
A Discipline for Handling Feature Interaction

Egidio Astesiano and Gianna Reggio

DISI

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a di Genova

Via Dodecaneso, 35 { Genova 16146 { Italy

fastes,reggiog @ disi.unige.it

http://www.disi.unige.it

Abstract. A challenging problem within the wider software evolution

problem is the development of systems by features. While most of the

recent work centered around the detection of feature interactions, we

present an approach based on modular speci�cation, separation of con-

cerns and prevention of unwanted interactions. We illustrate our ap-

proach extending a formalism for the speci�cation of reactive systems

and showing its application to some aspects of the well-known case of

telephone systems (POTS and variations).

The paper concentrates more on the methodological aspects, which are,

at large extent, independent of the formalism. Indeed, this seems to be

the case of some rather novel concepts like the distinction between pre-

features (features in isolation) and features, closed and open semantics,

feature composition and discipline of feature interaction, and �nally the

pervading role of a kind of anti-frame assumption.

Introduction

Evolution in software development has many facets. One which emerged in the

last �ve years, especially in the area of telecommunications and networking, is

the continual expansion of services. Recognizing that objected-oriented incre-

mentality is not adequate to cope with this new problem in full generality, the

concept of \feature" as unit of update has been introduced, see e.g., [11], and

taken as a pivotal unit for even new paradigms, like feature-oriented program-

ming, feature-oriented speci�cation and so on [9].

In spite of the considerable e�ort (see some pointers to recent work at the

end), still many issues deserve further attention and investigation, as it is ad-

mitted by the specialists of the subject, also taking into account the growing

complexity of the applications concerned. Among the issues, feature composi-

tion and interaction is de�nitely the one attracting most attention. This is also

witnessed by the success of an International Workshop on Feature Interaction,

now reaching in `98 its �fth edition. In particular a lot of work is reported on

the so-called feature interaction detection, possibly done automatically. Accord-

ing to this viewpoint, feature interaction is synonym with unexpected/unwanted

results.

We are among those sharing the view that the problem of feature-interaction

should be tackled within a wider methodological approach. This view is best

expressed by Pamela Zave in [11], who calls for \an approach based on modular

speci�cations and separation of concerns : : : (aimed) to organize the speci�-

cation so that it is easy to add without destroying its structure or desiderable

properties". This is indeed the underlying challenging problem; again in P. Zave's

words \the goal of extendible speci�cations is as di�cult to achieve as it is easy

to state". For example, in the realm of reactive and concurrent systems, the

classical approach to incrementality has been based on the notion of process/

agent as unit of change; feature-driven incrementality deals instead with incre-

mentality within a process and refers/a�ects the behaviour of the pre-existing

processes.

Here we want to outline a speci�cation framework supporting a feature-driven

software development method with rigorous semantics, o�ering conceptual tools

for expressing requirements on unwanted interactions. The framework intends to

be adaptable to a variety of di�erent application �elds, like telecommunications,

information systems; clearly, depending on the application, sensible domain spe-

ci�c methods should be derived.

This paper is devoted to a semiformal introductory illustration of our ap-

proach by means of a signi�cant running example. A more formal and detailed

presentation of the technicalities can be found in other papers [2].

At the end of the paper we discuss the relationship with the existing work.

Running example As running examples we consider various telephone sys-

tems modularly built by composing features. We start with POTS (Plain Old

Telephone System) schematically presented in the following picture.

telephone system

subscriber subscriber

subscriber

subscriber

. . .
Each subscriber may

{ hear the phone ringing,

{ lift/put down the receiver,

{ dial the number of another subscriber,

{ hear a busy/free tone/the voice of another subscriber on the receiver,

{ and speak on the microphone.

In this paper, following [3] and others, in order to illustrate our approach,

we consider the telephone system as a simple reactive system consisting of the

part enclosed by the dotted line in the above picture; and we consider as its

interchanges with the external world (the subscribers) only those underlined

in the above list. However, in the real life application it would be better to

see POTS as a concurrent system, whose components are the phones and the

telephone net.

We then extend the functionalities of POTS by adding the possibility of

automatic-call back (ACB) in the case of a call to a busy subscriber and of three-

parts service (TP), i.e., telephone communications involving three subscribers.

Using a telecommunication terminology, we can extend the system by adding

two \features"; in our setting also the starting system (POTS) is considered a

feature.

Outline Let us now outline the main steps of our approach.

