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RAT IO ET VIA

We argue that the impact of formalisms would much bene�t from adopting

the habit of systematically and carefully relating formalisms to methods

and to the engineering context, at various levels of granularity. Conse-

quently we oppose the attitude of con
ating formalism and method, with

the inevitable consequence of emphasizing the formalism or even just ne-

glecting the methodological aspects.

To make our re
ections more concrete we illustrate our viewpoint ad-

dressing one particular activity within the software development process,

namely the use of formal speci�cation techniques.

To qualify the essential ingredients of a formal method for speci�cation, we

propose a pattern covering the formal and the methodological aspects and

also their mutual relationships. Our pattern includes some novel concepts

such as the relationship between end-products and formal models, which

allows to relate in a rigorous way di�erent methods, outlining the concept

of compositionality and of simulation of methods.

1 Introduction

1.1 Introducing the case

Giving another invited talk, ten years after, at the last edition of TAPSOFT,

in an ideal relay with the next year new ETAPS-FASE, inevitably stimulates

?

Expanded version of an invited talk at TAPSOFT'97 (Lille) [6].
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a re
ection on the variations of needs, attitudes and work witnessed in the

past decade.

Ten years ago, in '87, we were still in a period of great optimism on the funda-

mental role of theory, and consequently the value, I would say the necessity, of

formal methods in designing and developing software systems. One year before,

at his inaugural lecture for LFCS, the Edinburgh Laboratory for Foundations

of Computer Science, Robin Milner, also an invited speaker at TAPSOFT '87,

was laying down the following two principles for LFCS activity:

{ The design of computer systems can only properly succeed, if it is well

grounded in theory.

{ The important concepts in a theory can only emerge through protracted

exposure to application.

When in November '96, at the decennial celebration of LFCS, the current

Director Don Sannella was recalling those principles, many of the attendees

were feeling uneasy, re
ecting whether the �rst principle could still be asserted

on experimental grounds. Indeed, the question was implicitly re
ected in Cli�

Jones's speech, when he was asking about the role of theoretical investiga-

tions, in particular of semantics, in the many enormously successful software

products emerged in the decade. This problem was also touched in some of

the invited lectures at TAPSOFT '95. Ehrig and Mahr, surveying a decade of

TAPSOFT in [14], made a mixed-feeling remark:

Theory and practice today have further separated and the pressure for mar-

ketable solutions and routine application has increased. But again, it seems

that new technology can not be thought without the contributions from the-

oretical and conceptual work. The question is therefore anew what formal

methods can do in the future.

Goguen and Luqi in [18] began their talk with \Formal methods have not been

accepted to the extent for which many computing scientists hoped."

Tony Hoare in his brilliant lecture at FME 96 [20] with the suggestive title

\How did software get so reliable without proof?" admits \a large gap between

theory and practice".

However, the reactions to this rather common feeling are quite di�erent, be-

ginning with the explanation of this situation. For Hoare in [21]

the problem of program correctness has turned out to be far less serious

than predicted. Ten years ago, researchers into formal methods (and I was

the most mistaken among them) predicted that the programming world

would embrace with gratitude every assistance promised by formalisation

to solve the problems of reliability that arise when programs get large and
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more safety-critical. Programs have now got very large and very critical {

well beyond the scale which can be comfortably tackled by formal meth-

ods. There have been many problems and failures, but these have nearly

always been attributable to inadequate analysis of requirements or inade-

quate management control. It has turned out that the world just does not

su�er signi�cantly from the kind of problem that our research was originally

intended to solve.

Goguen and Luqi in [18] take a completely di�erent view:

Failures of large software development projects are common today, due to

the ever increasing size, complexity and cost of software systems. Although

billions are spent each year on software in the US alone, many software

systems do not actually satisfy users' needs. Moreover, many systems that

are built are never used, and even more are abandoned before completion.

Many systems once thought adequate no longer are.

Their view is very much in line with those in [17], the article \Software's

Chronic Crisis" reporting on a second NATO workshop in '94 on the title

issue.

Studies have shown that for every six new large-scale software systems that

are put into operation, two others are cancelled.

The average software development project overshoots its schedule by half;

larger projects generally do worse. And some three quarters of all large

systems are \operating failures" that either do not function as intended or

are not used at all.

The failure of Ariane 5 in June '96, with the careful explanation of the in-

quiring committee, was a spectacular (but exceptional ?) con�rmation of this

statement.

The discrepancies are not weaker when coming to draw the consequences. For

Hoare in [20] rather drastically

The �nal recommendation is that we must aim our future theoretical re-

search on goals which are as far ahead of the current state of the art as the

current state of industrial practice lags behind the research we did in the

past. Twenty years perhaps ?

And in [21] he proposes the \uni�cation of theories" as the main \Challenge

for Computing Science". Hoare's views are far from exotic and touch, from

a particular viewpoint, some deep truths; however he seems to discourage a

close involvement of researchers in formal methods in the technology transfer

process: \there are still grounds for hope. But this hope should be based on a

more realistic appreciation of the proper and realistic timescales for technology
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transfer, which in every mature engineering discipline is measured in decades

or centuries."

There is however a large number of other researchers who take a more posi-

tive approach, beginning with recognizing some mistakes in the promotion of

formal methods. In the '89 edition of [29], a widely known book on Software

Engineering, together with a signi�cant support for formal methods, we �nd

the following remark, which sounds particularly sad today.

Some members of the computer science community who are active in the

development of formal methods misunderstand practical software engineer-

ing and suggest that software engineering can be equated with the adoption

of formal methods of software development. Understandably, such nonsense

makes pragmatic software engineers very wary of their proposed solutions.

In the very informative foreword [24] of the '94 MontereyWorkshop, on Formal

Methods for Computer Aided Software Development we �nd the remark that

\The excessive optimism of the attitude that everything important is provable

helps to explain the excessive pessimism of the attitude that nothing important

is provable."

The same overall problem has been addressed retrospectively by Christiane

Floyd in her invited talk at TAPSOFT `95 [16], where she remarks that the

survey by Ehrig and Mahr in [14] \shows that many of the original claims as-

sociated with formal methods could not be ful�lled. Thus, the success reported

rests on restating more realistic claims with respect to formal methods".

This consideration is echoed in [14] itself, where Ehrig and Mahr, reporting on

HDMS, an interesting concrete experimental application of formal methods,

conclude that

the experience around HDMS shows both advantages and di�culties of for-

mal methods in software development and hints at ways of further research

and at the same time teaches the limitations of formal methods regarding

the overall task of software development.

Indeed what is emerging now in recent years is a di�erent attitude viewing the

software (system) development process as an overall engineering process into

which formal methods can play a useful, not always prominent, role. On this

view converge many of the authoritative citations reported in [17]. For Goguen

and Luqi in [18], in line with [16], \One major problem has been that formal

methods have not taken su�cient account of the social context of computer

systems."

From another perspective, in [24] we �nd:
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Formal means de�nite, orderly, and methodical, and does not necessarily en-

tail logic or proofs of correctness : : : we believe this is the most appropriate

sense for the word formal in the phrase formal methods.

We are among those who share the above attitude and, together with some

other deep causes for the slow success of formal methods, we consider a major

one the little concern of researchers about transfer issues, as indicated in the

NIST survey [13].

Our talk will try to address what we see as a potential problem for the transfer

issue, namely the excessive emphasis on formalism w.r.t. method that some-

times leads to con
ate the two things, always at the expense of the method.

This danger is also re
ected in [9], the editorial of Broy and Jones for the

1996-8 issue of Formal Aspects of Computing where they warn that \nor can

the role of formal methods work be to develop branches of mathematics which

only bear a super�cial resemblance to the needs of computer science" and \the

role of formalism must be to help design better systems and ensure that they

are put on a �rmer footing."

In a straight way the di�erence of attitudes is explained in [16]:

I suppose that from the formalist point of view the main point of interest

here is the use of formal concepts in dealing with a practical problem. But

from the human activity point of view, a formalized procedure is implied,

prescribing at what time and for what purposes these concepts are supposed

to be worked within software development projects. When and how this can

or must be done, makes the di�erence.

Ideally our talk is in the line of continuing the dialogue, proposed in [16],

between promoters of formal methods and experts/researchers in software

engineering practice.

