
Towards a Formally Grounded Software

Development Method

Christine Choppy

a

Gianna Reggio

b

a

LIPN, Institut Galil�ee - Universit�e Paris XIII, Frane

b

DISI, Universit�a di Genova, Italy

Abstrat

One of the goals of software engineering is to provide what is neessary to write

relevant, legible, useful desriptions of the systems to be developed, whih will be

the basis of suessful developments. This goal was addressed both from informal

approahes (providing in partiular visual languages) and formal ones (providing a

formal sound semanti basis). Informal approahes are often driven by a software de-

velopment method, and while formal approahes sometimes provide a user method,

it is usually aimed at helping to use the proposed formalism/language when writing

a spei�ation. Our goal here is to provide a ompanion method that helps the user

to understand the system to be developed, and to write the orresponding formal

spei�ations. We also aim at supporting visual presentations of formal spei�a-

tions, so as to \make the best of both formal and informal worlds". We developed

this method for the (logial-algebrai) spei�ation languages Casl (Common Al-

gebrai Spei�ation Language, developed within the joint initiative CoFI) and for

an extension for dynami systems Casl-Ltl, and we believe it is general enough to

be adapted to other paradigms.

Another hallenge is that a method that is too general does not enompass the dif-

ferent kinds of systems to be studied, while too many di�erent speialized methods

and paradigms result in partial views that may be diÆult to integrate in a single

global one. We deal with this issue by providing a limited number of instanes of

our method, �tted for three di�erent kinds of software items and two spei�ation

approahes, while keeping a ommon \meta"-struture and way of thinking. More

preisely, we onsider here that a software item may be a simple dynami system,

a strutured dynami system, or a data struture. We also support both property-

oriented (axiomati) and model-oriented (onstrutive) spei�ations. We are thus

providing support for the \building-briks" tasks of speifying/modelling software

artifats that in our experiene are needed for the development proess.

Our approah is illustrated with a lift ase study, it was also used with other large

ase studies, and when used on projets by students yielded homogeneous results.

Let us note that it may be used either as itself, e.g., for requirements spei�ation,

or in ombination with struturing onepts suh as the Jakson's problem frames.

Preprint submitted to Elsevier Siene 1 August 2003

Key words: Spei�ation method, formal spei�ation, algebrai-logial

spei�ation, visual notation, Casl, Casl-Ltl development method . . .

1 Introdution

1.1 Aims and Sope

One of the goals of software engineering is to provide paradigms, languages,

notations, formalisms (together with a ompanion user method) to write rel-

evant, legible, useful desriptions of the systems to be developed, whih will

be the basis of suessful developments. This goal has been explored both

from informal and formal approahes, while informal notations may put em-

phasis on varieties of attrative graphis, formal approahes o�er the serious

basis of a formally desribed semantis. In both ases, one problem may be

that the ompanion user method is not available to start with, and when it

is available another problem is that, while it helps to use the formalism pro-

posed, it does not always help to understand the system to be developed.

Another diÆulty when struggling with these issues is that systems under

study may be quite di�erent in nature (or may inlude parts that are so),

thus di�erent notations/languages and methods may be needed. To de�ne a

homogeneous approah, general enough to enompass di�erent issues, but still

arrying meaningful and preise guidelines and onepts, is also a goal.

On the one hand, many formalisms and some formal spei�ation methods

were developed (see [4℄ for the distintion between formalism and method),

e.g., algebrai spei�ations and assoiated methods [2℄. On the other hand,

we an witness the suess of development methods without or with a very

limited grounding in sound formal theories, as those based on UML [33℄, e.g.,

RUP [24℄ and COMET [18℄. Clearly, there is a need to aommodate both

worlds, for instane some reent works try to give a preise semantis to UML

([27, 28℄), and the need for UML based rigorous methods has emerged. There

are obvious di�erenes between the two kinds of approahes (formal/informal):

� not very friendly notation, sometimes based on exoti mathematial sym-

bols/very friendly visual notation;

� rather rigid with a lot of overhead notation/exible adaptable notation;

� need time and bakground to learn the used tehnique/short time to learn

the method;

1

Work partly supported by the Italian National Projet SAHARA (Arhitetture

Software per infrastrutture di rete ad aesso eterogeneo).

2

� mainly simple toy ase studies onsidered/developed having in mind the

real ommon appliations;

� user manuals explaining how to use the various onstruts are available/

software development methods based on them are available.

Our attempt is to make the best of both worlds by trying to propose a de-

velopment method whih has all the good properties of those ommonly used

(friendly notation based on simple intuitive visual metaphors, easy to under-

stand and to learn, onsidering real appliations, . . .), and that is also formally

grounded, i.e., its spei�ations artifats have a diret ounterpart in a formal

spei�ation language, and thus a formal semantis, based on well de�ned

underlying formal models. Here, we present a �rst proposal towards suh a

method formally grounded on the algebrai spei�ation language Casl-Ltl

[1, 26, 23℄. It overs the requirements and the design phases of the develop-

ment, o�ering some tehniques to speify requirements and designs for very

general software systems. Suh tehniques result in produing spei�ations

having a preise struture at the oneptual level, whih an, then, be pre-

sented either in a visual way or as formal Casl-Ltl spei�ations.

In our opinion, a relevant result of this work is that the paradigms and the teh-

niques of our method, being originated from the underlying theory are quite

di�erent from those supported by the most pratial ommon methods

2

. For

example, we do not make use of \use ases", nor of diagrams showing senar-

ios, as UML sequene and ollaboration, and we are not objet-oriented

3

. On

the other hand, we are muhmore systemati and inherently more rigorous, we

use diagrams to visually present the behaviour of an ative element (not just

its reations to external stimuli), we expliitly de�ne how the various elements

in a system ooperate, we expliitly state whih are the elements omposing

a system, et.

Our previous experienes suggested that the various ativities in a develop-

ment proess are based on the \building-briks" tasks of speifying

4

software

items of di�erent nature at di�erent levels of abstrations. So we propose

some methods for developing the basi spei�ation bloks using as underly-

ing foundation Casl-Ltl, but giving for all of them a orresponding visual

presentation. We assume that a \software item" may be either

� a simple dynami system (just a dynami interating entity in isolation,

2

However, we would like to bene�t from both worlds, e.g., we use a UML-like

notation to illustrate our method, and to establish links to UML is a subjet of

planned further work.

3

We do not use the onept of objets.

4

Notie that \to speify/spei�ations" are the terms used in the formal ommu-

nity, whereas in the pratial world the orresponding ones are \to model/models".

For example, we have Casl spei�ations and UML models.

3

e.g., a sequential proess) or

� a strutured dynami system (a ommunity of mutually interating entities,

simple or in turn strutured), or

� a data struture (or data type).

For eah ase, we give two spei�ation tehniques (property-oriented, and

onstrutive or model-oriented), by giving the abstrat struture of the orre-

sponding spei�ations with the related visual presentation and orresponding

formal Casl-Ltl spei�ation.

To introdue a spei�ation method we follow the oneptual shema of [4℄

that we briey present in Set. 2.1; furthermore all property-oriented spei-

�ation methods presented here are all speializations for partiular varieties

of items of a general method that we present in Set. 2.2. The setions 3, 4

and 5, devoted respetively to simple dynami systems, strutured dynami

systems, and data strutures, have the same struture. First, the onsidered

items are desribed, then, their property-oriented spei�ation is developed

(the spei�ation of the parts and onstituent features, the properties spe-

i�ation using the ell �lling tehnique, an illustration on the lift example,

and the Casl/Casl-Ltl view), and last their onstrutive spei�ation is

desribed (the harateristis, an illustration on the lift example, and the

Casl-Ltl or Casl view). Set. 6 and 7 are devoted to the appliations of

our spei�ation methods, respetively to some of the most relevant prob-

lem frames of M. Jakson [19, 20℄, and to present the requirements for an

Internet-based lottery system. The remaining of our introdution is devoted

to a brief presentation of the Casl and Casl-Ltl spei�ation languages in

Set. 1.2 , and to the desription of our running example with pointers to its

spei�ations in the paper in Set. 1.3.

1.2 Casl, the Common Algebrai Spei�ation Language, and Casl-Ltl

\Casl is an expressive language for the formal spei�ation of funtional

requirements and modular design of software. It has been designed by CoFI

5

,

the international Common Framework Initiative for algebrai spei�ation and

development. It is based on a ritial seletion of features that have already

been explored in various ontexts, inluding subsorts, partial funtions, �rst-

order logi, and strutured and arhitetural spei�ations." [1℄ The CoFI

projet is presented in [22℄, and various douments are available on Casl,

in partiular the Casl Referene [23℄ inluding a omplete formal semantis,

and the Casl User Manual is being written [11℄. Thus, only the features of

the language that are used in our examples will be shortly presented.

5

http://www.bris.dk/Projets/CoFI

4

As shown in the example below, a Casl spei�ation may inlude the delara-

tions of sorts, operations and prediates (together with their arity), and axioms

that are �rst-order formulae

6

, respetively introdued by relevant keywords.

Some operations play the role of onstrutors, thus, \datatype delarations

may be used to abbreviate delarations of sorts and onstrutors."[11℄

spe SpeName =

type type name ::= on name(argTypes

on

) j : : :

ops op name : argTypes

op

! resType

op

. . .

preds pr name : argTypes

pr

. . .

axioms formulae

As shown below, \large and omplex spei�ations are easily built out of sim-

pler ones by means of (a small number of) spei�ation building primitives . . .

Union (keyword `and') and extension an be used to struture spei�ations

. . . Extensions, introdued by the keyword `then', may speify new symbols,

possibly onstrained by some axioms, or merely require further properties of

old ones . . . "[11℄

spe SpeName =

SP

1

and . . . and SP

j

then

type type name ::= on name(argTypes

on

) j : : :

. . .

\In pratie, a realisti software spei�ation involves partial as well as to-

tal funtions."[11℄ Partial operations or onstrutors are delared with a '?'

symbol, and the de�nedness of a term an be asserted in the axioms.

spe SpeName =

type type name ::= on name(argTypes

on

)? j : : :

ops op name : argTypes

op

!? resType

op

. . .

axioms

def(on name(: : :)) , : : :

Let use note that speial are is needed in spei�ations involving partial fun-

tions [11℄. Funtions, even total ones, propagate unde�nedness, and prediates

do not hold on unde�ned arguments. Terms ontaining partial funtions may

be unde�ned, i.e., they may not denote any value.

Another helpful feature of Casl is the free onstrut. \Free spei�ations

provide initial semantis and avoid the need for expliit negation . . . In models

of free spei�ations, it is required that values of terms are distint exept when

6

with strong equality (Set. 5.2.1) and a 2-valued logis

5

their equality follows from the spei�ed axioms: the possibility of unintended

oinidene between them is prohibited."[11℄

spe SpeName =

SP

1

and . . . and SP

j

then

free f type type name ::= on name(argTypes

on

) j : : :

ops op name : argTypes

op

!? resType

op

. . .

axioms . . . g

Generi spei�ations (also known as parametrized spei�ations in other spe-

i�ation languages) are very useful for reuse. Their parameter spei�ation is

usually very simple, and an instane of a generi spei�ation is obtained by

providing an argument spei�ation for eah parameter. The following spe-

i�ation is an extension of an instane of the generi spei�ation Finite-

Set[Elem℄ by Int (both are in the basi spei�ations library [31℄).

spe SpeName = FiniteSet[Int℄ . . . then . . .

\Casl is the heart of a family of languages. Some tools will make use of

well-delineated sub-languages of Casl . . . while extensions of Casl are be-

ing de�ned to support various paradigms and appliations."[1℄ One of these

extensions is Casl-Ltl [26℄, whih was designed for the dynami systems

spei�ation by giving a Casl view to LTL, the Labelled Transition Logi

([5, 17℄).

LTL, and thus Casl-Ltl, is based on the idea that a dynami system is on-

sidered as a labelled transition system (shortly lts), and that to speify it one

has to speify the labels, the states and the transitions of suh system. Re-

all that an lts is a triple (State;Label;!), where !� State � Label � State.

Casl-Ltl o�ers a speial onstrut to delare an lts, by stating that two given

sorts orrespond respetively to its states and labels, and that a standard ar-

row prediate orresponds to its transition relation !.

dsort st label lab stands for

sorts st; lab

pred ��! : st� lab� st

The sort st is said dynami, beause any of its elements, say d represents a

dynami system, whose behaviour is modelled by transition tree assoiated

with d . The root of suh tree is deorated with d , and if the tree has a node

deorated with d and d

l

��! d

0

, then it has a node deorated with d

0

, and

an ar from d to d

0

deorated with l . Moreover, in suh tree the order of the

branhes is not onsidered, and two idential deorated subtrees with the same

root are onsidered as a unique subtree.

The Casl formulae built by using the transition prediates allow to express

some properties on the behaviour of the dynami elements, but they are not

suÆient. For example, by using them we annot state liveness properties;

6

whereas they, and other kinds of quite relevant properties, may be expressed

by using some temporal logi. Thus,Casl-Ltl (as LTL) inludes the temporal

ombinators of the temporal logi of [17℄, whih is many-sorted, �rst-order,

branhing-time, CTL-style, and with edge formulae.

The temporal formulae of Casl-Ltl are anhored to terms of dynami sort

and express some property about the elements represented by them. Suh

formulae have the form in any ase(dt ; �) or in one ase(dt ; �) stating that

any path (at least one path) starting from dt satis�es the ondition expressed

by the path formula �. A path starting form a dynami element is a sequene of

onatenated transitions from suh element, and represents one of its possible

behaviours. A path formula may require that

� the �rst state/label of the path satis�es some ondition

[x � ond ℄ and < y � ond >;

� from some point on the path satis�es a ondition expressed by another path

formula eventually �

1

� the path satis�es a ondition expressed by another path formula until some

point where it satis�es a seond ondition �

1

until �

2

� the path satis�es a ondition expressed by another path formula in any

point always �

1

� the path satis�es a omplex ondition, by ombining other path formulae

by means of the Casl logial ombinators, e.g., : , ^ , _ ,) and 8 .

1.3 Running Example: the Lift System

To illustrate the use of our spei�ation methods we speify at di�erent levels

a lift system and some of its subparts.

A lift system onsists of a lift plant (that is the abin, the motor moving it

and the doors at the various oors), some software automatially ontrolling

the lift funtioning (the ontroller), and the people using it (the users). The

ontroller monitors the lift plant by means of sensors, whih ommuniate the

status of its various omponents (e.g., there is a sensor deteting the position

of the abin), and direts its behaviour by means of orders (e.g., it an order

to open/lose the doors).

In Set. 3.2.3 a property-oriented spei�ation of the lift plant onsidered as

a simple system is developed. The lift plant may ommuniate the status of

some of its omponents by means of sensors (the position of abin, of the

doors at the oors and the working status of the motor), and an inuene its

omponents by means of orders (open/lose a door at a given oor, stop/to

move up/to move down the motor). Moreover, the lift plant interats with the

external world also when some users enter or leave the abin. Set. 3.3.2 gives

7

a onstrutive spei�ation of a ontroller for the lift, onsidered as a simple

system. This spei�ation may be onsidered as an abstrat presentation of

a design for suh a ontroller. The ontroller may send orders to the motor

and to the doors, and may reeive information on the status of the plant by

means of its sensors (status of the motor, and positions of the doors and of

the abin). The users interat with the ontroller by alling for some oor

(i.e., requiring that the abin goes to a given oor). In Set. 4.2.3 we develop

a property-oriented spei�ation of the lift system onsidered as a strutured

system with the lift plant, the ontroller and the users as subparts, and in

Set. 4.3.2 we give a onstrutive spei�ation of the lift ontroller where two

parts are distinguished. The oor data struture is spei�ed in a property-

oriented way in Set. 5.2.2, and in a onstrutive way in Set. 5.3.2 having an

expliit number of oors.

2 A spei�ation methods framework

2.1 Spei�ation Methods

To easily present the various spei�ation methods introdued in this paper,

we follow the oneptual shema proposed in [4℄. In the piture below we

report all the ingredients of a generi method using an objet-oriented visual

notation

7

, and briey omment them below.

presents

1* 1..*

semantics

**

modelling

Item FormalModel Specification Presentation Documentation Guidelines

*

viewedAs

Items In our opinion a spei�ation method to be e�etive should onsider a

quite preise set of items to be spei�ed. Suh items should be introdued

using the natural language, sine learly they annot be formally de�ned.

Formal models of the items Formal models, intended as mathemati-

al strutures, are the formal ounterparts of the items, introdued before.

Eah spei�ation method uses a partiular set of formal models.

Modelling A preise and rigorous, but not formal, desription of how the

formal models are assoiated with the items.

Spei�ations In a very general way a spei�ation is a desription of an item

at some level of abstration, intended at a given step of the development

proess. A spei�ation is a way to de�ne a lass of formal models: all those

modelling the item at a given step of the development proess.

7

Preisely, it is a simple subset of UML 1.3 [33℄. Reall that boxes represent lasses,

and arrows oriented assoiations.

8

Semantis The semantis links a spei�ation with its formal models.

Presentations We mean by presentation a way to display a spei�ation

artifat for some partiular purpose; for example, we an have a presentation

for the human users, or using a speial notation to be handled by a tool. A

spei�ation method may be equipped with di�erent kinds of presentations.

Eah presentation should be assoiated with a unique spei�ation.

Guidelines This part onsists of the guidelines for steering and helping the

task of produing in the best possible way the spei�ations of the items.

The guidelines are understandably driven by the preeding parts of the

method, but note the fundamental role played by modelling, if we want

seriously to provide professional guidelines.

Doumentation We refer to doumenting the spei�ation task for use in

evolution and maintenane.

We make the following assumptions on the items, visually summarized below.

Item

parts
*

Constituent feature
Definition

Specification*
partsSpec

features

FormalModel

has

*

*

features

CFmodelling

* *

CFsemantics
Constituent feature

Formal ModelConstituent feature

*

Variety
1..* *

isA

� Items are lassi�ed in some variety (e.g., funtional modules/data types,

reative systems, real-time systems, distributed systems, . . .), and the items

onsidered by a method should be all of the same variety

8

.

� Items are strutured, and their subparts are items. Suh struture is repre-

sented by the assoiation parts

9

. Items assoiated by parts may be of the

same variety (homogeneous struture) or of di�erent varieties (e.g., imper-

ative programs made out from proedures).

� Items are haraterized by their onstituent features. We assume that an

item is made by various onstituent features/ingredients that are orthogo-

nal/nonoverlapping, and that may be lassi�ed in di�erent kinds.

The above assumptions on the items require that

� the \modelling" (that is how the items are assoiated with the formal mod-

els) should be extended to desribe how the onstituent features of the

various kinds orrespond to elements/features of the formal models;

8

The assoiation isA from Item to Variety does not assoiate a unique variety with

an item, beause the same item may be seen as belonging to di�erent varieties;

funtional modules/data types, e.g., a reative system is also a partiular ase of a

distributed system.

9

The white diamond represents the UML aggregation (subobjets ontainment).

9

validity

*

Specification

Property-Oriented Specification

Formula

similar

*

Constructive Specification

FormalModel

semB

*

*

Fig. 1. Property-Oriented and Construtive Spei�ations

� the models of a spei�ation have (as desribed by the assoiation has) all

the onstituent features;

� the spei�ation language should support the separate spei�ations of

the subparts and should o�er means to de�ne the onstituent features

(Constituent Feature De�nition);

� the guidelines should take are for �nding the parts and the onstituent

features of an item.

There are various spei�ation styles. The most quoted distintion is between

property-oriented (or axiomati) and onstrutive (or model-oriented). We re-

port the peuliar ingredients of a method using property-oriented or a on-

strutive spei�ations in Fig. 1

10

.

Property-oriented (axiomati) We prefer the term property-oriented, as

more suggestive than axiomati. For what onerns the semantis, the basi

way to de�ne it is as follows: \a model belongs to the semantis of a property-

oriented spei�ation if and only if all formulae of the spei�ation are valid

on it". The methodologial ideas supporting this spei�ation style are:

we desribe the item at a ertain moment in its development by expressing all

its \relevant" properties by sentenes provided by the formalism (formulae).

