
UML as a Heterogeneous Multiview Notation

Strategies for a Formal Foundation

Egidio Astesiano { Gianna Reggio

Dipartimento di Informatia e Sienze dell'Informazione

Universit�a di Genova { Italy

email fastes, reggiog�disi.unige.it

On UML

UML is a semi-formal notation, in the sense that it has a rather preise syntax (inluding well-

formedness onditions) but an informal semantis (just a natural language desription). The

task of its formalization is not trivial and poses new problems, sine UML has some relevant

and novel features with respet to the existing spei�ation formalisms. Let us single out our

personal view of some of those features.

Multiview The UML model of a system onsists of many di�erent diagrams, eah one de-

sribing a view either of the system or of some of its parts. For example, a lass diagram

desribes the stati struture of the system, while a state diagram desribes the loal

reative behaviour of a system omponent (an objet of some lass), a sequene or ol-

laboration diagram desribes some mutual interations between some omponents of the

system, and so on. It may happen that the funtionality and some onstraints on an

operation of a lass are in the lass diagram, its loal behaviour is in a state diagram, its

interations with the objets of another lass are in a ollaboration diagram, and those

with the objets of a third di�erent lass are in a sequene diagram.

Heterogeneous The various kinds of UML diagrams use very di�erent notations, as a variant

of entity relationships, state harts, message sequene harts, a kind of Petri nets (ativity

diagrams), et etera.

Extendable UML o�ers some ways to the users to extend the kinds of the elements used in

the diagrams, as stereotypes, tagged values and onstraints. Moreover the language used

for the onstraints is not �xed; a partiular one, OCL, has been de�ned but its use is not

mandatory and an be replaed by other languages, inluding also natural language text.

Notation UML is only a notation and not a method (see in [?℄ a detailed disussion on the

di�erene between notation/formalism and method); thus it an be used in di�erent ways

by di�erent methods, and a method may onsider only parts of UML or di�erent parts

in di�erent phases of the development proess (see, e.g., [?℄).

1



The UML doumentation makes expliit the �rst two points; indeed suh notes treat eah

kind of diagrams separately and do not onsider their mutual relationships. For example well-

formedness onditions and informal semantis do not over groups of diagrams and just onsider

single diagrams in isolation.

Why a Formal Foundation for UML

For us to give UML a \formal foundation" means to provide a formal semantis for any of

the UML diagrams in an integrated way, taking into aount also their mutual relationships;

learly it may happen that only a part of UML an be formalized, or better an be formalized

in a sensible way.

Below we present a detailed list of reasons for establishing a formal foundation for UML.

� To make preise, omplete, onsistent the informal semantis of UML; thus also to extend

the well-formedness onditions and the informal semantis to over groups of related

diagrams. In this way UML would be really a standard, in the sense that there would

be an unambiguous desription allowing to say whether an interpretation of UML (by a

software development method, by a tool) is orret or not.

� To �nd whih parts of UML annot be formalized in a sensible way, so that their meaning

annot be really �xed; and then disuss if they are useful even if informal and still annot

originate any misunderstanding (perhaps the Use Case Diagrams falls in this ategory).

� Perhaps to simplify the various UML notations by �nding parts that an be dropped,

beause they are redundant, not relevant or onstruts whose preise informal de�nition

is too omplex to be e�etively presented and used.

� To o�er the basis for building and validating software tools for UML, also allowing to

know what an be done automatially and what not.

� To o�er a bakground for extending UML with some formal spei�ation language for the

onstraints (e.g., Z or the new ommon algebrai language CASL [?℄).

It is important to stress that in our opinion the formalization of UML should remain fully

transparent to the users; they do not need to be aware of the formal semantis, but they should

have a revised version of the oÆial UML doumentation enompassing what expressed by the

formal semantis.

Clearly the formal semantis of UML may also help build and assess software development

methods using suh notation.

For us the above reasons are all valid, but we want to report, for the sake of disussion,

a quite di�erent opinion. Sine UML an be seen as \a group of heterogeneous semi-formal

notations", di�erent methods ould use the same diagrams intended with di�erent meanings;

in this ase eah method should establish the relationships among them and say how, when

and for what to use the various diagrams. For example a method may enfore that all the

exeutions of the objets of a lass should be those desribed by sequene diagrams, another

one may just say that they may have at least suh exeutions, and a third one may use some

2



sequene diagrams to desribe prohibited exeutions; a method may deide that eah use ase

orresponds to an operation of a speial main objet in the system, and so on.