� First, a feature is treated almost in isolation and considered just a simple

reactive system; thus POTS, ACB and TP are speci�ed (Sect. 1) as gen-

eralized transition systems, whose states are sets of attribute values (as in

many O-O approaches) and whose transitions, de�ned by a set of activity

rules, denote action capabilities, with the labels indicating the interface with

the external environment. Still a basic new concept is introduced for taking

care of the possible addition of other features: transitions are grouped under

types, essentially indicating the kind of performed activity; when composing

two features only transitions with the same type will have the possibility of

being merged into a more complex transition.

We call pre-feature speci�cations those concerning features as reactive sys-

tems in isolation. With a pre-feature speci�cation a closed semantics is as-

sociated, consisting of the generalized labelled transition system logically

derived from the speci�cation. This semantics is based on an underlying

closed world/frame assumption: the attribute updates and transitions which

are not explicitly asserted cannot happen.

� Then we consider the possibility of adding features (Sect. 2.1). We take a

compositional style and speak of composition of pre-features; composition

will be a partial, associative and commutative operation.

As an example, POTS and ACB can be composed, resulting in another pre-

feature speci�cation POTS � ACB; analogously we can get POTS � TP.

Analyzing the examples we show how in the composition the transitions can

be combined, under an underlying anti-frame assumption: the fact that a

rule of a pre-feature does not update an attribute does not mean that when

we compose such rule with another one that attribute cannot be updated.

� The composition of pre-features provides the technical setting for analysing

interaction of features (Sect. 2.2): roughly, PF

2

interacts with PF

1

i� in

PF

1

� PF

2

some parts of PF

1

are modi�ed. We emphasize that, di�erently

than in many other approaches, \interaction" is for us a neutral concept,

namely it is not in itself good nor bad, as we show in the cases of POTS�ACB

and POTS �TP.

� One of the methodological keypoint of our approach, following P. Zave's

quoted principle, is trying to prevent the occurrence of bad interactions

qualifying the kind of interaction we admit as much as we can.

Hence the full concept of feature speci�cation comes out naturally as a pair

(Sect. 3): a pre-feature speci�cation and a set of interaction requirements,

which are formulae in some logical formalism constraining the possibility

of adding other features. As we show, interactions can be grouped in fami-

lies of some kind, e.g., those concerning the atomic transitions, the overall

behaviour, etc. Roughly speaking, a logic can discipline the interactions of

some kind whenever it is powerful enough to express requirements preventing

them. Thus, methodologically, we suggest to prevent bad interactions �rst

of all by an appropriate speci�cation, in some respect like in the speci�ca-

tion phase of any system development. It may well happen that some bad

interactions escape our quali�cation; but that means we need some feedback

process, via testing, for adjusting our speci�cation, not di�erently than in

the usual development process.

� The technical, rather novel, concept supporting that aspect of the method

is the open semantics of a feature speci�cation. While the closed seman-

tics of the pre-feature speci�cation part gives just one generalized labelled

transition system, the one logically deducible adopting the usual \frame-

assumption", the open semantics consists of all the generalized labelled tran-

sition systems satisfying not only the interaction requirements, but also the

activity rules under an anti-frame assumption. We have indeed to take into

account that adding features can induce w.r.t. the closed semantics a variety

of changes, like updates of the attributes and new transitions, as long as

they are not explicitly forbidden; moreover all models have to be in a sense

\logic extensions"of the closed semantics, intending that the activity rules

producing the closed semantics have to be satis�ed, though in a generalized

sense; this last point is formalized as an inplicit default requirement, one for

each rule. Verifying, with the help of available veri�cation tools, that the

closed semantics satis�es the interaction requirements, is a standard way of

checking consistency. Technically speaking, the open semantics is a kind of

ultra-loose semantics, since it consists of models over signatures extending

the one of the pre-feature speci�cation.

What is then the relationship between the open and the closed semantics?

Unless the feature speci�cation is inconsistent (no models), the closed se-

mantics is one of the possible models.

Then the complete semantics of a consistent feature speci�cation is the pair

formed by the closed and the open semantics.

Now the concept of composition carries over feature speci�cations; but two

features are compatible only if their pre-feature parts are composable and

the requirements, including the default ones, are not in conict; this implies

that the resulting composed feature is consistent, i.e., it admits some model.

1 Pre-Features

1.1 Pre-feature Speci�cations

First we consider a feature in isolation, i.e., without any concern about adding

other features; we will use the name \pre-feature" for such an entity, to mark

the di�erence with the complete concept of feature that we will introduce later.