Construtive (model-oriented) In this ase the semantis is de�ned as

follows: \a model M belongs to the semantis of a spei�ation if and only

if there exists another model belonging to the basi semantis (assoiation

semB) of the same spei�ation that is similar to M". The methodologial

ideas supporting this spei�ation style are:

we desribe the item at a ertain moment in its development by giving a pro-

totype/arhetype of it using the spei�ation language; then we say whih are

the irrelevant features of this arhetype by the relation similar. If two models

10

The arrow with large head stands for the UML speialization.

10

find the parts of the item and specify them find the constituent features of the item

yes no
for all constituent features CF, CF’,
is CF:CF’ consistent with CF’:CF ?

for all constituent features of the item CF, CF’, fill CF:CF’

Fig. 2. Exhaustive searh guidelines of GPSm

are similar, then they di�er from eah other for irrelevant details, whih an

thus be freely �xed later in the development.

The name onstrutive or onstrution-oriented means that we speify an item

by onstrution (at the abstration level supported by the method, that is

depending on the formal models and on the spei�ation language); afterwards

we would say when another onstrution may be equivalent.

2.2 A General Property-oriented Spei�ation Method (GPSm)

Now we introdue a General Property-oriented Spei�ation method (GPSm)

following the oneptual shema introdued in the Set. 2.1, by speializing

and enrihing three ingredients (Guidelines, Presentation and Doumentation)

of a generi method using property-oriented spei�ations; these modi�ations

are reported and ommented below.

Exhaustive Searh Guidelines Fig. 2 shows the guidelines of GPSm. The

�rst steps are to �nd the parts and to speify them, and to �nd the onstituent

features, followed by the searh of the properties. GPSm is based on an ex-

haustive tehnique for �nding all possible relevant properties of an item by

examining it from all possible points of view, that is from the viewpoint of all

its onstituent features. The general idea is to �nd the properties of a given

item by �lling the spreadsheet in Fig. 3, whose olumns and rows are indexed

with the onstituent features of this item (KIND

1

, . . . , KIND

k

are the kinds

of the onstituent features, and for i = 1 , . . . , k the onstituent features of

kind KIND

i

are CF

i

1

, . . . , CF

i

n

i

).

A ell with index CF

i

j

:CF

i

j

ontains the properties about the onstituent fea-

ture CF

i

j

, and a ell with index CF

i

j

:CF

h

m

ontains the properties expressing

11

..... CF 1
n1

CF 1
1

CF 1
n1

CFk
1

CFk
nk

.....

.....

.....

CF 1
1

.....
CF k

1
..... CF k

nk

KIND1 KINDk

K
I
N
D1

K
I
N
Dk

Fig. 3. Properties Spreadsheet

the relationships between CF

i

j

and CF

h

m

. We assume that the properties �lling

the various ells follow partiular shemas depending on the kinds of the two

indexing elements and on the formulae of the hosen spei�ation language.

We need shemas for the ells indexed by:

KIND

i

- KIND

i

for i = 1 , . . . , k the properties about a onstituent feature

of kind KIND

i

onsidered by itself, and the properties about the relation-

ships between a onstituent feature of kind KIND

i

and another one of the

same kind

KIND

i

- KIND

j

for i ; j = 1 , . . . , k , i 6= j the properties about the rela-

tionships between a onstituent feature of kind KIND

i

and another one of

kind KIND

j

.

Note that the relationships between two di�erent onstituent features, say CF

and CF', appear in two di�erent ells (i.e., in CF:CF' and in CF':CF), thus

we have omputed this relationship twie, but in the �rst ase the emphasis/

viewpoint is on CF, and in the seond ase on CF'. The general method

requires then to hek that they are onsistent. In the ase of a negative answer,

we found some inonsisteny that must be eliminated. Usually, this ativity

helps detet some problemati or misunderstood aspets of the spei�ed item.

Note also how the spreadsheet �lling tehnique results in produing a quite

strutured navigable set of properties, whih should be suitable to support

evolution. For example, if the ideas about the spei�ed item hanges, and suh

hanges result in adding/removing onstituent features, then the properties

may be easily modi�ed, in suh ase we have just to add/delete some spei�

rows/olumns.

Cell Contents Presentation As regards the presentation of the produed

spei�ations, GPSm should provide:

12

� a nie way to present the properties �lling eah relevant type of the ells of

the spreadsheet;

� a nie way to arrange the ontents of the various ells of the spreadsheet;

for example by means of a preise setioning shema with related titles.

The result of this proess then needs some presentation work and rearrange-

ment of the found properties to yield a spei�ation nier to read.

Cells Filling Doumentation The doumentation of the spei�ation pro-

ess should make reoverable the spreadsheet �lling, the justi�ations of the

onsisteny of the symmetri ells, and a justi�ation for any empty ell.

2.3 Introduing a Method

To introdue a method in this paper, following the general oneptual frame-

work of Set. 2.1, we proeed in the following way. We begin by introduing

the spei�ed items, the used formal models, and the rationale linking the latter

to the �rst (setion \X Item" where X may be simple or strutured system, or

data struture), and this part is ommon for both property oriented and model

oriented methods introdutions that follow. For eah kind of spei�ation, we

adopt the following:

� we show the form of the spei�ation visual presentation. To avoid the

obvious problems of preisely presenting a visual notation we follow the

UML style (metamodelling), by giving the struture of these artifats by

means of a lass diagram presenting all their omponents, and then saying

how to visually depiting them. We aompany this part by the guidelines

to produe suh artifats. (Setion \The . . . spei�ations")

� This is then illustrated on an example: the lift (setion \Example: . . .").

� Finally we present the orresponding formal spei�ation artifats (setion

\Casl-Ltl (or Casl) View").

3 Spei�ation of Simple Systems

3.1 Simple System Item

Following the framework presented in Set. 2.1 we desribe the simple system

items struture. Here the word system denotes a dynami system of whatever

kind, and so evolving along the time, without any assumption about other

13

Simple system Data structure
parts

features

1..*

*

State featureElementary interaction

Constituent feature

Fig. 4. Simple System Item

aspets of its behaviour; thus it may be a ommuniating/nondeterministi/

sequential/. . . proess, a reative/parallel/onurrent/distributed/. . . system,

but also an agent or an agent system. A simple system is a system without

any internal omponents ooperating among them.

In our approah we assume that simple systems are seen formally as labelled

transition systems, see Set. 1.2. The \modelling" is as follows. The states of

an lts modelling a simple system represent the relevant intermediate situations

in the life of the system, and eah transition s

l

��! s

0

represents the apability

of the system in the state/situation s of evolving into the state/situation s

0

;

the label l ontains information on the onditions on the external environment

for the apability to beome e�etive, and on the transformation indued on

this environment by the exeution of the transition, i.e., it fully desribes the

interation of the system with the external environment during this transition.

To design e�etive and simple spei�ation methods we assume that the la-

bels have the standard form of a set of elementary interations, where eah

elementary interation intuitively orresponds to an elementary (that is not

further deomposable) exhange with the external environment. We also as-

sume that the elementary interations are of di�erent types, and that eah

type is haraterized by a name and by some arguments (elements of some

data strutures). The above onsiderations lead us to hoose the elementary

interation types (just elementary interations from now on) as onstituent

features of the simple systems.

The form of the states (whih are the intermediate situations during the sys-

tem's life) is also a haraterizing feature of simple systems, therefore we

need state onstituent features. However, they are tehnially di�erent for the

property-oriented and the onstrutive ase, and so we will desribe them

later, when presenting the two methods.

Thus, to de�ne the onstituent features of a simple system we use values of

various data strutures; they are the \parts" of the simple systems.

We summarize the parts and features of simple systems in Fig. 4.

14

1..*

*

*

State observer definition

name: String
argTypes:Sequence(Type)
resType: Type

Data structure specification

Elementary interaction definition

name: String
argTypes:Sequence(Type)

Simple system property-oriented specification

name: String

parts

s-features e-features

Property

pr
op

er
tie

s

*

Fig. 5. Simple System Property-Oriented Spei�ation

state observers,
so(type1, ...,typen): Type

SystemName

elementary interactions,
EL(Type1, ..., Typen)

....
Data1

Datar

Fig. 6. Visual presentation of a simple system: parts and onstituent features

3.2 Property-oriented spei�ations

The property-oriented spei�ation method for simple systems we propose is

a speialization of GPSm introdued in Set. 2.2. Aording to Fig. 2, we �rst

have to �nd the parts and onstituent features, and then to �ll the ells to

express the properties.

3.2.1 The spei�ation of parts and onstituent features

To keep the spei�ation level abstrat, we do not ompletely desribe the

states, but we just list what we should be able to observe on them, and thus

the state features will orrespond to elementary observations on the states

(state observers). A state observer is haraterized by a name, some arguments

(elements of some data strutures), and by the observed value (element of some

data struture)

11

.

Fig. 5 shows the struture (by means of a UML lass diagram) of a property-

oriented spei�ation of a simple system, and Fig. 6 how to visually depit its

parts and the onstituent features. type in Fig. 6 stands for a type of values

de�ned by one of the subparts data strutures (DATA

1

, . . . , DATA

j

).

11

If the observed value is a boolean, then it may be spei�ed with a prediate. For

simpliity sake (and by lak of spae), this ase will not be onsidered in this paper.

15

3.2.2 Cell shemas (properties)

All properties about a simple system orrespond to properties on the lts mod-

elling it, and thus on its labels, states and transitions. Realling our assump-

tions on the form of the states and labels, these properties may only relate the

values observed by the various state observers on a state, express whih are

the admissible sets of elementary interations building a label, and relate the

soure state, the label and the target state of a transition. Our method o�ers

appropriate ways to present these properties show below.

Label properties: ei(arg) inompatible with ei

0

(arg

0

) if ond(arg,arg

0

)

where ei and ei

0

are two elementary interations and ond is a property of

their arguments. It means that under some ondition, if the two elementary

interations are di�erent

12

, then they are inompatible, i.e., no label may

ontain both.

State properties: ond

where ond is a ondition in whih state observers may appear. It means

that for any state the values returned by the state observers must satisfy

this ondition.

State formulae may inlude also speial atoms, listed below, expressing

properties on the paths (onatenated sequenes of transitions) leaving/

reahing the state, that is on the future/past behaviour of the system from

this state.

� in any ase eventually eIn happen

It means that any path starting from the state will ontain a transition

whose label ontains the elementary interation desribed by eIn.

� in any ase sometime eIn happened

Similarly, it means that any path reahing the state will ontain a transi-

tion whose label ontains the elementary interation desribed by eIn.

These atoms may also be built by in one ase (instead of in any ase, with

the meaning there exists at least one path suh that . . .), or next (instead

of eventually, with the meaning \the label of the �rst transition of the

path ontains . . . "), or before (instead of sometime, with the meaning

\the label of the last transition of the path ontains . . . ").

Transition properties: ond

where ond is a ondition in whih state observers on the soure and target

states (resp. denoted by \non primed" so and \primed" so

0

identi�ers, and

from now on referred to as soure state observers and target state observers),

and atoms of the form \eIn happen" may appear. It means that a transition

tr = x

l

��! y satis�es ond, where soure state observers are evaluated on

the soure state x of tr, target state observers are evaluated on the target

state y of tr, and atoms of the form \eIn happen" hold i� the elementary

interation desribed by eIn belongs to the label l of tr.

12

Then, it is not neessary to express that they are di�erent.

16

Two elementary interactions

incompat2: Set(LabelProp)

Elementary interaction

incompat1: Set(LabelProp)
pre-cond1: Set(TransitionProp)
post-cond1: Set(TransitionProp)
vital1: Set(StateProp)

State observer

value1: Set(StateProp)
how-change: Set(TransitionProp)
change-vital: Set(StateProp)

Elementary interaction
and state observer

pre-cond2: Set(TransitionProp)
post-cond2: Set(TransitionProp)
vital2: Set(StateProp)

Two state observers

value2: Set(StateProp)

Cell schema

Fig. 7. Simple System Cell shemas

The onstituent features of simple systems are of two kinds, elementary inter-

ations and state observers, and so we have to onsider �ve kinds of ells, as

shown below.

Elementary interaction State observer

so

eiei1:ei2

so:ei so1:so2

Elementary interaction

State observer

We present the shemas for two kinds of ells in Fig. 8 and 9 (the others are

in the Appendix A). There, arg stands for generi expressions of the orret

types, possibly with free variables, and ond(exprs) for a generi ondition

where the free variables of exprs may appear.

3.2.3 Example: a Property-Oriented Spei�ation of a Lift plant

As an example, we give theproperty-oriented spei�ation of a lift plant, on-

sidered as a simple system. To speify the lift plant should be the �rst step

for developing the lift system, indeed a preise knowledge of the plant is of

fundamental importane for developing a good lift system. The lift plant may

ommuniate the status of some of its omponents by means of sensors (the

position of abin and of the doors at the oors and the working status of the

motor), and its omponents may be inuened by means of orders (open/lose

a door at a given oor, stop/move up/move down the motor). Moreover, the

users may enter or leave the abin.

We show the parts and the onstituent features of the lift plant in Fig. 10.

The elementary interations (in the upper ompartment) model the sensors

attahed to the plant, the orders that it an reeive, and the fat that some

17

|||||||||||||||||||||||||||||||||{

inompat1 (label property) If their arguments satisfy some onditions, then two

instantiations of ei are inompatible, i.e., no label may ontain both.

ei(arg

1

) inompatible with ei(arg

2

) if ond(arg

1

,arg

2

)

pre-ond1 (transition property) If the label of a transition ontains some instan-

tiation of ei, then the soure state of the transition must satisfy some ondition.

if ei(arg) happen then ond(arg)

where soure state observers must appear in ond(arg) and target state observers

annot appear

post-ond1 (transition property) If the label of a transition ontains some instan-

tiation of ei, then the target state of the transition must satisfy some ondition).

The ondition on the target state may require also the soure state to be ex-

pressed.

if ei(arg) happen then ond(arg)

where target state observers must appear in ond(arg) and soure state observers

may appear in ond(arg)

vital1 (state property) If a state satis�es some ondition, then any sequene of

transitions starting from it will eventually ontain a transition whose label on-

tains ei. Note that in these properties in any ase may be replaed by in one

ase and eventually by next.

if ond(arg) then in any ase eventually ei(arg) happen

|||||||||||||||||||||||||||||||||{

Fig. 8. Elementary interation (ei) ell shema

|||||||||||||||||||||||||||||||||{

value1 (state property) The results of the observation made by so on a state must

satisfy some onditions.

ond, where so must appear in ond

how-hange (transition property) If the observed value hanges during a transi-

tion, then some ondition on soure state, target state, old and new value holds,

and some elementary interations must belong to the transition label.

if so(arg) = v

1

and so

0

(arg) = v

2

and v

1

6= v

2

then

ond(v

1

,v

2

,arg) and ei

1

, . . . , ei

n

happen

hange-vital (state property) If a state satis�es some ondition, then the observed

value will hange in the future. Note that in these properties in any ase may

be replaed by in one ase and eventually by next.

if ond(v

1

,v

2

,arg) and so(arg) = v

1

and v

1

6= v

2

then

in any ase eventually so(arg) = v

2

|||||||||||||||||||||||||||||||||{

Fig. 9. State observer (so) ell shema

18

CABIN_POSITION(Floor)
DOOR_O(Floor, DoorPosition)
DOOR_POSITION(Floor, DoorPosition)
MOTOR_O(MotorStatus)
MOTOR_STATUS (MotorStatus)
TRANSIT(Int)

cabin_position: Floor
door_position(Floor): DoorPosition
motor_status: MotorStatus
users_inside: Nat

LiftPlant

Floor

MotorStatus

down | up | stop

DoorPosition

open | closed

Fig. 10. LiftPlant: Parts and Constituent Features

users enter/leave its abin, whereas the state observers (in the lower ompart-

ment) de�ne the status of its omponents and how many users are inside its

abin.

To de�ne the above onstituent features we need some data:

- Floor: the oors among whih the abin is moving (see 5.2.2 for its spei�-

ation),

- MotorStatus: the possible statuses of the motor(moving up, moving down or

stopped),

- DoorPosition: the possible positions of the doors at the oors (open or losed).

MotorStatus and DoorPosition are two simple enumeration data strutures, for

whih we use an ad ho notation, writing their onstrutors separated by j.

We followed the ell �lling methods to �nd all the relevant properties of the

lift plant, but here we dropped repeated formulae, after having heked the

absene of ontraditions, and slightly rearranged the others to improve read-

ability. The properties on the orders are detailed below, while the others (on

the sensors, the abin, and the users entering/leaving the abin) are given in

the Appendix B. The elementary interations and the state observers used

below are delared in Fig. 10.

{ Only appropriate groups of orders may be reeived simultaneously by the

lift plant; preisely, at most one order for the motor and one for the doors.

Motor O(ms

1

) inompatible with Motor O(ms

2

)

Door O(f

1

,dps

1

) inompatible with Door O(f

2

,dps

2

)

{ An order an be reeived only when its exeution is possible; preisely move

up (down) only when the motor is stopped and the abin is not at the top

(ground) oor, and open the door at f only when no door is open, the abin

is at oor f and the motor is stopped.

if Motor O(up) happen then motor status = stop and abin position 6= top

if Motor O(down) happen then

motor status = stop and abin position 6= ground

if Door O(f

1

,open) happen then

(for all f � if f 6= f

1

then door position(f) 6= open) and

abin position = f

1

and motor status = stop

19

{ The orders are always orretly exeuted.

if Motor O(ms) happen then motor status

0

= ms

if Door O(f,dps) happen then door position

0

(f) = dps

The omplete spei�ation of the lift plant given following our method (see

also Appendix B) may seem long, but we think that it is quite omplete and

it shows all relevant information to build the software for handling it. For

example, suh spei�ation makes lear that { sensors never break down (the

state observers orresponding to sensors are total), { motor and doors may

hange status by themselves as a result of some failure (no property requires

that, if the motor hanges its status, an order has been reeived), and { the

plant takes are of some seurity heks, suh as to avoid that the motor goes

down when the abin is at the ground oor.

3.2.4 Casl-Ltl View

Here we present the Casl-Ltl [26℄ orresponding version of the property-

oriented spei�ation of simple systems produed following our method intro-

dued in Set. 3.2,. Let poSpe be a property-oriented spei�ation of simple

systems having the form desribed in Fig. 5, and assume that

� poSpe.parts = fds

1

, . . . , ds

j

g are the parts, and DS

1

, . . . , DS

j

the orre-

sponding Casl-Ltl spei�ations;

� poSpe.e-features = fei

1

, . . . , ei

n

g are the elementary interations;

� poSpe.s-features = fso

1

, . . . , so

m

g are the state observers.

Below we give the Casl-Ltl spei�ation orresponding to poSpe. Notie

that the onstrutors and the operations may be partial, and this is denoted

by a `?', e.g., \so

i

.name : st� so

i

.argTypes!? so

i

.resType".

spe ElemInter =

free type elemInter ::=

ei

1

.name(ei

1

.argTypes) j . . . j ei

n

.name(ei

n

.argTypes)

spe poSpe.name =

FiniteSet[ElemInter℄ and DS

1

and . . . and DS

j

then

dsort st label FinSet[elemInter ℄

ops so

1

.name : st� so

1

.argTypes! so

1

.resType

. . .

so

m

.name : st� so

m

.argTypes! so

m

.resType

axioms

formulae orresponding to the ell �llings, de�ned below ase by ase

Label property: eIn

1

inompatible with eIn

2

if ond

the orresponding formula is

: (eIn

1

= eIn

2

) ^ ond ^ S

l

��! S

0

) : (eIn

1

2 l ^ eIn

2

2 l)

20

State property: ond

the orresponding formula is obtained by adding S (a variable of sort st) as

extra argument to eah state observer appearing in ond, and by replaing

the speial temporal ombinators as follows:

in any ase . . . in any ase(S ; : : :)

in one ase . . . in one ase(S ; : : :)

eventually eIn happen eventually < l � eIn 2 l >

next eIn happen next < l � eIn 2 l >

sometime eIn happened sometimes < l � eIn 2 l >

before eIn happened before < l � eIn 2 l >

Transition property: ond

the orresponding formula is S

l

��! S

0

) ond', where ond' is obtained

from ond by adding S as an extra argument to eah soure state observer,

by adding S

0

as an extra argument to eah target state observer, and by

replaing eah atom of the form \eIn happen" with \eIn 2 l".

