Towards a Formally Grounded Software
Development Method

Christine Choppy * Gianna Reggio P

aLIPN, Institut Galilée - Université Paris XIII, France
bDISI, Universita di Genova, Italy

Abstract

One of the goals of software engineering is to provide what is necessary to write
relevant, legible, useful descriptions of the systems to be developed, which will be
the basis of successful developments. This goal was addressed both from informal
approaches (providing in particular visual languages) and formal ones (providing a
formal sound semantic basis). Informal approaches are often driven by a software de-
velopment method, and while formal approaches sometimes provide a user method,
it is usually aimed at helping to use the proposed formalism /language when writing
a specification. Qur goal here is to provide a companion method that helps the user
to understand the system to be developed, and to write the corresponding formal
specifications. We also aim at supporting visual presentations of formal specifica-
tions, so as to “make the best of both formal and informal worlds”. We developed
this method for the (logical-algebraic) specification languages CasL (Common Al-
gebraic Specification Language, developed within the joint initiative CoF'l) and for
an extension for dynamic systems CASL-LTL, and we believe it is general enough to
be adapted to other paradigms.

Another challenge is that a method that is too general does not encompass the dif-
ferent kinds of systems to be studied, while too many different specialized methods
and paradigms result in partial views that may be difficult to integrate in a single
global one. We deal with this issue by providing a limited number of instances of
our method, fitted for three different kinds of software items and two specification
approaches, while keeping a common “meta”-structure and way of thinking. More
precisely, we consider here that a software item may be a simple dynamic system,
a structured dynamic system, or a data structure. We also support both property-
oriented (axiomatic) and model-oriented (constructive) specifications. We are thus
providing support for the “building-bricks” tasks of specifying/modelling software
artifacts that in our experience are needed for the development process.

Our approach is illustrated with a lift case study, it was also used with other large
case studies, and when used on projects by students yielded homogeneous results.

Let us note that it may be used either as itself, e.g., for requirements specification,
or in combination with structuring concepts such as the Jackson’s problem frames.

Preprint submitted to Elsevier Science 1 August 2003

Key words: Specification method, formal specification, algebraic-logical
specification, visual notation, CasL, CASL-LTL development method ...

1 Introduction

1.1 Aims and Scope

One of the goals of software engineering is to provide paradigms, languages,
notations, formalisms (together with a companion user method) to write rel-
evant, legible, useful descriptions of the systems to be developed, which will
be the basis of successful developments. This goal has been explored both
from informal and formal approaches, while informal notations may put em-
phasis on varieties of attractive graphics, formal approaches offer the serious
basis of a formally described semantics. In both cases, one problem may be
that the companion user method is not available to start with, and when it
is available another problem is that, while it helps to use the formalism pro-
posed, it does not always help to understand the system to be developed.
Another difficulty when struggling with these issues is that systems under
study may be quite different in nature (or may include parts that are so),
thus different notations/languages and methods may be needed. To define a
homogeneous approach, general enough to encompass different issues, but still
carrying meaningful and precise guidelines and concepts, is also a goal.

On the one hand, many formalisms and some formal specification methods
were developed (see [4] for the distinction between formalism and method),
e.g., algebraic specifications and associated methods [2]. On the other hand,
we can witness the success of development methods without or with a very
limited grounding in sound formal theories, as those based on UML [33], e.g.,
RUP [24] and COMET [18]. Clearly, there is a need to accommodate both
worlds, for instance some recent works try to give a precise semantics to UML
([27, 28]), and the need for UML based rigorous methods has emerged. There

are obvious differences between the two kinds of approaches (formal /informal):

e not very friendly notation, sometimes based on exotic mathematical sym-
bols/very friendly visual notation;

e rather rigid with a lot of overhead notation/flexible adaptable notation;

e need time and background to learn the used technique/short time to learn
the method;

1 'Work partly supported by the Italian National Project SAHARA (Architetture
Software per infrastrutture di rete ad accesso eterogeneo).

e mainly simple toy case studies considered/developed having in mind the
real common applications;

e user manuals explaining how to use the various constructs are available/
software development methods based on them are available.

Our attempt is to make the best of both worlds by trying to propose a de-
velopment method which has all the good properties of those commonly used
(friendly notation based on simple intuitive visual metaphors, easy to under-
stand and to learn, considering real applications, ...), and that is also formally
grounded, 1.e., its specifications artifacts have a direct counterpart in a formal
specification language, and thus a formal semantics, based on well defined
underlying formal models. Here, we present a first proposal towards such a
method formally grounded on the algebraic specification language CASL-LTL
[1, 26, 23]. It covers the requirements and the design phases of the develop-
ment, offering some techniques to specify requirements and designs for very
general software systems. Such techniques result in producing specifications
having a precise structure at the conceptual level, which can, then, be pre-
sented either in a visual way or as formal CASL-LTL specifications.

In our opinion, a relevant result of this work is that the paradigms and the tech-
niques of our method, being originated from the underlying theory are quite
different from those supported by the most practical common methods?. For
example, we do not make use of “use cases”, nor of diagrams showing scenar-
ios, as UML sequence and collaboration, and we are not object-oriented®. On
the other hand, we are much more systematic and inherently more rigorous, we
use diagrams to visually present the behaviour of an active element (not just
its reactions to external stimuli), we explicitly define how the various elements
in a system cooperate, we explicitly state which are the elements composing
a system, etc.

Our previous experiences suggested that the various activities in a develop-
ment process are based on the “building-bricks” tasks of specifying* software
items of different nature at different levels of abstractions. So we propose
some methods for developing the basic specification blocks using as underly-
ing foundation CASL-LTL, but giving for all of them a corresponding visual
presentation. We assume that a “software item” may be either

e a simple dynamic system (just a dynamic interacting entity in isolation,

2 However, we would like to benefit from both worlds, e.g., we use a UML-like
notation to illustrate our method, and to establish links to UML is a subject of
planned further work.

3 We do not use the concept of objects.

4 Notice that “to specify/specifications” are the terms used in the formal commu-
nity, whereas in the practical world the corresponding ones are “to model/models”.
For example, we have CAsSL specifications and UML models.

e.g., a sequential process) or

e a structured dynamic system (a community of mutually interacting entities,
simple or in turn structured), or

e a data structure (or data type).

For each case, we give two specification techniques (property-oriented, and
constructive or model-oriented), by giving the abstract structure of the corre-
sponding specifications with the related visual presentation and corresponding
formal CASL-LTL specification.

To introduce a specification method we follow the conceptual schema of [4]
that we briefly present in Sect. 2.1; furthermore all property-oriented speci-
fication methods presented here are all specializations for particular varieties
of items of a general method that we present in Sect. 2.2. The sections 3, 4
and 5, devoted respectively to simple dynamic systems, structured dynamic
systems, and data structures, have the same structure. First, the considered
items are described, then, their property-oriented specification is developed
(the specification of the parts and constituent features, the properties spec-
ification using the cell filling technique, an illustration on the lift example,
and the CASL/CASL-LTL view), and last their constructive specification is
described (the characteristics, an illustration on the lift example, and the
CASL-LTL or CASL view). Sect. 6 and 7 are devoted to the applications of
our specification methods, respectively to some of the most relevant prob-
lem frames of M. Jackson [19, 20|, and to present the requirements for an
Internet-based lottery system. The remaining of our introduction is devoted
to a brief presentation of the CASL and CASL-LTL specification languages in
Sect. 1.2, and to the description of our running example with pointers to its
specifications in the paper in Sect. 1.3.

1.2 CASL, the Common Algebraic Specification Language, and CASL-LTL

“CASL is an expressive language for the formal specification of functional
requirements and modular design of software. It has been designed by CoFI?,
the international Common Framework Initiative for algebraic specification and
development. It is based on a critical selection of features that have already
been explored in various contexts, including subsorts, partial functions, first-
order logic, and structured and architectural specifications.” [1] The CoFI
project is presented in [22], and various documents are available on CASL,
in particular the CASL Reference [23] including a complete formal semantics,
and the CASL User Manual is being written [11]. Thus, only the features of
the language that are used in our examples will be shortly presented.

> http://www.brics.dk/Projects/CoFI

As shown in the example below, a CASL specification may include the declara-
tions of sorts, operations and predicates (together with their arity), and axioms
that are first-order formulae®, respectively introduced by relevant keywords.
Some operations play the role of constructors, thus, “datatype declarations
may be used to abbreviate declarations of sorts and constructors.”[11]

spec SPECNAME =
type type_name = con_name(argTypes,,,) | ...
ops op_name : arglypes,, — resType,,

preds pr_name : argTypes,,
axioms formulae

As shown below, “large and complex specifications are easily built out of sim-
pler ones by means of (a small number of) specification building primitives . ..
Union (keyword ‘and’) and extension can be used to structure specifications
... Extensions, introduced by the keyword ‘then’, may specify new symbols,
possibly constrained by some axioms, or merely require further properties of

old ones ..."[11]

spec SPECNAME =
SP; and ... and SP; then
type type_name = con_name(argTypes,,,) | ...

“In practice, a realistic software specification involves partial as well as to-
tal functions.”[11] Partial operations or constructors are declared with a ’?’
symbol, and the definedness of a term can be asserted in the axioms.

spec SPECNAME =
type type_name = con_name(argTypes,,,)? | ...
ops op_name : argTypes,, —7 resType,,

axioms
def(con_name(...)) < ...

Let use note that special care is needed in specifications involving partial func-
tions [11]. Functions, even total ones, propagate undefinedness, and predicates
do not hold on undefined arguments. Terms containing partial functions may
be undefined, i.e., they may not denote any value.

Another helpful feature of CASL is the free construct. “Free specifications
provide initial semantics and avoid the need for explicit negation ... In models
of free specifications, it is required that values of terms are distinct except when

6 with strong equality (Sect. 5.2.1) and a 2-valued logics

their equality follows from the specified axioms: the possibility of unintended
coincidence between them is prohibited.” [11]

spec SPECNAME =
SP; and ... and SP; then
free { type type_name = con_name(argTypes,,,) | ...
ops op_name : argTypes,, —7 resType,,

axioms ... }

Generic specifications (also known as parametrized specifications in other spec-
ification languages) are very useful for reuse. Their parameter specification is
usually very simple, and an instance of a generic specification is obtained by
providing an argument specification for each parameter. The following spec-
ification is an extension of an instance of the generic specification FINITE-
SET[ELEM] by INT (both are in the basic specifications library [31]).

spec SPECNAME = FINITESET[INT] ... then ...

“CASL is the heart of a family of languages. Some tools will make use of
well-delineated sub-languages of CASL ... while extensions of CASL are be-
ing defined to support various paradigms and applications.”[1] One of these
extensions is CASL-LTL [26], which was designed for the dynamic systems
specification by giving a CASL view to LTL, the Labelled Transition Logic

([5, 17]).

LTL, and thus CASL-LTL, is based on the idea that a dynamic system is con-
sidered as a labelled transition system (shortly lts), and that to specify it one
has to specify the labels, the states and the transitions of such system. Re-
call that an lts is a triple (State, Label, —), where —C State x Label x State.
CASL-LTL offers a special construct to declare an lts, by stating that two given
sorts correspond respectively to its states and labels, and that a standard ar-
row predicate corresponds to its transition relation —.

dsort st label lab stands for sorts i, lab

pred _ — __:stx labx st
The sort st is said dynamic, because any of its elements, say d represents a

dynamic system, whose behaviour is modelled by transition tree associated
with d. The root of such tree is decorated with d, and if the tree has a node
decorated with d and d — d', then it has a node decorated with d’, and
an arc from d to d’ decorated with [. Moreover, in such tree the order of the
branches is not considered, and two identical decorated subtrees with the same
root are considered as a unique subtree.

The CASL formulae built by using the transition predicates allow to express
some properties on the behaviour of the dynamic elements, but they are not
sufficient. For example, by using them we cannot state liveness properties;

whereas they, and other kinds of quite relevant properties, may be expressed
by using some temporal logic. Thus, CASL-LTL (as LTL) includes the temporal
combinators of the temporal logic of [17], which is many-sorted, first-order,
branching-time, CTL-style, and with edge formulae.

The temporal formulae of CASL-LTL are anchored to terms of dynamic sort
and express some property about the elements represented by them. Such
formulae have the form in_any_case(dt,n) or in_one_case(dt,n) stating that
any path (at least one path) starting from dt satisfies the condition expressed
by the path formula 7. A path starting form a dynamic element is a sequence of
concatenated transitions from such element, and represents one of its possible
behaviours. A path formula may require that

e the first state/label of the path satisfies some condition
[z econd] and < y e cond >;

e from some point on the path satisfies a condition expressed by another path
formula eventually ;

e the path satisfies a condition expressed by another path formula until some
point where it satisfies a second condition m; until my

e the path satisfies a condition expressed by another path formula in any
point always m;

e the path satisfies a complex condition, by combining other path formulae
by means of the CASL logical combinators, e.g., =, A, V, = and V.

1.3 Running Frample: the Lift System

To illustrate the use of our specification methods we specify at different levels
a lift system and some of its subparts.

A lift system consists of a [ift plant (that is the cabin, the motor moving it
and the doors at the various floors), some software automatically controlling
the lift functioning (the controller), and the people using it (the users). The
controller monitors the lift plant by means of sensors, which communicate the
status of its various components (e.g., there is a sensor detecting the position
of the cabin), and directs its behaviour by means of orders (e.g., it can order
to open/close the doors).

In Sect. 3.2.3 a property-oriented specification of the lift plant considered as
a simple system is developed. The lift plant may communicate the status of
some of its components by means of sensors (the position of cabin, of the
doors at the floors and the working status of the motor), and can influence its
components by means of orders (open/close a door at a given floor, stop/to
move up/to move down the motor). Moreover, the lift plant interacts with the
external world also when some users enter or leave the cabin. Sect. 3.3.2 gives

a constructive specification of a controller for the lift, considered as a simple
system. This specification may be considered as an abstract presentation of
a design for such a controller. The controller may send orders to the motor
and to the doors, and may receive information on the status of the plant by
means of its sensors (status of the motor, and positions of the doors and of
the cabin). The users interact with the controller by calling for some floor
(i.e., requiring that the cabin goes to a given floor). In Sect. 4.2.3 we develop
a property-oriented specification of the lift system considered as a structured
system with the lift plant, the controller and the users as subparts, and in
Sect. 4.3.2 we give a constructive specification of the lift controller where two
parts are distinguished. The floor data structure is specified in a property-
oriented way in Sect. 5.2.2, and in a constructive way in Sect. 5.3.2 having an
explicit number of floors.

2 A specification methods framework

2.1 Specification Methods

To easily present the various specification methods introduced in this paper,
we follow the conceptual schema proposed in [4]. In the picture below we
report all the ingredients of a generic method using an object-oriented visual
notation ", and briefly comment them below.

| Item | |FormaIModeI| | Specification | |Presentaﬂon | |Documentation| |Guide|ines ‘
* * * * 1 1"*
modelling semantics presents viewedAs

Items In our opinion a specification method to be effective should consider a
quite precise set of items to be specified. Such items should be introduced
using the natural language, since clearly they cannot be formally defined.

Formal models of the items Formal models, intended as mathemati-
cal structures, are the formal counterparts of the items, introduced before.
Each specification method uses a particular set of formal models.

Modelling A precise and rigorous, but not formal, description of how the
formal models are associated with the items.

Specifications In a very general way a specification is a description of an item
at some level of abstraction, intended at a given step of the development
process. A specification is a way to define a class of formal models: all those
modelling the item at a given step of the development process.

" Precisely, it is a simple subset of UML 1.3 [33]. Recall that boxes represent classes,
and arrows oriented associations.

Semantics The semantics links a specification with its formal models.

Presentations We mean by presentation a way to display a specification
artifact for some particular purpose; for example, we can have a presentation
for the human users, or using a special notation to be handled by a tool. A
specification method may be equipped with different kinds of presentations.
Each presentation should be associated with a unique specification.

Guidelines This part consists of the guidelines for steering and helping the
task of producing in the best possible way the specifications of the items.
The guidelines are understandably driven by the preceding parts of the
method, but note the fundamental role played by modelling, if we want
seriously to provide professional guidelines.

Documentation We refer to documenting the specification task for use in
evolution and maintenance.

We make the following assumptions on the items, visually summarized below.

CFmodelling - CFsemantics
Constituent feature Constituent feature
Constituent feature |~ . Formal Model Definition
f * * * | features
eatures parts has
isA partsSpec
Variety T Item FormalModel * | Specification
.. * *

e ltems are classified in some variety (e.g., functional modules/data types,
reactive systems, real-time systems, distributed systems, ...), and the items
considered by a method should be all of the same variety ®.

o ltems are structured, and their subparts are items. Such structure is repre-
sented by the association parts®. Items associated by parts may be of the
same variety (homogeneous structure) or of different varieties (e.g., imper-
ative programs made out from procedures).

o ltems are characterized by their constituent features. We assume that an
item is made by various constituent fealures/ingredients that are orthogo-
nal /nonoverlapping, and that may be classified in different kinds.

The above assumptions on the items require that

e the “modelling” (that is how the items are associated with the formal mod-
els) should be extended to describe how the constituent features of the
various kinds correspond to elements/features of the formal models;

8 The association isA from Item to Variety does not associate a unique variety with
an item, because the same item may be seen as belonging to different varieties;
functional modules/data types, e.g., a reactive system is also a particular case of a
distributed system.

9 The white diamond represents the UML aggregation (subobjects containment).

Specification

7

Constructive Specification Property-Oriented Specification
similar
semB l—\l/
* *
validity
FormalModel Formula
* *

Fig. 1. Property-Oriented and Constructive Specifications

e the models of a specification have (as described by the association has) all
the constituent features;

o the specification language should support the separate specifications of
the subparts and should offer means to define the constituent features
(Constituent Feature Definition);

e the guidelines should take care for finding the parts and the constituent
features of an item.

There are various specification styles. The most quoted distinction is between
property-oriented (or ariomatic) and constructive (or model-oriented). We re-
port the peculiar ingredients of a method using property-oriented or a con-
structive specifications in Fig. 11°.

Property-oriented (axiomatic) We prefer the term property-oriented, as
more suggestive than axiomatic. For what concerns the semantics, the basic
way to define it is as follows: “a model belongs to the semantics of a property-
oriented specification if and only if all formulae of the specification are valid
on it”. The methodological ideas supporting this specification style are:

we describe the item at a certain moment in its development by expressing all
its “relevant” properties by sentences provided by the formalism (formulae).