1.2 Stating our aims

Sometimes it is illuminating to go back to the origin of a word and this is

indeed the case: \method" comes from Greek and means \way through"; the

Latin substitute for it quite signi�cantly is \via et ratio" but also \ratio et

via", both conveying the meaning of \something rational with the purpose of

achieving something, together with the way of achieving it". Looking at what

happens, practice and literature, one often gets the impression that either only

\ratio" or only \via" is left of the two.

As Roel Wieringa has pointed out (in [Personal communication]; see also [33]),

we should look at
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the engineering cycle known from other areas of product development (see

[26]):

{ analyse the problem (user needs, goals)

{ synthesize solution speci�cation(s)

{ predict the e�ect of implementing the specs (properties of implementations

etc.)

{ evaluate these predictions w.r.t. the problem analysis iterate to an earlier

task or choose a solution.

The idea is that in a rational process, design choices are made this way.

Of course, there is the business that in practice, things are more chaotic

and that we should fake a rational process etc.

The ability to predict what the product will be like is an essential part

of engineering. If we cannot do this, and must wait for the implemented

product in order to know what properties the product will have, we are just

tinkering rather than practicing engineering design.

But if we want to make predictions, we must have a speci�cation, for-

mal or informal. To predict the properties of the implementation, we may

perform experiments on a prototype, look at the experience of others, or

deduce properties from the speci�cation. In that last process, formal tech-

niques play an essential role. Also, if after the fact we cannot state which

design alternatives we looked at and why we chose one particular alterna-

tive, then we cannot justify the design. So the rational design cycle places

formal techniques in the context of the design decisions. For me this is the

connection between ratio (formalism) and via (the development process).

Nowadays the suggestion of more closely connecting formalisms to methods

is more or less explicit in many papers and books and it is not our intention

to repeat warnings and suggestions, often more authoritative. Moreover let us

clarify that by formal method here we do not mean at all just a comprehensive

method for software development, but also one addressing only some speci�c

aspects of software development.

Here we want to advocate few peculiar points.

{ A formalism does not provide a method by �at; in principle a formalism

can be associated with di�erent methods or lead to no useful method at

all; thus we propose to regard the \method", which includes a formalism,

as the appropriate target of investigations concerned with formal aspects of

software engineering; we even suggest to investigate the appropriate use of

description patterns for presenting methods.

{ To get or to understand a method it is essential to locate it within the

context of the overall development process, in particular de�ning within

that context its kind of activity and its target.

{ A rationale should be mandatory; but \rationale" should mean something

much more precise than just a few accompanying words of explanation.
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{ A clear picture of the purely formal and methodological parts (the various

aspects of the mentioned pattern) is an essential tool for analysing and

relating di�erent methods.

{ At the metalevel, we believe that the study of methodological aspects of

formal methods is in itself an interesting target of useful investigations and

can be pursued with scienti�c rigour.

Our points come out of some years of experience in formal speci�cations and

not in investigations on methodology. Thus on the one hand we have not

enough experience for handling with the above issues in general, nor for ad-

dressing aspects far from our experience. On the other hand we believe that

addressing one particular rather well-known activity, namely the production

of formal speci�cations, we can make our points more concrete and under-

standable. However we think that some of the ideas presented in this paper

can be exploited in some generality in relation to other aspects of the software

development process.

Thus we �rst present a \pattern" for analysing a formal speci�cation activ-

ity emphasizing the di�erence between formalism and method, also provid-

ing some illustrative examples of analysis on that basis. Then we exploit the

presented pattern for discussing two typical and important issues, composi-

tionality and simulation, in a sense making the case that only at the method

level we can provide concepts powerful enough, encompassing those related to

formalisms, and more signi�cant for their real use.

We hope to be able to address other signi�cant activities in some near future

but also we much encourage other researchers to work on the issue. Finally,

we invite the reader to consider this paper more as stimulating a debate and

further research than proposing de�nitive conclusions or solutions.

2 A Pattern for Speci�cation

2.1 Preliminaries

We illustrate our points by analysing, as a case example, the problem of pro-

viding a formal speci�cation. We use some generic assumptions about the

software development process, without any commitment to a particular pro-

cess model. For general references see [29,32] and [15] for a speci�c treatment

of process modelling.

A development process will return some products of some kind (end-product

from now on) to be delivered to the client; thus for each development process
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we may qualify what is the kind of its end-products. Notice that the end-

products may be pure software, as programs for statistic analysis, or whole

systems having also non-software parts, as information systems (which may

have as components the clerks using it) or embedded systems (which may have

as components some controlled mechanic and electronic devices). Furthermore

a development process may return more than one products, for example the

various versions of a software package. In Tab. 2.1 we present a list of keywords

qualifying kinds of end-products currently found in the literature. Some items

are enough standard and well-understood, whereas other are rather ambigu-

ous (marked by �) and others may be just variants used in some particular

community (marked by +). Each of them has been found in papers presenting

formal methods.

Using a software engineering terminology following [23], the end-products are

either the \machine" or the \machine plus the application domain"; sometimes

the end-products are also called \systems", as in [8].

A development process is a collection of activities with temporal/causal rela-

tionships among them; furthermore there are meta activities concerning the

de�nition and the management of the development process. In Tab. 2.1 we

present a tentative list of possible activities. The items in this list have been

found in papers about software engineering.

Each activity at the end will return an artifact (a speci�cation, some code,

some documentation, a development process, etc.).

Some activity may require as mandatory inputs some artifacts that are the

results of other activities (e.g., � in Tab. 2.1, which takes a requirement and a

design speci�cation and returns either a documentation of why the design is

wrong or an ok).

A method (formal method) is a way to perform an activity of a particular kind

(supported by formal techniques and tools).

In a very general way a speci�cation is a description of (possibly some aspects

of) an end-product (or of some of its parts) at some level of abstraction, which

can be also intended as at some point in a development process.

In the following we will consider only the generic task of providing a formal

speci�cation. We will outline, so-to-speak, a \pattern" (in a broad sense, in

the line of [1] and followers) for qualifying a formal speci�cation method;

our pattern illustrates in particular the relationships between formalism and

method. A warning: we do not intend to be prescriptive; the paper has the

main purpose of exploring some ideas and of stimulating a re
ection; much

has still to be clari�ed. The structure of the pattern is shown in Fig. 1.
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C/C++ programs Reactive programs �

Ada programs Reactive systems

Imperative programs without pointers Real-time programs

Imperative programs with pointers Real-time systems

Imperative programs Hybrid programs

Functional programs Hybrid systems

Functional modules/data types Object-oriented programs

Nondeterministic programs Object-oriented systems

Asynchronous language programs Protocols

Parallel programs � Information systems

Distributed programs � Database systems

Distributed systems � Embedded systems

Distributed architectures � Agent systems +

Concurrent programs � : : : : : :

Table 1

Kinds of end-products

To give a requirement speci�cation

To validate a requirement speci�cation

To give a design speci�cation

To give a design speci�cation starting from a requirement one

To validate a design speci�cation

To verify a design speci�cation against a requirement speci�cation �

To give an intermediate speci�cation (i.e., not classi�able as requirement or design)

To validate an intermediate speci�cation

To verify an intermediate speci�cation against some other speci�cation

To give some code

To validate some code

To verify some code against a design/intermediate speci�cation

To check the quality of some speci�cation/code

To reuse (replay) [a part of] a development process (also a single activity) by chang-

ing something in the inputs

To produce a new version of an already developed end-product (maintenance)

To support the development process de�nition and management

: : : : : :

Table 2

Activities in the development processes

The reader may get the impression that here and in the following some relevant

keywords of software engineering have been neglected; that it is not true. In

our opinion they are embedded in the single parts of the various methods, but

are not particular parts. We give some examples.

Tools Clearly the activities of a development process may, or better must,

be supported by automatic tools; the available tools and how to use them

are described in the guidelines, presentation and documentation parts (e.g.,

a theorem prover, which is valuable only together with proper guidelines,

or a graphical interface for producing speci�cations, which is relative to a
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graphic presentation).

Evolution Evolution is a property of the development processes; and we may

have development processes more or less evolutionary; the classic waterfall

model is rather poor in this respect. It is clear that evolutionary development

processes are made by particular activities, such as to modify a design given

a modi�cation on the original requirements.