3.3 Construtive spei�ations

3.3.1 The spei�ations harateristis

The onstrutive spei�ation method for simple system that we present is

similar in many respets to the property-oriented one introdued in Set. 3.2.

Indeed, the items (simple systems), their parts and their onstituent features

of kind elementary interations, the formal models and the modelling are the

same. But, the state features are di�erent, sine we have here state onstru-

tors instead of state observers. In this ase we have to build the states of

the lts modelling a simple system, and we onsider that those states may be

lassi�ed into di�erent ategories, aording to the di�erent system behaviour.

Tehnially, the states will be a data struture having a onstrutor with typed

arguments (see Set. 5), for eah state ategory. The state onstrutors are

the state onstituent features.

The spei�ation tehnique is similar to that followed in Set. 3.2 in that

we have also to determine the parts and the onstituent features, the only

di�erene is that now we do not give properties but instead we de�ne preisely

the states, the labels and the transition of the lts modelling the spei�ed

simple system. The de�nition of the labels and of the states is quite trivial

(the labels are sets of elementary interations, and the states are built by

the state onstrutors). For what onerns the transitions, we de�ne them by

means of onditional rules of the following form

21

1..*

*

*

Data structure specification

Simple system constructive specification

name: String

parts

s-features e-features

State constructor
definition

name: String
argTypes:Sequence(Type)

Elementary interaction
definition

name: String
argTypes:Sequence(Type)

conditional-rules*

Conditional rule

Fig. 11. Simple System Construtive Spei�ation

state constructors,
C(type1, ...,typen)

SystemName

elementary interactions,
ei(type1, ..., typen)

....
Data1

Datar

Fig. 12. Simple System Construtive Spei�ation: parts and onstituent features

(*) if pos-ond(arg

1

,arg

2

,eiSet) then C (arg

1

)

eiSet

�����! C

0

(arg

2

)

where

� C and C

0

are state onstrutors, resp. of the soure and target states

� eiSet is a set of elementary interations

� and pos-ond(arg

1

,arg

2

,eiSet) is a onjuntion of positive atoms in whih

the free variables of arg

1

, arg

2

and eiSet may appear.

The form of our onstrutive spei�ations of simple system is summarized in

Fig. 11.

We present how to visually depit the parts and the onstituent features of a

simple system onstrutive spei�ation in Fig. 12. A onditional rule de�ning

the transitions as in (*) above will be visually represented as the following

oriented ar

C’(arg2)
[cond(arg1,arg2,eiSet)]

C(arg1)
eiSet

The visual presentations of all the onditional rules may be then put together

building an oriented graph, as originally proposed in [30℄, by olleting all

soure and target rounded boxes related to states built by the same onstru-

tor, and by writing only one repeated onstrutor instantiations and repeated

onditions. For example, the following diagram

22

RECEIVE-OK(inv)

RECEIVE-ER(inv)
[a =< inv] RECEIVE-OK(inv)

[a > inv]

DONE& ASK-NEW

REFUSED(inv) & ASK-NEW

Init(a)

Init(inv)
Processing(inv)

Stopped

Refusing(a,inv)

shows the ombination of the visual presentations of the following �ve ondi-

tional rules.

if a > inv then Init(a)

RECEIVE�OK (inv)

�������������! Proessing(inv)

if a > inv then Init(a)

RECEIVE�ER(inv)

�������������! Stopped

if a � inv then Init(a)

RECEIVE�OK (inv)

�������������! Refusing(a; inv)

Refusing(a; inv)

fREFUSED(inv);ASK�NEW g

�������������������! Init(a)

Proessing(inv)

fDONE ;ASK�NEW g

��������������! Init(inv)

3.3.2 Example: a Construtive Spei�ation of a Controller for a Lift

As example in this setion, we give the onstrutive spei�ation of a ontroller

for the lift, onsidered as a simple system. This spei�ation may be onsidered

as an abstrat presentation of a design for suh a ontroller. Our ontroller

may send orders to the motor and to the doors, and may reeive information

on the status of the plant by means of its sensors (status of the motor, and

positions of the doors and of the abin). The users interat with the ontroller

by alling the oors, that it by requiring that the abin goes to a given oor.

Following our method we �rst determine the elementary interations, the used

data strutures, and �nally de�ne the behaviour of the ontroller. In this ase

the elementary interations (see Fig. 13) orrespond to sending the orders, and

to reeiving signals from the sensors and alls from the users. To needed data

strutures are Floor10 (providing an ord operation yielding the oor number),

de�ned in Set. 5.3.2, MotorStatus and DoorPositions. The latter is de�ned by

using the prede�ned parametri type List [31℄. DoorPositions also has a derived

prediate all Close But de�ned by the following onditional rules. Reall that

selet given a list and a natural number returns the element in suh position,

and that we assume that the positions of the various doors are listed one after

the other starting from ground till to top.

if selet(ord(ground),dposs) = open and

selet(ord(seond),dposs) = losed and . . . and

selet(ord(top),dposs) = losed then

all Close But(ground,dposs)

. . .

23

DoorPosition

Coordinating
Handling_Call(Floor,Floor,DoorPositions,MotorStatus)
Ready_To_Move(Floor,Floor)
Moving_Up(Floor,Floor)
Moving_Down(Floor,Floor)
Going_To_Stop(Floor)
Stopped

CABIN_POSITION(Floor)
DOOR_O(Floor,DoorPosition)
DOOR_POSITIONS(DoorPositions)
MOTOR_O(MotorStatus)
MOTOR_STATUS(MotorStatus)
CALL(Floor)

Control_DesFloor10

MotorStatus

down | up | stop

open | closed

DoorPositions

List(DoorPosition)

allCloseBut(Floor,DoorPositions)

Fig. 13. Lift Controller (design): Parts and Constituent Features

if selet(ord(top),dposs) = open and

selet(ord(ground),dposs) = losed and . . . and

selet(ord(ninth),dposs) = losed then

all Close But(top,dposs)

The behaviour of the ontroller is shown below.

Coordinating

CALL(f) &
CABIN_POSITION (f1) &
DOOR_POSITIONS (dposs) &
MOTOR_STATUS (ms)

Handling_Call(f,f1,dposs,ms)

[ms = stop and
 f =/= f1 and
 allCloseBut(f1,dposs)]
DOOR_O(f1,close)

[ms =/= stop or
 f = f1 or
 not allCloseBut(f1,dposs)]

Ready_To_Move(f,f1)

[f above f1]
MOTOR_O(down)

[ms =/= up]
M OTOR_STATUS (ms) &
M OTOR_O(stop)

[f =/= f1]
CABIN_POSITION (f2) &

M OTOR_STATUS (down)

 [f = f1]
M OTOR_O(stop)

[ms =/= down]
M OTOR_STATUS (ms) &

M OTOR_O(stop)

Moving_Down(f,f1)

Moving_Down(f,f2)

DOOR_O(f1,open)

[f1 above f]
MOTOR_O(up)

Moving_Up(f,f1)

Moving_Up(f,f2) [f =/= f1]
CABIN_POSITION(f2) &
M OTOR_STATUS (up)

Going_To_Stop(f1)

 [f = f1]
 M OTOR_O(stop)

Stopped

It waits for a all from the users (Coordinating), then if the all may be satis�ed,

loses the door (Door O(f1, lose)) and orders to the motor to move in the

orret versus, till the abin reahes the required oor (Stopping(f1)). Then,

it opens the door and waits for the next all. It is also able to detet some

failures (an order to the motor has not been exeuted), and in suh ases it

24

stops to work.

3.3.3 Casl-Ltl View

Here we present the Casl-Ltl [26℄ orresponding version of our onstrutive

spei�ations of simple systems introdued before in Set. 3.3. Let onSpe

be a onstrutive spei�ation of simple systems having the form desribed in

Fig. 11, and assume that

� onSpe.parts = fds

1

, . . . , ds

j

g are the parts, and DS

1

, . . . , DS

j

the orre-

sponding Casl-Ltl spei�ations;

� onSpe.e-features = fei

1

, . . . , ei

n

g are the elementary interations;

� onSpe.s-features = fsCon

1

, . . . , sCon

m

g are the state onstrutors.

Below we give the Casl-Ltl spei�ation orresponding to onSpe.

spe ElemInter =

free type elemInter ::=

ei

1

.name(ei

1

.argTypes) j . . . j ei

n

.name(ei

n

.argTypes)

spe onSpe.name =

FiniteSet[ElemInter℄ and DS

1

and . . . and DS

j

then

free f

dsort st label FinSet[elemInter ℄

ops sCon

1

.name : sCon

1

.argTypes ! st

. . .

sCon

m

.name : sCon

m

.argTypes ! st

axioms

formulae orresponding to onditional rules

g end

A onditional rule

if pos-ond(arg

1

,arg

2

,eiSet) then C (arg

1

)

eiSet

�����! C

0

(arg

2

)

is expressed by the Casl-Ltl formulae

pos-ond(arg

1

,arg

2

,eiSet)) C (arg

1

)

eiSet

�����! C

0

(arg

2

).

4 Spei�ation of Strutured Systems

4.1 Strutured System Items

A strutured system item is a speialization of the simple dynami system of

Set. 3; indeed it is a simple system made by several other dynami systems,

its subsystems, whih are either simple or in turn strutured. We assume that

25

eah subsystem is uniquely identi�ed by some identity. A situation during

the life of a strutured system is fully haraterized by the situations of its

subsystems, and its (global) moves just onsist of the simultaneous exeutions

of (loal) moves of some of its subsystems.

The spei�ation methods for strutured systems (property-oriented and on-

strutive), whih we present here, are speializations of those for simple sys-

tems (see Set. 3). Thus also strutured systems will be modelled by labelled

transition systems (lts); but in this ase their states will be sets of states

of those lts's modelling the subsystems, and their transitions will orrespond

to simultaneous exeutions of sets of subsystems transitions (the latter are

named their omponents). To represent whih are their omposing subtransi-

tions, we need to enrih the labelled transitions with an extra part ontaining

suh information. It is not appropriate to only extend the labels of the transi-

tions with the information about the subsystems moves. Indeed, labels should

model only the system interation with the outside world, and in many ases

the subsystems moves are ompletely transparent to outside, as, e.g., two sub-

systems exhanging a message between themselves. Thus, to desribe a given

global transition we both need its label (that is a set of elementary interations

visible from outside) and its information part (on the subsystem moves that

may not all be visible from outside). For simpliity sake we do not onsider

here the ase of subsystems that may be reated and destroyed dynamially,

but there are no tehnial problems to handle them.

Tehnially, it means that to model strutured systems we use generalized

lts, that are lts speialized by adding an information part to eah transi-

tion. Thus a generalized lts is a 4-uple (State;Label; Info;!), where !�

Info�State�Label�State, and Info is the set of the additional information at-

tahed to the transitions. A generi transition is usually written inf : x

l

��! y.

The additional information for the generalized lts modelling the strutured sys-

tems, whih must represent the omposing subtransitions, will be sets of pairs

made by a subsystem identity (the subsystem performing the subtransition)

and by an elementary interation (belonging to the label of the subtransition).

We name these pairs loal elementary interations, shortly loal interations

from now on. We exemplify the onepts introdued so far in Fig. 14.

To take into aount the role played by the subsystems in the moves of the

strutured systems, we onsider also the loal interations as their onstituent

features. Strutured systems have also a new kind of parts, the omposing sub-

sytems, whih may be either simple or in turn strutured. Strutured systems

have speial state observers returning the states of the subsystems, whih are

denoted by the subsystem identities themselves (we do not need to delare

them, sine they are impliitly determined by the subsystem delarations.)

Notie that, however, we need also other state observers. Indeed, property-

oriented spei�ations are usually at a quite abstrat level and we may want

26

|||||||||||||||||||||||||||||||||{

a sample state of SS (s1, . . . , s5 are respetively the states of A, . . . , E)

A:s1 B:s2 C:s3 D: s4 E: s5

a sample transition of SS (global transition/move)

{ e,f } { g,e } { h } { X,Y }

A:s1 B:s2 C:s3 D: s4 E: s5

A:s1’ B:s2’ C:s3’ D:s4 E:s5

info:

- its omposing loal transitions/moves

s1 s1’
{ e,f }

s2 s2’
{ g,e}

s3 s3’
{ h }

- its loal interations (the subsystems D and E do not take part in the global

move)

A.e A.f B.g B.e C.h

- its (global) elementary interations of SS towards the outside resulting

from the subsystem moves X Y

- its (additional) information

info = { (A, e), (A,f), (B,g), (B,e), (C,h) }

|||||||||||||||||||||||||||||||||{

Fig. 14. Example of a strutured system SS, with �ve subsystems, A, B, C, D and E

subSyst-parts

Simple system Data structure
parts

Elementary interaction

features

1..*

State feature

*

Structured system

1..*

Local interaction

Constituent feature

Fig. 15. Strutured System Item

to observe something on the strutured system states without knowing whih

subsystems (and in whih way) ontribute to this observation. An example

may be an observer heking if there is an error in the system, when we do

not know anything about the error situations of the single subsystems.

We summarize the parts and onstituent features of strutured systems in

Fig. 15.

27

*

**

State observer definition

Elementary interaction
definition

Structured system property-oriented specification

name: String

partss-features

e-features
1..*

subsyst-Specs
1..*

subsystems

Subsystem

id: Ident
type: StringProperty

properties
*

System
specification

Data structure specification

Fig. 16. Strutured System Property-Oriented Spei�ation

Configuration

state observers
so(Type1, ...,Typen):

SystemName

elementary interactions
EL(Type1, ..., Typen)

Syst 1

Syst p

....
Data1

Datar

....

Fig. 17. Visual presentation of a strutured system: parts and onstituent features

4.2 Property-oriented spei�ations

The method for property-oriented spei�ations of strutured systems, whih

we present here, is a speialization of the one for the simple systems of Set. 3.

4.2.1 Spei�ation of parts and onstituent features

We assume that a strutured system may have many subsystems of the same

type (i.e., whose spei�ation is the same), and that they are identi�ed by ele-

ments of a speial data struture IDENT (standard identi�ers). Thus to speify

the subsystem parts it is suÆient to give the subsystem spei�ations, and

for any subsystem its identity and its type, i.e., the name of its spei�ation.

The loal interations are impliitly determined after we have given the sub-

systems, and so they do not need to be expliitly spei�ed. The struture of a

property-oriented spei�ation of a strutured system is then summarized in

Fig. 16. Fig. 17 presents how to visually depit the parts and the onstituent

features of a property-oriented strutured system spei�ation. In this pi-

ture Syst

1

, . . . , Syst

p

are the names of the subsystem spei�ations, given

apart, and Con�guration is a visual presentation of whih are the subsystems

. A subsystem is represented by a rounded box ontaining its identity and

type, that is the name of the orresponding spei�ation. We use the notation

ID1: SysT IDn: SysT
constraint on n

to represent a set of subsystems of type SysT

28

C1: Sys Cn: Sys
1 < n < 10

A: Sys2 B: Sys2Sys1

Fig. 18. Con�guration example

Elementary interaction

incompat1: Set(LabelProp)
pre-cond1: Set(TransitionProp)
post-cond1: Set(TransitionProp)
vital1: Set(StateProp)
loc-glob1: Set(TransitionProp)

Two elementary
interactions

State observer

Elementary interaction
and state observer

Cell schema

Elementary interaction
and local interaction

loc-glob2: Set(TransitionProp)

Local interaction and
state observer

pre-cond2: Set(TransitionProp)
post-cond2: Set(TransitionProp)
vital2: Set(StateProp)

Two local interactions

synchr2: Set(TransitionProp)

Local interaction

synchr1: Set(TransitionProp)
pre-cond3: Set(TransitionProp)
post-cond3: Set(TransitionProp)
vital3: Set(StateProp)
loc-glob3: Set(TransitionProp)

Two state observers

Fig. 19. Strutured System Cell shemas

made by n elements with n satisfying some onstraint. In the partiular ase

where there is just a unique element of a type we an drop the subsystem

identity and write only the (underlined) type name; thus the subsystem will

be named as the type. In Fig. 18 we show an example of a on�guration; the

strutured system with that on�guration has one subsystem of type Sys1,

named Sys1, two subsystems of type Sys2 named respetively A and B, and n,

with 1 < n < 10 subsystems of type Sys named respetively C1, . . . , Cn.

4.2.2 Cell shemas (properties)

Strutured systems have a new kind of onstituent features, the loal inter-

ations, so we have new types of ells to be �lled; moreover loal interations

should be onsidered also when de�ning the shemas for the ells already used

for simple systems. The state observers orresponding to subsystem states

should be onsidered as the others, with the orresponding ells.

To model strutured systems, we upgraded lts's to generalized lts, whih dif-

fer for the additional information part of the transitions (the set of the loal

interations). Now, we onsequently upgrade the properties on the transi-

tions (see Set. 3.2.2) with new atoms \lIn happen" (where lIn is a loal

interation) whih express that lIn belongs to the set of the transition loal

interations. More preisely, lIn happen holds on a transition of a generalized

lts \inf : x

l

��! y" i� lIn 2 inf. The new properties will allow us to take into

aount the loal interations when expressing the properties the various ells.

In Fig. 19 we present the shemas for the new ells and the updates of those al-

ready used for simple systems, where undetailed \boxes" refer to Fig. 7 as well

29

|||||||||||||||||||||||||||||||||{

synhr1 (transition property) Under some ondition, an instantiation of sid.ei is/

is not synhronized (i.e., exeuted simultaneously) with another instantiation of

the same sid.ei, i.e., one is a omponent of a global transition i� the other also

is/is not so; learly the two instantiations are performed by di�erent subsystems.

if ond(arg,arg

1

) and sid.ei(arg) happen then sid

1

.ei(arg

1

) happen

or

if ond(arg,arg

1

) and sid.ei(arg) happen then not sid

1

.ei(arg

1

) happen

lo-glob3 (transition property) If an instantiation of sid.ei is a omponent of a

global transition, then, under some ondition, the label of this global transition

must ontain some elementary interation, or vie versa.

if sid.ei(arg) happen and ond(arg,eIn) then eIn happen

or

if eIn happen and ond(arg,eIn) then eIn happen

pre-ond3 ,post-ond3 ,vital3 de�ned as the homonymous slots for simple system

but where the elementary interation is replaed by the loal interation.

|||||||||||||||||||||||||||||||||{

Fig. 20. Loal interation (sid.ei) ell shema

|||||||||||||||||||||||||||||||||{

synhr2 (transition property) Under some ondition, an instantiation of sid

1

.ei

1

is/is not synhronized with an instantiation of sid

2

.ei

2

, i.e., one is a omponent

of a global transition i� the other also is/is not so; learly the two instantiations

are performed by di�erent subsystems.

if ond(arg

1

,arg

2

) and sid

1

.ei

1

(arg

1

) happen then sid

2

.ei

2

(arg

2

) happen

or

if ond(arg

1

,arg

2

) and sid

1

.ei

1

(arg

1

) happen then

not sid

2

.ei

2

(arg

2

) happen

|||||||||||||||||||||||||||||||||{

Fig. 21. Two loal interations (sid

1

.ei

1

:sid

2

.ei

2

) ell shema

as the slots that are not rede�ned here. Clearly, for the parts already de�ned

in Set. 3.2.2, here we must onsider also the loal interations together with

elementary interations in the state and transition properties. The shemas

for the various ells are reported in Fig. 20 and 21, and in Appendix C.