Constructive (model-oriented) In this case the semantics is defined as
follows: “a model M belongs to the semantics of a specification if and only
if there exists another model belonging to the basic semantics (association
semB) of the same specification that is similar to M”. The methodological
ideas supporting this specification style are:

we describe the item at a certain moment in its development by giving a pro-
totype/archetype of il using the specification language; then we say which are
the irrelevant features of this archetype by the relation similar. If two models

10 The arrow with large head stands for the UML specialization.

10

\’
\f \’

| find the parts of the item and specify them | | find the constituent features of theitem |

i

|for al constituent features of theitem CF, CF', fill CF.CF |

for all constituent features CF, CF',

is CF:CF' consistent with CF':CF ? no

Fig. 2. Exhaustive search guidelines of GPSm

are similar, then they differ from each other for irrelevant details, which can
thus be freely fixed later in the development.

The name constructive or construction-oriented means that we specify an item
by construction (at the abstraction level supported by the method, that is
depending on the formal models and on the specification language); afterwards
we would say when another construction may be equivalent.

2.2 A General Property-oriented Specification Method (GPSm)

Now we introduce a General Property-oriented Specification method (GPSm)
following the conceptual schema introduced in the Sect. 2.1, by specializing
and enriching three ingredients (Guidelines, Presentation and Documentation)
of a generic method using property-oriented specifications; these modifications
are reported and commented below.

Exhaustive Search Guidelines Fig. 2 shows the guidelines of GPSm. The
first steps are to find the parts and to specify them, and to find the constituent
features, followed by the search of the properties. GPSm is based on an ex-
haustive technique for finding all possible relevant properties of an item by
examining it from all possible points of view, that is from the viewpoint of all
its constituent features. The general idea is to find the properties of a given
item by filling the spreadsheet in Fig. 3, whose columns and rows are indexed
with the constituent features of this item (KIND;, ..., KINDj are the kinds
of the constituent features, and for ¢ = 1, ..., k the constituent features of

kind KIND; are CF}, ..., CF.).

A cell with index CF;:CF; contains the properties about the constituent fea-
ture CF;, and a cell with index CF;:CF};” contains the properties expressing

11

1 1 K[K
CF; CF. CF, CF .
1
:< CF,
N | -
D
1 T
CF.,
k
:(CF/
N
D
k K
CF.,

Fig. 3. Properties Spreadsheet

the relationships between CF; and CF" . We assume that the properties filling
the various cells follow particular schemas depending on the kinds of the two
indexing elements and on the formulae of the chosen specification language.
We need schemas for the cells indexed by:

KIND; - KIND,; fori =1, ...,k the properties about a constituent feature
of kind KIND; considered by itself, and the properties about the relation-
ships between a constituent feature of kind KIND; and another one of the
same kind

KIND,; - KIND; for i,j = 1, ..., k, ¢ # j the properties about the rela-
tionships between a constituent feature of kind KIND; and another one of

kind KIND;.

Note that the relationships between two different constituent features, say CF
and CF’, appear in two different cells (i.e., in CF:CF’ and in CF”:CF), thus
we have computed this relationship twice, but in the first case the emphasis/
viewpoint is on CF, and in the second case on CF’. The general method
requires then to check that they are consistent. In the case of a negative answer,
we found some inconsistency that must be eliminated. Usually, this activity
helps detect some problematic or misunderstood aspects of the specified item.

Note also how the spreadsheet filling technique results in producing a quite
structured navigable set of properties, which should be suitable to support
evolution. For example, if the ideas about the specified item changes, and such
changes result in adding/removing constituent features, then the properties
may be easily modified, in such case we have just to add/delete some specific
rows/columns.

Cell Contents Presentation As regards the presentation of the produced
specifications, GPSm should provide:

12

e a nice way to present the properties filling each relevant type of the cells of
the spreadsheet;

e a nice way to arrange the contents of the various cells of the spreadsheet;
for example by means of a precise sectioning schema with related titles.

The result of this process then needs some presentation work and rearrange-
ment of the found properties to yield a specification nicer to read.

Cells Filling Documentation The documentation of the specification pro-
cess should make recoverable the spreadsheet filling, the justifications of the
consistency of the symmetric cells, and a justification for any empty cell.

2.3 Introducing a Method

To introduce a method in this paper, following the general conceptual frame-
work of Sect. 2.1, we proceed in the following way. We begin by introducing
the specified items, the used formal models, and the rationale linking the latter
to the first (section “X Item” where X may be simple or structured system, or
data structure), and this part is common for both property oriented and model
oriented methods introductions that follow. For each kind of specification, we
adopt the following:

e we show the form of the specification visual presentation. To avoid the
obvious problems of precisely presenting a visual notation we follow the
UML style (metamodelling), by giving the structure of these artifacts by
means of a class diagram presenting all their components, and then saying
how to visually depicting them. We accompany this part by the guidelines
to produce such artifacts. (Section “The ... specifications”)

e This is then illustrated on an example: the lift (section “Fzample: ...”).

e Finally we present the corresponding formal specification artifacts (section
“CASL-LTL (or CAsL) View”).

3 Specification of Simple Systems

3.1 Simple System Item

Following the framework presented in Sect. 2.1 we describe the simple system
items structure. Here the word system denotes a dynamic system of whatever
kind, and so evolving along the time, without any assumption about other

13

1.
i . parts
n nt f r
Constituent feature foatures Simple system Data structure
Elementary interaction State feature

Fig. 4. Simple System Item

aspects of its behaviour; thus it may be a communicating/nondeterministic/
sequential/. .. process, a reactive/parallel /concurrent /distributed/. .. system,
but also an agent or an agent system. A simple system is a system without
any internal components cooperating among them.

In our approach we assume that simple systems are seen formally as labelled
transition systems, see Sect. 1.2. The “modelling” is as follows. The states of
an lts modelling a simple system represent the relevant intermediate situations

in the life of the system, and each transition s SR represents the capability
of the system in the state/situation s of evolving into the state/situation s;
the label [contains information on the conditions on the external environment
for the capability to become effective, and on the transformation induced on
this environment by the execution of the transition, i.e., it fully describes the
interaction of the system with the external environment during this transition.

To design effective and simple specification methods we assume that the la-
bels have the standard form of a set of elementary interactions, where each
elementary interaction intuitively corresponds to an elementary (that is not
further decomposable) exchange with the external environment. We also as-
sume that the elementary interactions are of different types, and that each
type is characterized by a name and by some arguments (elements of some
data structures). The above considerations lead us to choose the elementary
interaction types (just elementary interactions from now on) as constituent
features of the simple systems.

The form of the states (which are the intermediate situations during the sys-
tem’s life) is also a characterizing feature of simple systems, therefore we
need state constituent features. However, they are technically different for the
property-oriented and the constructive case, and so we will describe them
later, when presenting the two methods.

Thus, to define the constituent features of a simple system we use values of
various data structures; they are the “parts” of the simple systems.

We summarize the parts and features of simple systems in Fig. 4.

14

Property Data structure specification

* *

State observer definition

» — Elementary interaction definition parts
2 name: String -
‘g)_ argTypes:Sequence(Type) name: String
o resType: Type argTypes:Sequence(Type)
o
s-features e-features L.

0

Simple system property-oriented specification

name: String

Fig. 5. Simple System Property-Oriented Specification

N
SystemName

Data elementary interactions,
1> EL(Typel, ..., Typen)

state observers,
Data, = so(typel, ...typen): Type
N\

Fig. 6. Visual presentation of a simple system: parts and constituent features

3.2 Property-oriented specifications

The property-oriented specification method for simple systems we propose is
a specialization of GPSm introduced in Sect. 2.2. According to Fig. 2, we first
have to find the parts and constituent features, and then to fill the cells to
express the properties.

3.2.1 The specification of parts and constituent features

To keep the specification level abstract, we do not completely describe the
states, but we just list what we should be able to observe on them, and thus
the state features will correspond to elementary observations on the states
(state observers). A state observer is characterized by a name, some arguments
(elements of some data structures), and by the observed value (element of some
data structure) .

Fig. 5 shows the structure (by means of a UML class diagram) of a property-
oriented specification of a simple system, and Fig. 6 how to visually depict its
parts and the constituent features. type in Fig. 6 stands for a type of values

defined by one of the subparts data structures (DATA;, ..., DATA;).

I1If the observed value is a boolean, then it may be specified with a predicate. For
simplicity sake (and by lack of space), this case will not be considered in this paper.

15

3.2.2 Cell schemas (properties)

All properties about a simple system correspond to properties on the lts mod-
elling it, and thus on its labels, states and transitions. Recalling our assump-
tions on the form of the states and labels, these properties may only relate the
values observed by the various state observers on a state, express which are
the admissible sets of elementary interactions building a label, and relate the
source state, the label and the target state of a transition. Our method offers
appropriate ways to present these properties show below.

Label properties: ei(arg) incompatible with ei’(arg) if cond(arg,ard)
where ei and e’ are two elementary interactions and cond is a property of
their arguments. It means that under some condition, if the two elementary
interactions are different'?, then they are incompatible, i.e., no label may
contain both.

State properties: cond
where cond is a condition in which state observers may appear. It means
that for any state the values returned by the state observers must satisfy
this condition.

State formulae may include also special atoms, listed below, expressing
properties on the paths (concatenated sequences of transitions) leaving/
reaching the state, that is on the future/past behaviour of the system from
this state.

e in any case eventually e/n happen

It means that any path starting from the state will contain a transition

whose label contains the elementary interaction described by eln.
e in any case sometime e/n happened

Similarly, it means that any path reaching the state will contain a transi-

tion whose label contains the elementary interaction described by eln.
These atoms may also be built by in one case (instead of in any case, with
the meaning there exists at least one path such that ...), or next (instead
of eventually, with the meaning “the label of the first transition of the
path contains ...”), or before (instead of sometime, with the meaning
“the label of the last transition of the path contains ...”).

Transition properties: cond
where cond is a condition in which state observers on the source and target
states (resp. denoted by “non primed” so and “primed” so’ identifiers, and
from now on referred to as source state observers and target state observers),
and atoms of the form “e/n happen” may appear. It means that a transition

tr =z — y satisfies cond, where source state observers are evaluated on
the source state z of {r, target state observers are evaluated on the target
state y of tr, and atoms of the form “eln happen” hold iff the elementary
interaction described by eln belongs to the label [of tr.

12 Then, it is not necessary to express that they are different.

16

State observer

Two elementary interactions valuel: Set(StateProp)
- how-change: Set(TransitionProp)
incompat2: Set(LabelProp) change-vital: Set(StateProp)
Elementary interaction Elementary interaction

- and state observer

incompatl: Set(LabelProp) —

pre-cond1: Set(TransitionProp) pre-cond2: Set(TransitionProp) Two state observers

post-cond: Set(TransitionProp) post-cond2: Set(TransitionProp)

vitall: Set(StateProp) vital2: Set(StateProp) value2: Set(StateProp)

\VA

Cell schema

Fig. 7. Simple System Cell schemas

The constituent features of simple systems are of two kinds, elementary inter-
actions and state observers, and so we have to consider five kinds of cells, as
shown below.

Elementary interaction State obser ver

Elementary interaction | ¢ &
J. .

State observer ‘%-'e/ o

&71.;&)2

We present the schemas for two kinds of cells in Fig. 8 and 9 (the others are
in the Appendix A). There, arg stands for generic expressions of the correct
types, possibly with free variables, and cond(exprs) for a generic condition
where the free variables of exprs may appear.

3.2.3 FExample: a Property-Oriented Specification of a Lift plant

As an example, we give theproperty-oriented specification of a lift plant, con-
sidered as a simple system. To specify the lift plant should be the first step
for developing the lift system, indeed a precise knowledge of the plant is of
fundamental importance for developing a good lift system. The lift plant may
communicate the status of some of its components by means of sensors (the
position of cabin and of the doors at the floors and the working status of the
motor), and its components may be influenced by means of orders (open/close
a door at a given floor, stop/move up/move down the motor). Moreover, the
users may enter or leave the cabin.

We show the parts and the constituent features of the lift plant in Fig. 10.
The elementary interactions (in the upper compartment) model the sensors
attached to the plant, the orders that it can receive, and the fact that some

17

incompatl (label property) If their arguments satisfy some conditions, then two
instantiations of ei are incompatible, i.e., no label may contain both.

ei(arg;) incompatible with ei(args) if cond(arg;,args)

pre-condl (transition property) If the label of a transition contains some instan-
tiation of ei, then the source state of the transition must satisfy some condition.

if ei(arg) happen then cond(arg)
where source state observers must appear in cond(arg) and target state observers
cannot appear

post-cond1 (transition property) If the label of a transition contains some instan-
tiation of ei, then the target state of the transition must satisfy some condition).
The condition on the target state may require also the source state to be ex-
pressed.

if ei(arg) happen then cond(arg)
where target state observers must appear in cond(arg) and source state observers
may appear in cond(arg)

vitall (state property) If a state satisfies some condition, then any sequence of
transitions starting from it will eventually contain a transition whose label con-
tains ei. Note that in these properties in any case may be replaced by in one
case and eventually by next.

if cond(arg) then in any case eventually ei(arg) happen

Fig. 8. Elementary interaction (ei) cell schema

valuel (state property) The results of the observation made by so on a state must
satisfy some conditions.

cond, where so must appear in cond

how-change (transition property) If the observed value changes during a transi-
tion, then some condition on source state, target state, old and new value holds,
and some elementary interactions must belong to the transition label.

if so(arg) = v, and so'(arg) = v, and v; # v, then
cond(v;,vs,arg) and €iy, ..., €i, happen

change-vital (state property) If a state satisfies some condition, then the observed
value will change in the future. Note that in these properties in any case may
be replaced by in one case and eventually by next.

if cond(v;,v5,arg) and so(arg) = v; and v; # vy then
in any case eventually so(arg) = vy

Fig. 9. State observer (so) cell schema

18

(LiftPlant h
CABIN_POSITION(Floor)
DOOR_O(Floor, DoorPosition)
DOOR_POSITION(Floor, DoorPosition)
MotorStatus MOTOR_O(MotorStatus)
MOTOR_STATUS(MotorStatus)
down | up | stop TRANSIT(Int)
cabin_position: Floor
DoorPosition door_position(Floor): DoorPosition
motor_status: MotorStatus
open | closed users_inside: Nat
- J

Fig. 10. LiftPlant: Parts and Constituent Features

users enter/leave its cabin, whereas the state observers (in the lower compart-
ment) define the status of its components and how many users are inside its
cabin.

To define the above constituent features we need some data:

- Floor: the floors among which the cabin is moving (see 5.2.2 for its specifi-
cation),

- MotorStatus: the possible statuses of the motor(moving up, moving down or
stopped),

- DoorPosition: the possible positions of the doors at the floors (open or closed).
MotorStatus and DoorPosition are two simple enumeration data structures, for
which we use an ad hoc notation, writing their constructors separated by |.

We followed the cell filling methods to find all the relevant properties of the
lift plant, but here we dropped repeated formulae, after having checked the
absence of contradictions, and slightly rearranged the others to improve read-
ability. The properties on the orders are detailed below, while the others (on
the sensors, the cabin, and the users entering/leaving the cabin) are given in
the Appendix B. The elementary interactions and the state observers used
below are declared in Fig. 10.

— Only appropriate groups of orders may be received simultaneously by the

lift plant; precisely, at most one order for the motor and one for the doors.
MoTor_O(ms;) incompatible with MoTOR_O(msy)
Door_O(f;,dps;) incompatible with DooRrR_O(f2,dpsz)

— An order can be received only when its execution is possible; precisely move
up (down) only when the motor is stopped and the cabin is not at the top
(ground) floor, and open the door at f only when no door is open, the cabin
is at floor f and the motor is stopped.
if MoToR_O(up) happen then motor_status = stop and cabin_position # top
if MoTor_O(down) happen then

motor_status = stop and cabin_position # ground
if Door_O(f;,open) happen then
(for all f e if f # f; then door_position(f) # open) and

cabin_position = f; and motor_status = stop

19

— The orders are always correctly executed.
if MoTor_O(ms) happen then motor_status’ = ms
if Door_O(f,dps) happen then door_position’(f) = dps

The complete specification of the lift plant given following our method (see
also Appendix B) may seem long, but we think that it is quite complete and
it shows all relevant information to build the software for handling it. For
example, such specification makes clear that — sensors never break down (the
state observers corresponding to sensors are total), — motor and doors may
change status by themselves as a result of some failure (no property requires
that, if the motor changes its status, an order has been received), and — the
plant takes care of some security checks, such as to avoid that the motor goes
down when the cabin is at the ground floor.

3.2.4 CasL-LtL View

Here we present the CASL-LTL [26] corresponding version of the property-
oriented specification of simple systems produced following our method intro-
duced in Sect. 3.2,. Let poSpec be a property-oriented specification of simple
systems having the form described in Fig. 5, and assume that

e poSpec.parts = {ds;, ..., ds;} are the parts, and DS;, ..., DS; the corre-
sponding CASL-LTL specifications;

o poSpec.e-features = {ei;, ..., €i,} are the elementary interactions;

o poSpec.s-features = {s0;, ..., so, } are the state observers.

Below we give the CASL-LTL specification corresponding to poSpec. Notice
that the constructors and the operations may be partial, and this is denoted
by a ‘77, e.g., “so;.name : st X so;.argTypes —7 so;.resType”.

spec ELEMINTER =
free type elemlinter ::=
ei;.name(ei;.argTypes) | ...| ei,.name(ei,.argTypes)
spec poSpec.name =
FINITESET[ELEMINTER] and DS; and ... and DS; then
dsort st label FinSet[elemInter]
ops $o;.name : st X so;.argTypes — so;.resType

50, .name : st X so,,.arglypes — so0,,.resype
axioms
formulae corresponding to the cell fillings, defined below case by case

Label property: eln; incompatible with eln, if cond
the corresponding formula is

- (eln; = elny) N cond N S B J (eln; €1 A elny €1)

20

State property: cond
the corresponding formula is obtained by adding S (a variable of sort st) as
extra argument to each state observer appearing in cond, and by replacing
the special temporal combinators as follows:

in any case ... in_any_case(S,...)

in one case ... in_one_case(9,...)

eventually eln happen eventually < leelnel >

next eln happen next <leelnel >

sometime eln happened | sometimes < leelnel >

before eln happened before < leelnel >
Transition property: cond

the corresponding formula is S 9 = cond’, where cond’ is obtained
from cond by adding S as an extra argument to each source state observer,
by adding 5" as an extra argument to each target state observer, and by
replacing each atom of the form “eln happen” with “eln € [”.

