Improving Use Case Based Requirements Using
Formally Grounded Specifications

C. Choppy' and G. Reggio®

1 LIPN, Institut Galilée - Université Paris XIII, France
2 DISI, Universitd di Genova, Italy

Abstract. Our approach aims at helping to produce adequate requirements,
both clear and precise enough so as to provide a sound basis to the overall
development. We present a technique for improving use case based requirements,
by producing a companion Formally Grounded specification, that results both in
an improved requirements capture, and in a requirement validation. The Formally
Grounded requirements specification is written in a “visual” notation, using
both diagrams and text, with a formal counterpart (written in the CASL-LTL
language). The resulting use case based requirements are of high quality, more
systematic, more precise, and its corresponding Formally Grounded specification
is available. We illustrate our approach on an Auction System case study.

1 Introduction

While tools and techniques are now available to support quite efficiently software devel-
opment, one of the most difficult part remains to produce adequate requirements, both
clear and precise enough so as to provide a sound basis to the overall development.

Formally based specifications are advocated since they lead to precise, unambiguous
descriptions, but they remain difficult to use and impractical in quite a number of cases.
We think the reason for this is twofold. One point that was often put forward is the
difficulty to write and read such specifications. Another point we see is that it may be
difficult to start with formal specifications while still working on the requirements (thus,
trying to understand what is the problem about), hence our idea to take advantage of
use cases.

Use cases were introduced by Jacobson [10] after the earlier idea of scenarios, which
are the different possible courses that different instances of the same use case can
take. Use cases are used to describe/capture the requirements of software systems,
while providing an overall picture of what is happening in the system. The use case
description is textual (it should be “familiar”, easy to read) and sums up a set of
scenarios.

Use cases are popular because they are easy to use and informal, however “use
cases are wonderful but confusing” [7]. A both good and bad thing is that there is
a lot of freedom in what should include a use case description, and how it should
be written. UML [17] proposes a diagram for use cases, states that descriptions are
needed too, and that the sequence of use case activities are documented by behaviour
specifications (e.g., with interaction diagrams). However, examples show that use cases
are often imprecise, and also that the terms used are vague or ambiguous.

Since use cases are written in the early phases of software development, it is crucial
that they should be worked out with a lot of care, so as to avoid to generate errors

that will be difficult and costly to correct further on. Interesting work is done to pro-
pose some guidelines on how to write use case descriptions, e.g., Cockburn[7] proposes
templates for structuring their descriptions. In the following, we use an adaptation of
this template provided by Sendall[13].

Our idea is to find a way to combine both advantages of use cases and of formal
specifications. Here, we present a technique for improving use case based requirements,
developing a companion Formally Grounded specification, that results both in an im-
proved requirements capture (some requirements may be updated and some may be
new), and in a requirement validation since writing the specification leads to check
that the requirements can be further made explicit up to a precise specification.

The produced requirements specification is written in a “visual” notation, using
both diagrams and text, with a formal counterpart which is written in the CASL[11]
and CAsSL-LTL[12] specification languages.

Being Formally Grounded, our method is systematic, and it yields further questions
on the system that will be reflected in the improved use case descriptions. The resulting
use case descriptions are of high quality, more systematic, more precise, and their
corresponding Formally Grounded specification is available.

In Sect. 2 we shortly sum up our Formally Grounded approach for writing the
requirements specification of a software system (see [6] for a full presentation with other
examples). In Sect. 3 we present our method for improving use case based requirements
using Formally Grounded specifications, and in Sect. 4, we then show how our method
applies to a part of the Auction System case study (the complete version is in [5]),
showing how the starting use case based requirements have clarified, and how many
relevant aspects of the Auction System have been enlightened, before concluding and
discussing some related work in Sect. 5.

2 Our Formally Grounded Approach for Requirement
Specification

Our Formally Grounded specification approach (see [6] for a complete presentation),
aims at helping the user to understand the system to be developed, and to write the
corresponding formal specifications. We also support visual presentations of formal
specifications, so as to “make the best of both formal and informal worlds”. We devel-
oped this method for the (logical-algebraic) specification language CAsL [11] (Common
Algebraic Specification Language, developed within the joint initiative CoFI'), and for
an extension for dynamic systems CASL-LTL2[12]. Hence, for each visual specification,
its formal counterpart in CASL or CASL-LTL is given.

Our method caters for three different kinds of modelling/specification entities, (i)
a data structure, or data type, (ii) a simple dynamic system, that is a single dynamic
entity, and (iii) a structured dynamic system, that is composed of mutually interacting
dynamic entities; while keeping a common “meta”-structure and way of thinking.