4.2.3 Example: a Property-Oriented Spei�ation of a Lift System

The lift system onsists of the lift plant, see Set. 3.2.3, the automated software

ontroller and the users; and, it is a strutured system. Here we use our method

to express its relevant properties, whih are mainly about how its subparts

inuene eah other. The produed spei�ation may be onsidered as a preise

30

de�nition of the requirements on the ontroller, stating preisely how it will

a�et and interat with its ontext.

LiftSystem

LiftPlant Users Control

ControlLiftPlant Users

The above piture shows the parts and the onstituent features of the lift

system. The subsystems are the plant, the ontroller, and the users (a unique

systemmodelling all the lift users), and all of them are simple systems; whereas

the used data strutures are those of the subsystems and so we do not repeat

them. We speify in a property-oriented way the three subsystems. The spe-

i�ation of the lift plant, LiftPlant, has been given in Set. 3.2.3 and those of

the users and of the ontroller are here.

Control

CABIN_POSITION(Floor)
DOOR_O(Floor,DoorPosition)
DOOR_POSITIONS(DoorPositions)
MOTOR_O(MotorStatus)
MOTOR_STATUS(Motor_Status)
CALL(Floor)

MotorStatus

down | up | stop

DoorPosition

open | closed

DoorPositions

List(DoorPosition)

allCloseBut(Floor,DoorPositions)

Users

TRANSIT(Int)
CALL(Floor)

Floor Floor

Notie that these spei�ations have no properties, beause in this ase we do

not know anything on the behaviour of the users (for instane we do not assume

that a user that enters the lift will eventually leave it), and the requirements

onern only the e�ets of the ontroller on the ontext, and not its preise

behaviour. The lift system is losed, in the sense that it does not interat with

its outside world, or better possibly interations do not onern the require-

ment that we have to desribe; thus the elementary interation ompartment

is empty. No state observer di�erent from those observing the states of the

subsystems is needed, and so also the other ompartment is empty. Thus, the

only onstituent features of the lift systems are of kind loal interations, and

to give its properties we have just to �ll ells of the form \Loal interation"

and \Two loal interations", whose lo-glob parts will be always empty.

All the loal interations with the same name of di�erent subsystems are

synhronized. We give just an example of suh properties, the one onerning

alling the abin.

Users.Call(f) synhronized with Control.Call(f)

31

Instead the loal interation \Control.Door Positions" is synhronized with

many of the kind \LiftPlant.Door Position".

Control.Door Positions(dps

1

::. . . ::dps

10

) synhronized with

LiftPlant.Door Position(ground,dps

1

), . . . , LiftPlant.Door Position(top,dps

10

)

The last property is a post ondition onerning the users' alls.

if Users.Call(f) happen then in any ase eventually

LiftPlant.abin position(f) and LiftPlant.motor status(stop) and

LiftPlant.door position(f) = open

4.2.4 Casl-Ltl View

Here we present the Casl-Ltl orresponding version of our property-oriented

spei�ation of strutured systems introdued before in Set. 4.2.1. The only

di�erene with the ase of the simple system of Set. 3.2.4 is that now we use

generalized lts, however Casl-Ltl o�ers a speial onstrut to delare that

three sorts orrespond to the states, the labels and the additional information

of a generalized lts together with a standard arrow prediate orresponding to

the transition relation.

dsort st label lab info inf stands for

sorts st; lab; inf

pred : ��! : inf�st� lab�st

Let poSpe be a property-oriented spei�ation of strutured systems having

the form desribed in Fig. 16, and assume that

� poSpe.parts = fds

1

, . . . , ds

j

g are the parts, and DS

1

, . . . , DS

j

the orre-

sponding Casl-Ltl spei�ations;

� poSpe.subsyst-Spes = fssp

1

, . . . , ssp

k

g are the subsystem spei�ations,

SSP

1

, . . . , SSP

k

are the orresponding Casl-Ltl spei�ations, and

ElemInter

1

, . . . , ElemInter

k

are the spei�ations of their elementary

interations;

� poSpe.e-features = fei

1

; : : : ; ei

n

g are the (global) elementary interations;

� poSpe.s-features = fso

1

; : : : ; so

m

g are the state observers;

� poSpe.subsystems = fss

1

; : : : ; ss

r

g are the subsystems.

Below we give the Casl-Ltl spei�ation orresponding to poSpe.

spe LoalInter =

ElemInter

1

and . . . and ElemInter

k

and Ident then

free type subElemInter ::= (elemInter

1

) j : : : j (elemInter

k

)

%% disjoint union of the elementary interation types of the subsystems

free type loalInter ::= < ; > (ident; subElemInter)

32

spe poSpe.name =

FiniteSet[ElemInter℄ and FiniteSet[LoalInter℄ and

DS

1

and . . . and DS

j

and SSP

1

and . . . and SSP

k

then

dsort st label FinSet[elemInter ℄ info FinSet[loalInter ℄

ops so

1

.name : st� so

1

.argTypes! so

1

.resType %% state observers

. . .

so

m

.name : st� so

m

.argTypes! so

m

.resType

ss

1

.id : st! ss

1

.type %% observers of the subsystem states

. . .

ss

r

.id : st! ss

r

.type

axioms

formulae orresponding to the ell �llings, see below

For the properties on strutured systems we have used a new kind of transition

properties, and so here we give how to transform them in Casl-Ltl. Similarly

to what was done in Set. 3.2.4, a transition property ond is transformed into

inf : S

l

��! S

0

) ond', where ond' is obtained from ond by adding S as

an extra argument to eah soure state observer, by adding S

0

as an extra

argument to eah target state observer, and by replaing eah atom of the

form \eIn happen" with eIn 2 l , and eah atom of the form \lIn happen"

with lIn 2 inf.

4.3 Construtive spei�ations

4.3.1 The spei�ations harateristis

The onstrutive spei�ation method for strutured system that we present is

similar in many respets to the property-oriented one introdued in Set. 4.2.

We �rst determine the parts and the onstituent features, and that an be

done as before, the only di�erene is that in this ase we do not de�ne any

state features, beause the states are fully determined by the subsystems (they

are just sets of subsystem states). Then, we do not give properties but instead

we de�ne preisely the additional information, the states, the labels and the

transition of the generalized lts modelling the spei�ed strutured system.

The de�nition of the additional information, the labels and the states is as

for the property-oriented ase (the additional information are sets of loal

interations, the labels are set of elementary interations, and the states are

sets of subsystem states together with their identities). For what onerns the

transitions, similarly to the ase of simple systems, we de�ne them by means of

onditional rules stating whih groups of loal transitions (of the subsystems)

may be exeuted together resulting in a global (of the strutured system)

transition. The general form of suh rules, visually depited in Fig. 22, is

33

lab1 LAB

id1.ss1 ssSet

id1.ss1’

{ (id)show
grestore
/Helvetica findfont 10 scalefont setfont
gsave
65 110 translate 1 -1 scale 0 0 moveto
0 setgray
(1)show
grestore
/Helvetica findfont 12 scalefont setfont
gsave
71 110 translate 1 -1 scale 0 0 moveto
0 setgray
(,x) | x lab1 } U ... U { (id)show
grestore
/Helvetica findfont 10 scalefont setfont
gsave
204 110 translate 1 -1 scale 0 0 moveto
0 setgray
(n)show
grestore
/Helvetica findfont 12 scalefont setfont
gsave
210 110 translate 1 -1 scale 0 0 moveto
0 setgray
(,x) | x labn } :

labn

idn.ssn

idn.ssn’

. . .

. . . ssSet

� �

Fig. 22. Visual presentation of a generi rule de�ning global transitions

(#) if ss

1

lab

1

����! ss

0

1

and . . . and ss

n

lab

n

����! ss

0

n

and

pos-ond(lab

1

; : : : ; lab

n

;LAB ; ssSet) then

f(id

1

:x) j x 2 lab

1

g [: : :[f(id

n

:x) j x 2 lab

n

g :

fid

1

:ss

1

; : : : ; id

n

:ss

n

g [ssSet

LAB

����! fid

1

:ss

0

1

; : : : ; id

n

:ss

0

n

g [ssSet

stating that if ss

1

lab

1

���! ss

0

1

, . . . , ss

n

lab

n

���! ss

0

n

are loal transitions (i.e., of

the subsystems id

1

, . . . , id

n

), and their labels satisfy some ondition, then

we have a global transition (of the strutured system), in whose soure state

we distinguish the subsystems subjeted to a loal transition (with soure

states ss

1

, . . . , ss

n

) and those staying idle (with soure states in ssSet), that

is labelled by LAB , and that whose additional information is the set of the

involved loal interations (f(id

1

; x) j x 2 lab

1

g [: : : [f(id

n

; x) j x 2 lab

n

g).

The ondition may onern also the possible transitions of the subsystems

staying idle (ssSet) and the label of the resulting global transition LAB .

To help the spei�er write suh omplex rules our method, inspired by the

SMoLCS approah [3℄, proposes to proeed in the following way.

Realling that the labels of the systems onsists of sets of elementary intera-

tion, we �rst determine whih groups of loal interations must be exeuted

together (synhronized sets). Then, we assume that a set of loal transitions

an build a global transition if and only if their orresponding loal intera-

tions an all be ombined into disjoint synhronized sets. Furthermore, we add

to eah synhronized set a global elementary interation (of the strutured sys-

tem), expressing the interation with the external environment resulting from

the exeution of the set of loal interations. The transition shown in Fig. 14

may be, for example, motivated by the following synhronized sets (null stands

for no global elementary interation)

(fA.e;B.eg;null); (fA.fg;X); (fB.g;C.hg;Y)

Notie that A.f is not synhronized with other loal interations.

Thus the rule (#) an be speialized in the following way (we present it in

four parts followed by the orresponding omments):

34

(1) if ss

1

lab

1

����! ss

0

1

and . . . and ss

n

lab

n

����! ss

0

n

and

(2) f(id

1

:x) j x 2 lab

1

g [: : :[f(id

n

:x) j x 2 lab

n

g =

linSet

1

[: : :[linSet

k

and

(3) (linSet

1

;EI

1

),. . . , (linSet

k

;EI

k

) are synhronized sets then

(4) linSet

1

[: : :[linSet

k

:

fid

1

:ss

1

; : : : ; id

n

:ss

n

g [ssSet

fEI

1

;:::;EI

k

g

���������! fid

1

:ss

0

1

; : : : ; id

n

:ss

0

n

g [ssSet

If

(1) ss

1

lab

1

���! ss

0

1

, . . . , ss

n

lab

n

���! ss

0

n

are loal transitions (i.e., of subsystems)

(2) eah loal transition determines a set of loal interations

f(id

i

:x) j x 2 lab

i

g i = 1 ; : : : ;n

(2)&(3) loal interations may be ombined to form synhronization sets

linSet

1

, . . . , linSet

k

(3) aompanied by the global elementary interations EI

1

, . . . , EI

k

then

(4) we have a global transition (of the strutured system), in whose soure

state we distinguish the subsystems subjet to a loal transition (with soure

states ss

1

, . . . , ss

n

) and those staying idle (with soure states in ssSet),

that is labelled by the global elementary interations EI

1

, . . . , EI

k

, and that

whose additional information is the set of the involved loal interations

(linSet

1

[: : : [linSet

k

).

This rule states that any group of loal transitions (of the subsystems) whose

elementary interations build a group of synhronized sets may result in a

global transition (of the strutured system) [free mode℄. If we need to express

that at most one of suh set is seleted at eah step [inter mode℄, the above

rules may be hanged by setting k = 1 . If instead, we need that only maximal

groups of subsystem transitions are seleted (i.e., the subsystems in ssSet

annot perform some other synhronized set of loal moves) [max mode℄, then

we add in the premise the ondition that ssSet annot move. Thus, to de�ne

the above rules, we only need to de�ne whih are the synhronized sets of loal

interations and the mode in whih the subsystem transitions are piked up

(for the ase of maximal parallelism we need also to de�ne also an additional

prediate noMove, again by onditional rules).

The set of synhronized loal interations may be in turn de�ned by ondi-

tional rules (synhronization rules) having the form

(+) if pos-ond(fsid

1

.ei

1

,. . . ,sid

k

.ei

k

g,EI) then

(fsid

1

.ei

1

,. . . ,sid

k

.ei

k

g,EI) is a synhronized set

The form of the onstrutive spei�ations of strutured systems is summa-

rized in Fig. 23.

The parts and the onstituent features of a onstrutive spei�ation of a

strutured system are visually presented as for the property-oriented spei�-

35

1..*

*

Data structure specification

Elementary interaction
definition

Structured system constructive specification

name: String

parts

e-features

System specification

1..*
subsyst-Specs

1..*subsystems

Subsystem

synchronizations
*

1mode

Mode

Free InterMaximal

no-moves

*

Conditional rule

Fig. 23. Strutured System Construtive Spei�ation

Id
1

:
S

ys
1

Id
k:

 S
ys

k

ei
1

ei
k

...
.

co
nd

E
I

Fig. 24. Visual presentation of a synhronization rule

ations, see Fig. 17, but now in the name ompartment we put an indiation

of the mode of the system (inter, max, or free). A rule de�ning the synhro-

nized sets as in (+) above will be visually represented as in Fig. 24, where

Id1: Sys1 Idk: Sysk.... is a fragment of the on�guration of the system. The

visual presentations of all the synhronization rules may be then put together

building an oriented graph by olleting all rounded boxes depiting the same

subsystems. The rules de�ning the noMove prediate, if any, are visually de-

pited as a standard prediate, see Set. 5.3.

4.3.2 Example: a Construtive Spei�ation of a distributed lift ontroller

As example we speify the design of another ontroller of the lift system that

di�erently from that of Set. 3.3.2 onsists of two proesses, one taking are of

the doors (deteting failures and making sure that eah order sent to them is

orretly exeuted) and a main part taking are of interating with the users,

the motor and the abin.

First we speify the two omposing subsystems DoorHandler and Main, respe-

tively in Fig. 26 and Fig. 25, and after the strutured system Distr Control in

36

|||||||||||||||||||||||||||||||||{

Parts and onstituent features

Coordinating
Handling_Call(Floor,Floor,MotorStatus)
Checking_Doors(Floor,Floor)
Closing_Door(Floor,Floor)
Waiting_Closure(Floor,Floor)
Ready_To_Move(Floor,Floor)
Moving_Up(Floor,Floor)
Moving_Down(Floor,Floor)
Stopping(Floor)
Waiting_Opening(Floor,Floor)
Stopped

Main

CABIN_POSITION(Floor)
CLOSE(Floor), CLOSED(Floor)
OPEN(Floor), OPENED(Floor)
YES, NO, DOOR_FAILURE
ALL_CLOSE_BUT(Floor)
MOTOR_O(MotorStatus)
MOTOR_STATUS()show
grestore
/Helvetica findfont 9 scalefont setfont
gsave
304 252 translate 1 -1 scale 0 0 moveto
0 setgray
(MotorStatus)
CALL(Floor)

Floor10

MotorStatus

down | up | stop

Behaviour

Coordinating

CALL(f) &
CABIN_POSITION(f1) &
M OTOR_STATUS (ms)

Handling_Call(f,f1,ms)

[ms = stop and
 f =/= f1]
ALL_CLOSE_BUT(f1)

[ms =/= stop
or
 f = f1]

Ready_To_Move(f,f1)

[f above f1]
MOTOR_O(up)

[ms =/= up]
MOTOR_STATUS (ms) &
M OTOR_O(stop)

Moving_Down(f,f1)

[f =/= f1]
CABIN_POSITION(f2) &

M OTOR_STATUS (down)

 [f = f1] M OTOR_O(stop)

[ms =/= down]
M OTOR_STATUS (ms) &

M OTOR_O(stop)

Moving_Down(f,f2)

[f1 above f]
MOTOR_O(down)

Moving_Up(f,f1)

Moving_Up(f,f2) [f =/= f1]
CABIN_POSITION(f2) &
MOTOR_STATUS (up)

 [f = f1] M OTOR_O(stop)

Checking_Doors(f,f1)

YES

N
O

Closing_Door(f,f1)

CLOSE(f1)

DOOR_FAILURE

Waiting_Closure(f,f1)

CLOSED(f1)

DOOR_FAILURE

W
ai

tin
g_

O
pe

ni
ng

(f
)

O
P

E
N

E
D
(f

)

DOOR_FAILURE

Stopped

OPEN(f)

Going_To_Stop(f)

Stopped

Stopped

Stopped

|||||||||||||||||||||||||||||||||{

Fig. 25. Main: Spei�ation

37

|||||||||||||||||||||||||||||||||{

Parts and onstituent features

Init
Checking(DoorPositions)
Closing(Floor,DoorPositions)
Opening(Floor,DoorPositions)
Answering(Floor,DoorPositions)
Failure_Detected

DoorHandler

CLOSE(Floor), CLOSED(Floor)
OPEN(Floor), OPENED(Floor)
YES, NO, DOOR_FAILURE
ALL_CLOSED_BUT(Floor)
DOOR_POSITIONS(DoorPositions)

Floor

DoorPosition

open | closed

DoorPositions

List(DoorPosition)

allCloseBut(Floor,DoorPositions)

Behaviour

Checking(dposs)

[dposs = dposs1]
DOOR_POSITIONS(dposs1)

[d
po

ss
 =

/=
 d

po
ss

1
]

D
O

O
R

_P
O

S
IT

IO
N

S
(d

po
ss

1)
 &

D

O
O

R
_F

A
IL

U
R

E

Failure_Detected

ALL_CLOSE_BUT(f) Answering(f, dposs)

[a
ll_

cl
os

e_
bu

t(
f,d

po
ss

)
]

Y
E

S

[n
ot

 a
ll_

cl
os

e_
bu

t(
f,d

po
ss

)
]

N
O

C
LO

S
E

(f
)

&
 D

O
O

R
_O

(f
,c

lo
se

)

Closing(f, dposs)

[C
lo

se
d(

f,d
po

ss
)

=
/=

 d
po

ss
1

]
D

O
O

R
_P

O
S

IT
IO

N
S

(d
po

ss
1)

 &

D
O

O
R

_F
A

IL
U

R
E

[C
lo

se
d(

f,d
po

ss
)

=
 d

po
ss

1
]

D
O

O
R

_P
O

S
IT

IO
N

S
(d

po
ss

1)
 &

C

LO
S

E
D

(f
)

O
P

E
N

(f
)

&
 D

O
O

R
_O

(f
,o

pe
n)

Opening(f, dposs)

[O
pe

n(
f,d

po
ss

)
=

/=
 d

po
ss

1
]

D
O

O
R

_P
O

S
IT

IO
N

S
(d

po
ss

1)
 &

D

O
O

R
_F

A
IL

U
R

E

[O
pe

n(
f,d

po
ss

)
=

 d
po

ss
1

]
D

O
O

R
_P

O
S

IT
IO

N
S

(d
po

ss
1)

 &

O
P

E
N

E
D
(f

)

Init

DOOR_POSITIONS(dposs)

|||||||||||||||||||||||||||||||||{

Fig. 26. DoorHandler: Spei�ation

Fig. 27. Sine, in Distr Control only elementary interations with the same

name and the same arguments of di�erent subsystems are synhronized, to

present the synhronization rules it is suÆient to deorate any ooperation

ion by a list of elementary interation names.

38

|||||||||||||||||||||||||||||||||{

Parts and onstituent features

MainDoorHandler

Distr_Control

MainDoorHandler

CABIN_POSITION(Floor)
DOOR_O(Floor,DoorPosition)
DOOR_POSITIONS(DoorPositions)
MOTOR_O(MotorStatus)
MOTOR_STATUS(MotorStatus)
CALL(Floor)

free

Synhronization rules

D
o
o
rH
a
n
d
le
r

CABIN_POSITION

MOTOR_O

MOTOR_STATUS

CALL

CLOSE, CLOSED

OPEN, OPENED

YES, NO, DOOR_FAILURE

ALL_CLOSED_BUT

DOOR_POSITIONS

DOOR_O
M
a
in

|||||||||||||||||||||||||||||||||{

Fig. 27. Distr Control: Spei�ation

4.3.3 Casl-Ltl View

Here we present the Casl-Ltl [26℄ orresponding version of our onstrutive

spei�ations of strutured systems introdued before in Set. 4.3.1.