Old requirement

speci�cation

-

Old design

speci�cation

-

Requirements

modi�cation

-

DESIGN

MODIFICATION

New design

speci�cation

-

Domain knowledge If the supported end-products are very speci�c (e.g.,

microprograms for a particular chip, or a special class of protocols) the

method may be completely driven by the associate domain knowledge.

2.2 Locating the method within the development process context

2.2.1 End-products

Because a speci�cation method supports the activity of giving a description of

some kind of end-products, we have to qualify the kind of such end-products.

The END PRODUCTS part is expressed by qualifying the set of the considered

end-products, denoted by EP . Generally speaking the description of such set is

not formal. For our discussion we assume the existence of an oracle for deciding

whether an end-product is in EP , for every EP. End-products will play a major

role in relating formalisms to methods, as we are going to illustrate.

Quite often end-products are structured, i.e., they exhibit an inner structure.

Such structure may be represented by a set of composers, that are (possibly

partial) functions having EP as codomain; we can say that EP gets an al-

gebraic structure. The simplest case is when the structure is homogeneous,

i.e., when also all arguments of the composers are in EP ; but sometimes the

end-products are built also from subparts that are not in EP (e.g., imperative

programs made out from procedures). In the latter case EP gets a heteroge-

neous algebraic structure.

To determine, if any, a structure on the end-products it will help to see whether

the considered method is modular or not and to discuss the characteristics of
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ACTIVITY

To give a formal speci�cation

CONTEXT

END PRODUCTS EP

the kind of the end-products

of the development process

LOCATION

quali�cation and location of the activity

in the development process

FORMALISM

FORMAL MODELS
M

mathematical structures representing

the end-products

SPECIFICATIONS

SPEC, [[ ]] speci�cations as artifacts

6

IMPACT ON METHOD

?

PRAGMATICS

MODELLING

�

how the formal models model the

end-products

GUIDELINES

guidelines for the speci�cation task

PRESENTATION

presentation of the speci�cations

for humans

DOCUMENTATION

documenting the performed task

Fig. 1. Components of a speci�cation formal method

such modularity.

2.2.2 Quali�cation and location

We need to qualify the kind of speci�cation we are dealing with and its place

within the development process we are using. We stress the importance of

locating an activity within its context.

A quick look at standard books on Software Engineering (e.g., [29,32]) or to

the various papers on development process models (see [15]), will show the

reader the many ways \speci�cation" is intended and the di�erent roles in the

process. For example, the activity designated as \requirement speci�cation"

may be used in a classic waterfall or spiral model; the activity of giving an

intermediate speci�cation may be used either in a uniform multistage model

or in an intermediate step between design and code; within an object-oriented
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approach the distinction between requirement and design is blurred and the

speci�cation activity is much constrained by the speci�c approach. This infor-

mation allows also to know whether the formal method is part of a uniform/

coordinated group of other formal methods to support the whole development

process.

The components END PRODUCTS and LOCATION should allow to have a

coarse idea of the \functionality" of the speci�cation formal method.

2.3 Formalism

2.3.1 Formal models

The formal models are a class of mathematical (set theoretic) structures M,

which formally represent the elements in EP at some abstraction level, de-

pending on the kind of speci�cation we are providing. In this paper, we de-

note them by the words \formal models" to avoid confusion with the models

of some logic formalism and with the development process models.

Very well-known classes of formal models used by some formalisms are:

{ Computable functions from memories (maps from locations into values) into

memories for imperative programs

{ Many-sorted algebras or �rst-order structures for functional modules and

data types.

{ Synchronization trees (see, e.g., [25,22]) for processes

{ Sets of action traces (see, e.g., [19]) for processes

Strangely enough, in several presentations of formalisms we �nd that this part

is either obscure or given implicitly; instead, in our opinion, it should be given

explicitly and in a very clear way.

Most often the formal models are classi�ed into disjoint subclasses by consid-

ering structural/syntactic properties using a general concept of signature, as

when using institutions (see, e.g., [10]). Following this view we need to give:

{ a class of signatures SIG,

{ for each � 2 SIG, the class of the formal models on that signature M

�

.

Sometimes the formal models are structured, i.e., they exhibit an inner struc-

ture. Analogously to the case of the end-products, such structure may be

represented by a set of composers, that are (possibly partial) functions having

M as codomain; we can say that M gets an algebraic structure. Also in this

case such structure may be either homogeneous or heterogeneous.
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A structure on the formalmodels will help to de�ne structuring operations over

the speci�cations and to see whether the speci�cation structure is compatible

with the one of the end-products.

2.3.2 Speci�cations

In a very general way a speci�cation, as an artifact, is a description of an

end-product at some level of abstraction, which can also be intended at some

point in the development process. A formal speci�cation is a way to determine

a class of formal models: all those modelling the end-product at such point in

the development process.

Usually formal speci�cations are expressed by terms or programs in an appro-

priate speci�cation language.

The component SPECIFICATIONS of a formal method consists of:

{ A set of speci�cations SPEC (programs or terms of the speci�cation lan-

guage)

{ A semantic function [[ ]] (for the speci�cation language) associating with

each speci�cation a class of formal models

[[ ]] : SPEC ! P(M)

1

Notice that there are no assumptions on the cardinality of [[SP]], with SP 2

SPEC; it may be just a singleton.

[[ ]] must be a total (non-injective) function, whenever SPEC contains only the

admissible speci�cations.

[[ ]] may be non-surjective: not all the classes of formal models may be expressed

using this speci�cation language. The speci�cation language is more or less

powerful depending on how is large the codomain of [[ ]].

If the formal models are classi�ed by signatures, then the speci�cations must

have the form of pairs, whose �rst components are signatures, and their se-

mantics will be a class of formal models on such signatures.

In general, the speci�cations are structured, i.e., they exhibit an inner struc-

ture, because a reasonable speci�cation language should provide ways to mod-

ularly present complex speci�cations, by allowing to split them in sensible

pieces, also to help maintenance and reuse.

1

P( ) denotes the powerset (powerclass) operator.
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As in the cases of the end-products and of the formal models, such struc-

ture may be represented by a set of composers, that are (possibly partial)

functions having speci�cations as codomain; we can say that SPEC gets an

algebraic structure. The speci�cation language itself gives a precise syntax to

such composers.

Note that the speci�cation composers may be of di�erent kinds.

Model-oriented A speci�cation composer C

SP

is model-oriented i� there

exists a model composer C

M

s.t.

for all SP

1

, SP

2

2 SPEC

2

[[C

SP

(SP

1

;SP

2

))]] = fC

M

(M

1

;M

2

) jM

1

2 [[SP

1

]];M

2

2 [[SP

2

]]g.

Speci�cation-oriented These composers are not linked to the formal mod-

els, precisely they are those not satisfying the above condition.

A typical example of speci�cation-oriented composer is the union for property-

oriented speci�cations (see the following Sect. 2.6.3), which builds a new speci-

�cation just by making the union of the sets of formulae of two other speci�ca-

tions; also inheritance (in the sense of a mechanism for reusing speci�cations)

and the possibility of de�ning speci�cations parameterized over something

(e.g., parameterized algebraic speci�cations) are of this kind. The importance

of this kind of structuring has been widely recognized since early times, as wit-

nessed in the various speci�cation languages (see [35] and in [28] the de�nition

of a speci�cation language institution independent).

Typical examples of model-oriented composers are the + operator of CCS

and the sequential composer of the Hoare's logic.

It is important to avoid confusing the two kinds of structuring of a speci�-

cation (e.g. sometimes the CCS + is used to simulate at some extent

inheritance and union, which are lacking); also because their di�erent role

w.r.t. development. The model-oriented structuring embodies, throughout the

formal models, the information on the structure of the intended end-products,

whereas this is not true for the speci�cation-oriented ones, and so this kind of

structuring may be modi�ed or forgotten during the development.

2

Here and in the following for simplicity we consider all composers to be binary,

but clearly their arities may be whatever.
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2.4 Pragmatics

2.4.1 Modelling

To provide a rationale for why some end-products have been given some speci-

�cations, and thus a basis for validation and comprehension, a method should

provide the connection between the formal models and the end-products it is

addressing. On the basis of some years of experience, we believe this to be a

fundamental aspect, whose importance is unfortunately often underestimated.

Let us provide some suggestions, at the risk of some oversimpli�cation, on

how to handle this issue in a somewhat rigorous way. Essentially we must

provide the means for establishing a binary relation� between end-products

and formal models, where P� M means intuitively that P is modelled by M

(or M is a model for P or M models P).

