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In the classical denotational model of imperative languages (see e.g. [7], Chap. 7.3)

handling structured types, like arrays, requires an ad-hoc treatment for each data

type, including e.g. an ad-hoc allocation and deallocation mechanism. Our aim is to

give a homogeneous approach that can be followed whichever is the data structure

of the language.

We start from the traditional model for Pascal-like languages, which uses a notion

of store as a mapping from left values (containers for values, usually called ),

into right values; we combine this idea with the well-known algebraic approach for

modelling data types. More precisely, we consider an algebraic structure both for the

right and the left values; consequently, the store becomes a homomorphic mapping

of the left into the right structure.

Seeing a store as a homomorphism has a number of interesting consequences.

First of all, the transformations over a store can be uniformly and rigorously de�ned

on the basis of the principle that they are minimal variations compatible with some

basic intended e�ect (e.g., some elementary substitution). Thus semantic clauses too,

which rely on these transformations as auxiliary functions, can be given uniformly;

for example, we can give a unique clause for assignment for any data type in Pascal

and Ada-like languages.

In Sect. 1 we present the problem and outline the solution, while in Sects. 2 and

3 we give the formal model; in the conclusion we mention some related work.

An extended presentation of the ideas of this paper, including proofs, together

with many examples of application, is given in [2].

As stated in [7], Chap. 5, can be informally de�ned as lan-

guages that utilize the , which is an abstraction of the computer's memory, and

include syntactic constructs (usually called ) whose semantics is, roughly

speaking, a store transformation. The most simple example is an assignment like e.g.

.
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Here and in the following [ ] denotes the set of the partial functions from a �nite

subset of into .

locations

Store Loc Val

Dom

Dom

Env Id Den Den Loc

Com Env Store Store

lexpr expr expr lexpr

LExpr Env Store Loc Expr Env Store Val

id id id id

In the classical denotational model (here and in the sequel we follow in the essence

[7] Chap. 7) the store is formalized as a mapping from containers for values, usually

called , into values (like integers). Formally

= [ ] .

This de�nition is slightly di�erent from the traditional one for distinguishing the

case of a location which is unused in the current store ( ( )) from the case

of a location which is in use, but not yet initialized ( ( ), ( ) unde�ned).

The e�ect of an assignment like above is, roughly speaking, to add to the cur-

rent store an association from the location corresponding to to the value obtained

evaluating . The formalization depends on the overall semantics of the language.

For example, the typical model based on environment and store formalizes the ef-

fect of a command as a function which, for a given environment, returns a store

transformation.

= [ ], = +

: [ [ ]]

The semantics of the above assignment is as follows:

[[ := + ]] = [ ( ( ))+ ( )].

Introducing two di�erent semantic functions for left and right expressions, i.e. ex-

pressions which may appear in the left-hand (resp. right-hand) side of an assignment,

the above clause can be obtained as an instance of the following general clause (+)

for assignment:

(+) [[ := ]] = [ [[ ]] [[ ]] ]

where

: [ [ ]], : [ [ ]];

of course in the case of an identi�er we have

[[ ]] = ( ), [[ ]] = ( ( )).

Let us consider the case of compound data structures ([7] 7.3), for example an array

declaration like

.

A variable identi�er of this type, say , has a denotation in the environment

which is, accordingly with the intuition, a partial function from indexes into integer

locations. However, the store remains a mapping from locations of basic types (like

) into basic values; no associations are introduced in the store for compound

types.

Hence, an assignment to cannot be modelled using the general schema (+),

but is actually expanded to ten assignments, one for each of the components:

[[ := ]] = [ ( )[ ]] [ ( )[10]],

if ( [[ ]] )( ) = , for = 1 10.

Analogously, allocation and deallocation for a variable identi�er of an array type

cannot be modelled following a general schema; allocation for is expanded to

ten allocations of integer locations (see [7] for the details).
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where , are two in�nite denumerable sets

+ , are the usual sum and product in

[ ] ( ) = [ ], for each

-

,

[ ] is the usual function application.