Let onSpe be a onstrutive spei�ation of strutured systems having the

form desribed in Fig. 23, and assume that

� onSpe.parts = fds

1

, . . . , ds

j

g are the parts, and DS

1

, . . . , DS

j

the orre-

sponding Casl-Ltl spei�ations;

� onSpe.subsyst-Spes = fssp

1

, . . . , ssp

k

g are the subsystem spei�ations,

and SSP

1

, . . . , SSP

k

are the orresponding Casl-Ltl spei�ations;

� onSpe.e-features = fei

1

; : : : ; ei

n

g are the elementary interations;

� onSpe.s-features = fso

1

; : : : ; so

m

g are the state observers;

� onSpe.subsystems = fss

1

; : : : ; ss

r

g are the subsystems.

Below we give the Casl-Ltl spei�ation orresponding to onSpe.

ElemInter and LoalInter have been de�ned in Set. 4.2.4.

spe StrutState =

SSP

1

and . . . and SSP

k

then

free f

generated type strutState ::=

ss

1

.name : (ss

1

.type) j : : : j ss

r

.name : (ss

r

.type) j

jj : strutState� strutState

axioms

39

ss

1

jj ss

2

= ss

2

jj ss

1

ss

1

jj (ss

2

jj ss

3

) = (ss

1

jj ss

2

) jj ss

3

ss jj ss = ss

0

g end

spe onSpe.name =

FiniteSet[ElemInter℄ and FiniteSet[LoalInter℄ and

StrutState and DS

1

and . . . and DS

j

then

free f

dsort strutState label FinSet[elemInter ℄ info FinSet[loalInter ℄

preds isSynhronizedSet : FinSet[loalInter℄� FinSet[elemInter℄

noMove : strutState

axioms

formulae orresponding to the synhronization rules, see below

%% a formula of the form below for all n, 1 � n � r and all k , 1 � k � n

ss

1

lab

1

����! ss

0

1

^ : : : ^ ss

n

lab

n

����! ss

0

n

^

f(ss

1

.Id; ei) j ei 2 lab

1

g [: : :[f(ss

n

.Id; ei) j ei 2 lab

n

g =

linSet

1

[: : :[linSet

k

^

isSynhronizedSet(linSet

1

;EI

1

) ^ : : : ^

isSynhronizedSet(linSet

k

;EI

k

))

ss

1

jj : : : jj ss

n

jj ssSet

fEI

1

;:::;EI

k

g

���������! ss

0

1

jj : : : jj ss

0

n

jj ssSet

%% axioms orresponding to the onditional rules de�ning noMove,

%% if any, following Set. 5.3.3

: : : : : : :

g end

A synhronization rule as (+) in Set. 4.3 orresponds to the followingCasl-Ltl

formula

pos-ond(f(Id1 ; ei1); : : : ; (Idk ; eik)g;EI))

isSynhronizedSet(f(Id1 ; ei1); : : : ; (Idk ; eik)g;EI)

The above spei�ation orrespond to the mode Free. If the mode is Inter, then

the rules de�ning the transition are hanged by setting k = 1 . If it is instead

Max you add in the premise the ondition noMove(ssSet).

5 Spei�ation of Data Strutures

5.1 Data Struture Items

A data struture onsists of a set of values, some onstrutors for denoting

them, some operations and prediates. The onstrutors, the operations and

the prediates may also have arguments of other types, thus a data stru-

ture may have other data strutures as subparts. Construtors and operations

may be total (always de�ned), or partial (denoted by a `?' symbol). Constru-

tors and operations may be onstants (onsidered as 0-ary operations), and

40

Data structure

parts

features

1..*

*

Operation

Constituent feature

Constructor Predicate

Fig. 28. Data Struture Item

Data structure property-oriented specification

name: String

*

Data structure specification

parts

*

Predicate definition

name: String
argTypes:Sequence(Type)

p-features

*

Constructor definition

name: String
argTypes:Sequence(Type)

c-features

Property

properties
*

*
Operation definition

name: String
argTypes:Sequence(Type)
resultType: Type

o-features

Fig. 29. Data Struture Property-Oriented Spei�ation

onstants are always de�ned (or total).

In our setting the data strutures are seen formally as many sorted algebras,

or strutures, and the modelling is quite trivial: the arriers model the set of

values, and funtions (of ourse of di�erent kinds) model onstrutors, opera-

tions and prediates. Thus, data strutures may be haraterized by their on-

strutors, operations and prediates, and so they will have three orresponding

kinds of onstituent features. In Fig. 28 we summarize the onstituent features

and parts of the data strutures. Let us reall that in the property-oriented

ase, the listed onstituent features are neessary (but not restritive), while

in the onstrutive ase they are fully desribed (and thus restritive).

5.2 Property-oriented spei�ations

5.2.1 Spei�ation of parts and onstituent Features and ell shemas

The property-oriented spei�ation method for data strutures we propose is

a speialization of GPSm introdued in Set. 2.2. After having identi�ed the

parts and onstituent features (Fig. 29 with the visual presentation in Fig. 30),

the properties are expressed using the ell �lling approah.

The onstituents of data strutures are of three kinds, onstrutors, prediates

41

predicates
pr(Type1, ...,Typen)

DataStructureName

constructors
con(Type1, ..., Typen) or con(Type1, ..., Typen)?

operations
op(Type1, ...,Typen): type or op(Type1, ...,Typen): ? Type

....

Data1

Datar

Fig. 30. Visual presentation of a Data Struture: parts and onstituent features

Constructor

def1: Set(DataProp)
ident1: Set(DataProp)

Two constructors

def2: Set(DataProp)
ident2: Set(DataProp)

Two operations

def5: Set(DataProp)
value3: Set(DataProp)

Operation

def4: Set(DataProp)
value2: Set(DataProp)

Constructor
 and operation

def3: Set(DataProp)
value1: Set(DataProp)

Cell schema

Predicate

truth2: Set(DataProp)

Constructor and
predicate

truth1: Set(DataProp)

Operation and
predicate

truth-def: Set(DataProp)
truth-value: Set(DataProp)

Two predicates

truth3: Set(DataProp)

Fig. 31. Data Struture: Cell shemas

|||||||||||||||||||||||||||||||||{

def2 Conditions on the relationships between the de�nedness of on

1

with that of

on

2

(required only for partial onstrutors)

ond

where ond inludes atoms of the form def(on

1

(arg

1

)) and of the form

def(on

2

(arg

2

))

ident2 The values represented by on

1

are/are not identi�ed with values repre-

sented by on

2

:

when all de�ned ond

where ond inludes atoms of the form on

1

(arg

1

) = on

2

(arg

2

)

|||||||||||||||||||||||||||||||||{

Fig. 32. Two onstrutors (on

1

:on

2

) ell shema

and operations, and so we have to onsider nine kinds of ells; and we present

their shemas in Fig. 31, and the details in Fig. 32 and 33, and in Appendix D.

Let us note that, as regards onstrutors and operations, the properties to

be desribed should in partiular address both de�nedness and the values

denoted/returned. In Casl, \=" is the strong equality, haraterized by the

fat that t = t

0

i� either both terms are de�ned and denote the same value or

both are unde�ned. Thus a property t = t

0

in the ase t is de�ned impliitly

requires also that t

0

must be de�ned. In order to avoid the unde�ned ase, the

premises of many properties used in the ell shemas require the de�nedness

of all the elements involved in the property, thus their form is

42

|||||||||||||||||||||||||||||||||{

truth-def Conditions on the relationships between the truth of pr and the de�ned-

ness of op (required only for partial operations)

when all de�ned ond

where ond inludes atoms of the form pr(arg

1

) and of the form def(op(arg

2

))

truth-value Conditions on the relationships between the truth of pr and the values

returned by op:

when all de�ned ond

where ond inludes atoms of the form pr(arg

1

) and of the form op(arg

2

)

|||||||||||||||||||||||||||||||||{

Fig. 33. Operation and prediate (op:pr) ell shema

if (and

t is a term appearing in ond

def(t)) then ond.

Beause properties having the above form may be quite long, they are usually

written in a more ompat way as:

when all de�ned ond

5.2.2 Example: a Property-Oriented Spei�ation of Floor

We speify the Floor data struture used in the lift related examples.

_ above _(Floor,Floor)

Floor

ground, top

next(Floor): ? Floor
previous(Floor): ? Floor

shows that the onstrutors are ground and top, the prediate is above, and the

(partial) operations are next and previous. Moreover, Floor does not use any

other data struture. The properties given below were worked out using our

ell �lling approah, then redundant properties were removed and the result

was reorganized.

{ There exists a ground and a top oor, and they are di�erent.

ground 6= top

{ above is total order over the oors with top as maximum and ground as

minimum.

if f 6= ground then f above ground

if f 6= top then top above f

f

1

= f

2

or f

1

above f

2

or f

2

above f

1

not f above f

if f

1

above f

2

then not f

2

above f

1

if f

1

above f

2

and f

2

above f

3

then f

1

above f

3

43

{ next returns the oor immediately above a given one, if it exists, i.e., there

is no oor between f and next(f).

13

def(next(ground)) and not def(next(top))

def(next(f)) i� top above f

when all de�ned next(f) above f and

not exists f

1

� (next(f) above f

1

and f

1

above f)

when all de�ned next(previous(f)) = previous(next(f)) = f

{ Properties on previous are similar to those of next, and are given in Ap-

pendix E.

5.2.3 Casl View

Here we present the Casl

14

orresponding version of our property-oriented

spei�ation of data strutures introdued in Set. 5.2.

Let poSpe be a property-oriented spei�ations of data strutures having the

form desribed in Fig. 29, and assume that

� poSpe.parts = fds

1

, . . . , ds

j

g are the parts, and DS

1

, . . . , DS

j

the orre-

sponding Casl spei�ations;

� poSpe.-features = fon

1

, . . . , on

n

g are the onstrutors;

� poSpe.o-features = fop

1

, . . . , op

m

g are the operations;

� poSpe.p-features = fpr

1

, . . . , pr

p

g are the prediates.

Below we give the Casl spei�ation orresponding to poSpe (some onstru-

tors and operations may be partial, whih is denoted by `?', f. Set. 1.2).

spe poSpe.name =

DS

1

and . . . and DS

j

then

type poSpe.name ::= on

1

.name(on

1

.argTypes) j : : : j on

n

.name(on

n

.argTypes)

ops op

1

.name : op

1

.argTypes! op

1

.resType

. . .

op

m

.name : op

m

.argTypes! op

m

.resType

preds pr

1

.name : pr

1

.argTypes

. . .

pr

p

.name : pr

p

.argTypes

axioms

formulae orresponding to the ell �llings

The Casl formulae orresponding to the ell �llings for data strutures are

quite obvious, sine their abstrat struture is the same, the only di�erene is

in the onrete syntax.

13

The �rst two axioms are redundant with the third, we kept them just to show

the proessing with the method.

14

Here we do not need to use the Casl-Ltl extension.

44

5.3 Construtive spei�ations

5.3.1 The spei�ations harateristis

The onstrutive spei�ation method for data struture is similar in many

respets to the property-oriented one introdued in Set. 5.2. First, we deter-

mine the used data strutures (the parts), the onstrutors, the prediates and

the operations (the onstituent features). Then, we state when the onstru-

tors and operations are de�ned, whih onstrutors represent the same values,

whih are the values returned by the operations and when the prediates hold.

That is done by means of groups of onditional rules de�ned in the following.

Reall (f. Set. 1.2, the spirit of the Casl free onstrut) that our onstrutive

spei�ations by onditional rules follow the basi priniple that \something

is true in the spei�ed item if and only if it an be dedued by the rules". Thus

a partial onstrutor/operation is unde�ned exept if there is a rule expliitly

stating that it is de�ned. In the same way, a prediate does not hold exept

if there is a rule expliitly stating that it holds.

15

Let us also remind that

onstrutors, operations and prediates are strit.

on-def For eah onstrutor on, a set of onditional rules expressing when

on is de�ned:

if pos-ond(pats) (and

t is a term appearing in pats

def(t)) then def(on(pats))

where pos-ond is a onjuntion of positive atoms in whih the operations of

the data struture do not appear

16

, and pats (for patterns) are expresssions

built only by onstrutors and variables

The above restritions on the form of the rules should help avoid to im-

pliitly introdue the de�nedness of other ombinations of onstrutors and

should help the spei�ers have a lear idea of when the onstrutor is de-

�ned.

on-ident For eah onstrutor on, a set of onditional rules expressing in

whih ases it represents values that may be represented also by using other

onstrutors:

when all de�ned if pos-ond(pats

1

,pats

2

) then on(pats

1

) = pats

2

where pos-ond is a onjuntion of positive atoms where the operations of

the data struture do not appear

17

, and pats

1

, pats

2

are expresssions built

only by onstrutors and variables.

Note that all onstrutors represent di�erent values exept if there is

a rule expliitly stating that they are the same. If this part is empty all

15

In a 2-valued logis, we do not address the issue of unde�nedness of a prediate

sine it means it does not hold.

16

To our knowledge, this \onstrutors only" onstraint needs to be relaxed in some

exeptional ases, as our example in Set. 5.3.2.

17

Ibid.

45

Data structure constructive specification

name: String

*

Data structure specification

parts

*

Predicate definition

p-features

*

Constructor definition

c-features
*

Operation definition

o-featuresconditional-rules
*

Conditional rule

Fig. 34. Data Struture Construtive Spei�ation

onstrutors denote di�erent values.

op-def For eah operation op, a set of onditional rules expressing when op

is de�ned:

if pos-ond(pats) (and

t is a term appearing inpats

def(t)) then def(op(pats))

where pos-ond is a onjuntion of positive atoms, and pats are expresssions

built only by onstrutors and variables.

op-val For eah operation op, onditional rules stating whih are the values

returned by op:

when all de�ned if pos-ond(pats,expr) then op(pats) = expr

where pos-ond is a onjuntion of positive atoms, and pats are expresssions

built only by onstrutors and variables.

pr-truth For eah prediate pr, a set of onditional rules stating when pr

holds:

when all de�ned if pos-ond(pats) then pr(pats)

where pos-ond is a onjuntion of positive atoms, and pats are expresssions

built only by onstrutors and variables.

The form of the onstrutive spei�ations of data struture is summarized in

Fig. 34 (details of the onstrutor, prediate and operation de�nitions are as

in Fig. 29).

The visual presentation of the parts and the onstituent features of a data

struture onstrutive spei�ation is the same as for the property-oriented

ones, see Fig. 30. The onditional rules belonging to a on-def slot are visu-

ally presented as follows. First we group together all rules whose onsequenes

have the same form; then eah group, say, e.g., if ond

1

then def(on(pats)), . . . ,

if ond

K

then def(on(pats)), will be visually presented by def(con(pat)) if

cond1

condK

........
.

Similarly, we represent the rules belonging to a slot op-def ; whereas eah

group of rules belonging to a slot pr-truth having the same onsequene will

46

be presented by
pr(pat) holds if

cond1

condK

........
.

For what onerns the rules belonging to a op-val slot, we �rst group together

all rules whose onsequenes (they are equations) have the same left side; then

eah group, say, e.g.,

if ond

1

then op(pats)= expr

1

, . . . , if ond

K

then op(pats)= expr

K

,

will be then visually presented by

op(pat) =

exp1 if cond1

expK if condK

........
.

Similarly, we represent the onditional rules in a on-ident slot.

The visual ordering of the rules should help detet laking or overlapping

ases, whih may lead, e.g., to de�ne two di�erent values of an operation for

the same argument. As usual, we then drop repeated formulae, after having

heked the absene of ontraditions, and slightly rearrange the others to

improve readability.

5.3.2 Example: a Construtive Spei�ation of Floor10

Here we onsider the oor data struture with a maximum of ten oors (used

in Set. 3.3.2 and Set. 4.3.2).

_ above _(Floor10,Floor10)

Floor10

ground
next: ? Floor10

second, ..., ninth, top: Floor10
previous(Floor10): ? Floor10
ord(Floor10): Nat

NAT

shows the onstrutors, ground and next, the prediate above, and the opera-

tions seond, . . . , ninth, top, previous and ord. The onditional rules de�ning

the various onstituents of Floor10 are given below, sine there are quite sim-

ple, we do not give a visual presentation.

{ De�nedness of onstrutors (only next is partial)

def(next(f)) if ord(f) < 10

18

{ Operations seond, . . . , ninth are just shortuts.

seond = next(ground)

. . .

top = next(ninth)

18

Here, the \onstrutors only" onstraint (f. footnote 16) is relaxed for legibility

sake, and we allow the use of ord.

47

{ De�nition of the partial operation previous

def(previous(f)) if ord(f) > 1

previous(next(f)) = f if def(next(f))

{ De�nition of the total operation ord

def(ord(f))

ord(ground) = 1

ord(next(f)) = ord(f) + 1 if def(next(f))

{ De�nition of the prediate above

next(f) above f

if f

1

above f

2

and f

2

above f

3

then f

1

above f

3

It is interesting to ompare this with the Floor example given in Set. 5.2.2.

Note that the onstrutors are not the same to start with, and that we do not

need to express the same properties.

5.3.3 Casl View

The Casl orresponding version of our onstrutive spei�ations of data

struture is quite similar to that for the property-oriented ase; the only dif-

ferene is that in this ase the resulting algebrai spei�ation has an initial

semantis (this results from using the free onstrut) instead of a loose one.

spe onSpe.name =

DS

1

and . . . and DS

j

then

free f

type onSpe.name ::= on

1

.name(on

1

.argTypes)? j : : : j on

n

.name(on

n

.argTypes)

ops op

1

.name : op

1

.argTypes!? op

1

.resType

. . .

op

m

.name : op

m

.argTypes! op

m

.resType

preds pr

1

.name : pr

1

.argTypes

. . .

pr

p

.name : pr

p

.argTypes

axioms

formulae orresponding to the onditional rules

g end

6 Applying our Formally Grounded Spei�ationMethods to Classes

of Systems (\Problem Frames")

In Fig. 35 we show by means of a simple UML lass diagram how the basi

formally grounded spei�ation methods introdued before an be used to

support the spei�ation of the most relevant problem frames of M. Jakson

(see [19, 20℄).

48

simple system
constructive

specification method

Translation Frame

data structure constructive
specification method

data structure
property-oriented

specification method

simple system
property-oriented

specification method

Information System Frame Control System Frame

structured system
property-oriented

specification method

Fig. 35. How our spei�ation methods are used for problem frames

6.1 Translation Frame

RequirementsDomainDesign

IO relationMachine

Inputs

Outputs

The translation frame domain is given by the Inputs and the Outputs, the re-

quirements are desribed by the input/output relationship, IO Relation, and

the design is the Mahine. An example of a translation frame problem is a

ompiler, where the Inputs are the soure programs, the Outputs are the ex-

eutable programs, the IO Relation is given by the language and omputer

semantis, and the Mahine is the ompiler.

To develop a software system mathing the frame \Translation" using our

method means to speify the various omponents of the frame as presented

above. Tehnially, the domain is a pair of data strutures, Inputs and Outputs,

whih should be spei�ed by onstrutive spei�ations following Set. 5.3;

the IO Relation may be seen as a data struture having Inputs and Outputs

as parts and a prediate representing IO Relation, and an be spei�ed by a

property-oriented spei�ation following Set. 5.2. Finally the design is seen

as a partial funtion (or a sequential program or an algorithm) Tran that

assoiates an element of Outputs with an element of Inputs, and so it is again

a data struture having Inputs and Outputs as subparts and an operation Tran,

that will be spei�ed by a onstrutive spei�ation following Set. 5.3.