We consider � to be a binary relation and not a function, because it may

happen that P� M and P� M

0

with M 6= M

0

; in such cases M and M

0

di�er

for irrelevant details (e.g., a data structure may be modelled by two algebras

that either di�er for the concrete syntax or are isomorphic). In general �

is not injective; this is sound, because the formal models cannot, and should

not, cover all aspects of the end-products, and so several end-products may

be modelled by the same formal model. Also the codomain of � may be a

subclass of M; in such cases we have more formal models than we need, but

that is not a problem. We may always assume that the domain of� coincides

with EP .

We require:

1) if P� M, P

0

�M

0

and P� M

0

, then also P

0

� M; graphically:

P

�

M

�

@

@

@

@

@

P

0

�

M

0

)

P

0

�

�

�

�

�

�

M

.

Moreover we have to require the consistency of � with the semantics of spec-

i�cations, namely the semantics to be closed w.r.t. � and the speci�cations

to consider only formal models modelling some end-product:

2) If P� M, P� M

0

and M 2 [[SP]], then M

0

2 [[SP]].

3) For all M 2 [[SP]], there exists P 2 EP s.t. P� M.

Assuming to have �, we can then formally de�ne a connection pair (A;I)

15



between end-products and formal models:

{ for every set of end-products Ps, A(Ps) = fM j 9 P 2 Ps : P�Mg;

{ for every class of models Mc, I(Mc) = fP j 9M 2 Mc : P�Mg.

We call A abstraction of end-products and I interpretation of formal models.

From 1) we have that

a) I(A(I(Mc))) = I(Mc)

b) A(I(A(Ps))) = A(Ps)

and from 2) and 3) we have also

c) A(I([[SP]])) = [[SP]].

Most often it will be sensible to have a (partial) equivalence relation � on

formal models, with the intuitive meaning of being \essentially equivalent"

in representing end-products, thus requiring the relation � to be compatible

with �:

if P�M, then M �M

0

, P�M

0

.

Under this assumption � associates with each end-product essentially one

model (an equivalence class), thus � is a function from EP into M= �; if

Mc is closed w.r.t. �, then A(I(Mc)) = Mc and also a) and b) hold together

with c), if we require, as it should, the semantics to be closed w.r.t. �.

Notice that such a � always exists, under our assumption de�ned by M � M

0

i� there exists P s.t. P�M and P� M

0

.

2.5 Remaining components

The following three items in our pattern are brie
y quali�ed, but our brevity

should not be taken as a sign of scarce relevance. From our experience we

�rmly believe that they are rather fundamental for the practical acceptance of

a formalism. However, we have not much room here for such important parts,

moreover their relevance is luckily becoming more and more recognized.

Guidelines This part consists of the guidelines for steering and helping

the task of producing in the best possible way the speci�cations of the end-

products. These guidelines should consider also the use of software tools, when-

ever available.

16



The guidelines are understandably driven by the preceding parts in our pat-

tern, but note the fundamental role played by context and modelling, if we

want seriously to provide professional guidelines.

Presentation We mean by presentation the interface with the user, in

a broad sense, of a speci�cation artifact. Users, here, can range from the

clients, those �nancing the end-product, who need to understand a require-

ment speci�cation in its own language (see [29], distinguishing requirement

de�nition from requirement speci�cation), to the implementors, to the speci-

�cation builder himself, when a change is needed at some later stage. A pre-

sentation should hopefully consist of text, with formal and natural language

parts, graphical interfaces and animation. A presentation can in
uence the

formalism, which should demonstrably be compatible with sensible friendly

presentations.

Documentation We refer to documenting the speci�cation task for use in

evolution and maintenance. The evolution in software development is now

taken care in every process model (see [15]) and its importance in formal

methods recognized (see [18]) also some prototype support tools are appearing

([30]).

2.6 Impact of formalism on method

We outline the impact that some features of a formalism may have on the

method and thus on pragmatics; conversely some requirements on pragmatics

have to be taken care in developing a formalism.

2.6.1 Abstraction level of speci�cations

Once we have given the formal models, we can qualify the abstraction degree

of the speci�cation language in the sense how much abstract its speci�cations

can be, and so providing some information about at which points in the de-

velopment process it may be used. The abstraction degree is related to the

cardinality of the classes of formal models that are semantics of the speci-

�cations. The less abstract speci�cation methods are those where [[SP]] has

cardinality 1 or is just an isomorphism class.
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2.6.2 Speci�cation semantics

The technique used for providing the semantics of speci�cation language is

not neutral; indeed such semantics can be given in

{ A rather direct, explicit and denotational way (e.g., as done by Hoare for

CSP, [19]), by exhibiting the relative class of formal models

{ An indirect or implicit way, say as (1) the limit of a diagram in a category, (2)

de�ning that two speci�cations are semantically equivalent i� their equality

may be proved by a deductive system.

However, in our opinion, providing an explicit way seems to be essential for

software engineering purposes; to help people to grasp the meaning of speci-

�cations. Techniques as (1) may be used as a quick way to establish the exis-

tence of such semantics, whereas those as (2) may be used to help work with

the speci�cations, to provide simpler forms or to show that two speci�cations

coincide.

2.6.3 Speci�cation style

There are various speci�cation styles. The most quoted distinction is between

axiomatic (or property-oriented) and model-oriented; still other hybrid styles

are possible.

Property-oriented (axiomatic) We prefer the term property-oriented, as

more suggestive than axiomatic. In general property-oriented speci�cations use

formal models classi�ed by signatures. The ingredients are (see the concept of

institution for a more general setting, also accounting for change in signatures,

e.g., in [10]): for each � 2 SIG,

{ A set of sentences (or formulae) over �, SEN

�

{ A validity notion (i.e., a binary relation j=

�

�M

�

� SEN

�

)

The speci�cations in this case are pairs, whose components are a signature �

and a subset of SEN

�

.

For what concerns the semantics, the basic way to de�ne it is

[[(�;S)]] =Mod(�;S)

where

Mod(�;S) = fM j M 2 M

�

and M j=

�

� for all � 2 SEN

�

g

3

.

3

The elements of this class are usually called the models of the speci�cation.
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The methodological ideas supporting this speci�cation style are:

we describe the end-product at a certain moment in its development by ex-

pressing all its \relevant" properties by sentences provided by the formalism.

Clearly this aspect will have an enormous impact on the use of the formalism,

as it should be re
ected in the guidelines. In the presentation part, the sen-

tences should be intuitively described by using the natural language in terms

of properties of the formal models and via the modelling (see Sect. 2.4.1) in

terms of properties of the end-products.

A property-oriented speci�cation language may be evaluated by considering:

Expressive power How many/which are the classes of M which can be

expressed by the sentences ?

Adequacy Which properties of the end-products may be expressed by the

sentences?

As examples, consider the speci�cation languages �-calculus ([31]) and UNITY

([11]). The �rst has a big expressive power and a low adequacy for specifying

protocols; indeed, it is hard to qualify its combinators in terms of proper-

ties on protocols. The latter is not very expressive, but it is quite adequate

for nondeterministic imperative programs (its end-products); indeed its few

combinators correspond to basic relevant properties on them.

Model-oriented (constructive) The ingredients for model-oriented spec-

i�cations are:

{ A class of speci�cations SPEC

{ A basic semantic function: [[ ]]

0

: SPEC ! M (i.e., associating essentially

one model with one speci�cation)

{ A partial order on M �

Then the semantics is de�ned by

[[SP]] = fM 2 M j [[SP]]

0

�Mg

The methodological ideas supporting this speci�cation style are:

we describe the end-product at a certain moment in its development by giving

a prototype/archetype of it using the speci�cation language; then apart we

say which are the irrelevant features of this archetype by the order � (M �

M

0

means that M

0

di�er from M for irrelevant details, which can thus be

freely �xed later in the development).
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Perhaps, a better way to name this style should be construction-oriented, or

constructive, with the meaning that we specify an end-product by construction

(at the abstraction level supported by the method, that is depending on the

formal models and on the speci�cation language); afterward we would say

when another construction may be equivalent.

If � is the identity, then we have a purely constructive speci�cation style, the

lowest level in a classi�cation by abstraction degree.