Each entity considered may be modularly decomposed - so its (sub)parts are identi-
fied-, and is characterized by its constituent features. Its model/specification consists
of a visual presentation of these parts and constituent features, and of their properties

! http://www.cofi.info
2 LTL stands for Labelled Transition Logic[8, 2].

expressed in a natural-language style notation based on an appropriate underlying logic
(the variant of logic depends on the kind of entity).

Once the constituent features are identified, we provide guidelines for an exhaustive
search of the properties. To this end, we use a tableau whose cells, indexed by the
pairs of constituent features, should be filled. For each cell we give a schemata for
the relevant properties it should contain, expressing either, when the two indexes are
different, the mutual relationships between the two features, or, when they are equal,
what is known on that feature. This tableau-filling method ensures that no crucial part
of the specification is forgotten, and results in producing a quite structured/navigable
set of properties, which should be suitable to support evolution.

Data Structures Data structures are characterized by a set of values, some construc-
tors to denote those values, and some predicates and operations. Data structures may
be structured, e.g., they may import other data structures. These features and the
imported data structures (the parts) are visually presented as in the diagram below.
Their properties are expressed in a many-sorted, first order logic [11] with a natural
language-like notation. The tableau-filling technique provides a systematic way to find
the respective properties of constructors, predicates and operations, e.g., definedness,
truth of predicate, etc., see [6].

Data Structure Name

[Data, |— Constructors System Name

Predicates Elementary Interactions

—> Operations Data, | — State Observers

Data Structure Simple Dynamic System

Simple Dynamic Systems Simple dynamic systems are characterized by their states
and their transitions, where each transition corresponds to a change of state together
with a set of elementary interactions with the external world. Each elementary inter-
action is described by a name and possibly by parameters (data values). The states
are abstractly characterized by “state observers”, which, given some parameters, may
return some value (operations) or the truth of some condition (predicates). Thus, the
constituent features of a simple (dynamic) system are its elementary interactions with
the external world and its state observers. The parts of a simple system are its data
structures needed to define the parameters and the results of elementary interactions
and state observers. The above diagram visually presents which are the subparts and
the constituent features, while the specification of the parts is given separately. These
properties are expressed with a natural language -like notation derived by CASL-LTL.
CAsL-LtL [12] is a CASL extension based on LTL (Labelled Transition Logic) [8,2],
a branching time temporal (many-sorted, first-order with edge formulae) logic. This
notation uses combinators for expressing that elementary interactions take place (e.g.,
e happened), standard logics (if - then -else, not, and, =, exists, ...), and also
temporal combinators (next, eventually, before, in any case, in one case®).

A transition from one state to another is characterized by elementary interactions,
and properties about states and transitions are expressed, e.g., pre- and post-conditions
for elementary interactions, or incompatibilities between them. Properties for a state

3 The last two express universal and existential quantification over execution paths.

observer explore e.g., which elementary interactions may cause a change in its value,
or which are its possible changes. Again, the tableau-filling technique provides a sys-
tematic way to find these properties.

Both diagrams and text have a formal counterpart in the CASL-LTL language [12].

Structured Dynamic Systems A structured (dynamic) system is a specialized simple
system that is composed of several dynamic systems, its subsystems, which can in
turn be simple or structured. A transition of such a system should reflect which are
the subsystems transitions that occur. Moreover, it is necessary to describe how the
subsystems synchronize.

We present here a simpler version of structured systems (the general case is given
in [6]) that have only simple subsystems (possibly of different types), where two sub-
systems may interact only pairwise by performing simultaneously the same elementary
interaction, i.e., the behaviour of these structured systems is given by transitions made
of groups of subsystem transitions, where each elementary interaction of a subsystem is
matched by one of another subsystem. Furthermore, the considered structured systems
are closed, i.e., they have no interaction with the external world.

A structured system is visually presented by :

(i) a Context View which is a configuration diagram showing the subsystems (in the
Configuration) and their types (the specifications of all those types are given sepa-
rately), accompanied by a cooperation diagram showing the cooperations among the
subsystems (each cooperation is given by the synchronized execution of elementary
interactions, say EI;).

| System Name |

Syst . ;
Configuration Id,: Syst, 40 Id,: Syst,
(Syst, —| El,. El,

Configuration Diagram Cooperation Diagram

(iii) a Data View which puts together the specifications of all data structures that are
parts of the system and of its subsystems.

To specify the requirements on a software System it is sufficient to specify a struc-
tured dynamic system, whose subsystems are the System itself and all those entities
interacting with it (context entities). The specification of the System will be the re-
quirements, whereas the specifications of the context entities will show the assumptions
made by the System on the context entities.

3 The Method for High-Quality Requirements

We present in this section our method for producing enhanced requirements. It is
organized in five tasks, and works on use case based requirements while developing a
companion Formally Grounded specification, which results in improved requirements.

Task 1 Give the use case based requirements on the System following the method
proposed by S. Sendall and A. Strohmeier in [14].