49

6.2 Information System Frame

Information FunctionSystem

Real World

RequirementsDomainDesign

Information
Requests

Information
Outputs

Sensors

uses

uses

To quote [19℄, \In its simplest form, an information system provides infor-

mation, in response to requests, about some relevant real-world domain of

interest." The information system frame domain is given by the RealWorld,

the InformationRequests and the InformationOutputs, the requirements are de-

sribed by the InformationFuntion, and the design is the System. The Real-

World may be a stati domain (e.g., if the system provides information on

Shakespeare's plays), or a dynami domain (e.g., \the ativities of a urrently

operating business" [19℄). Here we onsider information system frames with a

dynami domain, so \The RealWorld is dynami and also ative." [19℄.

To develop a software system mathing the frame \Information System" using

our method means to speify the various omponents of the frame as presented

above.

The RealWorld is a dynami system, thus it is spei�ed following Set. 3.2 but

with some peuliarity orresponding to its partiular nature. All its elemen-

tary interations orrespond to signal, throughout some sensors, something

happening inside it that is relevant for the information system. The Infor-

mationRequests and the InformationOutputs are two data strutures that are

spei�ed by simply giving their onstrutive spei�ations, following Set. 5.3.

Clearly, InformationFuntion to produe the orret information output, given

an information request, should take into aount the real world, more preisely

its urrent state and also its past history as known by the values ommuniated

by the sensors. Tehnially, these information may be abstratly represented

by a sequene of sets of elementary interations (reall that eah elementary

interation orresponds to some value ommuniated by a sensor). So we an

de�ne it by a standard data struture,History, whose de�nition is given one.

Thus to speify InformationFuntion means to give a onstrutive spei�ation

of a partiular data struture following Set. 5.3; suh data struture must

have as subparts InformationRequests, InformationOutputs and History, and

an operation

InformationFuntion : History� InformationRequets! InformationOutputs.

50

System

Working(View)

SENSOR1(...)
...
SENSORk(...)
RECEIVE(InformationRequest)
SEND(InformationOutput)

V iew

...............

Auxiliary

update: Set(SensorMessage) X View -> View
InfFun: Set(SensorMessage) X View -> Set(SensorMessage)

acceptable: Set(Elementary_Interaction)

... axioms

[acceptable(i-reqs) and
i-outs = InfFun(i-reqs,view)]
sensors & i-reqs & i-outsWorking(view)

Working(update(sensors,view))

Fig. 36. System Spei�ation: elementary onstituents, parts and behaviour

To design an \Information System" means to design the System, a dynami

system interating with the RealWorld (by reeiving the values sensed by the

sensors), and with the users (by reeiving the information requests and sending

bak the information outputs). We assume that the System:

� keeps a view of the atual situation and of the past history of the RealWorld,

� updates it depending on the info reeived by the sensors,

� deides whih information requests from the users to aept in eah instant,

� answers to suh requests with the appropriate information outputs using its

view of RealWorld,

� immediately reeives in a orret way any message sent by the sensors of

the RealWorld,

� immediately handles the reeived informationrequests.

The design of the System will be spei�ed by a onstrutive spei�ation of

a simple system following Set. 3.3. The elementary interations are those

orresponding to reeive some info on some sensors, to reeive information

requests and the send out information outputs. The unique state onstrutor

is Working parameterized by a real world view. This spei�ation is visually

reported in Fig. 36, where View is a data struture desribing in an appropri-

ate way (i.e., apt to permit to answer to all information requests) the System's

views of the possible situations of the RealWorld. Thus, to speify the System

it is suÆient to give:

� the spei�ation View;

� the axioms de�ning the operation update desribing how the System updates

51

Controlled Domain

Requirements Domain Design

Controller

System

Main Part

Desired Behaviour

D
om

ai
n

R
ep

or
ts

U
se

r
O

rd
er

s

User

Sensors

Controller
Orders

User
Requests

Controller
Reports

Fig. 37. Control System Frame Shema

its view of the RealWorld when it detets some events;

� the axioms de�ning the prediate aeptable desribing whih sets of re-

quests may be aepted simultaneously by the System;

� the axioms de�ning the operation Inf Fun desribing what is the result of

eah information request depending on the System's view of the the Real-

World situation.

That means to give a onstrutive spei�ation of a data struture,Auxiliary

in Fig. 36, having as parts InformationOutputs, InformationRequests,View and

the prediate aeptable and the operations update and Inf Fun.

6.3 Control System Frame

We report the general shema of the ontrol system frame following Jakson's

book [19℄ in Fig. 37. The ontrolled domain may inlude the users of the

thing ontrolled by the software that we are going to develop, thus we all

the \ontrolled thing" the main part (shortly indiated as MainPart in the

following). Thus the �rst step is to see preisely how the onsidered problem

mathes the \ontrol system frame".

To use our spei�ation methods to support the whole development of a soft-

ware systemmathing the frame \Control System with User" means to speify

System and Desired Behaviour in Fig. 37; learly some parts of this spei�ation

orrespond to the requirements, some other to the domain, and the remaining

to the design.

Tehnially, System is a strutured system and Desired Behaviour is a set of

additional properties over it. We speify System following Set. 4.2, learly

52

taking into aount its peuliarity, and splitting its properties in those desired

(Desired Behaviour) and in those orresponding to its intrinsi nature (the

others). Now, we list the peuliar features of System.

� System has three subsystems, whose types are respetively User, MainPart

and Controller.

� System is losed (i.e., no interations with the external world, and thus

the label of its transitions will be always the empty set of elementary in-

terations), for this reason we drop the elementary interation part in its

spei�ation.

� The only state observers ofSystem are the seletors of the states of the

MainPart and of the User. We do not onsider the observer orresponding

to the state of Controller, beause we will never express properties about it,

but we will just fully speify when speifying the Controller.

The elementary interations of the three subsystems are lassi�ed into six

ategories listed below, and the interations of any partiular ategory belong

to the two subsystems to whom they are onneted in Fig. 37; e.g., Sensors

are interations of both the MainPart and of the Controller.

Sensors or better the elementary interations orresponding to sending/reeiving

the data olleted by the sensors present on theMainPart (preiselyMainPart

sends and Controller reeives).

Controller Orders or better the elementary interations orresponding to send-

ing/reeiving orders to modifyMainPart (preiselyController sends andMain-

Part reeives).

User Requests or better the elementary interations orresponding to send-

ing/reeiving the requests of the User to for Controller about the wanted

behaviour of the MainPart (preisely User sends and Controller reeives).

Controller Reports or better the elementary interations orresponding to send-

ing/reeiving the reports on what is going on in the MainPart sent (preisely

Controller sends and User reeives).

User Orders or better the elementary interations orresponding to sending/

reeiving orders from the User to modify MainPart (preisely User sends and

MainPart reeives).

Domain Reports or better the elementary interations orresponding to send-

ing/reeiving the reports on what is going on in the MainPart (preisely User

sends and MainPart reeives).

The three subsystems behave in a truly parallel way and ooperate only by

performing simultaneously the shared interations of the above six ategories.

Thus the synhr1 and the lo-glob1 properties of System are standard and

do not depend on the partiular ase.

The used data strutures, the elementary interations of the subsystems and

53

MainPart

MAIN PART
 state observers

User

USER state observers

Controller
Sensors

Controller Order

User Requests

Controller Reports

User OrdersDomain Reports

....

Datar

Data1

Fig. 38. Visual presentation of the struture of a ontrol frame

the arhiteture diagram of System are olleted in a unique visual presenta-

tion, skethed in Fig. 38, where D1, . . . , Dr are the used data strutures.

The spei�ation of the MainPart is obtained by speializing the method for

property-oriented

19

spei�ations of simple systems of Set. 3.2. Some parts of

the spei�ation of MainPart have been already determined (e.g., the elemen-

tary interations, already determined together those of the other subsystems),

many are standards (e.g., the inompatibility between elementary interations

whose kind is di�erent, as a user order and a ontroller order), and other have

a partiular form (e.g., the properties about a Controller order, where only the

post-ond1 slot is not empty).

Similarly, also the spei�ation of the User is obtained by speializing the

method for simple system of Set. 3. Let us note that, while onentrating

on properties that are relevant to the system, often this spei�ation will be

very short (espeially in the ase of a human user). However, it may reet

some rules of the diretions for use. Indeed, the system to be developed may

be guaranteed under the ondition that the diretions for use are followed by

the user.

The Desired Behaviour, that is the �nal aim of the system that we have to

develop, i.e., the system requirements, onsists tehnially of a set of partiular

properties on System of Fig. 37.

� post-ond1 properties for all loal moves User: UR with UR user request

� pre-ond1 and vital1 properties for all loal moves User: CR with CR

ontroller report

� properties on the state observers orresponding to the states of theMainPart

and of User

� properties on the relationships between the state observer orresponding to

the states of the MainPart and the one to the states of User

The Controller (i.e., the design part of the frame) should be spei�ed by a

19

In the ase that we fully know howMainPart, for example, when it is a mehanial/

eletromehanial appliane, we may instead give a onstrutive spei�ation.

54

onstrutive spei�ation following the method proposed in Set. 3.3 if it is

a simple system or the one proposed in Set. 4.3 otherwise; but with the

partiularity that the elementary interations have been already determined.

7 Requirement Spei�ation of an Internet Based Lottery Appli-

ation

7.1 The problem

We have to develop an appliation ALL (ALgebrai Lottery) to handle al-

gebrai lotteries. The lotteries are said \algebrai" beause the tikets are

numbered by integer numbers, the winners are determined by means of an

order over suh numbers, and a lient buys a tiket by seleting its number.

Whenever a lient buys a tiket, he gets the right to another free tiket, whih

will be given at some future time, fully depending on the lottery manager dei-

sion. The number of a free tiket is generated by the set of the numbers of the

already assigned tikets following some law. Thus a lottery is haraterized by

an order over the integers determining the winners and a law for generating

the numbers of the free tikets. To guarantee the lients of the fairness of the

lottery, the order and the law, expressed rigorously with algebrai tehniques,

are registered by a lawyer before the start of any lottery.

The appliation will be Internet based, thus the tikets will be bought and

paid on-line using redit ards with the help of an external servie handling

them. Possible lients must register with the lottery system to play; and lients

aess the system in a session-like way. An external servie takes are of the

authentiation of the lients. The winners are informed by email messages,

and email is used also to inform the registered lients of the start and of the

end of the various lotteries.

Requirement Spei�ation: The tehnique

We use our method for property oriented spei�ations of strutured systems

(see Set. 4.2) to speify the requirements for ALL. Indeed, ALL together with

the external entities interating with it, named in the following ontext entities

(e.g., the manager and the email system) is a strutured system, whih we

name SYSTEM.

ALL and all the ontext entities will be modelled by simple systems, beause

there is no need to investigate the internal struture of the ontext entities and

of ALL. Indeed, for the former, only how they interat with ALL is relevant,

55

and for what onerns ALL, to give it a struture in terms of ooperating

subsystems means to �x already in the requirement phase an arhiteture for

it, mixing the early design phases with the requirement one.

SYSTEM is a losed system, i.e., it annot interat with its external world,

and thus it has no elementary interations. Moreover, all possible ooperations

among its subsystems are binary ones between ALL and one ontext entity,

and do not result in an elementary interation of SYSTEM.

ALL is the most relevant of the subsystems of SYSTEM, and its spei�ation

is more omplex of those of the other ones. Its properties are exatly the

requirements for the appliation that we have to develop. Notie that using

our spei�ation method we express all the requirements for the appliation

to be developed (ALL), but also what we either assume or know about the

ontext entities, thus making lear whih is the ontext of the appliation.

Beause the spei�ation of SYSTEM is quite omplex, to make it more read-

able we deided:

� to ollet all the spei�ations of data strutures appearing in the spei�-

ation of SYSTEM (parts of it and of its subsystems) together in a unique

diagram Data View, and assume that they are impliitly added as parts

whenever needed;

� to ollet together in a Context View the diagram showing the parts and on-

stituents features of SYSTEM and the one showing the ooperations among

its subsystems; indeed suh diagrams show the entities appearing in the on-

text of the appliation and how it interats with them. The spei�ations

of the ontext entities are given separately.

� to allow to de�ne auxiliary/additional state observers;

� to use in properties a derived if-then-else logial ombinator:

if ond then ond

1

else ond

2

stands for

(if ond then ond

1

) and (if not ond then ond

2

);

� to use in properties a derived \ is impossible" ombinator:

ond is impossible stands for

if ond then False;

� to simply write \all inompatible" in the elementary interation ompart-

ment, whenever all the elementary interations of a system are mutually

pairwise inompatible.

� to synhronize only elementary interations with the same name and the

same arguments; and thus it is suÆient to deorate any ooperation ion

by a list of elementary interation names. To further improve the readabil-

ity, an elementary interation XX owned by both two subsystems, say S1

and S2, whih will be synhronized will be named either S1 XX or S2 XX

depending on whih of the two subsystems is the responsible of the resulting

ooperation.

56

Requirement Spei�ation: The Artifat

Here we report only the Data View, the Context View, the spei�ation of one of

the ontext entities (the authorization servie) and the group of requirements

about the registration of a lient, the remaining parts of the requirement

spei�ation are in the Appendix F.

Data View

lessThan(WinningOrder,Int,Int)

WinningOrder

Int

newNumber(FreeTicketLaw,FiniteSet(Int),Int,Int):
 FiniteSet(Int)

FreeTicketLaw

Set(Int) oK()

CreditCardData

oK()

ClientInfo

emailOf: Email

StringEmail

For eah winning order wo, lessThan(wo, ,) is a total order over the integer.

lessThan(wo,i,i)

if lessThan(wo,n

1

,n

2

) and n

1

6= n

2

then not lessThan(wo,n

2

,n

1

)

if lessThan(wo,n

1

,n

2

) and lessThan(wo,n

2

,n

3

) then lessThan(wo,n

1

,n

3

)

For eah free tiket law ftl, newNumber(ftl,ns,d,m) returns a set ontaining m

integer numbers, between -d and d, and not belonging to ns.

if newNumber(ftl,ns,d,m)= ns

0

then

size(ns) = m and ns\ ns = fg and

for all x � if x 2 ns then x � d and -d � x

Context View

System

Authentication Client

CreditCardService

ALL Manager

CreditCardServiceAuthentication

Email

ManagerEmail

ALL

C1:Client
0 =< n

Cn:Client

57

MAN_START_LOTTERY
MAN_G IVE
MAN_DRAW

ALL Manager

CreditCardService

Authentication

Email

Client

CL_REGISTER
ALL_REGISTERED

ALL_FAILED_REGISTRATION
CL_C ONNECT

ALL_C ONNECTED
CL_DISCONNECT

ALL_DISONNECTED
ALL_ERROR

CL_AVAILABLE _TICKETS
CL_BUY_TICKET

ALL_ARE_AVAILABLE
ALL_C ONFIRM_TICKET

ALL_G IVE_FREE_TICKET

ALL_C HECK_C ARD
ALL_C HARGE
CCS_OK_C ARD
CCS_W RONG_C ARD
CCS_C HARGED
CCS_NOT_C HARGED

ALL_REGISTER
ALL_C HECK
AUTH_OK

AUTH_W RONG ALL_SEND

Authentiation Servie Spei�ation

ALL_REGISTER(ClientInfo)
ALL_CHECK(ClientInfo)
AUTH_OK(ClientInfo)
AUTH_WRONG(ClientInfo)

Authentication

The authentiation servie is always ready to aept a request to register a lient.

in one ase next All Register(i) happen

The authentiation servie never on�rms a registration of a lient. This omments

is motivated by the fat that during the ell �lling ativity, we found that a slot

of a ell (preisely the postonditon of the elementary interation All Register)

was empty.

The authentiation servie annot send out simultaneously a positive and a

negative answer to a request to hek a lient.

Auth Ok(i) inompatible with Auth Wrong(i)

The authentiation servie is always ready to aept a request to hek a lient.

in one ase next All Chek(i) happen

The authentiation servie after reeiving a request to hek a lient will inform

that either is ok or not.

if All Chek(i) happen then in any ase eventually

Auth Ok(i) happen or Auth Wrong(i) happen

58

The Requirements for the Appliation ALL

ALL_CHECK_CARD(CreditCardData)
ALL_CHARGE(CreditCardData,Int)
CCS_OK_CARD(CreditCardData)
CCS_WRONG_CARD(CreditCardData)
CCS_HARGED(CreditCardData,Int)
CCS_NOT_CHARGED(CreditCardData,Int)

ALL

lotteryRunning
dimension: Int
winningOrder: WinningOrder
freeTicketLaw: FreeTicketlaw
owner(Int): ? ClientInfo

 MAN_START_LOTTERY(WinningOrder,FreeTicketLaw,Int)
MAN_GIVE(Int)
MAN_DRAW

CL_REGISTER(ClientInfo,CreditCardData)
ALL_REGISTERED(ClientInfo,CreditCardData)
ALL_FAILED_REGISTRATION(ClientInfo,CreditCardData)
CL_CONNECT(ClientInfo)
ALL_CONNECTED(ClientInfo)
CL_DISCONNECT(ClientInfo)
ALL_DISONNECTED(ClientInfo)
ALL_ERROR(ClientInfo)
CL_AVAILABLE_TICKETS(ClientInfo)
ALL_ARE_AVAILABLE(ClientInfo,FiniteSet(Int))
CL_BUY_TICKET(ClientInfo,Int)
ALL_CONFIRM_TICKET(ClientInfo,Int)
ALL_GIVE_FREE_TICKET(ClientInfo)

 ALL_SEND(Email,String)

ALL_REGISTER(ClientInfo)
 ALL_CHECK(ClientInfo)
 AUTH_OK(ClientInfo)
 AUTH_WRONG(ClientInfo)

 registered(ClientInfo)
 connected(ClientInfo)
creditCard(ClientInfo): ?CreditCardData
 freeTickets(ClientInfo): ?Int

Auxiliary/derived state observers

assignedTikets : FiniteSet(Int)

returns the set of the numbers of the tikets already assigned to some lient

(i.e., bought or given away by the manager).

i2 assignedTikets i� def(owner(i))

availableTikets : FiniteSet(Int)

returns the set of the numbers of the still available tikets.

i2 availableTikets i�

i � dimension and i � -dimension and i 62 assignedTikets

winners : FiniteSet(Int)

returns the set of the numbers of the winning tikets, whih are the �rst K

numbers w.r.t. the urrent winning order, where K is the dimension of the

lottery module 5000.

size(winners) = dimension mod 5000 and

for all n

1

,n

2

�

if n

1

2 winners and lessThan(winningOrder,n

1

,n

2

) then n

2

2 winners

A lient registers with ALL

ALL annot handle two di�erent registration requests simultaneously.

Cl Register(i,d) inompatible with Cl Register(i ',d ')

59

If ALL reeives a registration request from a lient, then

if the presented personal information or redit ard data are wrong, or

the lient is already registered, or

there is another registered lient with the same email,

then

ALL informs the lient that his registration has failed

otherwise,

ALL heks the redit ard with the redit ard servie.

If the answer from the redit ard servie is positive, then

ALL registers the lient with the authentiation servie,

and informs him that has been registered;

otherwise ALL informs him that his registration has failed.

if Cl Register(i,d) happen then

if (not ok(i) or not ok(d) or registered(i) or

exists i ' s.t. registered(i ') and emailOf (i) = emailOf (i ')) then

in any ase next All Failed Registration(i,d) happen

else

in any ase next All Chek Card(d) happen and

(eventually Cs Ok Card(d) happen and

next All Register(i) happen and

next All Registered(i,d) happen

or

eventually Cs Wrong Card(d) happen and

next All Failed Registration(i,d) happen)

ALL is always ready to aept registration requests by the lients.

in one ase next Cl Register(i,d) happen

If the redit ard of a lient is reorded, then the lient is registered, and the data

about suh ard are orret.

if def(reditCard(i)) then registered(i) and ok(reditCard(i))

The redit ard of a lient an never be hanged.

reditCard(i) 6= reditCard

0

(i) is impossible

If ALL reeives a message about the validity of a ard from the redit ard servie, then

it has asked to hek suh ard.

if (Cs Ok Card(d) happen or Cs Wrong Card(d) happen) then

in any ase sometime All Chek Card(d) happened

There are no properties onerning All Register; this means that ALL assumes

that the authentiation servie always aept its requests, and that it never sends

bak a on�rmation of the registration.