We start illustrating what is for us the description of a pre-feature; then we

discuss its semantics.

In our approach a pre-feature is a partial description of a reactive system,

possibly intended as a description of only some \parts" of the system.

We distinguish reactive systems in simple and structured or concurrent; the

latter are those having cooperating components, which are in turn reactive sys-

tems (simple or structured). Our speci�cation technique considers di�erently

the two cases; and in this paper we show how to handle the simple ones; the

concurrent ones will be considered in some future work.

We formally model a reactive system R with a generalized labelled transition

system (see [7]), shortly glts, which is a 4-uple

(STATE ;LABEL;TT ;!);

where STATE, LABEL and TT are sets, the states, the labels and the transition

types of the system, and! � TT�STATE�LABEL�STATE is the transition

relation.

The states represent the intermediate (interesting) situations of the life of

R and the arcs between them the possibilities of R of passing from a state to

another one. It is important to note that here an arc (a transition) tt : s

l

��! s

0

has the following meaning: R in the state s has the capability of passing into the

state s

0

by performing a transition, where the label l represents the interaction

with the external (to R) world during such move. Thus l contains information

on the conditions on the external world for the capability to become e�ective,

and on the transformation of such world induced by the execution of the action;

so transitions correspond to action capabilities. The transition type tt allows

to classify transitions by putting together those corresponding to execute \con-

ceptually" related activities. The reasons of the introduction of transition types

will be clear later. We only anticipate that while labels, as usual, are a tool for

supporting process composition, transition types will play an essential role when

de�ning feature composition and hence handling feature interaction.

Our speci�cation technique is described below, and exempli�ed with its ap-

plication to POTS, whose speci�cation as a pre-feature (simple reactive system)

is given in Fig. 1.

� The POTS data part (keyword data) uses the speci�cations SET(IDENT)

for the sets of subscriber identi�ers and REL for binary relations on iden-

ti�ers (just sets of identi�er pairs). Here we neglect the part of the data

speci�cation; it is only important to recall that its semantics should result

in a many-sorted �rst-order structure.

pre-feature POTS[s] =

data SET(IDENT);REL

attributes

ACT : set(ident)

- - the set of the active subscribers, i.e., those which have lifted the receiver

BUSY : set(ident) - - the set of the subscribers hearing a busy tone

TRYING : rel

- - the set of the pairs of subscribers (id; id

0

) s.t. id is trying to connect with id

0

CONN : rel - - the set of the pairs of connected subscribers

interface

LIFT ;DOWN (ident)

- - a subscriber lifts/puts down the receiver

DIAL(ident; ident) - - a subscriber dials another one

auxiliary

Allowed;Available : ident

- - a subscriber is allowed to dial i� he has lifted the receiver, is not hearing a busy

- - tone, and is neither trying to connect nor connected with another subscriber

Allowed(id) =

def

id 2 ACT and id 62 BUSY and

not exists id

1

s:t:

(id; id

1

) 2 TRYING or (id; id

1

) 2 CONN or (id

1

; id) 2 CONN

- - a subscriber is available to be connected i�

- - he has not lifted the receiver and his telephone is not ringing

Available(id) =

def

id 62 ACT and not exists id

1

s:t: (id

1

; id) 2 TRYING

activity

� if Available(id) then

START : s

LIFT (id)

�������! s[ACT [fidg=ACT]

� if id 62 ACT and (id

0

; id) 2 TRYING then

ANSW : s

LIFT (id)

�������! s[ACT [fidg=ACT]

[TRYING � f(id

0

; id)g=TRYING]

[CONN [f(id; id

0

)g=CONN]

� if id 2 ACT then

DWN : s

DOWN (id)

��������! s[ACT � fidg=ACT]

[BUSY � fidg=BUSY]

[id C�TRYING=TRYING]

[id C�CONN B� id=CONN]

- - r B� id (r C� id) is r minus all pairs whose right (left) component is id

� if Allowed(id) and not Available(id

0

) then

D : s

DIAL(id;id

0

)

���������! s[BUSY [fidg=BUSY]

� if Allowed(id) and Available(id

0

) then

D : s

DIAL(id;id

0

)

���������! s[TRYING [f(id; id

0

)g=TRYING]

Fig. 1. The plain old telephone system pre-feature

� We characterize an intermediate state of a glts by means of attributes (key-

word attributes) with values in the data part; in the case of POTS we must

know which are the active subscribers, those hearing a busy tone, those try-

ing to connect to another one and those connected each other.

