
UML as a Heterogeneous Multiview Notation

Strategies for a Formal Foundation

Egidio Astesiano { Gianna Reggio

Dipartimento di Informati
a e S
ienze dell'Informazione

Universit�a di Genova { Italy

email fastes, reggiog�disi.unige.it

On UML

UML is a semi-formal notation, in the sense that it has a rather pre
ise syntax (in
luding well-

formedness
onditions) but an informal semanti
s (just a natural language des
ription). The

task of its formalization is not trivial and poses new problems, sin
e UML has some relevant

and novel features with respe
t to the existing spe
i�
ation formalisms. Let us single out our

personal view of some of those features.

Multiview The UML model of a system
onsists of many di�erent diagrams, ea
h one de-

s
ribing a view either of the system or of some of its parts. For example, a
lass diagram

des
ribes the stati
 stru
ture of the system, while a state diagram des
ribes the lo
al

rea
tive behaviour of a system
omponent (an obje
t of some
lass), a sequen
e or
ol-

laboration diagram des
ribes some mutual intera
tions between some
omponents of the

system, and so on. It may happen that the fun
tionality and some
onstraints on an

operation of a
lass are in the
lass diagram, its lo
al behaviour is in a state diagram, its

intera
tions with the obje
ts of another
lass are in a
ollaboration diagram, and those

with the obje
ts of a third di�erent
lass are in a sequen
e diagram.

Heterogeneous The various kinds of UML diagrams use very di�erent notations, as a variant

of entity relationships, state
harts, message sequen
e
harts, a kind of Petri nets (a
tivity

diagrams), et
etera.

Extendable UML o�ers some ways to the users to extend the kinds of the elements used in

the diagrams, as stereotypes, tagged values and
onstraints. Moreover the language used

for the
onstraints is not �xed; a parti
ular one, OCL, has been de�ned but its use is not

mandatory and
an be repla
ed by other languages, in
luding also natural language text.

Notation UML is only a notation and not a method (see in [?℄ a detailed dis
ussion on the

di�eren
e between notation/formalism and method); thus it
an be used in di�erent ways

by di�erent methods, and a method may
onsider only parts of UML or di�erent parts

in di�erent phases of the development pro
ess (see, e.g., [?℄).

1

The UML do
umentation makes expli
it the �rst two points; indeed su
h notes treat ea
h

kind of diagrams separately and do not
onsider their mutual relationships. For example well-

formedness
onditions and informal semanti
s do not
over groups of diagrams and just
onsider

single diagrams in isolation.

Why a Formal Foundation for UML

For us to give UML a \formal foundation" means to provide a formal semanti
s for any of

the UML diagrams in an integrated way, taking into a

ount also their mutual relationships;

learly it may happen that only a part of UML
an be formalized, or better
an be formalized

in a sensible way.

Below we present a detailed list of reasons for establishing a formal foundation for UML.

� To make pre
ise,
omplete,
onsistent the informal semanti
s of UML; thus also to extend

the well-formedness
onditions and the informal semanti
s to
over groups of related

diagrams. In this way UML would be really a standard, in the sense that there would

be an unambiguous des
ription allowing to say whether an interpretation of UML (by a

software development method, by a tool) is
orre
t or not.

� To �nd whi
h parts of UML
annot be formalized in a sensible way, so that their meaning

annot be really �xed; and then dis
uss if they are useful even if informal and still
annot

originate any misunderstanding (perhaps the Use Case Diagrams falls in this
ategory).

� Perhaps to simplify the various UML notations by �nding parts that
an be dropped,

be
ause they are redundant, not relevant or
onstru
ts whose pre
ise informal de�nition

is too
omplex to be e�e
tively presented and used.

� To o�er the basis for building and validating software tools for UML, also allowing to

know what
an be done automati
ally and what not.

� To o�er a ba
kground for extending UML with some formal spe
i�
ation language for the

onstraints (e.g., Z or the new
ommon algebrai
 language CASL [?℄).

It is important to stress that in our opinion the formalization of UML should remain fully

transparent to the users; they do not need to be aware of the formal semanti
s, but they should

have a revised version of the oÆ
ial UML do
umentation en
ompassing what expressed by the

formal semanti
s.

Clearly the formal semanti
s of UML may also help build and assess software development

methods using su
h notation.