Task 2 Find out which are the external entities playing the roles corresponding to the
various actors (context entities) and determine their types. At this point we can draw a
first version of the Context View (see end of previous section), by depicting the System
and the found context entities together with their types; the cooperation diagram will
have only arcs connecting the System with the context entities.

Task 3 By examining the use case descriptions, one after the other, look for elementary
interactions and state observers of the System; the former should model the interactions
between the System and the actors appearing in the use case scenarios, whereas the
latter should model information recorded in the System examined or updated in the
use case scenarios. Both of them should be depicted in the visual presentation of the
System specification (together with the type of their arguments and/or results); the
elementary interactions should also be reported in the cooperation diagram to show
which context entities are taking part in that interactions.

In the meantime put in the Data View any data structure that is used as an argument
or a result by a found elementary interaction or state observer. The association between
use cases and the elementary interactions and state observers related to it (i.e., which
are needed to describe it) should be recorded. During this task, it is possible to find
new entities interacting with the System that do not correspond to already known
actors; they should be added to the Context View, together with their specifications.
Whenever, there are relevant assumptions on the context entities they should be made
explicit by giving their Formally Grounded specification (they are just simple dynamic
systems).

Task 4 Find all the properties about the System following our tableau-filling method.
When filling a cell related to some constituent features (elementary interactions and
state observers), the descriptions of the associated use cases should be examined as a
source of inspiration. During this task, probably, new state observers and data struc-
tures will be added, and perhaps the parameters of the existing elementary interactions
and state observers may be modified.

Task 5 During the tasks 3 and 4 many questions about the System will arise, many
aspects of the System that need to be investigated will be highlighted, and many aspects
of the System precisely described by the use cases will be found not convincing. These
points may be settled following the usual ways, e.g., by interacting with the client,
if available, by doing more investigation on the application domain, or by looking at
existing similar systems. The produced Formally Grounded specification should reflect
the System where all these points have been settled.

The original use case based requirement specification should then be revised so as
to be coherent with the Formally Grounded one. In general use cases and/or scenarios
may be added or removed, scenarios may be modified by adding/removing steps or
by making more precise the terminology used to describe them. In this way the final
outcome of our method will be not only a better and more systematic understanding of
the System reflected in a Formally Grounded specification of the requirements, but also
a more precise and sound use case based specification of the same requirements.

Clearly task 5 will be performed in parallel with tasks 3 and 4.

4 The Auction System Case Study

In this paper we present a part of the application of our method to the case study of
an Auction System proposed in [13] by S. Sendall; the remaining parts are in [5]. The
description of the problem (from [13]) solved by the Auction System is shown in Fig. 1.

Your team has been given the responsibility to develop an online auction system that allows
people to negotiate over the buying and selling of goods in the form of English-style auctions
(over the Internet). The company owners want to rival the Internet auctioning sites, such as,
eBay, and uBid. The innovation with this system is that it guarantees bid placed are solvent,
making for a more serious marketplace.

All potential users of the system must first enroll with the system; once enrolled they have to
log on to the system for each session. Then, they are able to sell, buy, or browse the auctions
available on the system. Customers have credit with the system that is used as security on
each and every bid. Customers can increase their credit by asking the system to debit a
certain amount from their credit card.

A customer that wishes to sell initiates an auction by informing the system of the goods to
auction with the minimum bid price and reserve price for the goods, the start period of the
auction, and the duration of the auction, e.g., 30 days. The seller has the right to cancel
the auction as long as the auction’s start date has not been passed, i.e., the auction has not
already started.

Customers that wish to follow an auction must first join the auction. Note that it is only
possible to join an active auction. Once a customer has joined the auction, (s)he may make a
bid, or post a message on the auction’s bulletin board (visible to the seller and all customers
who are currently participants in the auction). A bid is valid if it is over the minimum bid
increment, and if the bidder has sufficient funds, i.e., the customer’s credit with the system
is at least as high as the sum of all pending bids. Bidders are allowed to place their bids until
the auction closes, and place bids across as many auctions as they please. Once an auction
closes, the system calculates whether the highest bid meets the reserve price given by the
seller, and if so, the system deposits the highest bid price minus the commission taken for
the auction service into the credit of the seller (credit internal with the system).

The auction system is highly concurrent—clients bidding against each other in parallel, and a
client placing bids at different auctions and increasing his/her credit in parallel.

Fig. 1. Auction System Problem Description

4.1 Awuction System Task 1 — Use Case Based Requirement Specification

Here we report the use case based specification of the requirement on the Auction
System given following the method of [14] as found in [13]. The only difference with
[13] is that we summarize the actors and the use cases by means of a UML use case
diagram, see Fig. 2, below, showing also the “include” relationships among the use
cases (depicted by dotted lines). In the following use case descriptions “**” means that
the details about some aspects of the Auction System (e.g., data format or rules to
follow to perform some activity) are given in an accompanying document, not present
in [13] and thus not considered here. Here we do not detail the schema for the use case
description followed in this example and presented in [14]. For lack of room, we present
only the main use case buy item under auction, the other ones are in [5].