Left-right algebra for the type

What we look for in this paper is a general and more abstract model, which

allows to treat assignment, allocation and deallocation in a uniform way for any

data structure, thus providing a basis for a systematic approach to proving semantic

properties.

We start from the idea of modelling a data type as a (many-sorted partial)

algebra. That means that, for example, a language operator like the array selector

[ ], which combines an expression of type and an expression of type , giving

an expression of type , has two di�erent semantic counterparts: an operation

which takes a location of type , an index in 1 10 and gives an integer location,

and an operation which takes a value of type , an index in 1 10 and gives

an integer. That is formalized by giving a signature in which we distinguish left

and right sorts, and a corresponding algebra , as shown in Fig. 1.

Consider now the store . Having di�erent sorts, is a sort-indexed family of

maps , from left to right values of the corresponding sorts; moreover we

have some consistency requirements. First, whenever a location of type is in use,

all its subcomponents of type are in use, too, and conversely. Formally:

(*) for each , 1 10 , [ ] ( ) i� ( )

Moreover, it is easy to see that each store must satisfy the condition

(**) ( [ ]) = ( )[ ], for each 1 10 ,

where = denotes strong equality (either the two sides are de�ned and equal or both

are unde�ned).

The properties (*) and (**) can be expressed in a general way for any data type,

by structuring the domain of the store ( ) as an algebra, and seeing as a

structure preserving mapping, i.e. a homomorphism.
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In this way, the property (*) above can be generalized requiring that ( ) is a

strong subalgebra of ; the property (**) corresponds to requiring that by extending

the store by the identity over right values, we get a partial homomorphism from

( ) into the restriction of to only right sorts and operations (refer to Sect. 2

for the detailed de�nitions).

A major consequence of seeing the store as homomorphism is the possibility of

qualifying the store transformations that can occur in a program execution in a

way that it is independent of the particular data structure. Considering for example

substitution: the basic intended e�ect is that a new association is added from a used

location, say of type , into a right value, removing any preceding association with

. As a consequence, in order to keep the homomorphic structure of the store, a new

association is added also for each location which is a subcomponent of , say [1],

. . . , [10]. Now we can de�ne substitution essentially as the minimal variation of the

store which has the above intended e�ect and is compatible with its homomorphic

structure, i.e. gives a new store which is still a homomorphism. Analogously for

allocation, deallocation and alike (the de�nitions are in Sect. 3).

Then we get immediately two important applications.

{ We can provide uniform semantic clauses, independently of the data type, since

we can use the global de�nition of the store transformations as auxiliary func-

tions. For example the assignment clause takes the general form

[[ := ]] = [ [[ ]] [[ ]] ]

where now [ ] denotes substitution (in the sense described before and formally

given in Sect. 3).

{ For every data type we can check whether the explicit de�nition of the store

transformations is correct, in the sense that the resulting transformations, usu-

ally given by a series of detailed clauses, are the same as that given by general

de�nition.

Before formally introducing stores, we have to de�ne the overall algebraic structure

for left and right values, that we call a . That is an algebra over a

particular kind of signature, that we call , which, informally,

provides two di�erent kinds of value types: the types of the values which can be

stored, called (modelled by two sorts, one for the actual values, called

right, and one for the corresponding locations, called left), and the types of the values

which cannot be stored, called (modelled by only the right sort).

Correspondingly, there are three di�erent kinds of operations: pairs of operations

returning a left value and a right value in a \corresponding" way (e.g. array selec-

tors); operations returning left values for which there is no right analogous (e.g. an

operation which, given a location, returns the next location in the store); operations

returning right values for which there is no left analogous (e.g. integer sum, product

and so on).

A is a 5-tuple =

( ) where:
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(left-right types), (right types) are two sets of symbols; let

( ) = - ,

( ) = - ,

( ) = ( ) ( )

be the sets of the , and of , respectively;

=

-

;

=

-

;

= .