An attribute, sayA, is a function from the states space into the corresponding

value set; as usual in the O-O style, we write A for A(s).

� We describe the various kinds of interactions of the system with the external

world by means of label \constructors" possibly parameterized by values in

the data part; we use the keyword interface since they really give the inter-

face of the system. The label kinds of POTS (and so the label constructors)

are: a subscriber lifts/puts down the receiver and dials another one.

� In the auxiliary de�nitions part (keyword auxiliary) we introduce some

parametric shortcuts (macro de�nitions) which can be used in the activity;

e.g., each occurrence of Available(id) in a rule stands for

id 62 ACT and not exists id

1

s:t: (id

1

; id) 2 TRYING:

� The activity of POTS, i.e., the transitions of the glts modelling it, are given

in the part after the keyword activity by means of conditional rules having

the general form

if cond then TT : s

L(y

1

;:::;y

m

)

���������! s[x

1

=A

1

] : : : [x

k

=A

k

];

where TT is the type of the transitions de�ned by the rule; s is the variable

appearing on the �rst line of the speci�cation denoting a generic state of

the system; y

1

, : : : , y

m

, x

1

, : : : , x

k

are variables; L is one of the label

constructors; for j = 1; : : : ; k [=A

j

] is the state update operation for the

attribute A

j

; and cond is a formula built on the signatures of the used data

extended with the attributes.

Usually the rules are written in a more friendly way, not only by substituting

an attribute name A for each occurrence of A(s), but also by dropping in

the premise of a rule the atoms of the form x

i

= t (y

j

= t) and by replacing

then in such rule each occurrence of x

i

(y

j

) with t.

For example, the expanded version of the �rst rule of POTS is

if id 62 ACT (s) and (not exists id

0

s:t: (id

0

; id) 2 TRYING(s)) and

a = ACT (s) [fidg then

START : s

LIFT (id)

�������! s[a=ACT].

The �rst two rules of POTS give the action capabilities corresponding to the

interactions with the external world informally described by \a subscriber

lifts the receiver"; notice that they have two di�erent transition types, the

�rst corresponding to the cases when the receiver is lifted for starting a call

and the second for answering to a ringing phone. This distinction will be

extremely useful when composing features together to avoid merging transi-

tions corresponding to di�erent activities.

The third rule describes the e�ect of putting down the receiver.

The last two rules with the same label and transition type describe the e�ect

of dialling a number (we assume that in this case at a conceptual level there

is just a kind of activity: to dial).

In our formalism transitions using the same label constructor may have dif-

ferent transition types, but it cannot happen the contrary; thus transitions

with the same transition type must use the same label constructor.

Let us give two other examples of pre-feature speci�cations corresponding to

add to a telephone system the automatic call back and communications involving

three subscribers respectively.

ACB (Automatic Call Back) This pre-feature introduces in the telephone

system the call-back possibility; precisely, a subscriber, say S, after calling an-

other subscriber, say S1, non-available for the communication, can ask the tele-

phone system by pressing a special button to automatically call S1 again when

he and S1 will be both available; then, if S1 will lift the receiver, then the phone

of S will start ringing.

The full speci�cation is reported in Fig. 2.

TP (Three Parts service) This pre-feature introduces in the telephone system

the possibility of having communications involving three subscribers. Precisely,

once two subscribers, say S1 and S2, have established a connection, S1 (or S2)

may put such connection on hold and start another connection with a third

subscriber, say S3; now S1 can switch between the connection with S2 and that

with S3; moreover he can also start a three-way connection among he, S2 and

S3.

TP uses as data also REL3 the speci�cation of the ternary relations over

subscriber identi�ers (sets of triples of identi�ers).

The full speci�cation is reported in Fig. 3.

1.2 Closed Semantics

In our setting the closed semantics of a pre-feature PF, denoted by [[PF]]

C

, is just

the semantics associated with PF considered as a simple system speci�cation,

with no concern for the possible addition and interference with other features;

thus it is essentially given by the glts determined by the rules; \essentially"

because it includes also the used data structures, just a many-sorted �rst-order

structure. In this paper, for simplicity, we call glts also these richer structures.