___________ buy and sell goods
--------- by auction
sell item buy item !
by auction under auctio ' N

: s User
Seller v - b
close auction search for increase credit) (identify user
auction item

Customer

Fig. 2. Auction System: Use cases and actors

Use Case buy item under auction

Intention in Context: The intention of the Customer is to follow the auction, which may
then evolve into an intention to buy an item by auction, i.e., (s)he may then choose to bid
for an item. The Customer may bid in many different auctions at any one time. (Also the
actor Participant means the Seller and all the Customers that are joined to the auction).
Primary Actor: Customer

Precondition: The Customer has already identified him /herself to the System.

Main Success Scenario: Customer may leave the auction and come back again later to

look at the progress of the auction, without effect on the auction; in this case, the

Customer is required to join the auction again.

1. Customer searches for an item under auction (search item).

2. Customer requests System to join the auction of the item.

3. System presents a view of the auction** to Customer.

Steps 4-5 can be repeated according to the intentions and bidding policy of the Customer

4. Customer makes a bid on the item to System.

5. System validates the bid, records it, secures the bid amount from Customer’s credit**,
releases the security on the previous high bidder’s credit (only when there was a previous
standing bid), informs Participants of new high bid, and updates the view of the auction
for the item** with new high bid to all Customers that are joined to the auction.

Customer has the high bid for the auction.

6. System closes the auction with a winning bid by Customer.

Extensions:

2a. Customer requests System not to pursue item further:
2a.1. System permits Customer to choose another auction, or go back to an earlier point
in the selection process; use case continues at step 2.

3a. System informs Customer that auction has not started: use case ends in failure.

3b. System informs Customer that auction is closed: use case ends in failure.

4a. Customer leaves auction:
4a.la. System ascertains that Customer has high bid in auction:

4a.la.l. System continues auction without effect; use case continues at step 6
4a.1b. System ascertains that Customer does not have high bid in auction: use case ends
in failure.

4||a. Customer requests System to post a message to auction and provides the message
content**.
4||a.1. System informs all Participants of message; use case continues from where it was
interrupted.

5a. System determines that bid does not meet the minimum increment**:
5a.1l. System informs Customer; use cases continues at step 4.

5b. System determines that Customer does not have sufficient credit to guarantee bid:
5b.1. System informs Customer; use cases continues at step 4.

6a. Customer was not the highest bidder:
6a.1. System closes the auction; use case ends in failure.

4.2 Awuction System: Task 2

The Auction System has any number of context entities all of the type Person (anyone
accessing the system by Internet). A Person may play three roles: User (plain Internet
user), Customer (a User identified by the Auction System and connected with it)
and Seller (a Customer selling some goods using the Auction System). We give a
first version of the Context View showing the Auction System and the Persons (the
incomplete cooperation diagram just shows that the a Person interacts only with the
Auction System).

(Universe

AuctionSystem

|/

AuctionSystem

AuctionSystem

4.3 Awuction System: Task 3

We examine the various use cases, one after the other, looking for the elementary actions
and the state observers of AuctionSystem, together with the needed data structures and,
possibly new context entities. Note that, for each use case, we do not give the features
used by the included sub-use cases.

We name each elementary interaction made by the Auction System with an identifier
of the form AS_..., whereas those made by a person context entity will be named
USER_. .., CUSTOMER_. .. and SELLER_.. ., depending on the role.

For each use case we produce a fragment of the Context View, of the Data View
and of the specification of the Auction System. At the end, all these fragments will be
put together getting the initial view of the structural part of the Formally Grounded
requirement specification of the Auction System. To be able to support the evolution of
the requirements, however, we require to keep track of the features of the specification
(elementary interactions, state observers, and data structures) that are related with
each use case.

Already, during this task many questions about the Auction System may arise that
should be settled with the client; we use the following annotation for these questions
and the way chosen to settle them Q: problem A: settled in this way.

Use Case buy item under auction The elementary interactions of AuctionSystem,
shown in the first compartment of the above diagram, correspond either to an inter-
action made in the use case by the Auction System towards a context entity (e.g.,
AS_BIp_OK for communicating that the placed bid was ok) or to an interaction re-
ceived by a context entity (e.g., CUSTOMER_BID for a Customer placing a bid). Instead,
the state observers, in the second compartment, correspond to information recorded

inside the Auction System either tested or updated during the use case (e.g., credit:
the actual credit of a Customer denoted by an identification; infoAbout: the current

information about an auction).