For someone this great freedom is a reason of the suess of UML (and of similar semi-formal

notations), beause eah one an tailor the notation as she/he prefers and software tools may

just support a very partiular variant. Only the graphi syntax is really standard.

Some Strategies

A UML desription of the model of a system (spei�ation form now on) onsists of a set of

diagrams of di�erent types, where eah diagram provides a view of either a part of the system

or of the whole system (stati struture, internal ativity of a omponent in isolation, . . . ).

Let us �rst group the UML diagrams into a family of sets, DK

i

(i = 1; : : : ; n), eah one

orrespoding to a kind of diagrams.

Assume to have a UML spei�ation of a system

SPEC = D

1

, . . . , D

k

;

its semantis is roughly

Sem(SPEC) = fM j M agrees with the view represented by D

j

; j = 1; : : : ; kg

where M is a mathematial struture formally representing a system.

To preisely de�ne this semantis we need

� a lass MOD of strutures formally representing the systems whih an be modelled with

UML;

� for eah kind of UML diagrams DK

i

(i = 1; : : : ; n), a binary relation

j=

i

� DK

i

�MOD.

Then

Sem(SPEC) = fM 2 MOD jM j=

j

D

j

j = 1; : : : ; kg

where for eah j, j=

j

is the validity relation for the type of D

j

.

DK1

DK
2 DK

n

. ..

MOD
|=1

|=2 |=n

If it happens that Sem(SPEC) = ;, then SPEC is inonsistent, and so it ontains some errors;

the most probable errors would be inonsistenies between state and sequene/ollaboration

diagrams, or among di�erent sequene/ollaboration diagrams.

On the basis of this general shema, let us disuss at least two di�erent strategies for takling

this big task.

Combinatorial approah We give for eah kind of diagrams, say DK

i

, a semantis using

formal models able to express the system views that they represent,

Sem

i

:DK

i

! P(MOD

i

).

3



This initial step is reasonably easy, relying on results present in the literature; if we annot

do that for some kind of diagrams in a sensible way, then they should remain only informal.

Then we de�ne the elements of MOD by joining together elements of MOD

1

, . . . , MOD

n

respetively, and give a family of projetion operations from MOD to MOD

i

, say �

i

Finally, given M 2 MOD

M j=

i

D

i

i� �

i

(M) 2 Sem

i

(D

i

):

MOD

DK1

2

n

. ..

π1

π2 πn

P(MOD )1

DK
2

DK
n

Sem 1

2 nSem Sem

. . .

P(MOD )

P(MOD )

Translational approah We give for eah kind of diagrams, say DK

i

, a translation into some

existing spei�ation formalism,

TR

i

:DK

i

! FORM

i

.

As before, if we annot do that for some kind of diagrams, they should remain only informal.

Then we �nd a basi spei�ation formalism FORM powerful enough with its semantis

Sem:FORM! P(MOD)

(e.g., many-sorted seond-order logi), and for eah i = 1; : : : ; n we give a translation of FORM

i

into FORM

TR

0

i

:FORM

i

! FORM:

Finally, given M 2 MOD

M j=

i

D

i

i� M 2 Sem(TR

0

i

(TR

i

(D

i

))):

4



FORM

DK1

.
..

FORM 1

DK
2

DK
n

TR’1

TR2

TRn

P(MOD)

Sem

TR’2 TR’n

FORM 2

FORM n

TR1

.

.
.

The above two last diagrams show also how to deompose modularly the big task of for-

malizing UML; however that does not mean that we an just start by working on formalizing

the diagrams in DK

i

, forgetting that their semantis/translation will be part of a more omplex

framework: the models/formalisms used in the various ases annot have an extremely di�erent

nature and we annot hoose them by looking only at one kind of diagrams.

Aknowledgement Some ideas illustrated here have been presented at a meeting of the

\Reative Systems Group" of the COFI Initiative [?℄, last July at Dagsthull; we aknowledge

the bene�t of the disussions during that meeting.

5