A model or construction-oriented speci�cation language may be evaluated by

considering:

Expressive power How many/which formal models can be expressed by

[[ ]]

0

? and how many/which classes of M can be expressed by �?

Formal-model{ or end-product{oriented The model-oriented speci�ca-

tion languages may be further classi�ed depending on whether their con-

structs are oriented towards the features of the formal models (e.g., +

and : of CCS) or towards the end-products (e.g., the LOTOS constructs

for protocols).

A formal model-oriented speci�cation language is more general and can be

used in many di�erent formal methods considering di�erent classes of end-

products (think of �-calculus); but it may be not very 
exible and thus suitable

for special classes of end-products (it is possible to model any imperative pro-

gram by using �-calculus, but it is not sensible for useful purposes in practice).

On the other hand, the end-product-oriented speci�cation languages could be

used for very successful formal methods for particular classes of end-products,

and cannot easily nor sensibly be adopted for di�erent kinds of end-products

(e.g., it is not convenient, if possible at all, to use LOTOS to specify fully

distributed systems).

Some controversy between property and model-oriented has been and is still

going on, on various grounds. Perhaps di�erent styles serve di�erent purposes

and di�erent communities.

Borderline cases Sometimes, in a property-oriented speci�cation formal-

ism we have also another ingredient: a way to determine one (few) formal

models starting from of the model class by additional properties, which can-

not be expressed by using the sentences (e.g., constraints). In these cases the

semantics is given by:

[[(�;S)]] = fM jM 2 M

�

and additional constraints using Mod(�;S)g

Usually, we need to give some restrictions on (�;S) to have that [[(�;S)]] is

not empty.
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The observational and the initial semantics are among the most typical ex-

amples; in the �rst case we pick up the class of models, considered equivalent

w.r.t. a set of observations to those belonging to Mod(SP); in the second we

de�ne essentially one model (the initial element of Mod(SP)) on the basis of

an induction principle for de�ning the individual elements of the model, plus

an equality de�ned by logical deduction.

If the constraints lead to a single model, then a speci�cation formalism given in

this way is property-oriented, we give the/some properties of the end-product,

but in the same time is model/constructive-oriented, because we build up in

the end one model.

3 Illustrative cases

In this section by reactive system we mean in general a system able to evolve

along the time possibly reacting to its external environment disregarding other

features; thus a parallel, concurrent, distributed system is a particular case;

sometimes in the literature the term process is used with the same general

meaning.

3.1 Methods based on CCS

CCS, the calculus of communicating systems [25], has been introduced origi-

nally as a formalism for describing reactive and concurrent systems, in close

analogy with the role of �-calculus for sequential computations. Together with

CSP [19] it has been recognized as a major theoretical advance in concurrency

and has provided a basis for some derived methods. It is very interesting to

explore the di�erences between the original CCS formalism and its use in a

method. We will pick up two particular methods, among the many possible,

based on CCS, used in practice and shown in the literature.

END PRODUCTS (Non-distributed) reactive systems.

LOCATION CCS can be used both for requirement speci�cations (say CCS-

R) and design speci�cations (say CCS-D) in a fragment of a naive water-fall

development process represented in Fig. 2.

FORMAL MODELS Let us consider here, for simplicity, as models the syn-

chronization trees (i.e., labelled transition trees modulo strong bisimulation).

A variety of other choices, usually variations of strong bisimulation, are pos-

sible, not always easily de�nable in an explicit way (see, e.g., [25]).
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Formal requirement speci�cation

6

Correctness proof

?

Re�nement

: : : : : :

6

Correctness proof

?

Re�nement

Design speci�cation

Fig. 2. Development process for CCS methods

MODELLING A reactive system R is modelled by a synchronization tree ST,

where the nodes of ST represent the intermediate (interesting) situations of

the life of R and the labelled arcs of ST the possibilities of R of passing from

a state to another one. Note that

{ Here a labelled arc (a transition) s

l

��! s

0

has the following meaning: R in

the state s has the capability of passing into the state s

0

by performing a

transition, where the label l represents the interaction with the external (to

R) world during such move; thus l contains information on the conditions

on the external world for the capability to become e�ective, and on the

transformation of such world induced by the execution of the action; so

transitions correspond to action capabilities.

{ The precise form of the states is irrelevant, only the action capabilities

starting from them matter, and so two states can be distinguished only if

they have di�erent action capabilities.

In this case � is not a function, because a reactive system may be modelled

by in�nitely many trees di�ering at most for the used labels. The equivalence

relation on the synchronization trees �, making � a function, is de�ned by:

ST

1

� ST

2

i� ST

2

can be obtained by ST

1

by renaming in a bijective way

the arc labels.

SPECIFICATIONS CCS-R speci�cations follow a model-oriented style. Every

speci�cation consists of a so-called behaviour expression, that is a term in the

CCS language. The basic semantics of CCS is the standard strong bisimulation

(see [25]), which gives the synchronization tree associated with a behaviour

expression. The relation � is the weak bisimulation preorder; weak bisimula-

tion means forgetting irrelevant (not all) internal moves in a synchronization

tree; ST

1

� ST

2

i� ST

1

is weakly simulated by ST

2

.

The speci�cation language, CCS, o�ers both formal model-oriented constructs

( : , + ) and end-product-oriented constructs ( jj ). Sometimes the latter

is used also for structuring complex speci�cations of sequential processes.
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The speci�cations for CCS-D are similar; the only di�erence is that in this

case the relation � is the identity.

3.2 Methods based on algebraic speci�cations

Among the methods based on algebraic speci�cations we consider:

CADT The classical abstract data types speci�cation method, see [34]

SMoLCS-R The SMoLCS method for requirement speci�cations, see [3,12]

ASSRS The method exempli�ed by M. Bidoit et al. in their treatment of the

steam boiler problem, see [7] (ASSRS stands for Algebraic Speci�cation of

Sequential Reactive Systems)

Strikingly enough, in all cases, the formalism is essentially the same, whereas

the end-products, and consequently, the modelling techniques of such methods

are really di�erent.

END PRODUCTS

CADT The usual, static so-to-speak, data types (lists, stacks, bulletin board,

etc.)

ASSRS The non-concurrent and non-parallel reactive systems (shortly se-

quential processes)

SMoLCS-R The reactive systems

LOCATION All these methods cover the formal speci�cation of the require-

ments in a simple development process schematically reported in Fig. 3.

FORMAL MODELS (Isomorphism classes of) First-order structures with equal-

ity, usually many-sorted.

SPECIFICATIONS In any case the speci�cation style is property-oriented and

the speci�cation language allows structured versions of �rst-order many sorted

logic with equality (PLUSS for ASSRS and METAL for SMoLCS-R). Here

we consider the simplest version of SMoLCS-R: the one based on �rst-order

logic; there are several variants where the logic is extended with combinators

of temporal, modal and deontic logic respectively to express liveness and safety

properties on the behaviour of the reactive systems (see, e.g., [12]).

MODELLING

CADT In this case the modelling is trivial: carriers and interpretations of op-

erations and predicates represent respectively the values (classi�ed by types),

the operations and tests of the data type.
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Fig. 3. Development process for methods based on algebraic speci�cations

ASSRS A sequential process receives information from the external world and

sends them to it; thus, it is modelled by an activity function, which given a

set of input messages (information received from outside) and its actual state

returns a new state and a set of output messages (information sent outside).

The signature of the associated algebra will have three sorts

input-message-set, state

and two operations

Answer: input-message-set � state! output-message-set

Next-State: input-message-set � state ! state,

These functions allow to represent the activity function.

SMoLCS-R A part of the modelling is supported at the syntactic level, where

some of the sorts are quali�ed as dynamic and are such that for each of them,

say ds, there exit a corresponding sort of labels l ds and a labelled transition

predicate ��! : ds l ds ds. Given an algebra L, each one of its reactive sorts,

say ds, determines a labelled transition system (L

ds

;L

l ds

; ��!

L

) representing

a type of reactive systems.

The interpretation is like that for CCS-R and CCS-D with three important

di�erences: everything can be typed; states may be relevant and, what is more
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important, the CADT method for static structures is embedded. Note that

in this way labels may have states as subcomponents, thus allowing to express

also the so-called higher-order reactive systems.

Clearly, we can handle in this way also concurrent reactive systems; that are

reactive systems having components that are in turn other reactive systems;

in these cases we have algebras with several dynamic sorts, i.e. sorts corre-

sponding to states of labelled transition systems together with the associated

label sorts and transition predicates.