(AuctionSystem h

CUSTOMER JOIN_AUCTION(Session_Key,Auction_Id)
AS_SHOW_AUCTIONSession_Key,Auction_View)

CUSTOMER BID(Session_Key,Auction_Id,Int)
AS_BID_OK(Session_Key,Auction_ld,Int)

CUSTOMER LEAVE_AUCTION(Session_Key,Auction_ld)
AS_BID_TOO_LOW(Session_Key,Auction_Id,Int)
AS_NO_CREDIT_FOR_BID(Session_Key,Auction_Id,Int)
CUSTOMER POST_MESSAGE(Session_Key,Auction_ld,Message)

AS_SEND_MESSAGE(Address,String)

is_Identified(Identification,Session_Key)

credit(Identification): Int

infoAbout(Auction_Id): Auction_Info
\joined(Session_Key,Auction_Id))

The Context View, see below, shows which context entities take part in the use case
(e.g., the person), and which are the interactions of the Auction System with them
(e.g., CUSTOMER_JOIN_AUCTION is an interaction between Auction System and the

person).
(Person j

CUSTOMER JOIN_AUCTION

- . AS_SHOW_AUCTION
Universe] CUSTOMER BID
AS_BID_OK

(Mail) (AuctionSystem) <: CUSTOMER LEAVE_AUCTION

AS_BID_TOO_LOW
(P1:Person)

AuctionSystem

AS_NO_CREDIT_FOR_BID
CUSTOMER POST_MESSAGE

AuctionSystem ‘

AS_SEND_MESSAGE

Q: This use case requires that the Auction System informs the participants to an auction
about various facts (e.g., when there is a new higher bid or a message of another
participant), but nothing is said on how that will be performed. In the description of
the use case close auction there is a note saying that this is an open issue and that it
will be likely made by email. A: It is assumed the existence of an external mail service,
not further detailed, able to deliver messages to User identified by some kind of address
(because the client will decide in future among email, SMS, messaging systems). The
mail service will be then a NEW context entity (and a new secondary actor).

The Data View shows all the data used as parameters by the found elementary
interactions and state observers, and which predicates/operations we need to perform
all the calculations over them required by the use case. For example, Auction_Info,
the information about an auction, has an operation, view, for recovering a view of the
auction to be shown to its participants, whereas Auction_View is not further detailed.

Person

Address| | Message | | Auction_Id | |Auction_View |

Auction_lInfo Registration_Info |Identification |

id: Auction_Info -> Auction_Id address: Address Session_Key

view: Auction_Info -> Auction_View

4.4 Auction System: Task 4

This task consists in finding the properties about the Auction System by filling the
tableau generated by the elementary interactions and state observers found in the
previous task, and by completing the specifications of the data structures. Clearly,
while doing this activity, new state observers may be added, which will have then to
be introduced in the tableaux and considered while looking for the properties. The
original use case based specification may be modified by reflecting the better insights
on the Auction System gained while looking for properties.

Here we show only some properties, together witht he arisen questions, about a few
elementary interactions and state observers needed for the use case buy item under auc-
tion; each property is both expressed in our notation, and accompanied by a comment.
The full set of the properties can be found in [5].

Elementary interaction CUSTOMER_JOIN_AUCTION Looking for the pre/postcondi-
tions of CUSTOMER_JOIN_AUCTION for filling the tableau cell whose both indexes are
that elementary interaction, we found the following unclear points about the Auction
System.

Q: Does the use case search item ends having selected one auction or one item? This is
relevant because there may be many different auctions for the same item, e.g., a used
car. The description of search item suggests some auctions, whereas that of buy item
under auction suggests one item. A: The search item ends with some selected auctions,
as in other auction systems.

Q: Can an auction selected by the search item be in any status (e.g., closed or not yet
started)? A: Yes, and this is quite sensible, since a Customer may be interested in
knowing that some item has been sold in the past and at which price, or which are the
current starting prices of some items, or that some items will be soon auctioned.

Q: Can a Customer try to join a closed or not-started auction? A: No, the Auction
System should not provide this possibility, and answers with an error.

The above problems lead us to revise the use case search item. As a result, we
now have the NEW browse auctions use case ending with a selected group of auctions.
Moreover, the use case buy item under auction may start only when there is one selected
auction that is active. Then, we introduce a new state observer selected_Auctions that
associates with each identified Customer (referred to by a session key sk) the identities
of the currently selected auctions.

Q: Can a Customer join an auction to which (s)he is already joined? A: Yes, since
there is no problem. A better choice may be that the Auction System sends a warning
to Customer.

If a Customer joins an auction, then
(s)he is identified,
Customer has selected one auction that is active;
and after (the Customer has joined that auction, and
the Auction System shows to her/him all the detail of the selected auction)
if CUSTOMER_JOIN_AUCTION(sk,aid) happen then
exists id:Identification s.t. is_Identified(id,sk) and
status(infoAbout(aid)) = active and
joined ™ (sk,aid) and
in any case next AS_SHOW_AUCTION(sk,view(infoAbout(aid))) happen

Elementary interaction AS_BiD_Ok While looking for its postcondition which
concerns also the future behaviour of the Auction System after having performed the
elementary interaction we detected the following problem.