3.3 Constructive specifications

3.3.1 The specifications characteristics

The constructive specification method for simple system that we present is
similar in many respects to the property-oriented one introduced in Sect. 3.2.
Indeed, the items (simple systems), their parts and their constituent features
of kind elementary interactions, the formal models and the modelling are the
same. But, the state features are different, since we have here state construc-
tors instead of state observers. In this case we have to build the states of
the 1ts modelling a simple system, and we consider that those states may be
classified into different categories, according to the different system behaviour.
Technically, the states will be a data structure having a constructor with typed
arguments (see Sect. 5), for each state category. The state constructors are
the state constituent features.

The specification technique is similar to that followed in Sect. 3.2 in that
we have also to determine the parts and the constituent features, the only
difference is that now we do not give properties but instead we define precisely
the states, the labels and the transition of the Its modelling the specified
simple system. The definition of the labels and of the states is quite trivial
(the labels are sets of elementary interactions, and the states are built by
the state constructors). For what concerns the transitions, we define them by
means of conditional rules of the following form

21

Data structure specification

*

State constructor Elementary interaction
definition definition parts
name: String name: String
Conditional rule argTypes:Sequence(Type) argTypes:Sequence(Type)

* . * 1.*
conditional-rules s-features v

0

Simple system constructive specification

e-features

name: String

Fig. 11. Simple System Constructive Specification

N
SystemName
Data elementary interactions,
1> ei(typel, ..., typen)
Dat state constructors,
a1 c(typel, ...,typen)
N\ J

Fig. 12. Simple System Constructive Specification: parts and constituent features

(*) if pos-cond(arg;,args,eiSet) then C(arg;) M C'(args)

where

e (' and (' are state constructors, resp. of the source and target states

o eiSel is a set of elementary interactions

e and pos-cond(arg;,args,eiSet) is a conjunction of positive atoms in which
the free variables of arg;, arg, and eiSet may appear.

The form of our constructive specifications of simple system is summarized in

Fig. 11.

We present how to visually depict the parts and the constituent features of a
simple system constructive specification in Fig. 12. A conditional rule defining
the transitions as in (*) above will be visually represented as the following
oriented arc

cond(argl,arg2,eiSet eiSet
(C(argl)) [(argl 2rg) { C(arg2))

The visual presentations of all the conditional rules may be then put together
building an oriented graph, as originally proposed in [30], by collecting all
source and target rounded boxes related to states built by the same construc-
tor, and by writing only once repeated constructor instantiations and repeated
conditions. For example, the following diagram

22

DONE& ASK-NEW

RECEIVE-OK(inv)

. Processing(inv)
Init(invy L3> V]
Init(a)
Stopped

jif

REFUSED(inv) & ASK-NEW Refusing(a,inv)

shows the combination of the visual presentations of the following five condi-
tional rules.

. . : RECEIVE - OK (inv
if @ > inv then Init(a) fGn)

> Processing(inv)

), Stopped
RECEIVE—-OK (inv)

RECEIVE—ER(inv

if @ > inv then Init(a)

if « < inv then Init(a)
{REFUSED (inv),ASK —NEW}

> Refusing(a, inv)
> Init(a)
> Init(inv)

Refusing(a, inv)
{DONE,ASK —NEW}

Processing(inv)

3.3.2 FExample: a Constructive Specification of a Controller for a Lift

As example in this section, we give the constructive specification of a controller
for the lift, considered as a simple system. This specification may be considered
as an abstract presentation of a design for such a controller. Our controller
may send orders to the motor and to the doors, and may receive information
on the status of the plant by means of its sensors (status of the motor, and
positions of the doors and of the cabin). The users interact with the controller
by calling the floors, that it by requiring that the cabin goes to a given floor.

Following our method we first determine the elementary interactions, the used
data structures, and finally define the behaviour of the controller. In this case
the elementary interactions (see Fig. 13) correspond to sending the orders, and
to receiving signals from the sensors and calls from the users. To needed data
structures are Floorl0 (providing an ord operation yielding the floor number),
defined in Sect. 5.3.2, MotorStatus and DoorPositions. The latter is defined by
using the predefined parametric type List [31]. DoorPositions also has a derived
predicate all_Close_But defined by the following conditional rules. Recall that
select given a list and a natural number returns the element in such position,
and that we assume that the positions of the various doors are listed one after
the other starting from ground till to top.

if select(ord(ground),dposs) = open and
select(ord(second),dposs) = closed and ... and
select(ord(top),dposs) = closed then
all_Close_But(ground,dposs)

23

Floor10 (Control_Des

CABIN_POSITION(Floor)
DOOR_O(Floor,DoorPosition)
MotorStatus = DOorR_POsITIONS(DoorPositions)
MOTOR_O(MotorStatus)

down | up | stop MOTOR_STATUS(MotorStatus)
CALL(Floor)

— Coordinating

— DoorPositions Handling_Call(Floor,Floor,DoorPositions,MotorStatus)
DoorPosition Ready_To_Move(Floor,Floor)

List(DoorPosition) —=>{ Moving_Up(Floor,Floor)

open | closed Moving_Down(Floor,Floor)
allCloseBut(Floor,DoorPositions) Going_To_Stop(Floor)

\Stopped)

Fig. 13. Lift Controller (design): Parts and Constituent Features

if select(ord(top),dposs) = open and
select(ord(ground),dposs) = closed and ... and
select(ord(ninth),dposs) = closed then
all_Close_But(top,dposs)

The behaviour of the controller is shown below.

Coordinating

—

CALL(f) & [ms =/=stop or
CABIN_POSITION(f1) & f=f1 or

DOOR_POSITIONS (dposs) & | ot aliCloseBut(fL,dposs) |
MOTOR_STATUS(ms)

(Handling_Call(f,f1,dposs,ms))7

[ms =stop and
f=/=f1 and
allCloseBut(f1,dposs)]

DOOR_O(f1,close)

(Ready_To_Move(f,f1))

[f above f1] [f1 above f]
MOTOR_O(down) MOTOR_O(up)
[f=fl] [f=f1]
MOTOR_O(stop) (A MOTOR_O(stop)

Moving_Down(f,f1) Moving_Up(f,f1)

[f=/=1l]
) | CABIN_POSITION(f2) &

MOTOR_STATUS(up)

[f =/= f1]
CABIN_POSITION(f2) &
MOTOR_STATUS(down)

Moving_Down(f,f2) Moving_Up(f,f2)
A A

[ms =/=down] [ms =/= up]
MOTOR_STATUS(mMS) & MOTOR_STATUS(mS) &
MOTOR_O(stop) MOTOR_O(stop)

(Stopped)
{ Going_To_Stop(fl) ¥

DOOR_O(f1,0pen)

It waits for a call from the users (Coordinating), then if the call may be satisfied,
closes the door (DOOR_O(f1, close)) and orders to the motor to move in the
correct versus, till the cabin reaches the required floor (Stopping(fl)). Then,
it opens the door and waits for the next call. It is also able to detect some
failures (an order to the motor has not been executed), and in such cases it

24

stops to work.

3.3.3 CAsL-LrL View

Here we present the CASL-LTL [26] corresponding version of our constructive
specifications of simple systems introduced before in Sect. 3.3. Let conSpec
be a constructive specification of simple systems having the form described in
Fig. 11, and assume that

e conSpec.parts = {ds;, ..., ds;} are the parts, and DS;, ..., DS; the corre-
sponding CASL-LTL specifications;

e conSpec.e-features = {ei;, ..., €ei,} are the elementary interactions;

e conSpec.s-features = {sCon;, ..., sCon,,} are the state constructors.

Below we give the CASL-LTL specification corresponding to conSpec.

spec ELEMINTER =

free type elemlinter ::=

ei;.name(ei;.argTypes) | ...| ei,.name(ei,.argTypes)

spec conSpec.NAME =

FINITESET[ELEMINTER] and DS; and ... and DS; then
free {

dsort st label FinSet[elemInter]

ops sCon;.name : sCon,.argTypes — st

sCon,,.name : sCon,,.argTypes — st
axioms
formulae corresponding to conditional rules

} end

A conditional rule

if pos-cond(arg;,args,eiSet) then C(arg;) % C'(args)

is expressed by the CASL-LTL formulae

pos-cond(arg, ,args,eiSet) = C(arg;) ﬂ C'(args).

4 Specification of Structured Systems

4.1 Structured System Items

A structured system item is a specialization of the simple dynamic system of
Sect. 3; indeed it is a simple system made by several other dynamic systems,
its subsystems, which are either simple or in turn structured. We assume that

25

each subsystem is uniquely identified by some identity. A situation during
the life of a structured system is fully characterized by the situations of its
subsystems, and its (global) moves just consist of the simultaneous executions
of (local) moves of some of its subsystems.

The specification methods for structured systems (property-oriented and con-
structive), which we present here, are specializations of those for simple sys-
tems (see Sect. 3). Thus also structured systems will be modelled by labelled
transition systems (lts); but in this case their states will be sets of states
of those lts’s modelling the subsystems, and their transitions will correspond
to simultaneous executions of sets of subsystems transitions (the latter are
named their components). To represent which are their composing subtransi-
tions, we need to enrich the labelled transitions with an extra part containing
such information. 1t is not appropriate to only extend the labels of the transi-
tions with the information about the subsystems moves. Indeed, labels should
model only the system interaction with the outside world, and in many cases
the subsystems moves are completely transparent to outside, as, e.g., two sub-
systems exchanging a message between themselves. Thus, to describe a given
global transition we both need its label (that is a set of elementary interactions
visible from outside) and its information part (on the subsystem moves that
may not all be visible from outside). For simplicity sake we do not consider
here the case of subsystems that may be created and destroyed dynamically,
but there are no technical problems to handle them.

Technically, it means that to model structured systems we use generalized
lts, that are lts specialized by adding an information part to each transi-
tion. Thus a generalized lts is a 4-uple (State, Label, Info,—), where —C
Infox State x Labelx State, and Info is the set of the additional information at-
tached to the transitions. A generic transition is usually written inf : LI Y.
The additional information for the generalized lts modelling the structured sys-
tems, which must represent the composing subtransitions, will be sets of pairs
made by a subsystem identity (the subsystem performing the subtransition)
and by an elementary interaction (belonging to the label of the subtransition).
We name these pairs local elementary interactions, shortly local interactions
from now on. We exemplify the concepts introduced so far in Fig. 14.

To take into account the role played by the subsystems in the moves of the
structured systems, we consider also the local interactions as their constituent
features. Structured systems have also a new kind of parts, the composing sub-
sytems, which may be either simple or in turn structured. Structured systems
have special state observers returning the states of the subsystems, which are
denoted by the subsystem identities themselves (we do not need to declare
them, since they are implicitly determined by the subsystem declarations.)
Notice that, however, we need also other state observers. Indeed, property-
oriented specifications are usually at a quite abstract level and we may want

26

a sample state of SS (sl, ..., sb are respectively the states of A, ..., E)

[A:sl B:s2 C:s3 D: s4 E:s5 j

a sample transition of SS (global transition/move)

info:[A:sl B:s2 C:s3 D: s4 E:s5]
{ef} {ge} {h} {XY}
\ 4
[A:sl’ B:s2’ C:s3 D:s4 E:s5]

its composing local transitions/moves

{ef} {g.e} : {h}

sl— — 5s1'" 82—~ 55s2 S3— 5553

its local interactions (the subsystems D and E do not take part in the global
move) Ae Af Bg Be Ch

its (global) elementary interactions of SS towards the outside resulting
from the subsystem moves X Y

its (additional) information info={ (A, e), (Af), (B.g), (B.e), (C)h) }

Fig. 14. Example of a structured system SS, with five subsystems, A, B, C, D and E

] parts *
Simple system Data structure
l“*
subSyst-parts
1.*
Constituent feature features | Structured system

A

Local interaction| Elementary interaction | | State feature

Fig. 15. Structured System Item

to observe something on the structured system states without knowing which
subsystems (and in which way) contribute to this observation. An example
may be an observer checking if there is an error in the system, when we do
not know anything about the error situations of the single subsystems.

We summarize the parts and constituent features of structured systems in

Fig. 15.

27

| State observer definition | | Data structure specification

s-features | parts i Subsystem
Elementary interaction System id: Ident
Property definition specification type: String
) * * 1. 1.x
properties e-features subsyst-Specs subsystems

0

Structured system property-oriented specification

name: String

Fig. 16. Structured System Property-Oriented Specification

N
SystemName

Data; || elementary interactions | Syst,
EL(Typel, ..., Typen)

Data state observers Syst
r > so(Typel, ..., Typen): <~

P

Configuration
N\ J

Fig. 17. Visual presentation of a structured system: parts and constituent features

4.2 Property-oriented specifications

The method for property-oriented specifications of structured systems, which
we present here, is a specialization of the one for the simple systems of Sect. 3.

4.2.1 Specification of parts and constituent features

We assume that a structured system may have many subsystems of the same
type (i.e., whose specification is the same), and that they are identified by ele-
ments of a special data structure IDENT (standard identifiers). Thus to specify
the subsystem parts it is sufficient to give the subsystem specifications, and
for any subsystem its identity and its type, i.e., the name of its specification.
The local interactions are implicitly determined after we have given the sub-
systems, and so they do not need to be explicitly specified. The structure of a
property-oriented specification of a structured system is then summarized in
Fig. 16. Fig. 17 presents how to visually depict the parts and the constituent
features of a property-oriented structured system specification. In this pic-
ture Syst;, ..., Syst, are the names of the subsystem specifications, given
apart, and Configuration is a visual presentation of which are the subsystems
. A subsystem is represented by a rounded box containing its identity and
type, that is the name of the corresponding specification. We use the notation

ID1: SysT IDn: SysT | to represent a set of subsystems of type SysT
constraint on n

28

Fig. 18. Configuration example

Elementary interaction

Two local interactions and local interaction
synchr2: Set(TransitionProp) loc-glob2: Set(TransitionProp)
Elementary interaction Local interaction

Local interaction and

incompatl: Set(LabelProp) state observer

synchrl: Set(TransitionProp)

pre-condl: Set(TransitionProp) pre-cond3: Set(TransitionProp)
post-condl: Set(TransitionProp) pre-cond2: Set(TransitionProp) post-cond3: Set(TransitionProp)
vitall: Set(StateProp) post-cond2: Set(TransitionProp) vital3: Set(StateProp)

loc-globl: Set(TransitionProp) vital2: Set(StateProp) loc-glob3: Set(TransitionProp)

Two elementary v Elementary interaction
interactions and state observer
Cell schema
State observer | Two state observers

Fig. 19. Structured System Cell schemas

made by n elements with n satisfying some constraint. In the particular case
where there is just a unique element of a type we can drop the subsystem
identity and write only the (underlined) type name; thus the subsystem will
be named as the type. In Fig. 18 we show an example of a configuration; the
structured system with that configuration has one subsystem of type Sysl,
named Sysl, two subsystems of type Sys2 named respectively A and B, and n,
with 1 < n < 10 subsystems of type Sys named respectively C1, ..., Cn.

4.2.2 Cell schemas (properties)

Structured systems have a new kind of constituent features, the local inter-
actions, so we have new types of cells to be filled; moreover local interactions
should be considered also when defining the schemas for the cells already used
for simple systems. The state observers corresponding to subsystem states
should be considered as the others, with the corresponding cells.

To model structured systems, we upgraded lts’s to generalized lts, which dif-
fer for the additional information part of the transitions (the set of the local
interactions). Now, we consequently upgrade the properties on the transi-
tions (see Sect. 3.2.2) with new atoms “/In happen” (where [In is a local
interaction) which express that [In belongs to the set of the transition local
interactions. More precisely, [In happen holds on a transition of a generalized

Its “inf: x N y” iff lIn € inf. The new properties will allow us to take into
account the local interactions when expressing the properties the various cells.

In Fig. 19 we present the schemas for the new cells and the updates of those al-
ready used for simple systems, where undetailed “boxes” refer to Fig. 7 as well

29

synchrl (transition property) Under some condition, an instantiation of sid.ei is/
is not synchronized (i.e., executed simultaneously) with another instantiation of
the same sid.ei, i.e., one is a component of a global transition iff the other also
is/is not so; clearly the two instantiations are performed by different subsystems.

if cond(arg,arg;) and sid.ei(arg) happen then sid;.ei(arg;) happen
or
if cond(arg,arg;) and sid.ei(arg) happen then not sid;.ei(arg;) happen

loc-glob3 (transition property) If an instantiation of sid.ei is a component of a
global transition, then, under some condition, the label of this global transition
must contain some elementary interaction, or vice versa.

if sid.ei(arg) happen and cond(arg,eln) then eln happen
or
if e/n happen and cond(arg,eln) then eln happen

pre-cond3 ,post-cond3d ,vital3 defined as the homonymous slots for simple system
but where the elementary interaction is replaced by the local interaction.

Fig. 20. Local interaction (sid.ei) cell schema

synchr2 (transition property) Under some condition, an instantiation of sid;.ei,
is/is not synchronized with an instantiation of sids.eis, i.e., one is a component
of a global transition iff the other also is/is not so; clearly the two instantiations
are performed by different subsystems.

if cond(arg,,args) and sid;.ei;(arg;) happen then sid,.eis(arg.) happen
or
if cond(arg,,args) and sid;.ei;(arg;) happen then

not sid,.eis(args) happen

Fig. 21. Two local interactions (sid;.ei;:sids.eig) cell schema

as the slots that are not redefined here. Clearly, for the parts already defined
in Sect. 3.2.2, here we must consider also the local interactions together with
elementary interactions in the state and transition properties. The schemas
for the various cells are reported in Fig. 20 and 21, and in Appendix C.

4.2.3 FEzample: a Property-Oriented Specification of a Lift System

The lift system consists of the lift plant, see Sect. 3.2.3, the automated software
controller and the users; and, it is a structured system. Here we use our method
to express its relevant properties, which are mainly about how its subparts
influence each other. The produced specification may be considered as a precise

30

definition of the requirements on the controller, stating precisely how it will
affect and interact with its context.