For us the above reasons are all valid, but we want to report, for the sake of dis
ussion,

a quite di�erent opinion. Sin
e UML
an be seen as \a group of heterogeneous semi-formal

notations", di�erent methods
ould use the same diagrams intended with di�erent meanings;

in this
ase ea
h method should establish the relationships among them and say how, when

and for what to use the various diagrams. For example a method may enfor
e that all the

exe
utions of the obje
ts of a
lass should be those des
ribed by sequen
e diagrams, another

one may just say that they may have at least su
h exe
utions, and a third one may use some

2

sequen
e diagrams to des
ribe prohibited exe
utions; a method may de
ide that ea
h use
ase

orresponds to an operation of a spe
ial main obje
t in the system, and so on.

For someone this great freedom is a reason of the su

ess of UML (and of similar semi-formal

notations), be
ause ea
h one
an tailor the notation as she/he prefers and software tools may

just support a very parti
ular variant. Only the graphi
 syntax is really standard.

Some Strategies

A UML des
ription of the model of a system (spe
i�
ation form now on)
onsists of a set of

diagrams of di�erent types, where ea
h diagram provides a view of either a part of the system

or of the whole system (stati
 stru
ture, internal a
tivity of a
omponent in isolation, . . .).

Let us �rst group the UML diagrams into a family of sets, DK

i

(i = 1; : : : ; n), ea
h one

orrespoding to a kind of diagrams.

Assume to have a UML spe
i�
ation of a system

SPEC = D

1

, . . . , D

k

;

its semanti
s is roughly

Sem(SPEC) = fM j M agrees with the view represented by D

j

; j = 1; : : : ; kg

where M is a mathemati
al stru
ture formally representing a system.

To pre
isely de�ne this semanti
s we need

� a
lass MOD of stru
tures formally representing the systems whi
h
an be modelled with

UML;

� for ea
h kind of UML diagrams DK

i

(i = 1; : : : ; n), a binary relation

j=

i

� DK

i

�MOD.

Then

Sem(SPEC) = fM 2 MOD jM j=

j

D

j

j = 1; : : : ; kg

where for ea
h j, j=

j

is the validity relation for the type of D

j

.

DK1

DK
2 DK

n

. ..

MOD
|=1

|=2 |=n

If it happens that Sem(SPEC) = ;, then SPEC is in
onsistent, and so it
ontains some errors;

the most probable errors would be in
onsisten
ies between state and sequen
e/
ollaboration

diagrams, or among di�erent sequen
e/
ollaboration diagrams.

On the basis of this general s
hema, let us dis
uss at least two di�erent strategies for ta
kling

this big task.

Combinatorial approa
h We give for ea
h kind of diagrams, say DK

i

, a semanti
s using

formal models able to express the system views that they represent,

Sem

i

:DK

i

! P(MOD

i

).

3

This initial step is reasonably easy, relying on results present in the literature; if we
annot

do that for some kind of diagrams in a sensible way, then they should remain only informal.

Then we de�ne the elements of MOD by joining together elements of MOD

1

, . . . , MOD

n

respe
tively, and give a family of proje
tion operations from MOD to MOD

i

, say �

i

Finally, given M 2 MOD

M j=

i

D

i

i� �

i

(M) 2 Sem

i

(D

i

):

MOD

DK1

2

n

. ..

π1

π2 πn

P(MOD)1

DK
2

DK
n

Sem 1

2 nSem Sem

. . .

P(MOD)

P(MOD)

Translational approa
h We give for ea
h kind of diagrams, say DK

i

, a translation into some

existing spe
i�
ation formalism,

TR

i

:DK

i

! FORM

i

.

As before, if we
annot do that for some kind of diagrams, they should remain only informal.

Then we �nd a basi
 spe
i�
ation formalism FORM powerful enough with its semanti
s

Sem:FORM! P(MOD)

(e.g., many-sorted se
ond-order logi
), and for ea
h i = 1; : : : ; n we give a translation of FORM

i

into FORM

TR

0

i

:FORM

i

! FORM:

Finally, given M 2 MOD

M j=

i

D

i

i� M 2 Sem(TR

0

i

(TR

i

(D

i

))):

4

FORM

DK1

.
..

FORM 1

DK
2

DK
n

TR’1

TR2

TRn

P(MOD)

Sem

TR’2 TR’n

FORM 2

FORM n

TR1

.

.
.

The above two last diagrams show also how to de
ompose modularly the big task of for-

malizing UML; however that does not mean that we
an just start by working on formalizing

the diagrams in DK

i

, forgetting that their semanti
s/translation will be part of a more
omplex

framework: the models/formalisms used in the various
ases
annot have an extremely di�erent

nature and we
annot
hoose them by looking only at one kind of diagrams.

A
knowledgement Some ideas illustrated here have been presented at a meeting of the

\Rea
tive Systems Group" of the COFI Initiative [?℄, last July at Dagsthull; we a
knowledge

the bene�t of the dis
ussions during that meeting.

5