Q: Is it true that o Customer joined to an auction is informed twice of each new bid,
once by receiving a view of the auction with the new bid and once by some kind of
message? Moreover, if a Customer places a bid, and after leaves the auction, will (s)he
be ever informed of a new higher bid? More generally, which is the intended duration
of an auction? a few hours when the participants bid many times, and continuously
look at the current view of the auction? or several days, when the participants from
time to time place their bids and look at the situation of the auction? A: The client
decided that an auction handled by the Auction System should last o few hours with all
participants logged on; thus there is no need to inform the joined customers and the
seller of the various bids, because they continuously examine the current view of the
auction that the Auction System keeps updated.

If the Auction System informs a Customer that her/his bid is ok, then
the Customer placed such bid,
(s)he had sufficient credit, and the bid met the minimum increment; and after
the bid is recorded,
the amount is secured by the Customer credit,
the security on the previous high bid is released (if any), and
the updated auction view is sent to all the Customers joined to the auction.
if AS_BID_OK(sk,aid,i) happen then
in any case before CUSTOMER-BID(sk,aid,i) happened and
i< credit(identityOf (sk)) and
1bid_Ok(infoAbout(aid),i) and
high_Bidder(infoAbout ™ (aid)) = identityOf (sk) and high_Bid (infoAbout ™ (aid)) = 4
and credit ™ (identityOf (sk)) = credit(identityOf (sk)) - ¢ and
(if is defined (high_Bidder(infoAbout(aid))) then
credit "™ (high_Bidder (infoAbout(aid))) =
credit(high_Bidder (infoAbout(aid))) + high_Bid(infoAbout(aid))) and
for all ski:Session_Key
o if joined(aid,sk1) then AS_SHOW_AUCTION(sk1,view (infoAbout(aid)))

State Observer credit The first version of the property about the decreasing of the
credit (part of the tableau cell indexed by credit:credit) based on what is written in
the various use case descriptions is the following, and points out a problem.

If the credit of a Customer decreases, then the Customer made a bid in an auction.
if credit™(id) = credit(id) - i and i> 0 then exists sk:Session_Key, aid: Auction_Id s.t.
AS_BID_OK(sk,aid,i) happened and is_Identified(id,sk)

Q: It is true that a Customer using the Auction System only for selling items will be
never able to collect her/his money? Moreover, can a buying Customer recover her/his
money when (s)he is no more interested in buying? A: Yes; thus we have to add a
NEW use case decrease credit for allowing a Customer to recover her/his credit.

The new version we propose is then
If the credit of a Customer decreases, then

either the Customer asked the Auction System to decrease it, (NEW)
or the Customer made a bid in an auction.

if credit™(id) = credit(id) - i and i> 0 then
exists sk:Session_Key, ctd Credit-Transfer_Detail s.t.
AS_DECREASED_CREDIT(sk,ctd) happened and
1= amount(ctd) and is_Identified(id,sk)
or exists sk:Session_Key, aid:Auction_Id s.t.
AS_BID_OK(sk,aid,i) happened and is_Identified(id,sk)

4.5 Awuction System Task 5 — New Use Case Based Requirement
Specification

Here we report only the new use case diagram and the new description of the use case
buy item under auction, see [5] for the complete new use case based requirements. Two
new use cases were identified when following our approach (see the previous section),
browse auctions (thus, point 1. was removed from the buy item under auction description
below) and decrease credit. The questions brought up by our work led to several modi-
fications, e.g., the work on AS_BID_OK in Sect. 4.4 led to remove one part of point 5.
in the new buy item under auction description below.

________ -~ buy and sell goods
g -7 by auction 4
by auction . \ *
Y y N User
N 8 A
increase decrease f .

Seller v

Customer

Use Case buy item under auction

Intention in Context: UNCHANGED

Primary Actor: Customer

Precondition: The Customer has already identified him /herself to the System

NEW: and selected one active auction.

Main Success Scenario: UNCHANGED

REMOVED: 1. Customer searches for an item under auction (search item).

2. Customer requests System to join the selected auction.

3. System presents a view of the auction** to Customer.

Steps 4-5 can be repeated according to the intentions and bidding policy of the Customer

4. Customer makes a bid on the item to System.

5. System validates the bid, records it, secures the bid amount from Customer’s credit**,
releases the security on the previous high bidder’s credit (only when there was a previous
standing bid), (REMOVED: informs Participants of new high bid,) and updates the view
of the auction for the item** with new high bid to all Customers that are joined
to the auction. Customer has the high bid for the auction

6. System closes the auction with a winning bid by Customer.

Extensions:

UNCHANGED: 2a, 5a, 5b, 6a

3a. NEW: The Customer is the Seller of the auction; System informs Customer that (s)he
cannot join the auction. Use case ends with failure.