There is also a variant of the SMoLCS method for design speci�cations; it

shares all components with SMoLCS-R except, obviously, location and spec-

i�cations. Its speci�cations follow a borderline style using many-sorted �rst-

order conditional logic (see [5]), plus the constraint on the models picking up

the initial element, exactly one, modulo isomorphism.

The presentation part for both SMoLCS-R and SMoLCS-D includes a way

to complement formal speci�cations with informal ones ([4]) and graphic ones

([27]). Guidelines have been developed too, and are brie
y sketched in [27].

4 Analysing Compositionality

Compositionality is one of the basic technical principles supporting modularity

in software development. Let us propose a version of it for methods.

Assume to have a formal method FM, whose relevant components are EP,

M, SPEC, [[ ]] and � respectively, and that the structures on end-products,

formal models and speci�cations are given by the signatures �

EP

, �

M

and

�

SPEC

respectively. In the following, given a signature of composers �, we

write C 2 �

+

to denote a composer either belonging to � or derived by

composing those in �.

The usual concept of compositionality is not interesting when applied to meth-

ods.

We say that FM is compositional i�

for each speci�cation composer C

SP

2 �

SPEC

, there exists an end-product

composer C

P

2 �

+

EP

, s.t.:

for all SP

1

, SP

2

2 SPEC

fC

P

(P

1

;P

2

) j P

1

2 I([[SP

1

]]);P

2

2 I([[SP

2

]])g = I([[C

SP

(SP

1

;SP

2

)]]).
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Many existing formal methods are not compositional in this sense; for ex-

ample, almost all those having speci�cation composers speci�cation-oriented

(see Sect. 2.3.2); and a speci�cation formalism without speci�cation-oriented

composers may be really poor and not 
exible.

The right notions about compositionality for methods may be informally ex-

pressed by the following sentence:

End-products made by putting together several parts may be speci�ed (at

some abstraction level) by putting together the speci�cations of such parts

and are formally de�ned below.

{ FM supports the structure of EP i�

for each end-product composer C

P

2 �

EP

, there exists a speci�cation com-

poser C

SP

2 �

+

SPEC

, s.t.:

for all SP

1

, SP

2

2 SPEC

fC

P

(P

1

;P

2

) j P

1

2 I([[SP

1

]]);P

2

2 I([[SP

2

]])g = I([[C

SP

(SP

1

;SP

2

)]]).

{ FM weakly supports the structure of EP i�

for each end-product composer C

P

2 �

EP

, there exists a speci�cation com-

poser C

SP

2 �

+

SPEC

, s.t.:

for all SP

1

, SP

2

2 SPEC

� fC

P

(P

1

;P

2

) j P

1

2 I([[SP

1

]]);P

2

2 I([[SP

2

]])g � I([[C

SP

(SP

1

;SP

2

)]]),

� A(fC

P

(P

1

;P

2

) j P

1

2 I([[SP

1

]]);P

2

2 I([[SP

2

]])g) �A(I([[C

SP

(SP

1

;SP

2

)]]))

(it is equivalent to require equality instead of containment in this last

point; indeed A is monotonic w.r.t. set inclusion).

For example,CCS-D is weakly compositional, but not compositional, because

the formal model of the parallel composition of two processes can be used also

to model a sequential process, indeed it is false that

fproc

1

in parallel with proc

2

j proc

1

2 I([[BE

1

]]); proc

2

2 I([[BE

2

]])g �

I([[BE

1

jj BE

2

]]),

because I([[BE

1

jj BE

2

]]) contains also sequential processes having the same

synchronization tree of the parallel composition of the two processes.

Now we examine the compositionality properties of the components of a

method.

{ the formalism (i.e.,M, SPEC and [[ ]]) supports the structure of M i�

for each formal model composer C

M

2 �

M

, there exists a speci�cation

composer C

SP

2 �

+

SPEC

, s.t.

for all SP

1

, SP

2

2 SPEC

fC

M

(M

1

;M

2

) j M

1

2 [[SP

1

]];M

2

2 [[SP

2

]]g = [[C

SP

(SP

1

;SP

2

))]].

{ � weakly supports the structure of EP i�
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for each end-product composer C

P

2 �

EP

, there exists a formal model

composer C

M

2 �

+

M

, s.t.

C

P

(P

1

;P

2

) � M , there exist M

1

, M

2

s.t. P

1

� M

1

, P

2

� M

2

and

M = C

M

(M

1

;M

2

);

{ � supports the structure of EP i�

� weakly supports it and P � C

M

(M

1

;M

2

) ) there exist P

1

, P

2

s.t.

P

1

�M

1

, P

2

� M

2

and P = C

P

(P

1

;P

2

).

Proposition 1 If the formalism of FM supports the structure of M and �

(weakly) supports the structure of EP , then FM (weakly) supports the structure

of EP .

PROOF. Let C

P

2 �

EP

. By the hypothesis there exists C

M

2 �

+

M

, and

C

SP

2 �

+

SPEC

with the appropriate properties.

I([[C

SP

(SP

1

;SP

2

)]]) = (because F supports the structure of M)

I(fC

M

(M

1

;M

2

) jM

1

2 [[SP

1

]];M

2

2 [[SP

2

]]; g) = (by de�nition of I)

fP j 9M

1

2 [[SP

1

]];M

2

2 [[SP

2

]], s.t. P� C

M

(M

1

;M

2

)g = A

fC

P

(P

1

;P

2

) j P

1

2 I([[SP

1

]]);P

2

2 I([[SP

2

]])g =

fC

P

(P

1

;P

2

) j 9 M

1

2 [[SP

1

]];M

2

2 [[SP

2

]] s.t. P

1

� M

1

;P

2

�M

2

g = B

Because � weakly supports the structure of EP , we have that

C

P

(P

1

;P

2

)� C

M

(M

1

;M

2

), and so B � A.

A(I([[C

SP

(SP

1

;SP

2

)]])) = (from c) of Sect. 2.4.1) [[C

SP

(SP

1

;SP

2

)]] =

(because F supports the structure of M)

fC

M

(M

1

;M

2

) jM

1

2 [[SP

1

]];M

2

2 [[SP

2

]]; g = (by 3) of Sect. 2.4.1)

fC

M

(M

1

;M

2

) jM

1

2 [[SP

1

]];M

2

2 [[SP

2

]];9 P

1

2 EP ;P

2

2 EP ;P

1

� M

1

;P

2

�

M

2

g = C

A(fC

P

(P

1

;P

2

) j P

1

2 I([[SP

1

]]);P

2

2 I([[SP

2

]])g) = A(B) =

fM j 9 M

1

2 [[SP

1

]];M

2

2 [[SP

2

]];P

1

2 EP ;P

2

2 EP;P

1

� M

1

;P

2

�

M

2

; C

P

(P

1

;P

2

)� Mg

Because � weakly supports the structure of EP , it contains C.

Because � supports the structure of EP, we have that A � B.

5 Relating Methods

We present here another application of the proposed pattern, showing how

methods and not just formalisms can be compared. First we de�ne a notion
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of simulation of methods and then discuss how methods can be simulated by

simulating and translating their formalisms.

Assume we have two speci�cation methods, FM and FM

0

, given following the

pattern of Sect. 2. The relevant components, for the issues we are considering

here, are respectively (EP ;M;SPEC; [[ ]];�) and (EP

0

;M

0

;

0

; [[ ]]

0

;�

0

).

FM and FM

0

are comparable only if their LOCATION's are homogeneous; it

makes no sense to compare a method for requirement speci�cation with an-

other one for low level design; furthermore they should have common end-

products, that is EP \ EP

0

is not empty, or better it contains relevant end-

products. Of course, we can compare the two methods only when restricted

to consider EP \ EP

0

.

If the LOCATION's of FM and of FM

0

are homogeneous and EP

0

� EP , then

we say that FM has a wider spectrum than FM

0

has, or that FM

0

has a smaller

spectrum than FM has.

This relationship is not a measure of absolute merit. Indeed, if one has to work

only with a precise class of end-products, a speci�cally developed method may

be better than a general purpose one (perhaps some domain knowledge has

been incorporated, or it is simpler to learn, : : : ). On the other hand, a general

purpose method may be good for the case one has to work with di�erent kinds

of applications, because in this case the big e�ort to learn it has to be made

only once.