[LiftPIant) (Users) (Control)
B A

LiftSystem

(LiftPIant) (Users) (Control)
N\ y,

The above picture shows the parts and the constituent features of the lift
system. The subsystems are the plant, the controller, and the users (a unique
system modelling all the lift users), and all of them are simple systems; whereas

the used data structures are those of the subsystems and so we do not repeat
them. We specify in a property-oriented way the three subsystems. The spec-
ification of the lift plant, LiftPlant, has been given in Sect. 3.2.3 and those of
the users and of the controller are here.

DoorPosition DoorPaositions

open | closed List(DoorPosition)

allCloseBut(Floor,DoorPositions)

!

CABIN_POSITION(Floor)

Users DOOR_O(Floor,DoorPosition)
MotorStatus |=! DOOR_POSITIONS(DoorPositions)
TRANSIT(Int) MOTOR_O(MotorStatus)
CALL(Floor) down | up | stop MOTOR _STATUS(Motor_Status)
CALL(Floor)

Notice that these specifications have no properties, because in this case we do
not know anything on the behaviour of the users (for instance we do not assume
that a user that enters the lift will eventually leave it), and the requirements
concern only the effects of the controller on the context, and not its precise
behaviour. The lift system is closed, in the sense that it does not interact with
its outside world, or better possibly interactions do not concern the require-
ment that we have to describe; thus the elementary interaction compartment
is empty. No state observer different from those observing the states of the
subsystems is needed, and so also the other compartment is empty. Thus, the
only constituent features of the lift systems are of kind local interactions, and
to give its properties we have just to fill cells of the form “Local interaction”
and “Two local interactions”, whose loc-glob parts will be always empty.

All the local interactions with the same name of different subsystems are
synchronized. We give just an example of such properties, the one concerning
calling the cabin.

Users.CALL(f) synchronized with Control.CALL(f)

31

Instead the local interaction “Control. DOOR_POSITIONS” is synchronized with
many of the kind “LiftPlant. DOOR_POSITION”.

Control.DoOR_POSITIONS(dps; ::. .. :dps;y) synchronized with
LiftPlant.Door_PosITION(ground,dps;), ..., LiftPlant. DooRrR_PosITION(top,dps;,)

The last property is a post condition concerning the users’ calls.

if Users.CALL(f) happen then in any case eventually
LiftPlant.cabin_position(f) and LiftPlant.motor_status(stop) and
LiftPlant.door_position(f) = open

4.2.4 CasvL-LrL View

Here we present the CASL-LTL corresponding version of our property-oriented
specification of structured systems introduced before in Sect. 4.2.1. The only
difference with the case of the simple system of Sect. 3.2.4 is that now we use
generalized 1ts, however CASL-LTL offers a special construct to declare that
three sorts correspond to the states, the labels and the additional information
of a generalized lts together with a standard arrow predicate corresponding to
the transition relation.

sorts st, lab, inf

dsort st label lab info inf stands for pred __: _ =5 __: infx st labx sl

Let poSpec be a property-oriented specification of structured systems having
the form described in Fig. 16, and assume that

e poSpec.parts = {ds;, ..., ds;} are the parts, and DS;, ..., DS, the corre-
sponding CASL-LTL specifications;

e poSpec.subsyst-Specs = {ssp;, ..., sspr} are the subsystem specifications,
SSP,, ..., SSP; are the corresponding CASL-LTL specifications, and
ELEMINTER,, ..., ELEMINTER; are the specifications of their elementary
interactions;

e poSpec.e-features = {ei;, ..., €i,} are the (global) elementary interactions;

e poSpec.s-features = {s0,,...,s0,,} are the state observers;

e poSpec.subsystems = {ss;,...,ss.} are the subsystems.

Below we give the CASL-LTL specification corresponding to poSpec.

spec LOCALINTER =
ELEMINTER; and ... and ELEMINTER; and IDENT then

free type subFlemlInter ::= _(elemlInter;) | ...| _(elemIntery)
%% disjoint union of the elementary interaction types of the subsystems
free type locallnter == < _,_> (ident, subElemInter)

32

spec poSpec.name =
FINITESET[ELEMINTER] and FINITESET[LOCALINTER] and
DS; and ... and DS; and SSP; and ... and SSP; then
dsort st label FinSet[eleminter] info FinSet[locallnter]
ops so;.name : st X so;.argTypes — so;.resType %% state observers

50, .name : st X so,,.argTypes — so0,,.resype
ssy.id : st — ss;.type %% observers of the subsystem states

58,.1d 1 st — ss,..type
axioms
formulae corresponding to the cell fillings, see below

For the properties on structured systems we have used a new kind of transition
properties, and so here we give how to transform them in CASL-LTL. Similarly
to what was done in Sect. 3.2.4, a transition property cond is transformed into

inf: S SN cond’, where cond’ is obtained from cond by adding S as
an extra argument to each source state observer, by adding S’ as an extra
argument to each target state observer, and by replacing each atom of the
form “eln happen” with eln € [, and each atom of the form “/In happen”
with In € inf.

4.3 Constructive specifications

4.3.1 The specifications characteristics

The constructive specification method for structured system that we present is
similar in many respects to the property-oriented one introduced in Sect. 4.2.
We first determine the parts and the constituent features, and that can be
done as before, the only difference is that in this case we do not define any
state features, because the states are fully determined by the subsystems (they
are just sets of subsystem states). Then, we do not give properties but instead
we define precisely the additional information, the states, the labels and the
transition of the generalized 1ts modelling the specified structured system.

The definition of the additional information, the labels and the states is as
for the property-oriented case (the additional information are sets of local
interactions, the labels are set of elementary interactions, and the states are
sets of subsystem states together with their identities). For what concerns the
transitions, similarly to the case of simple systems, we define them by means of
conditional rules stating which groups of local transitions (of the subsystems)
may be executed together resulting in a global (of the structured system)
transition. The general form of such rules, visually depicted in Fig. 22, is

33

{ (id)show drestarp mel@tmedmummeﬁwﬁmm mmﬁ%me@wea

labl labn LAB

\ 4
[idl.ssr * =+ idn.ssn’ ssSet j

Fig. 22. Visual presentation of a generic rule defining global transitions
(#) if ssy LN ssy and ... and ss, LN ss and
pos-cond(laby, ..., lab,, LAB, ssSet) then
{(id;.z) |z € lab, }U ... U{(id,.z) | © € lab,} :

{id;.ss1,...,id,.s8,} U ssSet _LAB {id;.ss}, ..., id,.ss} U ssSet

. . lab n . .
stating that if ss; ——— ss!, ..., $5, LN ss! are local transitions (i.e., of
the subsystems id;, ..., id,), and their labels satisfy some condition, then

we have a global transition (of the structured system), in whose source state
we distinguish the subsystems subjected to a local transition (with source
states ss;, ..., ss,) and those staying idle (with source states in ssSet), that
is labelled by LAB, and that whose additional information is the set of the
involved local interactions ({(id;,z) | « € lab; } U ... U{(id,,z) | € lab,}).
The condition may concern also the possible transitions of the subsystems
staying idle (ssSet) and the label of the resulting global transition LAB.

To help the specifier write such complex rules our method, inspired by the
SMoLCS approach [3], proposes to proceed in the following way.

Recalling that the labels of the systems consists of sets of elementary interac-
tion, we first determine which groups of local interactions must be executed
together (synchronized sets). Then, we assume that a set of local transitions
can build a global transition if and only if their corresponding local interac-
tions can all be combined into disjoint synchronized sets. Furthermore, we add
to each synchronized set a global elementary interaction (of the structured sys-
tem), expressing the interaction with the external environment resulting from
the execution of the set of local interactions. The transition shown in Fig. 14
may be, for example, motivated by the following synchronized sets (null stands
for no global elementary interaction)

({A.e,B.e}, null), ({Af},X), ({B.g, C.h},Y)

Notice that A.f is not synchronized with other local interactions.

Thus the rule (#) can be specialized in the following way (we present it in
four parts followed by the corresponding comments):

34

n

(1) if ssy SN ssy and ... and ss, LN ss!,

(2) {(id;.z) |z €lab;}U...U{(id,.z) | z € lab,} =
linSet; U ...U linSet; and

(3) (linSety, El),..., (linSety, El;) are synchronized sets then

4) linSet; U . ..U linSety:

and

, , Ely ... ElL , ,
{id;.ss1,...,id,.s8,} U ssSet BTN {id;.ssy, ..., id,.ss} U ssSet
If
lab, . :
(1) ss; b g sy, ..., 88, — ss! are local transitions (i.e., of subsystems)

(2) each local tran81t10n determines a set of local interactions

{(td;.x) |« € lab;} i =1,.

(2)&(3) local mteractlons may be combined to form synchronization sets
linSet;, ..., linSety

(3) accompanied by the global elementary interactions El;, ..., Elj

then

(4) we have a global transition (of the structured system), in whose source
state we distinguish the subsystems subject to a local transition (with source
states ss;, ..., ss,) and those staying idle (with source states in ssSet),
that is labelled by the global elementary interactions EI;, ..., K}, and that
whose additional information is the set of the involved local interactions
(linSet; U ... U linSety,).

This rule states that any group of local transitions (of the subsystems) whose
elementary interactions build a group of synchronized sets may result in a
global transition (of the structured system) [free mode]. If we need to express
that at most one of such set is selected at each step [inter mode], the above
rules may be changed by setting £ = 1. If instead, we need that only maximal
groups of subsystem transitions are selected (i.e., the subsystems in ssSet
cannot perform some other synchronized set of local moves) [max mode], then
we add in the premise the condition that ssSet cannot move. Thus, to define
the above rules, we only need to define which are the synchronized sets of local
interactions and the mode in which the subsystem transitions are picked up
(for the case of maximal parallelism we need also to define also an additional
predicate noMove, again by conditional rules).

The set of synchronized local interactions may be in turn defined by condi-
tional rules (synchronization rules) having the form

(4) if pos-cond({sid;.ei,,..., sidg.€i;},Fl) then
({sid;.eiy,..., sidg.€i},El) is a synchronized set

The form of the constructive specifications of structured systems is summa-

rized in Fig. 23.

The parts and the constituent features of a constructive specification of a
structured system are visually presented as for the property-oriented specifi-

35

Maximal || Free || Inter |

I [[
no-moves
Mode | Data structure specification | | Subsystem |
* mode| 1 parts ¥ subsystems 1>
Elementary interaction —
Conditional rule definition System specification |
o * 1. 1.
synchronizations e-features subsyst-Specs

Q

Structured system constructive specification

name: String

Fig. 23. Structured System Constructive Specification

X
g

N
M N
X
k=l

am

—
]
>
0y -d
"_iCD
S

Fig. 24. Visual presentation of a synchronization rule

cations, see Fig. 17, but now in the name compartment we put an indication
of the mode of the system (inter, max, or free). A rule defining the synchro-
nized sets as in (+) above will be visually represented as in Fig. 24, where

Id1: Sys1| ysk| is a fragment of the configuration of the system. The

visual presentations of all the synchronization rules may be then put together
building an oriented graph by collecting all rounded boxes depicting the same
subsystems. The rules defining the noMove predicate, if any, are visually de-
picted as a standard predicate, see Sect. 5.3.

4.3.2 FEzample: a Constructive Specification of a distributed lift controller

As example we specify the design of another controller of the lift system that
differently from that of Sect. 3.3.2 consists of two processes, one taking care of
the doors (detecting failures and making sure that each order sent to them is
correctly executed) and a main part taking care of interacting with the users,
the motor and the cabin.

First we specify the two composing subsystems DoorHandler and Main, respec-
tively in Fig. 26 and Fig. 25, and after the structured system Distr_Control in

36

Parts and constituent features

(Ready_To_|

a Main h
CABIN_POSITION(Floor)
Floor10 CLOSE(Floor), CLOSED(Floor)
OPEN(Floor), OPENED(Floor)
YES, NO, DOOR_FAILURE
MotorStatus | >{ ALL_CLOSE_BUT(Floor)
MOTOR_O(MotorStatus)
down | up | stop MOTOR_STATUS()show grestore /Helvetica findfont 9 sc|
CALL(Floor)
Coordinating
Handling_Call(Floor,Floor,MotorStatus)
Checking_Doors(Floor,Floor)
Closing_Door(Floor,Floor)
Waiting_Closure(Floor,Floor)
Ready_To_Move(Floor,Floor)
Moving_Up(Floor,Floor)
Moving_Down(Floor,Floor)
Stopping(Floor)
Waiting_Opening(Floor,Floor)
Stopped
- PP J
Behaviour
DOOR_FAILURE
2(Coordinating |2 (Stopped)
CALL(f) & [ms =/= stop
CABIN_POSITION(f1) & or
MOTOR_STATUS(mSs) f=f1]
(Handling_CaII(f,fl,ms))i
e 2
H [ms = stop and
& f=/=11]
g ALL_CLOSE_BUT(f1)
—(Checking_Doors(f,f1))
)
e YES
g
'g DOOR_FAILURE (Closing_Door(f,f1))
8— Stopped
| CLOSE(f1)
(=)
£ ———~ DOOR_FAILURE
g (Waiting_CIosure(f,fl) — { Stopped)
S« CLOSED(f1)

Move(f,1))

[f1 above f]
MOTOR_O(down)

[f above f1]
MOTOR_O(up)

[f = f1] MOTOR_O(stop)

.

[f =/= f1]
CABIN_POSITION(f2) &

MOTOR_STATUS(down)

[ms =/=down]
MOTOR_STATUS(ms) &
MOTOR_O(stop)

N [f=f1] MOTOR O(stop)
Moving_Down(f,f1) Moving_Up(f,f1)
. . f=/=f1
Movmg_/DT\own(f,fZ) Movmg_Up/)TSf,fZ) E:ABI/N PO]SITION(fZ)&
4 MOTOR_STATUS(up)

[ms =/= up]
MOTOR_STATUS(ms) &
MOTOR_O(stop)

OPEN(f)

(Going_To_Stop(f) }

;I—J

(Stopped)

Fig. 25. Main: Specification

37

Parts and constituent features

(DoorHandler

CLOSE(Floor), CLOSED(Floor)
OPEN(Floor), OPENED(Floor)
YES, NO, DOOR_FAILURE
ALL_CLOSED_BUT(Floor)
DOOR_POSITIONS(DoorPositions)

DoorPositions
DoorPosition Init

List(DoorPosition) = Checking(DoorPositions)
Closing(Floor,DoorPositions)
Opening(Floor,DoorPositions)
Answering(Floor,DoorPositions)
\Failure_Detected

open | closed

allCloseBut(Floor,DoorPositions)

Behaviour

@ [dposs = dposs1]
DOOR_POSITIONS(dpossl)

DOOR_POSITIONS(dposs)

(Checking(dposs)): -
—_ @
n 2
[%]
& _® . < _ 3 2
—~ far] = = o =
b 29 8 =% g il 3
g | 82 | S 7 8 g = "
S [sHy<S = [ojy=% = 3]
-3 S5 o] o3 (@] | =]
25 IR I °H I o ©
0wz 7 Z g nz x 2 |
oy a9 %0 o ° =
X o E 1] o E o I]
©TE>S o = o &7 =0 =]
nQ =2 = o3 a8 a < W c 9
10z =0 - 0%] —> —Z
T Tag > ;—;D-IE’ —
[%] [} I} w c pl % "
o o
gzl 2592 2 e5& & ALL_CLOSE_BUT(f) (Answering(f dposs))
590 00 pu oo a
el —0 0 O —0O0 (@]
(Closing(f, dposs)) (Opening(f, dposs))
O —3
0 — [
2% v 2
o9 89
© 9 a8
[e X [e N
1o o5
IR%1 19
—~Z =z
%oLu ,ﬁoLu
SES AES
Q = o 7
SR SR
=0 Z cO<
Touw o
b o' S
g88 228
oaa OR8
(Failure_Detected)

Fig. 26. DoorHandler: Specification

Fig. 27. Since, in Distr_Control only elementary interactions with the same
name and the same arguments of different subsystems are synchronized, to
present the synchronization rules it is sufficient to decorate any cooperation
icon by a list of elementary interaction names.

38

Parts and constituent features

(Distr_Control free)

CABIN_POSITION(Floor)
DOOR_O(Floor,DoorPosition)

DOOR_POSITIONS(DoorPositions) -
MOTOR_O(MotorStatus)
MOTOR_STATUSMotorStatus)
CALL(Floor)

\(%andler) (M))

Synchronization rules

) CABIN_POSITION

S ~ MOTOR O

DOOR_POSITIONS S
) CLOSE, CLOSED = MOTOR_STATUS
DOOR_O T 5
- % OPEN, OPENED 5 CALL
< () S | Yes, No, DOOR_FAILURE (Y >
~~ = ALL_CLOSED_BUT

Fig. 27. Distr_Control: Specification

4.3.3 CasvL-LrL View

Here we present the CASL-LTL [26] corresponding version of our constructive

specifications of structured systems introduced before in Sect. 4.3.1.

Let conSpec be a constructive specification of structured systems having the

form described in Fig. 23, and assume that

e conSpec.parts = {ds;, ..., ds;} are the parts, and DS;, ..., DS; the corre-
sponding CASL-LTL specifications;

e conSpec.subsyst-Specs = {ssp;, ..., sspi} are the subsystem specifications,
and SSP;. ..., SSP; are the corresponding CASL-LTL specifications;

e conSpec.e-features = {¢i;, ..., ei,} are the elementary interactions;

e conSpec.s-features = {so;,..., s0,} are the state observers;

e conSpec.subsystems = {ss;,..., ss,} are the subsystems.

Below we give the CASL-LTL specification corresponding to conSpec.
ELEMINTER and LOCALINTER have been defined in Sect. 4.2.4.

spec STRUCTSTATE =
SSP; and ... and SSP; then

free {
generated type structState ::=
ss;.name : _(ss;.type) | ... | ss..name : _(ss,.type) |
|| - : structState x structState
axioms

39

381 || 882 = 385 || 884
ssy || (ss2 || ss5) = (ss1 || ss2) || 555
ss || ss = ss’
} end
spec conSpec.name =
FINITESET[ELEMINTER] and FINITESET[LOCALINTER] and
STRUCTSTATE and DS; and ... and DS; then
free {
dsort structState label FinSet[elemInter] info FinSet[locallnter]
preds isSynchronizedSet: FinSet[locallnter] X FinSet[elemInter]
noMove : structState
axioms
formulae corresponding to the synchronization rules, see below
%% a formula of the form below forall n, I <n<randallk, 1 <k<n

laby,

585 %ssg A oo A ss, — sshA

{(ss;.1d, €i) | ei € lab; U ...U{(ss,.1d, ei) | ei € lab,} =
linSet; U ...U linSet; A

isSynchronizedSet(linSet;, EI;) N ... A

isSynchronizedSet(linSety, El;) =

El,.. E]
ssy || ... || 8sn || ssSet BTN ssy || ... || ssh || ssSet

%% axioms corresponding to the conditional rules defining noMove,
%% if any, following Sect. 5.3.3

} end

A synchronization rule as (+) in Sect. 4.3 corresponds to the following CASL-LTL
formula
pos-cond({(1d1,eil),..., (Idk,eik)}, EI) =
isSynchronizedSet({(1d1, eil),. .., (Idk, eik)}, ET)
The above specification correspond to the mode Free. If the mode is Inter, then
the rules defining the transition are changed by setting & = 1. If it is instead
Max you add in the premise the condition noMove(ssSet).