If ALL asks the authentiation servie to hek a lient, then it must be able to

60

reeive its answer (positive or negative).

if All Chek(i) happen then in any ase eventually

Auth Ok(i) happen or Auth Wrong(i) happen

If ALL reeives a message about the identity of a lient from the authentiation

servie, then

it has asked to hek suh lient.

if (Auth Ok(i) happen or Auth Wrong(i) happen) then

in any ase sometime All Chek(i) happened

If a lient is informed that he has been registered, then

he made a registration request, and

now is registered together with his redit ard data, and

has no right to reeive any free tiket.

if All Registered(i,d) happen then

in any ase sometime Cl Register(i,d) happened and

registered

0

(i) and reditCard

0

(i) = d and freeTikets

0

(i) = 0

If ALL asks the redit ard servie to hek a ard, then

it will be able to reeive its answer (positive or negative).

if All Chek Card(d) happen then in any ase eventually

Cs Ok Card(d) happen or Cs Wrong Card(d) happen

If a lient is informed that his registration request is failed, then

he made a registration request.

if All Failed Registration(i,d) happen then

in any ase sometime Cl Register(i,d) happened

If a lient is registered, then a redit ard data and the number of free tikets

whih it may reeive are available.

if registered(i) then def(reditCard(i)) and def(freeTikets(i))

Only ALL, as a onsequene of a request of the lient, may register a lient.

if not registered(i) and registered

0

(i) then All Registered(i,d) happen

One a lient is registered he annot be anelled.

registered(i) and not registered

0

(i) is impossible

8 Conlusions, Related and Further Work

In this paper we have presented an attempt to design a basis for software

development methods that are formally grounded, shortly FG. By formally

grounded we mean methods

{ whih have all the good properties of those ommonly used (friendly nota-

61

tion based on simple intuitive visual metaphors, easy to understand and to

learn, relevant for real appliations, providing preise and helpful guidelines,

. . .),

{ but where any used spei�ation has a diret formal semantis (not to be

shown to the users) based on well de�ned underlying formal models,

{ and also where the pragmati harateristis of the �rst point have been

determined by the underlying formal foundations.

Notie that by formally-grounded we intend more than just to have a for-

mal semantis.

20

We mean that the underlying onepts are reeted in the

method and used as suh (although they are distilled to the potential user

through methodologial guidelines and nie visual notations).

As a formal basis for grounding our methods we have hosen the algebrai

spei�ation language Casl [23℄ and its extension for behavioural/dynami

spei�ations Casl-Ltl [26℄. Reasons for this hoie are that from works on

algebrai spei�ations, \foundations have been laid down for a neat formal

treatment of requirement and design spei�ations, inluding neat semantis"

[8℄. Then, the Casl language, resulting from a ommon e�ort of the sienti�

ommunity in this area, \enompasses all previously designed algebrai spe-

i�ation languages, has a lean, perfetly designed semantis" [8℄. Finally, its

goal is a family of related extension and restrition languages.

Our intention was to investigate if this idea is feasible, and so we proeeded

in a quite systemati way, so as to handle any possible ase and to exhibit

how to produe the spei�ations (we do not just to give some sample FG

spei�ations). Our previous experienes suggested that the various ativities

in a development proess are based on the \building-briks" tasks of spe-

ifying/modelling software artifats of di�erent nature at di�erent levels of

abstrations. So we have proposed some methods for developing the basi

spei�ation/modelling bloks for data strutures, simple systems (just dy-

nami interating entities in isolation, e.g., sequential proesses), and stru-

tured systems (ommunities of mutually interating entities, simple or in turn

strutured). We also address two kinds of spei�ations, the more abstrat

property-oriented ones, and the more onrete onstrutive ones. To present

our spei�ation method for these di�erent ases, we have followed the on-

eptual shema of [4℄, where the distintion between the hosen spei�ation

formalism and all the other ingredients are expliitly presented.

To try to evaluate the strength and the appliability of our proposal we have

used three of the M. Jakson problem frames [19, 20℄ as a kind of benhmark

20

For example, a lassial imperative programming language that has a formal

semantis based on rewriting rules is not formally grounded on rewriting in our

terms; indeed, users develop programs thinking in terms of assignments and not of

rewrites.

62

(see [14, 15℄ and Set. 6 for a summary). The result of this experiment is that

all the spei�ations required to ope with these problem frames (i.e., spei�-

ations onerning the problem domain, the requirements and the design) an

be given using our method. For eah ase, all relevant aspets of the frame

may be satisfatorily expressed, through user friendly presentations, while the

orresponding underlying formal spei�ations, suitable for possible formal

analysis, are available. We have made another experiment onerning the

spei�ation of the requirements for an appliation for running Internet based

lotteries see Set. 7. The same ase study has been used by one of the authors

to present a UML-based preise method [6℄, quite di�erent from the RUP

[24℄. Interesting enough, the development of the formally-grounded spei�a-

tion helped �nding some small errors in the UML based one and highlighted

some peuliar aspets of the spei�ed requirements that were less obvious

in the UML one. On the other side, the FG spei�ation ould express all

the relevant properties of the onsidered appliation, in a di�erent style, not

senarios based and not objet-oriented, but in a property oriented fashion.

Another di�erene between the two approahes is that in the FG one any data

used in the appliation is naturally piked up and expliitly spei�ed (in FG,

email addresses , Set. 7, are a data struture, whereas in the UML one [6, 7℄

they are just strings) and so less type mismathes should be possible.

21

We

have used the same ase study and the two approahes in student projets,

and the results were that the levels of the UML were quite di�erent, inluding

some very bad ones, whereas the FG spei�ations were quite homogeneous as

regards the quality level, and quite similar. We think this is probably due to

the fat that our method provides preise detailed guidelines.

Another point we would like to reall is how this work on FGmethods may also

result in the development of new spei�ation/modelling tehniques, perhaps

based on new paradigms, to be integrated in pratial ommon methods. For

example, our method is not objet-oriented but ative-entities oriented (or

also agent-oriented), and o�ers a new kind of visual diagrams to present the

behaviour of ative entities (e.g., proesses or agents), the behaviour diagrams

(see Set. 3.3). These new diagrams an be the basis for an extension of the

UML stateharts (see [25℄) overoming their limitation to model only reative

behaviour. Also the new ell-�lling tehnique for �nding the properties, used

here to �nd the axioms for the underlying logial-algebrai spei�ation, may

be at the basis of rigorous tehniques for generating preise UML models,

or for their inspetion, to help to hek whether all aspets of the modelled

system have been onsidered.

In this paper we propose some methods grounded in a formal notation, with

the aim of having some of the bene�ts of using formal methods available

21

We would like to reall that an undeteted type mismath was one of the many

onatenated fats ausing the disaster of the Ariane 5.

63

within pratial usual development methods, trying to redue the impat of

all the well-know disadvantages of their use (as exoti notation, and hard

underlying formal onepts based on omplex mathematis). This approah is

quite new and so there are not, for what we know, similar approahes, exept

for works by the authors, as the JTN (a formally grounded visual notation

for the design of Java targeted appliations see [16℄); see also [8℄ for further

onsiderations on our view of the relationships between formal and pratial

used methods. However, we would like to mention works that address issues

omplementary to ours, e.g., how to write readable spei�ations in Casl

[32℄, avoiding semanti pitfalls (also addressed in the Casl referene manual

[11℄), how to use/ombine observability onepts for writing spei�ations [10℄,

guidelines for the iterative and inremental development of spei�ation [12℄.

Most of the work in the literature onerning the ombination of formal meth-

ods with pratial ones follows di�erent approahes. A lot of approahes math

the following pattern \take some pratial more or less preise notation, e.g.,

UML, selet a subset (usually small) of it, give this subset a formal semantis

either diretly or by translation into some formal notation". In many ases the

�nal aim is to allow to use the good veri�ation/validation tools assoiated

with the hosen formalism. For example, for what onerns UML this pattern

may be found instantiated with a large variety of formalism (we just ite one

nie paradigmati example [21℄, for more referenes look at [29℄). A more re-

ent pattern is the following \selet a subset of the spei�ations given using

some formalism and show that they orrespond/an be presented as partiular

UML diagrams" (e.g., see [9℄). The main di�erenes of these approahes with

ours is that they usually handle a partiular kind of spei�ations appliable

to partiular problems to be able to use tools to automatially do some heks

on the spei�ations.

On another side, many aspets of our FG spei�ations methods are quite

general and not stritly related to Casl, Casl-Ltl and in general to the al-

gebrai spei�ations, as, for instane, the general GPSm method for property

oriented spei�ations. So we would like to investigate whether it is possible

to build other FG spei�ation methods starting from di�erent formal basis.

We think that this an be done if we hoose some formalism based on other

formal models as stream proessing funtions (instead of labelled transition

systems) as the one in [13℄.

For what onerns the general GPSm method for property oriented spei�-

ations, we are working to see if it an be to adapted also to produe UML

models, or models on a (quite substantial) UML subset to whih a formal

semantis may be given.

Clearly, to be able to promote the use our proposed FG methods we need to

develop supporting software tools. Suh tools should onsist of a graphial

64

editor helping to prepare the visual spei�ations, of a type heker signalling

all stati errors, and of wizards implementing the proposed guidelines, this will

be really important for the GPSm method, and obviously of a part o�ering

the possibility to generate the underlying orresponding formal spei�ations.

Suh tools do not pose any partiular problem, and an be developed using

the urrent tehnology, only given the neessary material resoures. Instead,

we do not plan the development of any spei� tool for veri�ation and or

validation, the existing tools for the underlying spei�ations may be used.

Referenes

[1℄ E. Astesiano, M. Bidoit, H. Kirhner, B. Krieg-Br�ukner, P. D. Mosses,

D. Sannella, and A. Tarleki. Casl : the Common Algebrai Spei�ation

Language. T.C.S., 286(2), 2002.

[2℄ E. Astesiano, B. Krieg-Br�ukner, and H.-J. Kreowski, editors. IFIP WG

1.3 Book on Algebrai Foundations of System Spei�ation. Springer Ver-

lag, 1999.

[3℄ E. Astesiano and G. Reggio. An Outline of the SMoLCS Approah. In

M. Venturini Zilli, editor,Mathematial Models for the Semantis of Par-

allelism, Pro. Advaned Shool on Mathematial Models of Parallelism,

Roma, 1986, number 280 in LNCS. Springer Verlag, Berlin, 1987.

[4℄ E. Astesiano and G. Reggio. Formalism and Method. T.C.S., 236(1,2),

2000.

[5℄ E. Astesiano and G. Reggio. Labelled Transition Logi: An Outline. Ata

Informatia, 37(11-12), 2001.

[6℄ E. Astesiano and G. Reggio. Knowledge Struturing

and Representation in Requirement Spei�ation. In

Pro. SEKE 2002. ACM Press, 2002. Available at

ftp://ftp.disi.unige.it/person/ReggioG/AstesianoReggio02a.pdf.

[7℄ E. Astesiano and G. Reggio. Tight Struturing for Preise UML-

based Requirement Spei�ations: Complete Version. In Pro. of

Monterey Workshop 2002: Radial Innovations of Software and

Systems Engineering in the Future. Venie - Italy, Otober 7-11,

2002., LNCS. Springer Verlag, Berlin, 2003. To appear. Available at

ftp://ftp.disi.unige.it/person/ReggioG/AstesianoEtAll03f.pdf.

[8℄ E. Astesiano, G. Reggio, and M. Cerioli. From Formal Tehniques to Well-

Founded Software Development Methods. In Pro. of The 10th Anniver-

sary Colloquium of the United Nations University International Institute

for Software Tehnology (UNU/IIST): Formal Methods at the Crossroads

from Panaea to Foundational Support. Lisbon - Portugal, Marh 18-21,

2002., LNCS. Springer Verlag, Berlin, 2003. To appear. Available at

ftp://ftp.disi.unige.it/person/ReggioG/AstesianoEtAll03a.pdf.

[9℄ V. Del Biano, L. Lavazza, M. Mauri, and G. Oorso. Towards UML-

65

based Formal Spei�ations of Component Based Real-Time Software. In

M.Pezz�e, editor, Pro. FASE 2003, LNCS. Springer Verlag, Berlin, 2003.

[10℄ M. Bidoit, R. Henniker, and A. Kurz. On the Integration of Observability

and ReahabilityConepts. In Pro. FOSSACS'2002, LNCS, Berlin, 2003.

[11℄ M. Bidoit and P.D. Mosses. CASL, The Common Algebrai Spei�a-

tion Language - User Manual. LNCS. Springer-Verlag, 2003. To appear.

Available at http://www.ofi.info/CASL UserManual DRAFT.pdf.

[12℄ B. Blan. Prise en ompte de prinipes arhiteturaux lors de la formal-

isation des besoins - Proposition d'une extension en CASL et d'un guide

m�ethodologique assoi�e. PhD thesis, 2002.

[13℄ M. Broy and G. Stefanesu. The Algebra of Stream Proessing Funtions.

T.C.S., 258(1/2), 2001.

[14℄ C. Choppy and G. Reggio. Using Casl to Speify the Requirements and

the Design: A Problem Spei� Approah. In D. Bert and C. Choppy,

editors, Reent Trends in Algebrai Development Tehniques, Seleted

Papers of the 14th International Workshop WADT'99, number 1827 in

LNCS. Springer Verlag, Berlin, 2000. A omplete version is available at

ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio99a.ps.

[15℄ C. Choppy and G. Reggio. Towards a Formally Grounded

Software Development Method. Tehnial Report DISI{TR{03{

35, DISI, Universit�a di Genova, Italy, 2003. Available at

ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio03a.pdf.

[16℄ E. Cosia and G. Reggio. JTN: A Java-targeted Graphi Formal Notation

for Reative and Conurrent Systems. In Finane J.-P., editor, Pro.

FASE 99, number 1577 in LNCS. Springer Verlag, Berlin, 1999.

[17℄ G. Costa and G. Reggio. Spei�ation of Abstrat Dynami Data Types:

A Temporal Logi Approah. T.C.S., 173(2), 1997.

[18℄ H. Gomaa. Designing Conurrent, Distributed and Real-Time Applia-

tions with UML. Addison-Wesley, 2000.

[19℄ M. Jakson. Software Requirements & Spei�ations: a Lexion of Pra-

tie, Priniples and Prejudies. Addison-Wesley, 1995.

[20℄ M. Jakson. Problem Frames: Analyzing and Struturing Software De-

velopment Problems. Addison-Wesley, 2001.

[21℄ J. Lillius and I Paltor. Formalising UML State Mahines for Model Chek-

ing. In R Frane and B. Rumpe, editors, Pro. UML'99, number 1723 in

LNCS. Springer Verlag, Berlin, 1999.

[22℄ P.D. Mosses. CoFI: The Common Framework Initiative for Algebrai

Spei�ation and Development. In M. Bidoit and M. Dauhet, editors,

Pro. TAPSOFT '97, number 1214 in LNCS. Springer Verlag, Berlin,

1997.

[23℄ P.D. Mosses, editor. CASL, The Common Algebrai Spei�ation Lan-

guage - Referene Manual. LNCS. Springer-Verlag, 2003. To appear.

Available at http://www.ofi.info/CASL RefManual DRAFT.pdf.

[24℄ Rational. Rational Uni�ed Proess

 for System Engineering SE 1.0.

Tehnial Report Tp 165, 8/01, 2001.

66

[25℄ G. Reggio and E. Astesiano. An Extension of UML for Modelling the

non Purely-Reative Behaviour of Ative Objets. Tehnial Report

DISI{TR{00{28, DISI, Universit�a di Genova, Italy, 2000. Available at

ftp://ftp.disi.unige.it/person/ReggioG/ReggioAstesiano00b.pdf.

[26℄ G. Reggio, E. Astesiano, and C. Choppy. Casl-Ltl : A Casl Ex-

tension for Dynami Reative Systems { Summary. Tehnial Report

DISI-TR-99-34, DISI { Universit�a di Genova, Italy, 1999. Available at

ftp://ftp.disi.unige.it/person/ReggioG/ReggioEtAll99a.ps.

[27℄ G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML

Ative Classes and Assoiated State Mahines { A Lightweight Formal

Approah. In T. Maibaum, editor, Pro. FASE 2000, number 1783 in

LNCS. Springer Verlag, Berlin, 2000.

[28℄ G. Reggio, M. Cerioli, and E. Astesiano. Towards a Rigorous Semantis

of UML Supporting its Multiview Approah. In H. Hussmann, editor,

Pro. FASE 2001, number 2029 in LNCS. Springer Verlag, Berlin, 2001.

[29℄ G. Reggio, A. Knapp, B. Rumpe, B. Seli, and R. Wieringa (editors).

Dynami Behaviour in UML Models: Semanti Questions. Tehni-

al report, Ludwig-Maximilian University, Munih (Germany), 2000.

http://www.disi.unige.it/person/ReggioG/UMLWORKSHOP/ACCEPTED.html.

[30℄ G. Reggio and M. Larosa. A Graphi Notation for Formal Spei�ations

of Dynami Systems. In J. Fitzgerald and C.B. Jones, editors, Pro.

FME 97 - Industrial Appliations and Strengthened Foundations of For-

mal Methods, number 1313 in LNCS. Springer Verlag, Berlin, 1997.

[31℄ M. Roggenbah and T. Mossakovski. Basi Datatypes in

Casl. CoFI Note L-12 version 0.4.1. Tehnial report, 2000.

http://www.bris.dk/Projets/CoFI/Notes/L-12/ .

[32℄ M. Roggenbah and T. Mossakowski. What is a good CASL spei�ation.

In Reent Trends in Algebrai Development Tehniques, Seleted Papers

of the 15th International Workshop WADT'02, LNCS. Springer Verlag,

2003. To appear.

[33℄ UML Revision Task Fore. OMG UML Spei�ation 1.3, 2000. Available

at http://www.omg.org/dos/formal/00-03-01.pdf.

67

A Simple system, ell shemas

In what follows arg stands for generi expressions of the orret types, possibly

with free variables, and ond(exprs) for a generi ondition where the free

variables of exprs may appear.

|||||||||||||||||||||||||||||||||{

inompat2 (label property) If their arguments satisfy some onditions, then an

instantiation of ei

1

and one of ei

2

are inompatible, i.e., no label of a transition

may ontain both.

ei

1

(arg

1

) inompatible with ei

2

(arg

2

) if ond(arg

1

,arg

2

)

|||||||||||||||||||||||||||||||||{

Two elementary interations (ei

1

:ei

2

) ell shema

|||||||||||||||||||||||||||||||||{

value2 (state property) The results of the observation made by so

1

and so

2

on a

state must satisfy some onditions

ond, where both so

1

and so

2

must appear in ond

|||||||||||||||||||||||||||||||||{

Two state observers (so

1

:so

2

) ell shema

|||||||||||||||||||||||||||||||||{

pre-ond2 (transition property) If the label of a transition ontains some instan-

tiation of ei, then the result of the observation made by so on the soure state of

the transition must satisfy some ondition.

if ei(arg) happen then ond(arg)

where only soure state observers may appear in ond(arg) and so must appear

in ond(arg)

post-ond2 (transition property) If the label of a transition ontains some instan-

tiation of ei, then the result of the observation made by so on the target state of

the transition must satisfy some ondition.

if ei(arg) happen then ond(arg)

where soure and target state observers may appear in ond(arg) and so

0

must

appear in ond(arg)

vital2 (state property) If the result of the observation made by so on a state

satis�es some ondition, then any path starting from it will eventually ontain

a transition whose label ontains ei. Note that in these properties in any ase

may be replaed by in one ase and eventually by next.

if ond(arg) then in any ase eventually ei(arg) happen

where so must appear in ond(arg)

|||||||||||||||||||||||||||||||||{

Elementary interation and state observer (ei :so) ell shema

68

B Example: Fragment of a Property-Oriented Spei�ation of a

Lift plant

The lift example is introdued in Set. 1.3, and its property-oriented spei�a-

tion is presented in Set. 3.2.3 where only properties on the orders are given;

here, we present the other properties.