A di�erent relationship concerns with expressiveness.

We say that FM is more powerful (expressive) than FM

0

is i� EP

0

� EP and

for all SP

0

2 SPEC

0

, there exists SP 2 SPEC s.t. I

0

([[SP

0

]]

0

) = I([[SP]]) (any

class of end-products speci�able using FM

0

can also be speci�ed using FM).

5.1 Simulating methods

We want to know whether a formal method FM can be simulated by another

one FM

0

having similar LOCATION's and s.t. EP

0

� EP. In this case it is not

su�cient to know that the latter is more powerful, but we want to know also

how to �nd the speci�cations of FM

0

that can be used to simulate those of

FM.

A simulation of FM by FM

0

is a total function Sim: SPEC ! SPEC

0

s.t.

for all SP 2 SPEC, I([[SP]]) = I

0

([[Sim(SP)]]

0

), that is the following diagram

commutes:
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P(EP

0

)

I

�

�

�

�	

I

0

@

@

@

@I

P(M)

P(M

0

)

[[ ]]

�

[[ ]]

0

�

SPEC

SPEC

0

?

Sim

If Sim is non-injective, then FM is richer (FM

0

is poorer), that is FM o�ers

more tools for presenting speci�cations (e.g. to modularly decompose speci�-

cations making them more readable, as the possibility of declaring procedures

in a programming language). Clearly, if Sim is non-surjective, then FM

0

is

more powerful (FM is less powerful).

As an example we can try to simulateASSRS by SMoLCS-R, see Sect. 3.2.

The two methods are comparable, because they have the same LOCATION

component and EP

ASSRS

� EP

SMoLCS�R

; indeed, ASSRS consider only

sequential reactive systems, and being more precise, only those without local

non-determinism, that are reactive systems where the reception of a stimulus

from outside in a given state can produce only one reaction.

The simulation function Sim

AS

associates with a SMoLCS-R speci�cation

SP the following ASSRS speci�cation:

use SP

dsort state: _ -- _ --> _

op <_;_>: input-message-set output-message-set -> lab_state

ax s -- < is; Answer(s,is) > --> Next-State(s,is)

ax forall l: lab_state

exists is: input-message-set, os: output-message-set

l = < is; os >

ax < is; os > = < is'; os' > iff is = is' and os = os'

Sim

AS

is total, injective and clearly non-surjective.

5.2 Relating methods via formalisms

Let us now relate methods by looking at the relationships between their for-

malisms.

Assume to have two speci�cation formalisms, F and F

0

, whose components
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translation

(semantic equivalence between

speci�cations is preserved)

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

H

deep translation

(also speci�cation semantic

values are translated)

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

translation exact up to �

(speci�cation semantic values

are preserved up to �

[an equivalence relation])

exact translation

(speci�cation semantic

values are preserved)

simulation

(speci�cation semantic

values can be recovered)

Fig. 4. Relationships between formalisms

given following Sect. 2 are respectively (M;SPEC; [[ ]]) and (M

0

;SPEC

0

; [[ ]]

0

).

We can de�ne several di�erent relationships between F and F

0

; some derived

by the analogous relations between institutions (see [2]) and others derived

by the translations between languages (a speci�cation formalism may be a

language). Such relationships are graphically summarized in Fig. 4.

Let S : SPEC ! SPEC

0

be a total function andM :M!M

0

,M

0

: M

0

!M

be two functions.

{ S is a translation of F into F

0

i� for all SP

1

, SP

2

2 SPEC,

[[SP

1

]] = [[SP

2

]] i� [[S(SP

1

)]]

0

= [[S(SP

2

)]]

0

.

{ (S;M) is a deep translation of F into F

0

i�

it is a translation and for all SP 2 SPEC,

P(M)[[SP]] = [[S(SP)]]

0 4

; that is the diagram in Fig. 5.a commutes.

{ ifM =M

0

and � is an equivalence relation on M, S is a translation exact

up to � of F into F

0

i�

it is a translation and for all SP 2 SPEC,

f[M]

�

jM 2 [[SP]]g = f[M]

�

j M 2 [[S(SP)]]

0

g;

if � is the identity, then S is an exact translation;

{ (S;M

0

) is a simulation of F by F

0

i� for all SP 2 SPEC,

P(M

0

)([[S(SP)]]

0

) = [[SP]]

0

, that is the diagram in Fig. 5.b commutes.

Obviously, we have that deep translations and translations up to are transla-

tions and that exact translations are deep and exact up to identity; whereas

4

Given f : A! B and X � A, P(f)(X) = ff(x) j x 2 Xg.
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P(M)

P(M

0

)

?

P(M)

[[ ]]

�

[[ ]]

0

�

SPEC

SPEC

0

?

S

a) b)

P(M)

P(M

0

)

6

P(M

0

)

[[ ]]

�

[[ ]]

0

�

SPEC

SPEC

0

?

S

Fig. 5.

there is no relationship between translations and simulations.

Note that relating formalisms is not relating methods. Indeed, if we give a

relationship between the formalisms of two formal speci�cation methods, then

not always we have a relationship between the two methods: the modellings

have to be taken into account too; also an exact translation may be not a

method simulation. Below we give su�cient conditions for deriving a relation-

ship between methods from one between their formalisms.

Proposition 2 Let FM and FM

0

be two formal speci�cation methods with

formalisms F and F

0

respectively.

(i) Let (S;M

0

) be a simulation of F by F

0

; if I

0

(Mc

0

) = I(P(M

0

)(Mc

0

)), that

is if the following diagram commutes, then S is a simulation of FM by

FM

0

.

P(EP

0

)

I

�

�

�

�	

I

0

@

@

@

@I

P(M)

P(M

0

)

6

P(M

0

)

(ii) Let (S;M) be a deep translation of F by F

0

; if I

0

(P(M)(Mc)) = I(Mc),

that is if the following diagram commutes, then S is a simulation of FM

by FM

0

.
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P(EP

0

)

I

�

�

�

�	

I

0

@

@

@

@I

P(M)

P(M

0

)

?

P(M)

(iii) Let (S;M) be a translation exact up to � of F into F

0

; if � and �

0

are

compatible with �, that is

P�M and M �M

0

implies P� M

0

P�

0

M and M � M

0

implies P�

0

M

0

,

then S is a simulation of FM by FM

0

.

(iv) Let S be an exact translation of F into F

0

; if � and �

0

coincide, then S

is a simulation of FM by FM

0

.

PROOF. i) I([[SP]]) = (because (S;M

0

) is a simulation of formalisms)

I(P(M

0

)([[S(SP)]]

0

)) = (by the hypothesis) I

0

([[S(SP)]]

0

).

ii) I([[SP]]) = (by the hypothesis) I

0

(P(M)([[SP]])) = (because (S;M) is a deep

translation) I

0

([[S(SP)]]

0

).

iii) From the hypothesis, we have that if M 2 [[SP]], then there exists M

0

2

[[S(SP)]]

0

s.t. M � M

0

; and similarly if M

0

2 [[S(SP)]]

0

, then there exists M 2

[[SP]] s.t. M � M

0

.

I([[SP]]) = fP j 9 M 2 [[SP]] s.t. P� Mg =

fP j 9M

0

2 [[S(SP)]]

0

s.t. P�M

0

g = I

0

([[S(SP)]]

0

).

iv) Trivial.

Below we de�ne some rather natural relationships, graphically reported in

Fig. 6, among the formalisms of the formal methods presented as examples in

Sect. 3 and show which ones may be uplifted to the method level.

{ Id

1

, : : : , Id

4

are the trivial embeddings between the formalisms (recall that

all of them are essentially �rst-order algebraic speci�cations).