5 Specification of Data Structures
5.1 Data Structure Items

A data structure consists of a set of values, some constructors for denoting
them, some operations and predicates. The constructors, the operations and
the predicates may also have arguments of other types, thus a data struc-
ture may have other data structures as subparts. Constructors and operations
may be total (always defined), or partial (denoted by a ‘7’ symbol). Construc-
tors and operations may be constants (considered as 0-ary operations), and

40

1.*

Constituent feature
foatures Data structure

/\ .

parts
Constructor Operation Predicate
Fig. 28. Data Structure Item
Constructor definition Predicate definition
name: String name: String
argTypes:Sequence(Type) argTypes:Sequence(Type)
c-features Operation definition p-features
name: String
argTypes:Sequence(Type)
Property resultType: Type Data structure specification
properties o-features parts

O

Data structure property-oriented specification

name: String

Fig. 29. Data Structure Property-Oriented Specification

constants are always defined (or total).

In our setting the data structures are seen formally as many sorted algebras,
or structures, and the modelling is quite trivial: the carriers model the set of
values, and functions (of course of different kinds) model constructors, opera-
tions and predicates. Thus, data structures may be characterized by their con-
structors, operations and predicates, and so they will have three corresponding
kinds of constituent features. In Fig. 28 we summarize the constituent features
and parts of the data structures. Let us recall that in the property-oriented
case, the listed constituent features are necessary (but not restrictive), while
in the constructive case they are fully described (and thus restrictive).

5.2 Property-oriented specifications

5.2.1 Specification of parts and constituent Features and cell schemas

The property-oriented specification method for data structures we propose is
a specialization of GPSm introduced in Sect. 2.2. After having identified the
parts and constituent features (Fig. 29 with the visual presentation in Fig. 30),
the properties are expressed using the cell filling approach.

The constituents of data structures are of three kinds, constructors, predicates

41

DataStructureName

Data; || constructors
con(Typel, ..., Typen) or con(Typel, ..., Typen)?

predicates
pr(Typel, ..., Typen)

Data, | operations
op(Typel, ..., Typen): type or op(Typel, ...,Typen): ? Type

Fig. 30. Visual presentation of a Data Structure: parts and constituent features

Two constructors Constructor and Two operations
predicate
def2: Set(DataProp) def5: Set(DataProp)
ident2: Set(DataProp) truth1: Set(DataProp) value3: Set(DataProp)
c truct Constructor o i Operatio_n and
onstructor and operation peration predicate
defl: Set(DataProp) def3: Set(DataProp) def4: Set(DataProp) truth-def: Set(DataProp)
identl: Set(DataProp) valuel: Set(DataProp) value2: Set(DataProp) truth-value: Set(DataProp)
[[[|

[[
Two predicates § ; Predicate

truth3: Set(DataProp) Cell schema truth2: Set(DataProp)

Fig. 31. Data Structure: Cell schemas

def2 Conditions on the relationships between the definedness of con; with that of
cong (required only for partial constructors)

cond
where cond includes atoms of the form def(con;(arg;)) and of the form

def(conz(argz))

tdent2 The values represented by con; are/are not identified with values repre-
sented by cong:

when all defined cond

where cond includes atoms of the form con; (arg;) = conz(args)

Fig. 32. Two constructors (con;:cony) cell schema

and operations, and so we have to consider nine kinds of cells; and we present
their schemas in Fig. 31, and the details in Fig. 32 and 33, and in Appendix D.
Let us note that, as regards constructors and operations, the properties to
be described should in particular address both definedness and the values
denoted/returned. In CASL, “=" is the strong equality, characterized by the
fact that ¢t = t" iff either both terms are defined and denote the same value or
both are undefined. Thus a property ¢ = ¢’ in the case (¢ is defined implicitly
requires also that ¢’ must be defined. In order to avoid the undefined case, the
premises of many properties used in the cell schemas require the definedness
of all the elements involved in the property, thus their form is

42

truth-def Conditions on the relationships between the truth of pr and the defined-
ness of op (required only for partial operations)

when all defined cond

where cond includes atoms of the form pr(arg;) and of the form def(op(args))
truth-value Conditions on the relationships between the truth of pr and the values

returned by op:

when all defined cond

where cond includes atoms of the form pr(arg;) and of the form op(args)

Fig. 33. Operation and predicate (op:pr) cell schema

if (and 45 5 term appearing in cond def(t)) then cond.
Because properties having the above form may be quite long, they are usually

written in a more compact way as:
when all defined cond

5.2.2 FExample: a Property-Oriented Specification of Floor

We specify the Floor data structure used in the lift related examples.

Floor

ground, top

_ above _(Floor,Floor)

next(Floor): ? Floor
previous(Floor): ? Floor

shows that the constructors are ground and top, the predicate is above, and the
(partial) operations are next and previous. Moreover, Floor does not use any
other data structure. The properties given below were worked out using our
cell filling approach, then redundant properties were removed and the result
was reorganized.

— There exists a ground and a top floor, and they are different.
ground # top
— above 1s total order over the floors with top as maximum and ground as
minimuimn.
if f # ground then f above ground
if f # top then top above f
fi1 =f20r f; above f5 or f, above f,
not f above f
if f; above f5 then not [, above f;
if f; above f5 and f, above f3 then f; above f;

43

— next returns the floor immediately above a given one, if it exists, i.e., there
is no floor between f and neat(f)."?
def(nezt(ground)) and not def(next(top))
def(nezt(f)) iff top above f
when all defined nezt(f) above f and

not exists f; e (next(f) above f; and f; above f)

when all defined nezt(previous(f)) = previous(next(f)) = f

— Properties on previous are similar to those of nezt, and are given in Ap-
pendix E.

5.2.3 CAsL View

Here we present the CASL'* corresponding version of our property-oriented
specification of data structures introduced in Sect. 5.2.

Let poSpec be a property-oriented specifications of data structures having the
form described in Fig. 29, and assume that

e poSpec.parts = {ds;, ..., ds;} are the parts, and DS;, ..., DS; the corre-
sponding CASL specifications;

e poSpec.c-features = {con;, ..., con,} are the constructors;

e poSpec.o-features = {op;, ..., op,, } are the operations;

e poSpec.p-features = {pr;, ..., pr,} are the predicates.

Below we give the CASL specification corresponding to poSpec (some construc-
tors and operations may be partial, which is denoted by ‘?’, cf. Sect. 1.2).

spec poSpec.name =
DS; and ... and DS; then
type poSpec.name = con;.name(con;.argTypes) |...| con,.name(con,.argTypes)
ops op;.name : op; .arg Types — op; .resType

0P, -name : op,,.argTypes — op,,.resType
preds pr;.name: pr;.argTypes

prp.name : pr,.arg Types
axioms
formulae corresponding to the cell fillings

The CAsSL formulae corresponding to the cell fillings for data structures are
quite obvious, since their abstract structure is the same, the only difference is
in the concrete syntax.

13 The first two axioms are redundant with the third, we kept them just to show
the processing with the method.
14 Here we do not need to use the CASL-LTL extension.

44

5.3 Constructive specifications

5.3.1 The specifications characteristics

The constructive specification method for data structure is similar in many
respects to the property-oriented one introduced in Sect. 5.2. First, we deter-
mine the used data structures (the parts), the constructors, the predicates and
the operations (the constituent features). Then, we state when the construc-
tors and operations are defined, which constructors represent the same values,
which are the values returned by the operations and when the predicates hold.
That is done by means of groups of conditional rules defined in the following.

Recall (cf. Sect. 1.2, the spirit of the CASL free construct) that our constructive
specifications by conditional rules follow the basic principle that “something
is true in the specified item if and only if it can be deduced by the rules”. Thus
a partial constructor/operation is undefined except if there is a rule explicitly
stating that it is defined. In the same way, a predicate does not hold except
if there is a rule explicitly stating that it holds.'® Let us also remind that
constructors, operations and predicates are strict.

con-def For each constructor con, a set of conditional rules expressing when
con is defined:

def(¢)) then def(con(pats))

where pos-cond is a conjunction of positive atoms in which the operations of

16 “and pats (for patterns) are expresssions

if pOS—COﬂd (pats) (and is a term appearing in pats
the data structure do not appear
built only by constructors and variables
The above restrictions on the form of the rules should help avoid to im-
plicitly introduce the definedness of other combinations of constructors and
should help the specifiers have a clear idea of when the constructor is de-
fined.
con-tdent For each constructor con, a set of conditional rules expressing in
which cases it represents values that may be represented also by using other
constructors:
when all defined if pos-cond(pats; ,patsy) then con(pats;) = patss
where pos-cond is a conjunction of positive atoms where the operations of
the data structure do not appear'”, and pats;, pats, are expresssions built
only by constructors and variables.
Note that all constructors represent different values except if there is
a rule explicitly stating that they are the same. If this part is empty all

151n a 2-valued logics, we do not address the issue of undefinedness of a predicate
since it means it does not hold.

16 To our knowledge, this “constructors only” constraint needs to be relaxed in some
exceptional cases, as our example in Sect. 5.3.2.

17 Ihid.

45

| Constructor definition | | Predicate definition

* *

c-features p-features

| Conditional rule | |Operation definition | | Data structure specification

* * *

conditional-rules o-features parts

0

Data structure constructive specification

name: String

Fig. 34. Data Structure Constructive Specification

constructors denote different values.
op-def For each operation op, a set of conditional rules expressing when op
is defined:
if pos-cond(pats) (def(¢)) then def(op(pats))

where pos-cond is a conjunction of positive atoms, and pats are expresssions

and { is a term appearing inpats

built only by constructors and variables.
op-val For each operation op, conditional rules stating which are the values
returned by op:
when all defined if pos-cond(pats,expr) then op(pats) = expr
where pos-cond is a conjunction of positive atoms, and pats are expresssions
built only by constructors and variables.
pr-truth For each predicate pr, a set of conditional rules stating when pr
holds:
when all defined if pos-cond(pats) then pr(pats)
where pos-cond is a conjunction of positive atoms, and pats are expresssions
built only by constructors and variables.

The form of the constructive specifications of data structure is summarized in
Fig. 34 (details of the constructor, predicate and operation definitions are as

in Fig. 29).

The visual presentation of the parts and the constituent features of a data
structure constructive specification is the same as for the property-oriented
ones, see Fig. 30. The conditional rules belonging to a con-def slot are visu-
ally presented as follows. First we group together all rules whose consequences
have the same form; then each group, say, e.g., if cond; then def(con(pats)), ...,
if condg then def(con(pats)), will be visually presented by def(con(pat)) if | -

condK

Similarly, we represent the rules belonging to a slot op-def; whereas each
group of rules belonging to a slot pr-truth having the same consequence will

46

be presented by pr(pat) holdsif | -

For what concerns the rules belonging to a op-wval slot, we first group together
all rules whose consequences (they are equations) have the same left side; then
each group, say, e.g.,

if cond; then op(pats) = expry, ..., if condg then op(pats) = exprg,

Epl if eondl

will be then visually presented by op(pat) = | - .

;pK if eondK

Similarly, we represent the conditional rules in a con-ident slot.

The visual ordering of the rules should help detect lacking or overlapping
cases, which may lead, e.g., to define two different values of an operation for
the same argument. As usual, we then drop repeated formulae, after having
checked the absence of contradictions, and slightly rearrange the others to
improve readability.

59.3.2 FExample: a Constructive Specification of Floor10

Here we consider the floor data structure with a maximum of ten floors (used

in Sect. 3.3.2 and Sect. 4.3.2).

Floor10

ground
next: ? Floor10

_ above _(Floor10,Floor10)

second, ..., ninth, top: Floor10
previous(Floor10): ? Floor10
ord(Floor10): Nat

shows the constructors, ground and next, the predicate above, and the opera-
tions second, ..., ninth, top, previous and ord. The conditional rules defining
the various constituents of Floorl0 are given below, since there are quite sim-
ple, we do not give a visual presentation.

— Definedness of constructors (only next is partial)
def(next(f)) if ord(f) < 10 '®

— Operations second, ..., ninth are just shortcuts.
second = next(ground)

top = next(ninth)

18 Here, the “constructors only” constraint (cf. footnote 16) is relaxed for legibility
sake, and we allow the use of ord.

47

— Definition of the partial operation previous
def(previous(f)) if ord(f) > 1
previous(next(f)) = f if def(nezt(f))
— Definition of the total operation ord
def(ord(f))
ord(ground) =1
ord(nezxt(f)) = ord(f) 4+ 1 if def(next(f))
— Definition of the predicate above
next(f) above f
if f; above fo» and fs above f; then f; above f3

It is interesting to compare this with the Floor example given in Sect. 5.2.2.
Note that the constructors are not the same to start with, and that we do not
need to express the same properties.

5.3.3 CAsL View

The CASL corresponding version of our constructive specifications of data
structure is quite similar to that for the property-oriented case; the only dif-
ference is that in this case the resulting algebraic specification has an initial
semantics (this results from using the free construct) instead of a loose one.

spec conSpec.name =
DS; and ... and DS; then

free {
type conSpec.name ::= con;.name(con;.argTypes)? | ...| con,.name(con,.argTypes)
ops op;.name : op; .arg Types —7 op; .resType

0P, -name : op,,.argTypes — op,,.resType
preds pr;.name: pr;.argTypes

prp.name : pr,.arg Types
axioms
formulae corresponding to the conditional rules

} end

6 Applying our Formally Grounded Specification Methods to Classes
of Systems (“Problem Frames”)

In Fig. 35 we show by means of a simple UML class diagram how the basic
formally grounded specification methods introduced before can be used to
support the specification of the most relevant problem frames of M. Jackson

(see [19, 20]).

48

| Information System Frame|

data structure

| Control System Frame |

property-oriented
specification method

simple system
property-oriented
specification method

simple system
constructive
specification method

data structure constructive
specification method

structured system
property-oriented

specification method

Translation Frame

Fig. 35. How our specification methods are used for problem frames

6.1 Translation Frame

Inputs
Outputs
Design Domain Requirements

The translation frame domain is given by the Inputs and the Outputs, the re-
quirements are described by the input/output relationship, 10 Relation, and
the design is the Machine. An example of a translation frame problem is a
compiler, where the Inputs are the source programs, the Outputs are the ex-
ecutable programs, the 10 Relation is given by the language and computer
semantics, and the Machine is the compiler.

To develop a software system matching the frame “Translation” using our
method means to specify the various components of the frame as presented
above. Technically, the domain is a pair of data structures, Inputs and Outputs,
which should be specified by constructive specifications following Sect. 5.3;
the 10 Relation may be seen as a data structure having Inputs and Outputs
as parts and a predicate representing O Relation, and can be specified by a
property-oriented specification following Sect. 5.2. Finally the design is seen
as a partial function (or a sequential program or an algorithm) Tran that
associates an element of Outputs with an element of Inputs, and so it is again
a data structure having Inputs and Outputs as subparts and an operation Tran,
that will be specified by a constructive specification following Sect. 5.3.

49

6.2 Information System Frame

\)666 Real World
Sensors i
System Ig?é?:g{gn Information Functioa
x@s Information
Outputs
Design Domain Requirements

To quote [19], “In its simplest form, an information system provides infor-
mation, in response to requests, about some relevant real-world domain of
interest.” The information system frame domain is given by the RealWorld,
the InformationRequests and the InformationOutputs, the requirements are de-
scribed by the InformationFunction, and the design is the System. The Real-
World may be a static domain (e.g., if the system provides information on
Shakespeare’s plays), or a dynamic domain (e.g., “the activities of a currently
operating business” [19]). Here we consider information system frames with a
dynamic domain, so “The RealWorld is dynamic and also active.” [19].

To develop a software system matching the frame “Information System” using
our method means to specify the various components of the frame as presented
above.

The RealWorld is a dynamic system, thus it is specified following Sect. 3.2 but
with some peculiarity corresponding to its particular nature. All its elemen-
tary interactions correspond to signal, throughout some sensors, something
happening inside it that is relevant for the information system. The Infor-
mationRequests and the InformationOutputs are two data structures that are
specified by simply giving their constructive specifications, following Sect. 5.3.

Clearly, InformationFunction to produce the correct information output, given
an information request, should take into account the real world, more precisely
its current state and also its past history as known by the values communicated
by the sensors. Technically, these information may be abstractly represented
by a sequence of sets of elementary interactions (recall that each elementary
interaction corresponds to some value communicated by a sensor). So we can
define it by a standard data structure, HISTORY, whose definition is given once.
Thus to specify InformationFunction means to give a constructive specification
of a particular data structure following Sect. 5.3; such data structure must
have as subparts InformationRequests, InformationOutputs and HISTORY, and
an operation

InformationFunction : History x InformationRequets — InformationQOutputs.

50

Auxiliary

View update: Set(SensorMessage) X View -> View
InfFun: Set(SensorMessage) X View -> Set(SensorMessage)

acceptable: Set(Elementary_Interaction)

. axioms

System

SENSOR(...)

SENSORK(...)
RECEIVE(InformationRequest)
SEND(InformationOutput)

Working(View))
)) [acceptable(i-reqs) and
Working(update(sensors,view)) i-outs = InfFun(i-regs,view)]
Working(view) sensors & i-regs & i-outs

)

Fig. 36. System Specification: elementary constituents, parts and behaviour

To design an “Information System” means to design the System, a dynamic
system interacting with the RealWorld (by receiving the values sensed by the
sensors), and with the users (by receiving the information requests and sending
back the information outputs). We assume that the System:

keeps a view of the actual situation and of the past history of the RealWorld,
updates it depending on the info received by the sensors,
decides which information requests from the users to accept in each instant,

answers to such requests with the appropriate information outputs using its
view of RealWorld,
e immediately receives in a correct way any message sent by the sensors of

the RealWorld,

e immediately handles the received informationrequests.