REMOVED: 3a. System informs Customer that auction has not started: use case ends

in failure.
REMOVED: 8b. System informs Customer that auction is closed: use case ends in failure.
4a. Customer leaves auction:
4a.la. System ascertains that Customer has high bid in auction:
4a.la.1l. System continues auction without effect; use case continues at step 5
4a.1b. System ascertains that Customer does not have high bid in auction: use case
ends in failure.
4||a. Customer requests System to post a message to auction and provides the message
content**,
4||la.1. MODIFIED: System updates the view of the auction with the added message to all
Customers that are joined to the auction; use cases continues from where it was interrupted.

5 Conclusion and related works

In this paper we have proposed a method to review use case based requirements for
a system by building a companion Formally Grounded specification. As a result the
initial requirements are examined in a systematic way through the study of the various
aspects of the considered system, modelled in terms of elementary interactions and
state observers. For example, the possible interferences among different use cases may
be revealed (elementary interactions relative to different use cases may yield a change
of the same state observer), the communications between the system and the actors
become more precise (they are modelled by elementary interactions, which require a
precise definition of their parameters), the secondary actors (that help the system to
satisfy the primary actors goals) are discovered and their features are clarified (all
entities interacting with the system must be defined and modelled).

The produced Formally Grounded specification has a user-friendly notation (dia-
grams plus textual annotations in a natural-like language), and so it could be used as the
requirement document. The proposed method also requires to update the original use
case based requirements whenever a new aspect of the system is brought to light, thus,
at the end, new improved use case based requirements are available. In the meantime,
the formal CASL/CASL-LTL specification corresponding to the Formally Grounded one
is also available, e.g., for formal analysis (but we have not yet investigated this point).

We think that starting to build directly the Formally Grounded specification from
the description of the problem may be not as much as effective as the proposed com-
bination of use cases and Formally Grounded specification, because the ingredients of
the Formally Grounded specification (elementary interactions and state observers) are
in some sense at a finer grain than the functionalities of the system, and so may be
difficult to find by just considering the problem.

As an example, we have used our method on a medium-size case study, an electronic
auction system. For lack of room, we have described here only parts of the various tasks
and shown only some fragments of the produced artifacts; the complete development
and the resulting artifacts can be found in [5]. The advantages shown by our method
on this case study seem quite positive. Indeed, we have detected many problematic or
not completely clarified aspects in the original use case based requirements. Among
them, we recall (i) explicit auctions browsing functionality (blurred in the initial re-
quirements: the information on all auctions were available but not shown), (ii) the fact
that the auctions should be performed in a chat-like way, (iii) discovered the need for a
decrease-credit functionality, (iv) made explicit that when a Customer unregisters any

left credit goes to the Auction System owner.

Moreover, we would like point out that we did not write the starting use case require-
ments (given by Sendall[13] who, as of now, has no relationship with our group and our
method), and we found them quite accurate, presented using a well-organized template
and produced following a good method.

Concerning the possibility to use effectively the proposed method we would like to
make the following positive points.
- It is possible, using common existing technologies, to build software tools to support
the construction of the Formally Grounded specification, not only a graphical editor,
but also wizards guiding the properties search.
- Each use case is linked with the elementary interactions, the state observers and
the data structures used for its specification. This, together with the precise structure
of the properties, may also help to support the evolution of the initial requirements;
indeed a modification in one use case may be only reflected in a precise part of the
associated Formally Grounded specification.
- The inspection and revision of the requirements proposed by our method concern
only the nature of the system to be developed, and does not require to make any
choice about the technology and methods that will be used to realize the system; thus
it may be used in combination with many different methods.

In the literature there are other approaches to build a formal specification of the
requirement of a system, but in general they do not aim at producing an improved
non-formal specification. Among them, we recall the nice work of A. van Lamsweerde
and his group[18], which offers a way to formally specify goal-oriented requirement
specifications, and then to analyze them by means of formal techniques. R. Dromey|[9]
proposes to use “Behaviour Tree”, a formal-visual notation to specify the requirements,
then the resulting requirement specification will be used to derive the architectural
structure of the system. Our approach, in the line of the well-founded methods [4],
uses the underlying formal foundation to get a rigorous method to precisely specify the
requirements, with the aim of achieving a careful inspection and a kind of validation
of those requirements.

One of the authors, together with E. Astesiano, proposed another use case based
method for the precise specification of the requirements [3], but using the (non-formal)
UML statecharts as a notation to describe the use cases. However, because it does not
offer a systematic way to analysis the System under different viewpoints, some aspects
of the System captured by our method may not come under light.