Let in what follows = ( ) be a (left-right) static sig-

nature; then

= : -

-

,

= : -

-

,

where = if ( ), - if = - .

Note that models left operations with no right analogous, while models

the left version of operations having also the right one; the same di�erence holds

between and .

It is easy to see that uniquely determines a usual many-sorted signature,

denoted by ( ), de�ned as the pair

( )

Moreover, we associate with other two signatures (which are subsignatures of

) keeping only the operations which must be preserved by the homomorphic

structure of the stores, in the left and right version respectively:

( ) = ( ) , the of ,

( ) = ( ) , the of .

Finally,we denote by the signature morphism from ( ) into ( )

which maps right sorts into themselves, left sorts and operations into corresponding

right sorts and operations.

A is a partial algebra over ( ).

If is a left-right -algebra, then the (resp. ) part of , denoted by

(resp. ), is the restriction of to ( ) (resp. ( )).

An element belonging to

-

is called a i� there exist

no : - in , ,. . . , s.t. = ( ).

Intuitively, principal left values are left values which are not subcomponents of other

left values. For each left-right type , let denote the set of the principal left

values in

-

.

We de�ne now . Roughly speaking a store is a mapping from (currently

existing) locations into right values, satisfying some consistency requirements. More

precisely: existing locations consist in a �nite family of principal locations together

with all their subcomponents (compare Sect. 1 (*)); the associations from left into

right values respect the operations (compare Sect. 1 (**)). These requirements can

be formally expressed as below.



1

1

2

2

2

ST

ST

�

rs

�

n

n

3 Store Transformations

RSorts ST

ST

T

LRS

dop DOP

LRS

! j

\ 2

2

[ f g

2

j

f g 2 2 !

!

�

2 )

f g

)

� � � ! �

( )

store

�n

kernel

kernel store

1

1

store store

R

�

D

t L t

A

t

D

t

L

D

rs
rs �

rs A rs

R

�

R

�

t t t

A

t R t

?

s :::s ;s n

n

s s s

De�nition3.

De�nition4.

Proposition5.

De�nition6.

De�nition7.

A � � �

A � � D A

D t

t

D A A

� Id A rs �

A A

A A

�

A � A

� � t � A

A A

A A

� � �

� �;

�

� s : : : s s

� �;

� A;

A �

s : : : s s

A A : : : A A A

ST WholeSig ST store

Loc Loc T

Loc T

Loc

RSorts ST

store

kernel

ST (store) kernel of T

T Loc

There exists a bijective correspondence which

associates with each kernel the store generated by .

dynamic operations

left-right signature ST DOP

ST

DOP S S dynamic operation symbols

S Sorts ST dop DOP dop

ST DOP

left-right structure LRS dop

ST

dop

dop

If is a left-right -algebra, = ( ), then a of

is a -homomorphism : which satis�es the following assumptions.

Set =

-

, for all .

1. is �nite, for all ;

2. is the subalgebra of generated by ;

3. = (the identity of ), for all ( ).

We denote by the set of the stores of .

Here above denotes the reduct of w.r.t. the signature morphism

.

Due to the requirements that a store must satisfy, it turns out that it is uniquely

determined by �xing which are the currently existing principal locations and their

associated right values. Hence it is more convenient to introduce a notion of

which consists in a mapping from a �nite set of principal locations into right

values. In this way a store can be de�ned as the minimal mapping which extends a

store kernel and moreover satis�es the consistency requirements, i.e. conditions 1, 2,

3 above.

If is a left-right -algebra, then a is a -

family of partial functions = s.t., for all , [

-

] .

We denote by the set of the kernels of .

:

The purpose of a left-right algebra is to give the algebraic structure of all interme-

diate con�gurations in the execution of an imperative program; each store models

one con�guration. In order to have a complete model of the execution, we must add

, i.e. operations which model store transformations.