The design of the System will be specified by a constructive specification of
a simple system following Sect. 3.3. The elementary interactions are those
corresponding to receive some info on some sensors, to receive information
requests and the send out information outputs. The unique state constructor
is Working parameterized by a real world view. This specification is visually
reported in Fig. 36, where VIEW is a data structure describing in an appropri-
ate way (i.e., apt to permit to answer to all information requests) the System’s
views of the possible situations of the RealWorld. Thus, to specify the System
it is sufficient to give:

o the specification VIEW;
e the axioms defining the operation update describing how the System updates

51

Sensors
i A
Main Part [
o
™1 cController
a| A Orders
S (4
3] 3
m —
. - c o Controller
(Desired Behawour)— '3 9]
E (2]
5 D
o User
Y Requests
AN
Vad
User >
| controller
Reports
Controlled Domain
. . System .
Requirements Domain y Design

Fig. 37. Control System Frame Schema

its view of the RealWorld when it detects some events;

e the axioms defining the predicate acceptable describing which sets of re-
quests may be accepted simultaneously by the System;

e the axioms defining the operation Inf Fun describing what is the result of
each information request depending on the System’s view of the the Real-
World situation.

That means to give a constructive specification of a data structure, AUXILIARY
in Fig. 36, having as parts InformationOutputs, InformationRequests, VIEW and
the predicate acceptable and the operations update and Inf Fun.

6.3 Control System Frame

We report the general schema of the control system frame following Jackson’s
book [19] in Fig. 37. The controlled domain may include the users of the
thing controlled by the software that we are going to develop, thus we call
the “controlled thing” the main part (shortly indicated as MainPart in the
following). Thus the first step is to see precisely how the considered problem
matches the “control system frame”.

To use our specification methods to support the whole development of a soft-
ware system matching the frame “Control System with User” means to specify
System and Desired Behaviour in Fig. 37; clearly some parts of this specification
correspond to the requirements, some other to the domain, and the remaining
to the design.

Technically, System is a structured system and Desired Behaviour is a set of
additional properties over it. We specify System following Sect. 4.2, clearly

52

taking into account its peculiarity, and splitting its properties in those desired
(Desired Behaviour) and in those corresponding to its intrinsic nature (the
others). Now, we list the peculiar features of System.

e System has three subsystems, whose types are respectively User, MainPart
and Controller.

e System is closed (i.e., no interactions with the external world, and thus
the label of its transitions will be always the empty set of elementary in-
teractions), for this reason we drop the elementary interaction part in its
specification.

e The only state observers ofSystem are the selectors of the states of the
MainPart and of the User. We do not consider the observer corresponding
to the state of Controller, because we will never express properties about it,
but we will just fully specify when specifying the Controller.

The elementary interactions of the three subsystems are classified into six
categories listed below, and the interactions of any particular category belong
to the two subsystems to whom they are connected in Fig. 37; e.g., Sensors
are interactions of both the MainPart and of the Controller.

Sensors or better the elementary interactions corresponding to sending /receiving
the data collected by the sensors present on the MainPart (precisely MainPart
sends and Controller receives).

Controller Orders or better the elementary interactions corresponding to send-
ing/receiving orders to modify MainPart (precisely Controller sends and Main-
Part receives).

User Requests or better the elementary interactions corresponding to send-
ing /receiving the requests of the User to for Controller about the wanted
behaviour of the MainPart (precisely User sends and Controller receives).

Controller Reports or better the elementary interactions corresponding to send-
ing/receiving the reports on what is going on in the MainPart sent (precisely
Controller sends and User receives).

User Orders or better the elementary interactions corresponding to sending/
receiving orders from the User to modify MainPart (precisely User sends and
MainPart receives).

Domain Reports or better the elementary interactions corresponding to send-
ing/receiving the reports on what is going on in the MainPart (precisely User
sends and MainPart receives).

The three subsystems behave in a truly parallel way and cooperate only by
performing simultaneously the shared interactions of the above six categories.
Thus the synchrl and the loc-glob1 properties of System are standard and

do not depend on the particular case.

The used data structures, the elementary interactions of the subsystems and

33

- N R
MainPart
Data1 (Sensors Controller
. MAIN PART Controller Order
state observers
| Data, | ’
Datar
Domain Reports User Orders
N
(User User Requests
L USER state observers Controller Reports

J —

Fig. 38. Visual presentation of the structure of a control frame

the architecture diagram of System are collected in a unique visual presenta-
tion, sketched in Fig. 38, where D1, ..., Dr are the used data structures.

The specification of the MainPart is obtained by specializing the method for
property-oriented ! specifications of simple systems of Sect. 3.2. Some parts of
the specification of MainPart have been already determined (e.g., the elemen-
tary interactions, already determined together those of the other subsystems),
many are standards (e.g., the incompatibility between elementary interactions
whose kind is different, as a user order and a controller order), and other have
a particular form (e.g., the properties about a Controller order, where only the
post-condl1 slot is not empty).

Similarly, also the specification of the User is obtained by specializing the
method for simple system of Sect. 3. Let us note that, while concentrating
on properties that are relevant to the system, often this specification will be
very short (especially in the case of a human user). However, it may reflect
some rules of the directions for use. Indeed, the system to be developed may
be guaranteed under the condition that the directions for use are followed by
the user.

The Desired Behaviour, that is the final aim of the system that we have to
develop, i.e., the system requirements, consists technically of a set of particular
properties on System of Fig. 37.

e post-condl properties for all local moves User: UR with UR user request

e pre-condl and witall properties for all local moves User: CR with CR
controller report

e properties on the state observers corresponding to the states of the MainPart
and of User

e properties on the relationships between the state observer corresponding to
the states of the MainPart and the one to the states of User

The Controller (i.e., the design part of the frame) should be specified by a

19Tn the case that we fully know how MainPart, for example, when it is a mechanical/
electromechanical appliance, we may instead give a constructive specification.

o4

constructive specification following the method proposed in Sect. 3.3 if it is
a simple system or the one proposed in Sect. 4.3 otherwise; but with the
particularity that the elementary interactions have been already determined.

7 Requirement Specification of an Internet Based Lottery Appli-
cation

7.1 The problem

We have to develop an application ALL (ALgebraic Lottery) to handle al-
gebraic lotteries. The lotteries are said “algebraic” because the tickets are
numbered by integer numbers, the winners are determined by means of an
order over such numbers, and a client buys a ticket by selecting its number.
Whenever a client buys a ticket, he gets the right to another free ticket, which
will be given at some future time, fully depending on the lottery manager deci-
sion. The number of a free ticket is generated by the set of the numbers of the
already assigned tickets following some law. Thus a lottery is characterized by
an order over the integers determining the winners and a law for generating
the numbers of the free tickets. To guarantee the clients of the fairness of the
lottery, the order and the law, expressed rigorously with algebraic techniques,
are registered by a lawyer before the start of any lottery.

The application will be Internet based, thus the tickets will be bought and
paid on-line using credit cards with the help of an external service handling
them. Possible clients must register with the lottery system to play; and clients
access the system in a session-like way. An external service takes care of the
authentication of the clients. The winners are informed by email messages,
and email is used also to inform the registered clients of the start and of the
end of the various lotteries.

Requirement Specification: The technique

We use our method for property oriented specifications of structured systems
(see Sect. 4.2) to specify the requirements for ALL. Indeed, ALL together with
the external entities interacting with it, named in the following context entities
(e.g., the manager and the email system) is a structured system, which we

name SYSTEM.

ALL and all the context entities will be modelled by simple systems, because
there is no need to investigate the internal structure of the context entities and
of ALL. Indeed, for the former, only how they interact with ALL is relevant,

39

and for what concerns ALL, to give it a structure in terms of cooperating
subsystems means to fix already in the requirement phase an architecture for
it, mixing the early design phases with the requirement one.

SYSTEM is a closed system, i.e., it cannot interact with its external world,
and thus it has no elementary interactions. Moreover, all possible cooperations
among its subsystems are binary ones between ALL and one context entity,
and do not result in an elementary interaction of SYSTEM.

ALL is the most relevant of the subsystems of SYSTEM, and its specification
is more complex of those of the other ones. Its properties are exactly the
requirements for the application that we have to develop. Notice that using
our specification method we express all the requirements for the application
to be developed (ALL), but also what we either assume or know about the
context entities, thus making clear which is the context of the application.

Because the specification of SYSTEM is quite complex, to make it more read-

able we decided:

e to collect all the specifications of data structures appearing in the specifi-
cation of SYSTEM (parts of it and of its subsystems) together in a unique
diagram Data View, and assume that they are implicitly added as parts
whenever needed;

e to collect together in a Context View the diagram showing the parts and con-
stituents features of SYSTEM and the one showing the cooperations among
its subsystems; indeed such diagrams show the entities appearing in the con-
text of the application and how it interacts with them. The specifications
of the context entities are given separately.

e to allow to define auxiliary/additional state observers;

e to use in properties a derived if-then-else logical combinator:

if cond then cond,; else cond, stands for
(if cond then cond;) and (if not cond then cond,);

e to use in properties a derived “ is impossible” combinator:

cond is impossible stands for
if cond then Fulse;

o to simply write “all incompatible” in the elementary interaction compart-
ment, whenever all the elementary interactions of a system are mutually
pairwise incompatible.

e to synchronize only elementary interactions with the same name and the
same arguments; and thus it is sufficient to decorate any cooperation icon
by a list of elementary interaction names. To further improve the readabil-
ity, an elementary interaction XX owned by both two subsystems, say S1
and S2, which will be synchronized will be named either S1_XX or 52_XX
depending on which of the two subsystems is the responsible of the resulting
cooperation.

56

Requirement Specification: The Artifact

Here we report only the Data View, the Context View, the specification of one of
the context entities (the authorization service) and the group of requirements
about the registration of a client, the remaining parts of the requirement
specification are in the Appendix F.

Data View

CreditCardData

| Email | | String | | Int I%I Set(Int) | oK()
v

Clientinfo Winninaord FreeTicketLaw
InningQOraer
oK0 Number(FreeTicketLaw,FiniteSet(Int),Int,Int)
o newNumber(FreeTicketLaw,FiniteSet(Int),Int,Int):
emailof: Email lessThan(WinningOrder,Int,Int) Fi

For each winning order wo, lessThan(wo,_,_) is a total order over the integer.
lessThan(wo,i,1)
if lessThan(wo,n;,ns) and n; # ny then not lessThan(wo,ns,ny)
if lessThan(wo,n;,ns) and lessThan(wo,nz,ns) then lessThan(wo,n;,ng)

For each free ticket law ftl, newNumber(ftl,ns,d,m) returns a set containing m
integer numbers, between -d and d, and not belonging to ns.
if newNumber(ftl,ns,d,m) = ns’ then
size(ns) = m and nsN ns = {} and
for all z eif z € nsthenz <dand-d<z

Context View

System

[CreditCardService)9 CreditCardService ALL
(Authentication J% (ELa”) (ALL) (mgﬂ)

ClClient) ... Cn:Client Manager

N 0=<n J

57

(Client) (CreditCardService)

CL_REGISTER
ALL_REGISTERED
ALL_FAILED_REGISTRATION
CL_CONNECT ALL_CHECK_CARD
ALL_CONNECTED - —
- ALL_CHARGE
CL_DISCONNECT —
ALL_DISONNECTED Ccs_OK_CARD
- Ccs_WRONG_CARD

ALL_ERROR —
= Ccs_CHARGED
CL_AVAILABLE _TICKETS Ccs_NOT_CHARGED

CL_BUY_TICKET
ALL_ARE_AVAILABLE
ALL_CONFIRM_TICKET
ALL_GIVE_FREE_TICKET

(Authentication} O (ALL) O { Manager)

ALL_REGISTER MAN_START_LOTTERY

ALL_CHECK MAN_GIVE
AUTH_OK MAN_DRAW
AUTH_W RONG . ALL SEND
Authentication Service Specification
(7\

Authentication

ALL_REGISTER(ClientInfo)
ALL_CHECK(ClientInfo)
AUTH_OK(ClientInfo)
AUTH_WRONG(ClientInfo)

The authentication service is always ready to accept a request to register a client.
in one case next ALL_REGISTER(c¢i) happen

The authentication service never confirms a registration of a client. This comments
is motivated by the fact that during the cell filling activity, we found that a slot

of a cell (precisely the postconditon of the elementary interaction ALL_REGISTER)
was empty.

The authentication service cannot send out simultaneously a positive and a
negative answer to a request to check a client.
AUTH_OK(ci) incompatible with AUTH_WRONG(ci)

The authentication service is always ready to accept a request to check a client.
in one case next ALL_CHECK(ci) happen

The authentication service after receiving a request to check a client will inform
that either is ok or not.
if ALL_CHECK(ci) happen then in any case eventually

AuTH_OK(ci) happen or AUTH_-WRONG(ci) happen

a8

The Requirements for the Application ALL

4)
ALL
CL_REGISTER(ClientInfo,CreditCardData) ALL_REGISTER(ClientInfo)
ALL_REGISTERED(ClientInfo,CreditCardData) ALL_CHECK(ClientInfo)
ALL_FAILED_REGISTRATION(ClientInfo,CreditCardData) AUTH_OK(ClientInfo)
CL_CONNECT(ClientInfo) AUTH_WRONG(ClientInfo)

ALL_CONNECTED(ClientInfo)

CL_DISCONNECT(ClientInfo)

ALL_DISONNECTED(ClientInfo)

ALL_ERROR(Clientinfo)

CL_AVAILABLE_TICKETS(ClientInfo) ALL_SEND(Email,String)
ALL_ARE_AVAILABLE(ClientInfo,FiniteSet(Int))

CL_BUY_TICKET(ClientInfo,Int)

ALL_CONFIRM_TICKET(ClientInfo,Int)

ALL_GIVE_FREE_TICKET(ClientInfo)

ALL_CHECK_CARD(CreditCardData) MAN_START_LOTTERY(WinningOrder,FreeTicketLaw, Int)
ALL_CHARGE(CreditCardData,Int) MAN_GIVE(Int)
CCS_OK_CARD(CreditCardData) MAN_DRAW

CCS_WRONG_CARD(CreditCardData)
CCS_HARGED(CreditCardData,Int)
CCS_NOT_CHARGED(CreditCardData,Int)

lotteryRunning registered(Clientinfo)
dimension: Int connected(ClientInfo)
winningOrder: WinningOrder creditCard(ClientInfo): ?CreditCardData
freeTicketLaw: FreeTicketlaw freeTickets(ClientInfo): ?Int
\owner(lnt): ? Clientinfo)

Auxiliary/derived state observers
assignedTickets: FINITESET(INT)
returns the set of the numbers of the tickets already assigned to some client
(i.e., bought or given away by the manager).
i€ assignedTickets iff def(owner(i))
available Tickets: FINITESET(INT)
returns the set of the numbers of the still available tickets.
i€ available Tickets iff
i < dimension and i > -dimension and i¢ assignedTickets
winners: FINITESET (Int)
returns the set of the numbers of the winning tickets, which are the first K
numbers w.r.t. the current winning order, where K is the dimension of the
lottery module 5000.
size(winners) = dimension mod 5000 and
for all n;,ns e
if n; € winners and lessThan(winningOrder,n;,ns) then ny€ winners

A client registers with ALL

ALL cannot handle two different registration requests simultaneously.
CL_REGISTER(ci,ccd) incompatible with CL_REGISTER(ci’,ced’)

29

If ALL receives a registration request from a client, then
if the presented personal information or credit card data are wrong, or
the client is already registered, or
there is another registered client with the same email,
then
ALL informs the client that his registration has failed
otherwise,
ALL checks the credit card with the credit card service.
If the answer from the credit card service is positive, then
ALL registers the client with the authentication service,
and informs him that has been registered;
otherwise ALL informs him that his registration has failed.
if CL_REGISTER(ci,ccd) happen then
if (not ok(ci) or not ok(ced) or registered(ci) or
exists ci’ s.t. registered(ci’) and emailOf(ci) = emailOf(ci’)) then
in any case next ALL_FAILED_REGISTRATION(ci,ccd) happen
else
in any case next ALL_CHECK_CARD(ccd) happen and
(eventually Ccs_Ok_CARrD(ced) happen and
next ALL_REGISTER(ci) happen and
next ALL_REGISTERED(ci,ccd) happen
or
eventually Ccs_-WRONG_CARD(ccd) happen and
next ALL_FAILED_REGISTRATION(ci,ccd) happen)

ALL is always ready to accept registration requests by the clients.
in one case next CL_REGISTER(ci,ccd) happen

If the credit card of a client is recorded, then the client is registered, and the data
about such card are correct.

if def(creditCard(ci)) then registered(ci) and ok(creditCard(ci))

The credit card of a client can never be changed.
creditCard(ci) # creditCard (ci) is impossible

If ALL receives a message about the validity of a card from the credit card service, then
it has asked to check such card.
if (Ccs_OK_CARD(ced) happen or Ccs_WRONG_CARD(ccd) happen) then

in any case sometime ALL_CHECK_CARD(ccd) happened

There are no properties concerning ALL_REGISTER; this means that ALL assumes
that the authentication service always accept its requests, and that it never sends
back a confirmation of the registration.

If ALL asks the authentication service to check a client, then it must be able to

60

receive its answer (positive or negative).
if ALL_CHECK(ci) happen then in any case eventually
AuTH_OK(ci) happen or AUTH_-WRONG(ci) happen

If ALL receives a message about the identity of a client from the authentication
service, then

it has asked to check such client.
if (AuTH_OK(ci) happen or AUTH_-WRONG(ci) happen) then

in any case sometime ALL_CHECK(ci) happened

If a client is informed that he has been registered, then
he made a registration request, and
now is registered together with his credit card data, and
has no right to receive any free ticket.
if ALL_REGISTERED(ci,ccd) happen then
in any case sometime CL_REGISTER(ci,ccd) happened and
registered'(ci) and creditCard (ci) = ced and freeTickets'(ci) =0

If ALL asks the credit card service to check a card, then
it will be able to receive its answer (positive or negative).

if ALL_CHECK_CARD(ccd) happen then in any case eventually
Ccs_Ok_CarD(ced) happen or Ccs_WRONG_CARD(ced) happen

If a client is informed that his registration request is failed, then
he made a registration request.

if ALL_FAILED_REGISTRATION(ci,ccd) happen then
in any case sometime CL_REGISTER(ci,ccd) happened

If a client is registered, then a credit card data and the number of free tickets
which it may receive are available.

if registered(ci) then def(creditCard(ci)) and def(freeTickets(ci))

Only ALL, as a consequence of a request of the client, may register a client.
if not registered(ci) and registered(ci) then ALL_REGISTERED(ci,ccd) happen

Once a client is registered he cannot be cancelled.
registered(ci) and not registered'(ci) is impossible

8 Conclusions, Related and Further Work

In this paper we have presented an attempt to design a basis for software
development methods that are formally grounded, shortly FG. By formally
grounded we mean methods

— which have all the good properties of those commonly used (friendly nota-

61

tion based on simple intuitive visual metaphors, easy to understand and to
learn, relevant for real applications, providing precise and helpful guidelines,
DR
— but where any used specification has a direct formal semantics (not to be
shown to the users) based on well defined underlying formal models,
— and also where the pragmatic characteristics of the first point have been
determined by the underlying formal foundations.