{ Tr

2

translates SMoLCS-R speci�cations into ASSRS ones by transform-

ing labels plus states into sets of input messages (states are needed because

in SMoLCS-R a label may lead to several di�erent states); formally Tr

2

associates with a SMoLCS-R speci�cation SP, where state is its main

dynamic sort, the following ASSRS speci�cation

use SP

sorts input-message-set, output-message-set

32



CCS-D SMoLCS-D

-

Tr

1

CADT ASSRS

-

Id

1

�

Id

2

@

@

@

@

@

@

@

@R

Id

3

@

@

@

@

@

@

@

@I

Id

4

�

�

�

�

�

�

�

��

Tr

2

SMoLCS-R

Fig. 6. Relationships between example formalisms

opns Null: -> output-message-set

<_;_>: lab_state state -> input-message-set

axioms

forall os: output-message-set . Null = os

forall is: input-message-set

exists l: lab_state, s: state . is = < l; s >

< l; s > = < l'; s' > iff l = l' and s = s'

if s -- l --> s' then

Answer(s,<l,s'>) = Null and Next-State(s,<l,s'>) = s'

{ Tr

1

translates a CCS term, whose associated synchronization tree is ST , into

a SMoLCS-D speci�cation with one dynamic sort state and semantics L,

s.t. the elements of sort state in L bijectively correspond to the states of

ST , the elements of sort lab state bijectively correspond to the labels of

ST , and the interpretation of --> corresponds to the arcs of ST .

Tr

1

is a translation exact up to isomorphism on LTL-structures; and Id

1

, : : : ,

Id

4

and Tr

2

are exact translations.

However not all of them are method simulations.

Tr

1

is a method simulation, indeed both methods have essentially the same

modelling.

Id

1

, Id

3

are method simulations, indeed both ASSRS and SMoLCS-R have

CADT as a submethod for handling the data structures used by the processes.

Id

4

and Id

2

are not method simulations, because the speci�cations of processes

become speci�cations of static data structures.

Tr

2

is not a method simulation, because the speci�cation of a process sending

and receiving numbers becomes the speci�cation of a process o�ering no reac-
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tion to whatever stimuli. Notice that there is no way to simulate SMoLCS-R

with ASSRS, because the �rst does not o�er a way to distinguish within an

interaction of a process with the external world what is received and what is

sent outside; instead the correct simulation of ASSRS by SMoLCS-R has

been given before in Sect. 5.1.

5.3 Replacing the formalism in a method

Sometimes an existing method FM with formalism F has to be modi�ed to

use a di�erent formalism F

0

; for example, because the original one is no more

supported, or a new one is equipped with more software tools.

How to recover or integrate the speci�cations produced using the original

method? How to exploit all experience gained on the original method and in

some sense how to keep the method? The key idea is to provide a suitable

relationship between F and F

0

, and then derive a modi�ed method, which is

a simulation of the original one.

Let F = (M;SPEC; [[ ]]) and F

0

= (M

0

;SPEC

0

; [[ ]]

0

) be the old and the new

formalisms respectively; and let (S;M) be a deep translation of F into F

0

.

To get a new method we just need to de�ne a new modelling

P�

0

M

0

, there exists M 2 M s.t. P�M and M

0

=M(M);

thus the new formal method FM

0

has the following relevant components

(EP;M

0

;�

0

; [[ ]]

0

; fS(SP) j SP 2 SPECg � SPEC

0

).

Proposition 3 If M is compatible with �, that is

for all P 2 EP, M;M 2 M, if P� M and M(M) =M(M), then P�M,

then FM

0

is a method and S is a simulation of FM by FM

0

.

PROOF. To see that FM

0

is a method we have to prove 1), 2) and 3) of

Sect. 2.4.1.

1) Assume P

1

�

0

M

0

1

, P

2

�

0

M

0

1

, P

2

�

0

M

0

2

; thus there exist M

1

, M

1

and

M

2

s.t. P

1

� M

1

, P

2

� M

1

and P

2

� M

2

, M

0

1

= M(M

1

), M

0

1

= M(M

1

)

and M

0

2

= M(M

2

). From the hypothesis P

2

� M

2

. Because FM is a method

P

1

�M

2

and so P

1

�

0

M

0

2

.

2) Assume P � M

0

1

, P � M

0

2

and M

0

1

2 [[S(SP)]]

0

; thus by de�nition of

�

0

there exist M

1

, M

2

2 M s.t. P � M

1

, P � M

2

, M

0

1

= M(M

1

) and

M

0

2

=M(M

2

).
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Because (S;M) is a deep translation [[S(SP)]]

0

= P(M)([[SP]]), and so there

exists M

1

2 [[SP]] s.t. M

0

1

=M(M

1

). By the hypothesis we have that P� M

1

;

because FM is a method (prop. 2)) M

2

2 [[SP]], and so M

0

2

2 [[S(SP)]]

0

.

3) Assume M 2 [[SP

0

]]

0

= [[S(SP)]]

0

= P(M)([[SP]]), thus there exists M s.t.

M = M(M) with M 2 [[SP]]. Because FM is a method there exists P s.t.

P� M, and so P�

0

M.

Now we show that (M, S) is a simulation of FM by FM

0

. Let SP 2 SPEC,

I

0

([[S(SP)]]

0

) = fP j 9 M

0

2 [[S(SP)]]

0

;P�

0

M

0

g =

fP j 9M

0

2 [[S(SP)]]

0

;M 2 M s.t. M

0

=M(M);P�Mg =

fP j 9M 2 M;M

0

2M([[SP]]) s.t. M

0

=M(M);P� Mg =

fP j 9M 2 M;M 2 [[SP]] s.t. M(M) =M(M);P�Mg =

(from the hypothesis) fP j 9M 2 [[SP]];P� Mg = I[[SP]].

6 Conclusions

We started with some general remarks on the permanent controversy on the

role of formal methods and the current rather confusing situation, with di�er-

ent authoritative views on what should be done in the formal methods area.

Adopting the view that researchers should take more care of the technology

transfer problem, we have advocated a more explicit connection of a formalism

to the methodological aspects for really getting an e�ective formal method.

Not being the time nor our experience mature enough for addressing the prob-

lem in its globality (we do not even know whether it would be sensible), we

have con�ned ourselves to discuss in some detail the activity of providing for-

mal speci�cations. We have presented some basic ideas on how to provide a

pattern qualifying the di�erent aspects of a method, distinguishing between

context, formalism and pragmatics and relating them within a method.

The use of the proposed pattern for presenting formal methods allows to en-

lighten many aspects, frequently kept implicit also in author presentations.

Moreover singling out what is the formal part of a method could also be of

help in teaching the formalities.

Notice however that a method is nicely presented using our pattern does not

mean that is surely a good and valuable one; in other words, a well-presented

pattern is a necessary but not a su�cient condition for the value of a method.

The proposed pattern has been applied to handle important issues, namely

compositionality and simulation of methods, showing that only at the method

level we have su�cient tools for an analysis relevant to the practical use.
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Although of preliminary character, we believe that some of the ideas can be

exploited in other di�erent contexts and perhaps generalized as a useful con-

ceptual tool. Moreover we hope to have shown that rxploring methodological

aspects is a subject of interesting investigation itself. We will welcome useful

comments, constructive criticism and suggestions.

Someone may wonder why the mathematics used in this paper is so simple

(more or less set theory), and why we do not need more sophisticated mathe-

matical tools, for example, category theory, which has been used for the meta

presentation of logical speci�cation formalisms, for example adopting the in-

stitution framework. First of all we want the formalities related to formal

METHODS to be the simplest possible (thus models should be described in

set theoretic way, the structure on formal models, speci�cations, : : : is given

in terms of functions). Moreover at the moment that has been enough; it may

be that going on we need to use more complex mathematical tools.

However it would have been rather easy to rephrase everything in a more

sophisticated setting, for example, turning the various classes of entities into

categories (so composition would be modelled by limits in some diagram and

we should have functors around instead of functions). But, further studies are

needed to see if that could give some advantages (e.g., more compact and

elegant ways to present the parts of the pattern, easier way to get results).

6.1 Future work

We think that the idea of using a pattern for describing in a organized way

formal methods should be tested on other activities di�erent from \to specify";

the next candidates are \to verify the correctness of a development step"

(e.g., from requirement to design, from design to code) and \to validate some

artifacts" (e.g., speci�cations, code). Furthermore we need to build a sensible

library of instantiations of the various patterns.

Recently several works are appearing on the topic of combining formalisms

and methods or heterogeneous formalisms and methods; we plan to see if our

pattern presentation of formal methods may help to explore when and how

formalisms and methods may be combined.

We believe that to go on to de�ne patterns for many activities we need to �nd

out an \organized (more or less formal)" way to describe processes happening

along the time, as for properly presenting guidelines (which in activity di�erent

from \to give a speci�cation" may be the most relevant component of the

pattern), representing development processes and the (partial) execution of

them (for the activities taking care of development process).
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