A is a pair = ( ) where:

{ is a left-right static signature;

{ is an -family of symbols called , where

= ( ); if , then we write : .

Let in what follows = ( ) be a left-right signature.

A over is a pair = ( )

where:

{ is a left-right -algebra;

{ for each : ,

: .
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Dynamic operations returning just a store can be obtained by adding a dummy

sort whose carrier is a singleton and are denoted by : .

Note that, due to Prop. 5 above, in order to de�ne a dynamic operation, it is

su�cient to de�ne a corresponding operation which acts on kernels. Formally, let

: be an operation which acts on kernels;

then we de�ne : by ( ) = ( ).

We de�ne now a family of dynamic operations su�cient for modelling store trans-

formations in Pascal-like languages, by giving the corresponding ones on the kernels.

Let in what follows = ( ) be a left-right structure.

The , denoted by , is the kernel with empty domain.

For each , let new denote the predicate over

de�ned by: new ( ) holds i� ( ).

For each , the (or ) operation of type is

the function

+ :

de�ned as follows:

+ = if new ( ) holds, unde�ned otherwise where:

( ) = ( ) ; ( ) = ( ).

For each , the (or ) operation (of type

) is the function

:

de�ned as follows:

= , where

( ) = ( ) ; ( ) = ( ), for each ( ).

For de�ning in a general way the substitution operation, we need to assume

that, for each non principal location, say , can be obtained in a unique way as a

subcomponent of a unique principal location, say (that implies in particular that

each operation in has only an argument of left sort); moreover, changing the

right value associated with uniquely determines a corresponding change of the right

value associated with .

These assumptions allow to uniquely de�ne the store transformation induced by

updating whatever location; actually less restrictive assumptions would be su�cient

(allowing more arguments of left sorts in operations in ), but the above version

allows a simpler formalization, and is satis�ed by all usual imperative languages, as

Pascal, Algol, Ada, Common Lisp and so on.

The operations in are all of the form

: - - with ( ) for = 1 .

For formally expressing the second assumption, we need some technical de�ni-

tions.

Let be a left-right -algebra.

For each operation : - - , ,

we say that = [ ] is a from into and de�ne:
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, where:

Dom Dom ; Graph Graph .

:

- -

, ( ) = ( );

:

- -

, ( ) = ( )

i� = ( );

i� there exist

, . . . , s.t. = , ( 0).

For each ,

-

, there exist unique ,

, selector list s.t. .

For each selector from into , we assume that there exist

two functions:

upd( ):

- - -

upd ( ):

- -

such that:

{ (upd( )( )) = ; (upd ( )( )) = ;

{ for each selector from into , = ,

(upd( )( )) = ( ) (upd ( )( )) unde�ned.

The assumption above informally means that for each selector from into

(e.g. [1] which takes the �rst element of an array), there exist two corresponding

operations:

upd( ) which models the e�ect of changing the -component of a value of

type (e.g. [ 1] which returns the array obtained updating the �rst element);

upd ( ) which constructs a value of type from a value of type (e.g. [ 1]

which returns an array having only the �rst element).

These two functions can be naturally extended to lists of selectors (we omit the

formal de�nition).

For each , the (of type ) is the function

[ ] :

- -

de�ned as follows:

[ ] = if there exist ( ), - list of selectors s.t.

-

,

unde�ned otherwise, where

( ) = ( );

( ) = upd( - )( ( ) ), if ( ) is de�ned;

( ) = upd ( - )( ), if ( ) is unde�ned;

( ) = ( ), for each = .

Note that if there exists and - , then they are unique by assumption

.

Below we give an explicit de�nition of the three basic dynamic operations as

acting on the stores, in the case that assumptions , and hold.

In the following we write ( ) i� there exists (resp. there does not

exist) a list of selectors - s.t.

-

.

new ( ( ) )

( ) + =

( ) = ( ) ( ) = ( )
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Fact 16.