Notice that by formally-grounded we intend more than just to have a for-
mal semantics. 2 We mean that the underlying concepts are reflected in the
method and used as such (although they are distilled to the potential user
through methodological guidelines and nice visual notations).

As a formal basis for grounding our methods we have chosen the algebraic
specification language CASL [23] and its extension for behavioural/dynamic
specifications CASL-LTL [26]. Reasons for this choice are that from works on
algebraic specifications, “foundations have been laid down for a neat formal
treatment of requirement and design specifications, including neat semantics”
[8]. Then, the CASL language, resulting from a common effort of the scientific
community in this area, “encompasses all previously designed algebraic spec-
ification languages, has a clean, perfectly designed semantics” [8]. Finally, its
goal is a family of related extension and restriction languages.

Our intention was to investigate if this idea is feasible, and so we proceeded
in a quite systematic way, so as to handle any possible case and to exhibit
how to produce the specifications (we do not just to give some sample FG
specifications). Our previous experiences suggested that the various activities
in a development process are based on the “building-bricks” tasks of spec-
ifying/modelling software artifacts of different nature at different levels of
abstractions. So we have proposed some methods for developing the basic
specification/modelling blocks for data structures, simple systems (just dy-
namic interacting entities in isolation, e.g., sequential processes), and struc-
tured systems (communities of mutually interacting entities, simple or in turn
structured). We also address two kinds of specifications, the more abstract
property-oriented ones, and the more concrete constructive ones. To present
our specification method for these different cases, we have followed the con-
ceptual schema of [4], where the distinction between the chosen specification
formalism and all the other ingredients are explicitly presented.

To try to evaluate the strength and the applicability of our proposal we have
used three of the M. Jackson problem frames [19, 20] as a kind of benchmark

20For example, a classical imperative programming language that has a formal
semantics based on rewriting rules is not formally grounded on rewriting in our
terms; indeed, users develop programs thinking in terms of assignments and not of
rewrites.

62

(see [14, 15] and Sect. 6 for a summary). The result of this experiment is that
all the specifications required to cope with these problem frames (i.e., specifi-
cations concerning the problem domain, the requirements and the design) can
be given using our method. For each case, all relevant aspects of the frame
may be satisfactorily expressed, through user friendly presentations, while the
corresponding underlying formal specifications, suitable for possible formal
analysis, are available. We have made another experiment concerning the
specification of the requirements for an application for running Internet based
lotteries see Sect. 7. The same case study has been used by one of the authors
to present a UML-based precise method [6], quite different from the RUP
[24]. Interesting enough, the development of the formally-grounded specifica-
tion helped finding some small errors in the UML based one and highlighted
some peculiar aspects of the specified requirements that were less obvious
in the UML one. On the other side, the FG specification could express all
the relevant properties of the considered application, in a different style, not
scenarios based and not object-oriented, but in a property oriented fashion.
Another difference between the two approaches is that in the FG one any data
used in the application is naturally picked up and explicitly specified (in FG,
email addresses , Sect. 7, are a data structure, whereas in the UML one [6, 7]
they are just strings) and so less type mismatches should be possible.?! We
have used the same case study and the two approaches in student projects,
and the results were that the levels of the UML were quite different, including
some very bad ones, whereas the FG specifications were quite homogeneous as
regards the quality level, and quite similar. We think this is probably due to
the fact that our method provides precise detailed guidelines.

Another point we would like to recall is how this work on FG methods may also
result in the development of new specification/modelling techniques, perhaps
based on new paradigms, to be integrated in practical common methods. For
example, our method is not object-oriented but active-entities oriented (or
also agent-oriented), and offers a new kind of visual diagrams to present the
behaviour of active entities (e.g., processes or agents), the behaviour diagrams
(see Sect. 3.3). These new diagrams can be the basis for an extension of the
UML statecharts (see [25]) overcoming their limitation to model only reactive
behaviour. Also the new cell-filling technique for finding the properties, used
here to find the axioms for the underlying logical-algebraic specification, may
be at the basis of rigorous techniques for generating precise UML models,
or for their inspection, to help to check whether all aspects of the modelled
system have been considered.

In this paper we propose some methods grounded in a formal notation, with
the aim of having some of the benefits of using formal methods available

21 We would like to recall that an undetected type mismatch was one of the many
concatenated facts causing the disaster of the Ariane 5.

63

within practical usual development methods, trying to reduce the impact of
all the well-know disadvantages of their use (as exotic notation, and hard
underlying formal concepts based on complex mathematics). This approach is
quite new and so there are not, for what we know, similar approaches, except
for works by the authors, as the JTN (a formally grounded visual notation
for the design of Java targeted applications see [16]); see also [8] for further
considerations on our view of the relationships between formal and practical
used methods. However, we would like to mention works that address issues
complementary to ours, e.g., how to write readable specifications in CASL
[32], avoiding semantic pitfalls (also addressed in the CASL reference manual
[11]), how to use/combine observability concepts for writing specifications [10],
guidelines for the iterative and incremental development of specification [12].

Most of the work in the literature concerning the combination of formal meth-
ods with practical ones follows different approaches. A lot of approaches match
the following pattern “take some practical more or less precise notation, e.g.,
UML, select a subset (usually small) of it, give this subset a formal semantics
either directly or by translation into some formal notation”. In many cases the
final aim is to allow to use the good verification/validation tools associated
with the chosen formalism. For example, for what concerns UML this pattern
may be found instantiated with a large variety of formalism (we just cite one
nice paradigmatic example [21], for more references look at [29]). A more re-
cent pattern is the following “select a subset of the specifications given using
some formalism and show that they correspond/can be presented as particular
UML diagrams” (e.g., see [9]). The main differences of these approaches with
ours is that they usually handle a particular kind of specifications applicable
to particular problems to be able to use tools to automatically do some checks
on the specifications.

On another side, many aspects of our FG specifications methods are quite
general and not strictly related to CASL, CASL-LTL and in general to the al-
gebraic specifications, as, for instance, the general GPSm method for property
oriented specifications. So we would like to investigate whether it is possible
to build other FG specification methods starting from different formal basis.
We think that this can be done if we choose some formalism based on other
formal models as stream processing functions (instead of labelled transition
systems) as the one in [13].

For what concerns the general GPSm method for property oriented specifi-
cations, we are working to see if it can be to adapted also to produce UML
models, or models on a (quite substantial) UML subset to which a formal
semantics may be given.

Clearly, to be able to promote the use our proposed FG methods we need to
develop supporting software tools. Such tools should consist of a graphical

64

editor helping to prepare the visual specifications, of a type checker signalling
all static errors, and of wizards implementing the proposed guidelines, this will
be really important for the GPSm method, and obviously of a part offering
the possibility to generate the underlying corresponding formal specifications.
Such tools do not pose any particular problem, and can be developed using
the current technology, only given the necessary material resources. Instead,
we do not plan the development of any specific tool for verification and or
validation, the existing tools for the underlying specifications may be used.

References

[1] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Briickner, P. D. Mosses,
D. Sannella, and A. Tarlecki. CASL : the Common Algebraic Specification
Language. T.C.S., 286(2), 2002.

[2] E. Astesiano, B. Krieg-Briickner, and H.-J. Kreowski, editors. [FIP WG
1.3 Book on Algebraic Foundations of System Specification. Springer Ver-
lag, 1999.

[3] E. Astesiano and G. Reggio. An Outline of the SMol.CS Approach. In
M. Venturini Zilli, editor, Mathematical Models for the Semantics of Par-
allelism, Proc. Advanced School on Mathematical Models of Parallelism,
Roma, 1986, number 280 in LNCS. Springer Verlag, Berlin, 1987.

[4] E. Astesiano and G. Reggio. Formalism and Method. T.C.S., 236(1,2),
2000.

[5] E. Astesiano and G. Reggio. Labelled Transition Logic: An Outline. Acta
Informatica, 37(11-12), 2001.

[6] E. Astesiano and G. Reggio. Knowledge Structuring
and Representation in Requirement Specification. In
Proc. SEKE 2002. ACM Press, 2002. Available at

ftp://ftp.disi.unige.it/person/ReggioG/AstesianoReggio02a.pdf.
[7] E. Astesiano and G. Reggio. Tight Structuring for Precise UML-
based Requirement Specifications: Complete Version. In Proc. of
Monterey Workshop 2002: Radical Innovations of Software and
Systems Fngineering in the Future. Venice - [taly, October 7-11,
2002., LNCS. Springer Verlag, Berlin, 2003. To appear. Available at
ftp://ftp.disi.unige.it/person/ReggioG/AstesianoEtA1103f.pdf.
[8] E. Astesiano, G. Reggio, and M. Cerioli. From Formal Techniques to Well-
Founded Software Development Methods. In Proc. of The 10th Anniver-
sary Colloguium of the United Nations University International Institute
for Software Technology (UNU/IIST): Formal Methods at the Crossroads
from Panacea to Foundational Support. Lisbon - Portugal, March 18-21,
2002., LNCS. Springer Verlag, Berlin, 2003. To appear. Available at
ftp://ftp.disi.unige.it/person/ReggioG/AstesianoEtAl1103a.pdf.
[9] V. Del Bianco, L. Lavazza, M. Mauri, and G. Occorso. Towards UML-

65

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]

[21]

[22]

23]

[24]

based Formal Specifications of Component Based Real-Time Software. In
M.Pezze, editor, Proc. FASE 2003, LNCS. Springer Verlag, Berlin, 2003.
M. Bidoit, R. Hennicker, and A. Kurz. On the Integration of Observability
and Reachability Concepts. In Proc. FOSSACS’2002, LNCS, Berlin, 2003.
M. Bidoit and P.D. Mosses. CASL, The Common Algebraic Specifica-
tion Language - User Manual. LNCS. Springer-Verlag, 2003. To appear.
Available at http://www.cofi.info/CASL UserManual DRAFT.pdf.

B. Blanc. Prise en compte de principes architecturaux lors de la formal-
tsation des besoins - Proposition d’une extension en CASL et d’un guide
méthodologique associé. PhD thesis, 2002.

M. Broy and G. Stefanescu. The Algebra of Stream Processing Functions.
T.C.S., 258(1/2), 2001.

C. Choppy and G. Reggio. Using CASL to Specify the Requirements and
the Design: A Problem Specific Approach. In D. Bert and C. Choppy,
editors, Recent Trends in Algebraic Development Techniques, Selected
Papers of the 1/th International Workshop WADT’99, number 1827 in
LNCS. Springer Verlag, Berlin, 2000. A complete version is available at
ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio99a.ps.

C. Choppy and G. Reggio. Towards a Formally Grounded
Software Development Method. Technical Report DISI-TR-03-
35, DISI, Universita di Genova, Italy, 2003. Available at
ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio03a.pdf.
E. Coscia and G. Reggio. JTN: A Java-targeted Graphic Formal Notation
for Reactive and Concurrent Systems. In Finance J.-P., editor, Proc.
FASE 99, number 1577 in LNCS. Springer Verlag, Berlin, 1999.

G. Costa and G. Reggio. Specification of Abstract Dynamic Data Types:
A Temporal Logic Approach. T.C.S., 173(2), 1997.

H. Gomaa. Designing Concurrent, Distributed and Real-Time Applica-
tions with UML. Addison-Wesley, 2000.

M. Jackson. Software Requirements & Specifications: a Lexicon of Prac-
tice, Principles and Prejudices. Addison-Wesley, 1995.

M. Jackson. Problem Frames: Analyzing and Structuring Software De-
velopment Problems. Addison-Wesley, 2001.

J. Lillius and I Paltor. Formalising UML State Machines for Model Check-
ing. In R France and B. Rumpe, editors, Proc. UML’99, number 1723 in
LNCS. Springer Verlag, Berlin, 1999.

P.D. Mosses. CoFI: The Common Framework Initiative for Algebraic
Specification and Development. In M. Bidoit and M. Dauchet, editors,
Proc. TAPSOFT 797, number 1214 in LNCS. Springer Verlag, Berlin,
1997.

P.D. Mosses, editor. CASL, The Common Algebraic Specification Lan-
guage - Reference Manual. LNCS. Springer-Verlag, 2003. To appear.
Available at http://www.cofi.info/CASL RefManual DRAFT.pdf.
Rational. Rational Unified Process(c) for System Engineering SE 1.0.
Technical Report Tp 165, 8/01, 2001.

66

[25] G. Reggio and E. Astesiano. An Extension of UML for Modelling the
non Purely-Reactive Behaviour of Active Objects. Technical Report
DISI-TR-00-28, DISI, Universita di Genova, Italy, 2000. Available at
ftp://ftp.disi.unige.it/person/ReggioG/ReggioAstesiano00b. pdf.

[26] G. Reggio, E. Astesiano, and C. Choppy. CAsSL-LTL : A CASL Ex-
tension for Dynamic Reactive Systems — Summary. Technical Report
DISI-TR-99-34, DISI — Universita di Genova, Italy, 1999. Available at
ftp://ftp.disi.unige.it/person/ReggioG/ReggioEtAl199a.ps.

[27] G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML
Active Classes and Associated State Machines — A Lightweight Formal
Approach. In T. Maibaum, editor, Proc. FASE 2000, number 1783 in
LNCS. Springer Verlag, Berlin, 2000.

[28] G. Reggio, M. Cerioli, and E. Astesiano. Towards a Rigorous Semantics
of UML Supporting its Multiview Approach. In H. Hussmann, editor,
Proc. FASE 2001, number 2029 in LNCS. Springer Verlag, Berlin, 2001.

[29] G. Reggio, A. Knapp, B. Rumpe, B. Selic, and R. Wieringa (editors).
Dynamic Behaviour in UML Models: Semantic Questions. Techni-
cal report, Ludwig-Maximilian University, Munich (Germany), 2000.
http://www.disi.unige.it/person/ReggioG/UMLWORKSHOP/ACCEPTED.html.

[30] G. Reggio and M. Larosa. A Graphic Notation for Formal Specifications
of Dynamic Systems. In J. Fitzgerald and C.B. Jones, editors, Proc.
FMFE 97 - Industrial Applications and Strengthened Foundations of For-
mal Methods, number 1313 in LNCS. Springer Verlag, Berlin, 1997.

[31] M. Roggenbach and T. Mossakovski. Basic Datatypes in
CasL. CoFI Note [-12 version 0.4.1. Technical report, 2000.
http://www.brics.dk/Projects/CoFI/Notes/L-12/ .

[32] M. Roggenbach and T. Mossakowski. What is a good CASL specification.
In Recent Trends in Algebraic Development Techniques, Selected Papers
of the 15th International Workshop WADT’ 02, LNCS. Springer Verlag,
2003. To appear.

[33] UML Revision Task Force. OMG UML Specification 1.3, 2000. Available
at http://www.omg.org/docs/formal/00-03-01.pdf.

67

A Simple system, cell schemas

In what follows arg stands for generic expressions of the correct types, possibly
with free variables, and cond(exprs) for a generic condition where the free
variables of exprs may appear.

incompat2 (label property) If their arguments satisfy some conditions, then an
instantiation of ei; and one of eis are incompatible, i.e., no label of a transition
may contain both.

ei;(arg;) incompatible with ei,(args) if cond(arg;,args)

Two elementary interactions (ei;:eiz) cell schema

value2 (state property) The results of the observation made by so; and sos on a
state must satisfy some conditions

cond, where both so; and so; must appear in cond

Two state observers (so;:505) cell schema

pre-cond2 (transition property) If the label of a transition contains some instan-
tiation of ei, then the result of the observation made by so on the source state of
the transition must satisfy some condition.

if ei(arg) happen then cond(arg)
where only source state observers may appear in cond(arg) and so must appear
in cond(arg)

post-cond2 (transition property) If the label of a transition contains some instan-
tiation of ei, then the result of the observation made by so on the target state of
the transition must satisfy some condition.

if ei(arg) happen then cond(arg)
where source and target state observers may appear in cond(arg) and so’ must
appear in cond(arg)

vital2 (state property) If the result of the observation made by so on a state
satisfies some condition, then any path starting from it will eventually contain
a transition whose label contains ei. Note that in these properties in any case
may be replaced by in one case and eventually by next.

if cond(arg) then in any case eventually ei(arg) happen
where so must appear in cond(arg)

Elementary interaction and state observer (ei:so) cell schema

68

B Example: Fragment of a Property-Oriented Specification of a
Lift plant

The lift example is introduced in Sect. 1.3, and its property-oriented specifica-
tion is presented in Sect. 3.2.3 where only properties on the orders are given;
here, we present the other properties.