We would like also to quote the work by S. Sendall and A. Strohmeier [15,16] who
promote the use of operation schemas (pre- and postconditions written in OCL) and
system interface protocols (UML state diagrams) to complement use cases; our goal is
different, that is to improve the use case based requirements.

Inspection techniques for improving the quality of a requirement specification (quite
popular in Software Engineering practice, see e.g., [1]) are either based on ad hoc tech-
niques or on check-lists. The main differences with our approach is that our “inspection”
based on the underlying formal specification and the tableau-filling technique leads to a
more systematic and precise examination of the requirements, whereas standard tech-
niques lead to more generic checking. For instance, compare
“find and list all the ways the credit state observer may be updated in the various
scenarios of all use case” (which helped to discover the lacking functionality of credit

decreasing), with
“Is there any missing functionality, that is, do the actors have goals that must be
fulfilled, but that have not been described in use cases?” taken from [1]’s check-list.

References

1.

2.

3.

® N

10.

11.

12.

13.

14.

15.

16.

17.

18.

B. Anda and D. Sjoberg. Towards an Inspection Technique for Use Case Models. In Proc.
SEKE 2002. ACM Press, 2002.

E. Astesiano and G. Reggio. Labelled Transition Logic: An Qutline. Acta Informatica,
37(11-12):831-879, 2001.

E. Astesiano and G. Reggio. Tight Structuring for Precise UML-based Requirement
Specifications. In Proc. of Monterey Workshop 2002: Radical Innovations of Software
and Systems Engineering in the Future. Venice - Italy., LNCS. Springer Verlag, 2003. To
appear.

E. Astesiano, G. Reggio, and M. Cerioli. From Formal Techniques to Well-Founded
Software Development Methods. In Proc. of The 10th Anniversary Colloguium of the
UNU/IIST: Formal Methods at the Crossroads from Panacea to Foundational Support.
Lisbon - Portugal, 2002., LNCS. Springer Verlag, 2003. To appear.

C. Choppy and G. Reggio. Improving Use Case Based Requirements Us-
ing Formally Grounded Specifications (Complete Version). Technical Re-
port DISI-TR-03-45, DISI — Universita di Genova, Italy, 2003. Available at
ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio03c.ps and pdf.

C. Choppy and G. Reggio. Towards a Formally Grounded Software Development Method.
Technical Report DISI-TR-03-35, DISI, Universita di Genova, Italy, 2003.

A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.

G. Costa and G. Reggio. Specification of Abstract Dynamic Data Types: A Temporal
Logic Approach. T.C.S., 173(2):513-554, 1997.

R. Dromey. From Requirements to Design: Formalizing the Key Steps. In Proc. of
SEFM’03, Brisbane - Australia. IEEE Computer Society, 2003.

I. Jacobson, M. Christerson, P. Jonnson, and G. Overgaard. Object-Oriented Software
Engineering: A Use-Case Driven Approach. Addison-Wesley, 1992.

P. Mosses, editor. CASL, The Common Algebraic Specification Language - Reference
Manual. Lecture Notes in Computer Science. Springer-Verlag, 2003. To appear. Available
at http://www.cofi.info/CASL_RefManual DRAFT.pdf.

G. Reggio, E. Astesiano, and C. Choppy. CasL-LTL : A CasL Extension for Dynamic
Reactive Systems Version 1.0- Summary. Technical Report DISI-TR~03-36, DISI — Uni-
versita di Genova, Italy, 2003.

S. Sendall. Case studies for RE_A2 course ”Requirements Analysis with Use Cases”.
http://1glwww.epfl.ch/research/use_cases/RE-A2-case-studies/index.html, 2001.

S. Sendall and A.Strohmeier. Requirements Analysis with Use Cases.
http://1glwww.epfl.ch/research/use_cases/RE-A2-theory.pdf, 2001.

S.Sendall and A.Strohmeier. From Use Cases to System Operation Specifications. In
S. K. A. Evans and B. Selic, editors, Proc. UML’2000, number 1939 in Lecture Notes in
Computer Science, pages 1-15. Springer Verlag, 2000.

S.Sendall and A.Strohmeier. Specifying Concurrent System Behavior and Timing con-
straints using OCL and UML. In M. Gogolla and C. Kobryn, editors, Proc. UML’2001,
number 2185 in LNCS, pages 391-405. Springer Verlag.

UML Revision Task Force. OMG UML Specification 1.3, 2000. Available at
http://www.omg.org/docs/formal/00-03-01. pdf.

A. van Lamsweerde. Building Formal Requirements Models for Reliable Software (Invited
paper). In 6th International Conference on Reliable Software Technologies, Ada-Europe
2001, number 2043 in Lecture Notes in Computer Science. Springer Verlag, 2001.

