes to build a formal spe
i�
ation of the

requirement of a system, but in general they do not aim at produ
ing an improved

non-formal spe
i�
ation. Among them, we re
all the ni
e work of A. van Lamsweerde

and his group[18℄, whi
h o�ers a way to formally spe
ify goal-oriented requirement

spe
i�
ations, and then to analyze them by means of formal te
hniques. R. Dromey[9℄

proposes to use \Behaviour Tree", a formal-visual notation to spe
ify the requirements,

then the resulting requirement spe
i�
ation will be used to derive the ar
hite
tural

stru
ture of the system. Our approa
h, in the line of the well-founded methods [4℄,

uses the underlying formal foundation to get a rigorous method to pre
isely spe
ify the

requirements, with the aim of a
hieving a
areful inspe
tion and a kind of validation

of those requirements.

One of the authors, together with E. Astesiano, proposed another use
ase based

method for the pre
ise spe
i�
ation of the requirements [3℄, but using the (non-formal)

UML state
harts as a notation to des
ribe the use
ases. However, be
ause it does not

o�er a systemati
 way to analysis the System under di�erent viewpoints, some aspe
ts

of the System
aptured by our method may not
ome under light.

We would like also to quote the work by S. Sendall and A. Strohmeier [15, 16℄ who

promote the use of operation s
hemas (pre- and post
onditions written in OCL) and

system interfa
e proto
ols (UML state diagrams) to
omplement use
ases; our goal is

di�erent, that is to improve the use
ase based requirements.

Inspe
tion te
hniques for improving the quality of a requirement spe
i�
ation (quite

popular in Software Engineering pra
ti
e, see e.g., [1℄) are either based on ad ho
 te
h-

niques or on
he
k-lists. The main di�eren
es with our approa
h is that our \inspe
tion"

based on the underlying formal spe
i�
ation and the tableau-�lling te
hnique leads to a

more systemati
 and pre
ise examination of the requirements, whereas standard te
h-

niques lead to more generi

he
king. For instan
e,
ompare

\�nd and list all the ways the
redit state observer may be updated in the various

s
enarios of all use
ase" (whi
h helped to dis
over the la
king fun
tionality of
redit

de
reasing), with

\Is there any missing fun
tionality, that is, do the a
tors have goals that must be

ful�lled, but that have not been des
ribed in use
ases?" taken from [1℄'s
he
k-list.

Referen
es

1. B. Anda and D. Sjoberg. Towards an Inspe
tion Te
hnique for Use Case Models. In Pro
.

SEKE 2002. ACM Press, 2002.

2. E. Astesiano and G. Reggio. Labelled Transition Logi
: An Outline. A
ta Informati
a,

37(11-12):831{879, 2001.

3. E. Astesiano and G. Reggio. Tight Stru
turing for Pre
ise UML-based Requirement

Spe
i�
ations. In Pro
. of Monterey Workshop 2002: Radi
al Innovations of Software

and Systems Engineering in the Future. Veni
e - Italy., LNCS. Springer Verlag, 2003. To

appear.

4. E. Astesiano, G. Reggio, and M. Cerioli. From Formal Te
hniques to Well-Founded

Software Development Methods. In Pro
. of The 10th Anniversary Colloquium of the

UNU/IIST: Formal Methods at the Crossroads from Pana
ea to Foundational Support.

Lisbon - Portugal, 2002., LNCS. Springer Verlag, 2003. To appear.

5. C. Choppy and G. Reggio. Improving Use Case Based Requirements Us-

ing Formally Grounded Spe
i�
ations (Complete Version). Te
hni
al Re-

port DISI-TR-03-45, DISI { Universit�a di Genova, Italy, 2003. Available at

ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio03
.ps and pdf.

6. C. Choppy and G. Reggio. Towards a Formally Grounded Software Development Method.

Te
hni
al Report DISI{TR{03{35, DISI, Universit�a di Genova, Italy, 2003.

7. A. Co
kburn. Writing E�e
tive Use Cases. Addison-Wesley, 2000.

8. G. Costa and G. Reggio. Spe
i�
ation of Abstra
t Dynami
 Data Types: A Temporal

Logi
 Approa
h. T.C.S., 173(2):513{554, 1997.

9. R. Dromey. From Requirements to Design: Formalizing the Key Steps. In Pro
. of

SEFM'03, Brisbane - Australia. IEEE Computer So
iety, 2003.

10. I. Ja
obson, M. Christerson, P. Jonnson, and G. Overgaard. Obje
t-Oriented Software

Engineering: A Use-Case Driven Approa
h. Addison-Wesley, 1992.

11. P. Mosses, editor. CASL, The Common Algebrai
 Spe
i�
ation Language - Referen
e

Manual. Le
ture Notes in Computer S
ien
e. Springer-Verlag, 2003. To appear. Available

at http://www.
ofi.info/CASL RefManual DRAFT.pdf.

12. G. Reggio, E. Astesiano, and C. Choppy. Casl-Ltl : A Casl Extension for Dynami

Rea
tive Systems Version 1.0{ Summary. Te
hni
al Report DISI-TR-03-36, DISI { Uni-

versit�a di Genova, Italy, 2003.

13. S. Sendall. Case studies for RE A2
ourse "Requirements Analysis with Use Cases".

http://lglwww.epfl.
h/resear
h/use
ases/RE-A2-
ase-studies/index.html, 2001.

14. S. Sendall and A.Strohmeier. Requirements Analysis with Use Cases.

http://lglwww.epfl.
h/resear
h/use
ases/RE-A2-theory.pdf, 2001.

15. S.Sendall and A.Strohmeier. From Use Cases to System Operation Spe
i�
ations. In

S. K. A. Evans and B. Seli
, editors, Pro
. UML'2000, number 1939 in Le
ture Notes in

Computer S
ien
e, pages 1{15. Springer Verlag, 2000.

16. S.Sendall and A.Strohmeier. Spe
ifying Con
urrent System Behavior and Timing
on-

straints using OCL and UML. In M. Gogolla and C. Kobryn, editors, Pro
. UML'2001,

number 2185 in LNCS, pages 391{405. Springer Verlag.

17. UML Revision Task For
e. OMG UML Spe
i�
ation 1.3, 2000. Available at

http://www.omg.org/do
s/formal/00-03-01.pdf.

18. A. van Lamsweerde. Building Formal Requirements Models for Reliable Software (Invited

paper). In 6th International Conferen
e on Reliable Software Te
hnologies, Ada-Europe

2001, number 2043 in Le
ture Notes in Computer S
ien
e. Springer Verlag, 2001.