On the sensors

A sensor annot signal two di�erent values simultaneously.

Motor Status(ms

1

) inompatible with Motor Status(ms

2

) if ms

1

6= ms

2

Cabin Position(f

1

) inompatible with Cabin Position(f

2

) if f

1

6= f

2

A sensor always signals the orret data.

if Motor Status(ms) happen then motor status = ms

if Cabin Position(f) happen then abin position = f

A sensor annot break down, thus it may always be able to signal the orret value.

in one ase next Motor Status(motor status) happen

in one ase next Cabin Position(abin position) happen

On the abin and motor

If the motor is moving up (down), then the abin position will hange.

if motor status = up then abin position

0

= next(abin position)

if motor status = down then abin position

0

= previous(abin position)

The abin position hanges only if the motor is working in the orresponding

versus and the hange orresponds to one oor.

if abin position 6= abin position

0

then

(abin position

0

= next(abin position) and motor status = up) or

(abin position

0

= previous(abin position) and motor status = down)

On the users entering/leaving the abin

At most one elementary interation of kind Transit may happen eah time.

Transit(i) inompatible with Transit(i

0

) if i 6= i

0

The users may enter/leave the abin only if they are not too numerous, the abin is

at a oor with the door open and the motor is stopped.

if Transit(i) happen then

users inside+ i � 15 and users inside+ i � 0 and

motor status = stop and door position(abin position) = open

The number of people inside the abin hanges only i� someone enters/leaves it.

if Transit(i) happen then users inside

0

= users inside+i

if users inside

0

= users inside+i and i 6= 0 then Transit(i) happen

69

At most 15 people may be inside the abin simultaneously.

users inside � 15

If the door at a oor of the abin is open and the motor is stopped, then

any appropriate number of people may enter/leave the abin.

if motor status = stop and door position(abin position) = open and

users inside+ i � 15 and users inside+ i � 0 then

in one ase next Transit(i) happen

C Strutured system, ell shemas

|||||||||||||||||||||||||||||||||{

lo-glob1 (transition property) If a global transition is omposed of some loal

interations, then, under some ondition, an instantiation of ei belongs to the

label of this global transition; or vie versa, i.e., if an instantiation of ei belongs to

the label of a global transition, then, under some ondition, this global transition

is omposed of some loal interations.

if lIn

1

, . . . , lIn

n

happen and ond(arg,lIn

1

,. . . ,lIn

n

) then ei(arg) happen

or

if ei(arg) happen and ond(arg,lIn

1

,. . . ,lIn

n

) then lIn

1

, . . . , lIn

n

happen

|||||||||||||||||||||||||||||||||{

Elementary interation (ei) ell shema

|||||||||||||||||||||||||||||||||{

lo-glob2 (transition property) If an instantiation of sid.ei is a omponent of a

global transition, then, under some ondition, the label of this global transition

must ontain an instantiation of ei

1

, or vie versa.

if ond(arg,arg

1

) and sid.ei(arg) happen then ei

1

(arg

1

) happen

or

if ond(arg,arg

1

) and ei

1

(arg

1

) happen then sid.ei(arg) happen

|||||||||||||||||||||||||||||||||{

Elementary interation and loal interation (ei

1

:sid.ei) ell shema

|||||||||||||||||||||||||||||||||{

pre-ond2 ,post-ond2 ,vital2 de�ned as the homonymous slots for simple system

but where the elementary interation is replaed by the loal interation.

|||||||||||||||||||||||||||||||||{

Loal interation and state observer (sid.ei :so) ell shema

70

D Data strutures, ell shemas

|||||||||||||||||||||||||||||||||{

def1 Conditions on the de�nedness of on (required only for partial onstru-

tors)

22

:

ond, where ond inludes atoms of the form def(on(arg))

ident1 The values represented by on are/are not identi�ed with those represented

by other onstrutors.

when all de�ned ond, where ond inludes atoms of the form on(arg) = . . .

|||||||||||||||||||||||||||||||||{

Construtor (on) ell shema

|||||||||||||||||||||||||||||||||{

def3 Conditions on the de�nedness of the appliation of op to values represented

by on (required only for partial operations):

ond, where ond inludes atoms of the form def(op(on(arg)))

value1 Conditions on the values returned by the appliation of op to values rep-

resented by on:

when all de�ned ond, where ond inludes terms of the form op(on(arg))

|||||||||||||||||||||||||||||||||{

Construtor and operation (on:op) ell shema

|||||||||||||||||||||||||||||||||{

truth1 Conditions on the truth of pr over the values represented by on:

when all de�ned ond, where ond inludes atoms of the form pr(on(arg))

|||||||||||||||||||||||||||||||||{

Construtor and prediate (on:pr) ell shema

|||||||||||||||||||||||||||||||||{

def4 Conditions on the de�nedness of op (required only for partial operations):

ond, where ond inludes atoms of the form def(op(arg))

value2 Conditions on the values returned by op:

when all de�ned ond, where ond inludes terms of the form op(arg)

|||||||||||||||||||||||||||||||||{

Operation (op) ell shema

22

Note that onstants are always total.

71

|||||||||||||||||||||||||||||||||{

def5 Conditions on the relationships between the de�nedness of op

1

with that of

op

2

(required only for partial operations):

ond

where ond inludes atoms of the form def(op

1

(arg

1

)) and of the form def(op

2

(arg

2

))

value3 Conditions on the values returned by op

1

with that returned by op

2

:

when all de�ned ond

where ond inludes terms of the form op

1

(arg

1

) and of the form op

2

(arg

2

)

|||||||||||||||||||||||||||||||||{

Two operations (op

1

:op

2

) ell shema

|||||||||||||||||||||||||||||||||{

truth2 Conditions on the truth of pr:

when all de�ned ond, where ond inludes atoms of the form pr(arg)

|||||||||||||||||||||||||||||||||{

Prediate (pr) ell shema

|||||||||||||||||||||||||||||||||{

truth3 Conditions on the relationships between the truth of pr

1

and that of pr

2

:

when all de�ned ond

where ond inludes atoms of the form pr

1

(arg

1

) and pr

2

(arg

2

)

|||||||||||||||||||||||||||||||||{

Two prediates (pr

1

:pr

2

) ell shema

E Example: Fragment of a Property-Oriented Spei�ation of Floor

This example is given in Set. 5.2.2 where the properties of previous given

below were skipped.

previous returns the oor immediately below a given one, if it exists.

There is no oor between previous(f) and f.

def(previous(top))

not def(previous(ground))

def(previous(f)) i� f above ground

when all de�ned

f above previous(f) and

not exists f

1

� (f above f

1

) and f

1

above previous(f))

72

F Fragment of the Requirement Spei�ation of an Internet Based

Lottery Appliation

Context Entity Spei�ations

MAN_START_LOTTERY(WinningOrder,FreeTicketLaw,Int)
MAN_GIVE(Int)
MAN_DRAW

Manager

all incompatible

When the manager starts a new lottery/gives away free tikets/draws the winners,

he annot do anything else.

ALL_SEND(Email,String)

Email

The email servie is always able to reeive a request to send an email message.

in one ase next All Send(em,s) happen

ALL_CHECK_CARD(CreditCardData)
ALL_CHARGE(CreditCardData,Int)
CCS_OK_CARD(CreditCardData)
CCS_WRONG_CARD(CreditCardData)
CCS_CHARGED(CreditCardData,Int)
CCS_NOT_CHARGED(CreditCardData,Int)

CreditCardService

all incompatible

When the redit ard servie reeives a request/sends out an answer, it annot do

anything else.

If the redit ard servie reeives a request of ontrolling a ard, then

it will answer with either an ok or a wrong ard message.

if All Chek Card(d) happen then in any ase eventually

Cs Ok Card(d) happen or Cs Wrong Card(d) happen

The redit ard servie is always ready to aept a request to hek a ard.

in one ase All Chek(d) happen

If the redit ard servie reeives a request to harge some money on a ard, then

it will inform that the same has been either harged or not.

if All Charge(d,m) happen then in any ase eventually

Cs Charged(d,m) happen or Cs Not Charged(d,m) happen

The redit ard servie is always ready to aept a request to harge some amount

on a ard.

in one ase All Charge(d,m) happen

73

CL_REGISTER(ClientInfo,CreditCardData)
ALL_REGISTERED(ClientInfo,CreditCardData)
ALL_FAILED_REGISTRATION(ClientInfo,CreditCardData)
CL_CONNECT(ClientInfo)
ALL_CONNECTED(ClientInfo)
CL_DISCONNECT(ClientInfo)
ALL_DISONNECTED(ClientInfo)
ALL_ERROR(ClientInfo)
CL_AVAILABLE_TICKETS(ClientInfo)
CL_BUY_TICKET(ClientInfo,Int)
ALL_ARE_AVAILABLE(ClientInfo,FiniteSet(Set))
ALL_CONFIRM_TICKET(ClientInfo,Int)
ALL_GIVE_FREE_TICKET(ClientInfo)

Client

all incompatible

All the possible ativities of a lient are mutually inompatible.

If the lient sends a request to ALL, then

it will aept its answer, whatever it may be.

if Cl Register(i,d) happen then in any ase eventually

All Registered(i,d) happen or

All Failed Registration(i,d) happen

if Cl Connet(i) happen then in any ase eventually

All Conneted(i) happen or All Error(i) happen

if Cl Available Tikets(i) happen then in any ase eventually

exists ns s.t. All Are Available(i,ns) happen

if Cl Buy Tiket(i,i) happen then in any ase eventually

All Confirm Tiket(i,i) happen or All Error(i) happen

The Requirements for the Appliation ALL

The manager starts a new lottery

If ALL reeives a request of starting a new lottery, then

the proposed dimension is greater than 1 and a multiple of 5000,

no lottery is running;

and after, a lottery will be running, haraterized by the proposed parameters

(winning order, free tiket law and dimension),

and where no lient owns a tiket.

Finally, all registered lients will be informed by an email message of the fat.

if Man Start Lottery(wo,ftl,d) happen then

d � 1 and d mod 5000 = 0 and

not lotteryRunning and

lotteryRunning

0

and

dimension

0

= d and winningOrder

0

= wo and freeTiketLaw

0

= ftl and

for all i� not def(owner

0

(i)) and

for all i� if i2 registered then

in any ase next All Send(emailOf (i),\Started New Lottery")

74

When ALL reeives a request from the manager of starting a new lottery, it

annot do anything else.

Man Start Lottery(wo,ftl,d) inompatible with eIn

If no lottery is running, then ALL must be able to aept a request from the manager,

with appropriate parameters, of starting a new one.

if not lotteryRunning and d � 1 and d mod 5000 = 0 then

in one ase next Man Start Lottery(wo,ftl,d) happen

The dimension of the lottery must be a multiple of 5000 and greater than 1.

dimension mod 5000 = 0 and dimension � 1

The dimension, the winning order and the free tikets law of the lottery hange

only when a new lottery is started.

if dimension 6= dimension

0

then

exists wo, ftl s.t. Man Start Lottery(wo,ftl,dimension

0

) happen

if winningOrder 6= winningOrder

0

then

exists d, ftl s.t. Man Start Lottery(winningOrder

0

,ftl,d) happen

if freeTiketLaw 6= freeTiketLaw

0

then

exists d, wo s.t. Man Start Lottery(wo,freeTiketLaw

0

,d) happen

A lottery beomes running only after the manager started it.

if not lotteryRunning and lotteryRunning

0

then

exists d, wo, ftl s.t. Man Start Lottery(wo,ftl,d) happen

The manager gives away some free tikets

When ALL reeives a request from the manager of giving away some free tikets,

it annot do anything else.

Man Give(nbil) inompatible with eIn

If ALL reeives a request to give away nbil free tikets, then

a lottery is running, there are still available at least nbil tikets, and

at least half of the tikets have been already assigned;

and after, ALL selets nbil lients having the right to reeive a free tiket, and

eah of them will get a tiket, whose number is determined by the urrent

free tiket law.

if Man Give(nbil) happen then

lotteryRunning and size(availableTikets)� nbil and

size(assignedTikets) � dimension and

exists lukies s.t. size(lukies) = nbil and

for all i � if i2 lukies then

freeTikets(i) > 0 and

exists unique i2 freeTiketLaw(dimension,assignedTikets,nbil) s.t.

in any ase next All Give Free Tiket(i,i) happen

75

If a lottery is running, there are still available at least nbil, and at least half of

the tikets have been already assigned, then

ALL may reeive a request to give away nbil free tikets.

if lotteryRunning and size(assignedTikets) � dimension and

size(availableTikets)� nbil then

in one ase next Man Give(nbil) happen

If a lient reeives a free tiket, then

the number of free tikets whih he has the right to get derease by 1, and

after he is the owner of suh tiket.

if All Give Free Tiket(i,i) happen then

freeTikets

0

(i) = freeTikets(i) -1 and owner

0

(i) = i

If the number of free tikets whih a lient has the right to get derease by 1, then

he reeived a free tiket.

if freeTikets

0

(i) = freeTikets(i) -1 then

exists i s.t. All Give Free Tiket(i,i) happen

The manager draws the winners

When ALL reeives a request from the manager of drawing the winners,

it annot do anything else.

Man Draw inompatible with eIn

If ALL reeives from the manager a requests to draw the winners, then

a lottery is running and there are no more available tikets;

and after, ALL informs by an email message the owners of the winning tikets

(as many as the dimension of the lottery module 5000,

whose numbers are the �rst w.r.t. the urrent winning order).

Finally, the lottery is terminated, and

ALL informs all the registered lients, always by an email message,

of the end of the lottery.

if Man Draw happen then

lotteryRunning and availableTikets = fg and

(for all i � if i2 winners then

in any ase next All Send(emailOf (owner(i)),\Won Prize") happen)

and not lotteryRunning

0

and

(for all i � if i2 registered then

in any ase eventually

All Send(emailOf (i),\Lottery terminated") happen)

If a lottery is running and there are no more available tikets, then

ALL must be able to reeive from the manager a requests to draw the winners.

if lotteryRunning and availableTikets = fg then

in one ase next Man Draw happen

76

If a lottery ends, then the manager has drawn the winners.

if lotteryRunning and not lotteryRunning

0

then Man Draw happen

A lient onnets to ALL

If ALL reeives a onnetion request by a lient, if

if the lient is registered and not already onneted, then

ALL heks his identity with the authentiation servie. Thus,

if the answer of the authentiation servie is positive, then

ALL informs the lient that he is onneted,

otherwise

ALL informs the lient that his request is an error;

otherwise

ALL informs the lient that his request is an error.

if Cl Connet(i) happen then

if registered(i) and not onneted(i) then in any ase

next All Chek(i) happen and eventually

(Auth Ok(i) happen and next All Conneted(i) happen

or

Auth Wrong(i) happen and next All Error(i) happen)

else

in any ase All Error(i) happen

ALL is always ready to aept onnetion requests by the lients.

in one ase next Cl Connet(i) happen

If a lient is informed that he is onneted, then

he made a onnetion request and now his onnetion is registered.

if All Conneted(i) happen then

in any ase sometime Cl Connet(i) happened and onneted

0

(i)

If a lient is informed that his request was an error, then

he made either a onnetion or a disonnetion request or

a request to show the available tikets or to buy a tiket.

if All Error(i) happen then in any ase sometime

Cl Connet(i) happened or Cl Disonnet(i) happened or

Cl Available Tikets(i) happened or

Cl Buy Tiket(i,i) happened

Notie that the fat that the same error message is used by ALL to answer to

two di�erent requests is made expliit by our method, while it is more hard

to be spotted by use-ase driven approahes, beause the problemati error

message appears in two di�erent use ases.

77

A lient disonnets from ALL

If ALL reeives a disonnetion requests from a lient, then

if the lient is onneted, then

ALL informs him that he has been disonneted

otherwise

ALL informs him that his request was an error.

if Cl Disonnet(i) happen then

if onneted(i) then

in any ase next All Disonneted(i) happen

else

in any ase next All Error(i) happen

ALL is always ready to aept disonnetion requests by the lients.

in one ase next Cl Disonnet(i) happen

If a lient is informed that his request was an error, then he made

either a disonnetion request or some other request.

A onneted lient must be also registered.

if onneted(i) then registered(i)

If a lient beomes onneted, then ALL has onneted him.

if not onneted(i) and onneted

0

(i) then All Conneted(i) happen

If a lient beomes disonneted, then ALL has disonneted him.

if onneted(i) and not onneted

0

(i) then All Disonneted(i) happen

If a lient is informed that he has been disonneted, then

he made a disonnetion request and now is disonneted.

if All Disonneted(i) happen then

in any ase sometime Cl Disonnet(i) happened and

not onneted

0

(i)

Notie, how this property preisely states that ALL annot realize any meha-

nism of automati disonnetion (e.g., after some time). Similar requirements,

onerning what the system annot do, are usually negleted in lassial use

ase based approahes.

78

A lient heks whih are the tikets still available

If ALL reeives a request of showing the available tikets, then

a lottery is running and

if the lient is onneted, then

ALL will inform him of whih are the available tikets

otherwise

ALL will inform him that his request was an error.

if Cl Available Tikets(i) happen then

lotteryRunning and

if onneted(i) then

in any ase next All Are Available(i,availableTikets) happen

else

in any ase next All Error(i) happen

If a lottery is running, then

ALL may aept requests to show the available tikets.

if lotteryRunning then

in one ase next Cl Available Tikets(i) happen

If a lient is informed that his request was an error, then he made either

a request to show the available tikets or some other request.

If ALL says to a lient that tkts are the available tikets, then

a lottery is running, tkts are the available tikets, and

the lient has requested suh information

if All Are Available(i,tks) happen then

lotteryRunning and tks = availableTikets and

in any ase sometime Cl Available Tikets(i) happened

79

A lient buys a tiket

If a lient tries to buy the tiket with number i, then

a lottery is running and

if the lient is onneted and i is available, then

ALL asks the redit ard servie to harge the sum of 1000 and

if the redit ard servie on�rms the hargement, then

ALL on�rms to the lient that he has got the tiket i

otherwise

ALL informs the lient that his request was an error;

otherwise

ALL informs the lient that his request was an error.

if Cl Buy Tiket(i,i) happen then

lotteryRunning and

if onneted(i) and i2 availableTikets then

in any ase next All Charge(reditCard(i), 1000) happen and

eventually

Cs Charged(reditCard(i), 1000) happen and

next All Confirm Tiket(i,i) happen

or

Cs Not Charged(reditCard(i), 1000) happen and

next All Error(i) happen

else

in any ase next All Error(i) happen

If a lottery is running, then ALL may aept requests to buy tikets.

if lotteryRunning then

in one ase next Cl Buy Tiket(i,i) happen

If a lient is informed that his request was an error, then he made either

a request to buy a tiket or some other request.

If ALL on�rms to a lient that him bought a tiket i, then

the lient has asked for i, i was available, and after

the lient is the owner of i, and has gained the right to another free tiket.

if All Confirm Tiket(i,i) happen then

in any ase next Cl Buy Tiket(i,i) happen and

i2 availableTikets and

owner

0

(i) = i and freeTikets

0

(i) = freeTikets(i) + 1

Only registered lients may own tikets.

if def(owner(i)) then registered(owner(i))

The number of free tikets to whih a lient has the right to get inreases by 1,

then he bought a tiket.

if freeTikets

0

(i)= freeTikets(i) +1 then

exists i s.t. All Confirm Tiket(i,m) happen

80

If ALL asks the redit ard servie to harge a sum on a ard, then

it will be able to reeive a message on�rming or negating the operation.

if All Charge(d,m) happen then in any ase eventually

Cs Charged(d,m) happen or Cs Not Charged(d,m) happen

If ALL reeives a message about the result of a request to harge a ard

from the redit ard servie, then

it asked suh hargement.

if (Cs Charged(d,m) happen or Cs Not Charged(d,m) happen) then

in any ase sometime All Charge(d,m) happened

81