Proposition17.

Proposition18. Upd1 Upd2 Upd3

0
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?
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0

0 0 0 0 0

?

0

0 00 0 0 00 00 0 0

?

00

0 0 00

0 00 00 0 0 0 0 0 00

0 00 00 0 0 0 ? 00

t � A l

ker � l �

� � l l l � l � l l �

t � A r A l A l �

ker � r==l � �

� �

� l r

l � l l l l � l � l

l l l l � l r � l r

l l l l

� l r � l r � l r ; r

� l r � l � l r

A

A

� A � l A l �; l

� A � r==l A l A r A l �

For each T , , Loc ,

= , where

Dom Dom ; , for each Dom .

For each T , ,

-

,

-

s.t. Dom ,

= , where is inductively de�ned by

Dom Dom ;

;

for each Dom s.t. , , ;

for each s.t. , if , then sel ;

for each s.t. ;

if , , then sel ;

if , is unde�ned, then sel .

Assume that LRS satis�es assumptions , and .

Then the operations empty store, extension and substitution are a generating family

for , in the sense that the stores are the family inductively de�ned by:

(1) ;

(2) if , then , for each principal left value s.t.

holds;

(3) if , then , for each

-

,

-

, s.t. Dom .

In other words, the store obtained by an allocation includes the new location

with all its subcomponents and is unchanged elsewhere.

( )

( ) = ( ) ( ) = ( ) ( )

In other words, the store obtained by a deallocation keeps only the locations

which are not subcomponents of the deleted location with their associated right

values.

( )

( )[ ]

( ) = ( )

( ) =

( ) ( ) = ( )

( ) = ( ) = ( )

( ) = ( ) = ( ) = upd( )( )

( ) = ( ) ( ) = upd( ) ( )

In other words, the store obtained by a substitution is the minimal store which

contains the new association and leaves unchanged all the unrelated locations (i.e.,

which are neither subcomponents of the updated location, nor conversely).

Allocation, deallocation and substitution can be considered the basic store trans-

formations in usual imperative languages, in the sense that the �nal store obtained

as the result of a program can be always obtained starting from the initial store

(empty) by applying a �nite sequence of these operations. That property is formally

expressed here below.

+ new( )

[ ] ( )

We have de�ned a mathematical structure, the left-right structure, which extends to

the imperative case the usual algebraic framework for data types. That means �xing

a structure for right values and for locations (left values); moreover the association

from locations into values must respect this structure, i.e. the store is a homomor-

phism. For what concerns dynamics, the underlying data structure determines also
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which are the possible basic transformations of the store: these are modelled in turn

as operations which involve the store and (either left or right) values, called dynamic

operations.

The main result of the paper is to provide an abstract uniform setting for the

semantics of programming languages, which in a sense rounds up and completes the

well-known denotational approach. Our framework can be used also in the context

of the wider approach of inductive semantics, advocated by the �rst of the authors;

actually the �rst application of left-right structures has been shown in that context

(see [1]).

There is an interesting issue that we have not treated here and will be exposed

in some further paper, namely the relationship to the approaches whose early rep-

resentative is the \evolving algebra" framework (see [4]). The distinguishing feature

in our approach is the concept of store as homomorphism; however it should be

possible to pass from one formalism to the other in some canonical way.

An important paper also dealing with L-values and R-values is [6], where however

the main aim is the (functorial) treatment of the locality of variables and the issue

of structured data types is not tackled.

We mention also a very recent paper on \mutation algebras" (see [5]), which has

some similarity in the aims, but a completely di�erent technique, without reference

to the concept of a homomorphic store.

Finally, it is possible to describe also object based languages using left/right

structures modelling objects in the same way of values of pointer types; nevertheless,

this kind of model looks a too low level for objects. A better model which is a

generalization of left/right structures is proposed in [3].

We thanks the referee for various helpful comments and for re-

minding us the work in [6].
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