On the sensors

A sensor cannot signal two different values simultaneously.
MoToRr_STATUS(ms;) incompatible with MOTOR_STATUS(msg) if ms; # msy
CaBIN_PosITION(f;) incompatible with CABIN_PosITION(f2) if f; # f»

A sensor always signals the correct data.
if MoTOR_STATUS(ms) happen then motor_status = ms
if CaBIN_PosITION(f) happen then cabin_position = f

A sensor cannot break down, thus it may always be able to signal the correct value.
in one case next MOTOR_STATUS(motor_status) happen
in one case next CABIN_POSITION(cabin_position) happen

On the cabin and motor

If the motor is moving up (down), then the cabin position will change.
if motor_status = up then cabin_position’ = next(cabin_position)
if motor_status = down then cabin_position’ = previous(cabin_position)

The cabin position changes only if the motor is working in the corresponding
versus and the change corresponds to one floor.
if cabin_position # cabin_position’ then
(cabin_position’ = next(cabin_position) and motor_status = up) or
(cabin_position’ = previous(cabin_position) and motor_status = down)

On the users entering/leaving the cabin

At most one elementary interaction of kind TRANSIT may happen each time.
TRANSIT(7) incompatible with TransiT(i') if i # ¢/

The users may enter/leave the cabin only if they are not too numerous, the cabin is
at a floor with the door open and the motor is stopped.
if TrRaNsIT(i) happen then

users_inside+ 1 < 15 and users_inside+ 1 > 0 and

motor_status = stop and door_position(cabin_position) = open

The number of people inside the cabin changes only iff someone enters/leaves it.

if TRANSIT(i) happen then users_inside’ = users_inside+i
if users_inside’ = users_inside+i and i # 0 then TrANsIT(i) happen

69

At most 15 people may be inside the cabin simultaneously.
users_inside < 15

If the door at a floor of the cabin is open and the motor is stopped, then
any appropriate number of people may enter/leave the cabin.

if motor_status = stop and door_position(cabin_position) = open and
users_inside+ 1 < 15 and users_inside+ 1 > 0 then
in one case next TRANSIT(i) happen

C Structured system, cell schemas

loc-glob1 (transition property) If a global transition is composed of some local
interactions, then, under some condition, an instantiation of ei belongs to the
label of this global transition; or vice versa, i.e., if an instantiation of ei belongs to
the label of a global transition, then, under some condition, this global transition
is composed of some local interactions.

if lIn,, ..., lin, happen and cond(arg,lin,,...,lIn,) then ei(arg) happen
or
if ei(arg) happen and cond(arg,lIn,,... lIn,) then lIn,, ..., lIn, happen

Elementary interaction (e7) cell schema

loc-glob2 (transition property) If an instantiation of sid.ei is a component of a
global transition, then, under some condition, the label of this global transition
must contain an instantiation of ei;, or vice versa.

if cond(arg,arg;) and sid.ei(arg) happen then ei;(arg;) happen
or

if cond(arg,arg;) and ei;(arg;) happen then sid.ei(arg) happen

Elementary interaction and local interaction (ei;:sid.ei) cell schema

pre-cond2 ,post-cond?2 ,vital2 defined as the homonymous slots for simple system
but where the elementary interaction is replaced by the local interaction.

Local interaction and state observer (sid.ei:so) cell schema

70

D Data structures, cell schemas

def1 Conditions on the definedness of con (required only for partial construc-

tors) 22

cond, where cond includes atoms of the form def(con(arg))
tdent1 The values represented by con are/are not identified with those represented
by other constructors.

when all defined cond, where cond includes atoms of the form con(arg) = ...

Constructor (con) cell schema

def3 Conditions on the definedness of the application of op to values represented
by con (required only for partial operations):

cond, where cond includes atoms of the form def(op(con(arg)))
valuel Conditions on the values returned by the application of op to values rep-
resented by con:

when all defined cond, where cond includes terms of the form op(con(arg))

Constructor and operation (con:op) cell schema

truth1 Conditions on the truth of pr over the values represented by con:

when all defined cond, where cond includes atoms of the form pr(con(arg))

Constructor and predicate (con:pr) cell schema

def4 Conditions on the definedness of op (required only for partial operations):

cond, where cond includes atoms of the form def(op(arg))

value2 Conditions on the values returned by op:

when all defined cond, where cond includes terms of the form op(arg)

Operation (op) cell schema

22 Note that constants are always total.

71

def5 Conditions on the relationships between the definedness of op; with that of
ops (required only for partial operations):

cond

where condincludes atoms of the form def (op; (arg;)) and of the form def(op2 (args))

valued Conditions on the values returned by op; with that returned by ops:
when all defined cond

where cond includes terms of the form op; (arg;) and of the form ops (args)

Two operations (op;:opz) cell schema

truth2 Conditions on the truth of pr:

when all defined cond, where cond includes atoms of the form pr(arg)

Predicate (pr) cell schema

truth3 Conditions on the relationships between the truth of pr; and that of prs:
when all defined cond

where cond includes atoms of the form pr; (arg;) and prs(args)

Two predicates (pr;:prs) cell schema

E Example: Fragment of a Property-Oriented Specification of Floor

This example is given in Sect. 5.2.2 where the properties of previous given
below were skipped.

previous returns the floor immediately below a given one, if it exists.
There is no floor between previous(f) and f.
def (previous(top))
not def(previous(ground))
def(previous(f)) iff f above ground
when all defined
f above previous(f) and
not exists f; o (f above f;) and f; above previous(f))

72

F Fragment of the Requirement Specification of an Internet Based
Lottery Application

Context Entity Specifications

(Manager h
MAN_START_LOTTERY(WinningOrder,FreeTicketLaw,Int)
MAN_GIVE(Int)

MAN_DRAW all incompatible

When the manager starts a new lottery/gives away free tickets/draws the winners,
he cannot do anything else.

(7\

Email

ALL_SEND(Email,String)

The email service is always able to receive a request to send an email message.
in one case next ALL_SEND(em,s) happen

(CreditCardService h
ALL_CHECK_CARD(CreditCardData)

ALL_CHARGE(CreditCardData, Int)

CCS_OK_CARD(CreditCardData)
CCS_WRONG_CARD(CreditCardData)
CCS_CHARGED(CreditCardData,Int)
CCs_NOT_CHARGED(CreditCardData, Int) all incompatible

When the credit card service receives a request/sends out an answer, it cannot do
anything else.

If the credit card service receives a request of controlling a card, then
it will answer with either an ok or a wrong card message.

if ALL_CHECK_CARD(ccd) happen then in any case eventually
Ccs_Ok_CarD(ced) happen or Ccs_WRONG_CARD(ced) happen

The credit card service is always ready to accept a request to check a card.
in one case ALL_CHECK(ccd) happen

If the credit card service receives a request to charge some money on a card, then
it will inform that the same has been either charged or not.

if ALL_CHARGE(ccd,m) happen then in any case eventually
Ccs_CHARGED(ced,m) happen or Ccs_NoT_CHARGED(ced,m) happen

The credit card service is always ready to accept a request to charge some amount

on a card.
in one case ALL_CHARGE(ccd,m) happen

73

(Client h

CL_REGISTER(ClientInfo,CreditCardData)
ALL_REGISTERED(ClientInfo,CreditCardData)
ALL_FAILED_REGISTRATION(ClientInfo,CreditCardData)
CL_CONNECT(ClientInfo)

ALL_CONNECTEDClientInfo)
CL_DISCONNECT(Clientinfo)
ALL_DISONNECTED(ClientInfo)

ALL_ERROR(ClientInfo)
CL_AVAILABLE_TICKETS(ClientInfo)
CL_BUY_TICKET(ClientInfo,Int)
ALL_ARE_AVAILABLE(ClientInfo,FiniteSet(Set))
ALL_CONFIRM_TICKET(ClientInfo,Int)
ALL_GIVE_FREE_TICKET(Clientinfo) all incompatible

All the possible activities of a client are mutually incompatible.

If the client sends a request to ALL, then
it will accept its answer, whatever it may be.

if CL_REGISTER(ci,ccd) happen then in any case eventually
ALL_REGISTERED(ci,ccd) happen or
ALL_FAILED_REGISTRATION(ci,ccd) happen

if CL_CoNNECT(c¢i) happen then in any case eventually
ALL_CONNECTED(ci) happen or ALL_ERROR(c¢i) happen

if CL_AvAILABLE_TICKETS(ci) happen then in any case eventually
exists ns s.t. ALL_ARE_AVAILABLE(ci,ns) happen

if CL_BuYy_T1CKET(ci,i) happen then in any case eventually
ALL_CONFIRM_TICKET(c7,7) happen or ALL_ERROR(ci) happen

The Requirements for the Application ALL

The manager starts a new lottery

If ALL receives a request of starting a new lottery, then

the proposed dimension is greater than 1 and a multiple of 5000,

no lottery is running;

and after, a lottery will be running, characterized by the proposed parameters

(winning order, free ticket law and dimension),

and where no client owns a ticket.

Finally, all registered clients will be informed by an email message of the fact.
if MAN_START_LOTTERY (wo,ftl,d) happen then

d>1 and d mod 5000 =0 and

not lotteryRunning and

lotteryRunning and

dimension’ = d and winningOrder’ = wo and freeTicketLaw = ftl and

for all ie not def(owner(i)) and

for all cie if ci€ registered then

in any case next ALL_SEND(emailOf (ci),“Started New Lottery”)

74

When ALL receives a request from the manager of starting a new lottery, it
cannot do anything else.
MAN_START_LOTTERY (wo,ftl,d) incompatible with eln

If no lottery is running, then ALL must be able to accept a request from the manager,
with appropriate parameters, of starting a new one.
if not lotteryRunning and d > 1 and d mod 5000 = 0 then

in one case next MAN_START_LOTTERY (wo,ftl,d) happen

The dimension of the lottery must be a multiple of 5000 and greater than 1.
dimension mod 5000 = 0 and dimension > 1

The dimension, the winning order and the free tickets law of the lottery change
only when a new lottery is started.
if dimension # dimension’ then
exists wo, ftl s.t. MAN_START_LOTTERY (wo,ftl,dimension’) happen
if winningOrder # winningOrder’ then
exists d, ftl s.t. MAN_START_LOTTERY (winningOrder ftl,d) happen
if freeTicketLaw # freeTicketLaw' then
exists d, wo s.t. MAN_START_LOTTERY (wo,free Ticket Law/,d) happen

A lottery becomes running only after the manager started it.
if not lotteryRunning and lotteryRunning then
exists d, wo, ftl s.t. MAN_START_LOTTERY (wo,ftl,d) happen

The manager gives away some free tickets

When ALL receives a request from the manager of giving away some free tickets,
it cannot do anything else.
MAN_GIVE(nbil) incompatible with eln

If ALL receives a request to give away nbil free tickets, then
a lottery is running, there are still available at least nbil tickets, and
at least half of the tickets have been already assigned;
and after, ALL selects nbil clients having the right to receive a free ticket, and
each of them will get a ticket, whose number is determined by the current
free ticket law.
if MAN_GIVE(nbil) happen then
lotteryRunning and size(available Tickets) > nbil and
size(assignedTickets) > dimension and
exists luckies s.t. size(luckies) = nbil and
for all ci e if ci€ luckies then
freeTickets(ci) > 0 and
exists unique i€ free TicketLaw(dimension,assigned Tickets,nbil) s.t.
in any case next ALL_GIVE_I'REE_TICKET(ci,i) happen

75

If a lottery is running, there are still available at least nbil, and at least half of
the tickets have been already assigned, then
ALL may receive a request to give away nbil free tickets.
if lotteryRunning and size(assignedTickets) > dimension and
size(available Tickets) > nbil then
in one case next MAN_GIVE(nbil) happen

If a client receives a free ticket, then
the number of free tickets which he has the right to get decrease by 1, and
after he is the owner of such ticket.

if ALL_GIVE_FREE_TICKET(ci,i) happen then
freeTickets' (ci) = freeTickets(ci)-1 and owner' (i) = ci

If the number of free tickets which a client has the right to get decrease by 1, then
he received a free ticket.

if freeTickets'(ci) = freeTickets(ci) -1 then
exists i s.t. ALL_GIVE_FREE_TICKET(ci,i) happen

The manager draws the winners

When ALL receives a request from the manager of drawing the winners,
it cannot do anything else.
MAN_DRAW incompatible with eln

If ALL receives from the manager a requests to draw the winners, then
a lottery is running and there are no more available tickets;
and after, ALL informs by an email message the owners of the winning tickets
(as many as the dimension of the lottery module 5000,
whose numbers are the first w.r.t. the current winning order).
Finally, the lottery is terminated, and
ALL informs all the registered clients, always by an email message,
of the end of the lottery.
if MAN_DrRAW happen then
lotteryRunning and available Tickets = {} and
(for all i e if i€ winners then
in any case next ALL_SEND(emailOf (owner(i)),“Won Prize”) happen)
and not lotteryRunning’ and
(for all ci e if ci€ registered then
in any case eventually
ALL_SEND(emailOf (ci),“Lottery terminated”) happen)

If a lottery is running and there are no more available tickets, then

ALL must be able to receive from the manager a requests to draw the winners.
if lotteryRunning and available Tickets = {} then

in one case next MAN_DRAW happen

76

If a lottery ends, then the manager has drawn the winners.
if lotteryRunning and not lotteryRunning then MAN_DRAW happen

A client connects to ALL

If ALL receives a connection request by a client, if
if the client is registered and not already connected, then
ALL checks his identity with the authentication service. Thus,
if the answer of the authentication service is positive, then
ALL informs the client that he is connected,
otherwise
ALL informs the client that his request is an error;
otherwise
ALL informs the client that his request is an error.

if CL_CoNNECT(ci) happen then
if registered(ci) and not connected(ci) then in any case
next ALL_CHECK(ci) happen and eventually
(AuTH_OK(ci) happen and next ALL_CONNECTED(ci) happen
or
AUuTH_WRONG(ci) happen and next ALL_ERROR(c¢i) happen)
else
in any case ALL_ERROR(ci) happen

ALL is always ready to accept connection requests by the clients.
in one case next CL_CONNECT(ci) happen

If a client is informed that he is connected, then
he made a connection request and now his connection is registered.
if ALL_CONNECTED(ci) happen then
in any case sometime CL_CONNECT(ci) happened and connected (ci)

If a client is informed that his request was an error, then
he made either a connection or a disconnection request or
a request to show the available tickets or to buy a ticket.

if ALL_ERROR(ci) happen then in any case sometime
CL_CoNNECT(ci) happened or CL_DiscONNECT(ci) happened or
CL_AvVAILABLE_TICKETS(ci) happened or
CrL_Buy_TicKET(ci,i) happened

Notice that the fact that the same error message is used by ALL to answer to
two different requests is made explicit by our method, while it is more hard
to be spotted by use-case driven approaches, because the problematic error
message appears in two different use cases.

7

A client disconnects from ALL

If ALL receives a disconnection requests from a client, then
if the client is connected, then
ALL informs him that he has been disconnected
otherwise
ALL informs him that his request was an error.
if CL_DiscoNNECT(ci) happen then
if connected(ci) then
in any case next ALL_DISCONNECTED(ci) happen
else
in any case next ALL_ERROR(ci) happen

ALL is always ready to accept disconnection requests by the clients.
in one case next CL_DISCONNECT(ci) happen

If a client is informed that his request was an error, then he made
either a disconnection request or some other request.

A connected client must be also registered.
if connected(ci) then registered(ci)

If a client becomes connected, then ALL has connected him.
if not connected(ci) and connected'(ci) then ALL_CONNECTED(ci) happen

If a client becomes disconnected, then ALL has disconnected him.
if connected(ci) and not connected(ci) then ALL_DISCONNECTED(ci) happen

If a client is informed that he has been disconnected, then
he made a disconnection request and now is disconnected.

if ALL_DISCONNECTED(ci) happen then
in any case sometime CL_DISCONNECT(ci) happened and
not connected'(ci)

Notice, how this property precisely states that ALL cannot realize any mecha-
nism of automatic disconnection (e.g., after some time). Similar requirements,
concerning what the system cannot do, are usually neglected in classical use
case based approaches.

78

A client checks which are the tickets still available

If ALL receives a request of showing the available tickets, then
a lottery is running and
if the client is connected, then
ALL will inform him of which are the available tickets
otherwise
ALL will inform him that his request was an error.
if CL_AvAILABLE_TICKETS(ci) happen then
lotteryRunning and
if connected(ci) then
in any case next ALL_ARE_AVAILABLE(ci,available Tickets) happen
else
in any case next ALL_ERROR(ci) happen

If a lottery is running, then
ALL may accept requests to show the available tickets.
if lotteryRunning then
in one case next CL_AVAILABLE_TICKETS(ci) happen

If a client is informed that his request was an error, then he made either
a request to show the available tickets or some other request.

If ALL says to a client that tckts are the available tickets, then
a lottery is running, fckts are the available tickets, and
the client has requested such information
if ALL_ARE_AVAILABLE(ci,tkcs) happen then
lotteryRunning and tkcs = available Tickets and
in any case sometime CL_AVAILABLE_TICKETS(ci) happened

79

A client buys a ticket

If a client tries to buy the ticket with number i, then
a lottery is running and
if the client is connected and ¢ is available, then
ALL asks the credit card service to charge the sum of 1000 and
if the credit card service confirms the chargement, then
ALL confirms to the client that he has got the ticket ¢
otherwise
ALL informs the client that his request was an error;
otherwise
ALL informs the client that his request was an error.
if CL_Buy_T1cKET(ci,i) happen then
lotteryRunning and
if connected(ci) and i€ availableTickets then
in any case next ALL_CHARGE(creditCard(ci), 1000) happen and
eventually
Ccs_CHARGED(creditCard(ci), 1000) happen and
next ALL_CONFIRM_TICKET(ci,i) happen
or
Ccs_NoT_CHARGED (creditCard(ci), 1000) happen and
next ALL_ERROR(ci) happen
else
in any case next ALL_ERROR(ci) happen

If a lottery is running, then ALL may accept requests to buy tickets.
if lotteryRunning then
in one case next CL_BUY_TICKET(ci,7) happen

If a client is informed that his request was an error, then he made either
a request to buy a ticket or some other request.

If ALL confirms to a client that him bought a ticket i, then

the client has asked for i, i was available, and after

the client is the owner of ¢, and has gained the right to another free ticket.
if ALL_CoNFIRM_TICKET(ci,i) happen then

in any case next CL_BuY_TICKET(ci,i) happen and

1€ available Tickets and

owner’ (i) = ci and freeTickets'(ci) = freeTickets(ci) + 1

Only registered clients may own tickets.
if def(owner(i)) then registered(owner(i))

The number of free tickets to which a client has the right to get increases by 1,
then he bought a ticket.

if freeTickets(ci) = freeTickets(ci) +1 then
exists 7 s.t. ALL_CONFIRM_TICKET(ci,m) happen

80

If ALL asks the credit card service to charge a sum on a card, then

it will be able to receive a message confirming or negating the operation.

if ALL_CHARGE(ccd,m) happen then in any case eventually
Ccs_CHARGED(ced,m) happen or Ccs_NoT_CHARGED(ccd,m) happen

If ALL receives a message about the result of a request to charge a card

from the credit card service, then
it asked such chargement.

if (Ccs_CHARGED(ccd,m) happen or Ccs_NOT_CHARGED(ccd,m) happen) then
in any case sometime ALL_CHARGE(ccd,m) happened

81