By \glts determined by the rules" we mean the glts whose transitions are all

and only those that can be logically deduced by the rules. Because of the very

simple form of our rules, that means to consider just the transitions obtained

by instantiating the given activity rules (of course interpreting syntactic terms

within the given data structure). Notice that the closed semantics is implicitly

using a \frame assumption": any update or transition which is not asserted to

happen cannot happen.

pre-feature ACB[s] =

data SET(IDENT);REL

attributes

ACT : set(ident)

- - the set of the active subscribers, i.e., those who have lifted the receiver

BUSY : set(ident) - - the set of the subscribers hearing a busy tone

TO CALL : rel

- - the set of the pairs of subscribers (id; id

0

) s.t. id has required the call back of id

0

DIALLED : rel

- - the set of pairs of subscribers (id; id

0

) s.t. id

0

has been automatically dialled by id

interface

CALL BACK (ident; ident)

- - a subscriber requires the automatic call-back of another one

INT - - internal activity

LIFT (ident) - - a subscriber lifts the receiver

auxiliary

Available : ident

- - a subscriber is available to be connected i�

- - he has not lifted the receiver and his telephone is not ringing

Available(id) =

def

id 62 ACT and not exists id

1

s:t: (id

1

; id) 2 TRYING

activity

� if id 2 BUSY and not Available(id

0

) then

CB : s

CALL BACK (id;id

0

)

��������������! s[TO CALL [f(id; id

0

)g=TO CALL]

� if (id; id

0

) 2 TO CALL and Available(id) and Available(id

0

) then

ACB: s

INT

����! s[DIALLED [f(id; id

0

)g=DIALLED]

[TO CALL� f(id; id

0

)g=TO CALL]

� if id 62 ACT and Available(id

0

) and (id; id

0

) 2 DIALLED then

ANSW CB: s

LIFT (id)

�������! s[ACT [fidg=ACT]

[DIALLED � f(id; id

0

)g=DIALLED]

[TRYING [f(id; id

0

)g=TRYING]

� if id 62 ACT and (not Available(id

0

)) and (id; id

0

) 2 DIALLED then

ANSW CB: s

LIFT (id)

�������! s[ACT [fidg=ACT]

[DIALLED � f(id; id

0

)g=DIALLED]

[BUSY [fidg=BUSY]

Fig. 2. The automatic call back pre-feature

pre-feature TP[s] =

data REL;REL3

attributes

HOLD CONN : rel

- - the set of pairs of connected subscribers, whose connection is hold-on

3 CONN : rel3 - - the set of the triples of subscribers connected together

CONN : rel - - the set of the pairs of connected subscribers

interface

ON HOLD(ident; ident)

- - a subscriber puts on hold an established connection with another subscriber

SWITCH (ident)

- - a subscriber switches the current connection to the hold-on one

THREE WAY (ident)

- - a subscriber starts a three-way connection with the connected subscriber

- - and with the one whose connection was hold-on

DOWN (ident) - - a subscriber puts down the receiver

DIAL(ident; ident) - - a subscriber dials another one

auxiliary

Not Connected : ident

- - a subscriber is not connected i� he is neither participating in a two-way

- - nor in a three-way connection, nor in a hold-on connection

Not Connected(id) i� (not exists id

1

; id

2

s:t:

(id; id

1

; id

2

) 2 3 CONN or (id

1

; id; id

2

) 2 3 CONN or (id

1

; id

2

; id) 2 3 CONN

or (id; id

1

) 2 CONN or (id

1

; id) 2 CONN) or (id

1

; id) 2 HOLD CONN

activity

� if (id; id

0

) 2 CONN or (id

0

; id) 2 CONN then

H : s

ON HOLD(id;id

0

)

�������������! s[HOLD CONN [f(id; id

0

)g=HOLD CONN]

[CONN � f(id; id

0

); (id

0

; id)g=CONN]

� if ((id; id

0

) 2 CONN or (id

0

; id) 2 CONN) and (id; id

00

) 2 HOLD CONN then

SW : s

SWITCH (id)

���������! s[(CONN � f(id; id

0

); (id

0

; id)g) [f(id; id

00

)g=CONN]

[(HOLD CONN � f(id; id

00

)g) [f(id; id

0

)g=HOLD CONN]

� if ((id; id

0

) 2 CONN or (id

0

; id) 2 CONN) and (id; id

00

) 2 HOLD CONN then

T : s

THREE WAY (id)

�������������! s[CONN � f(id; id

0

); (id

0

; id)g=CONN]

[HOLD CONN � f(id; id

00

)g=HOLD CONN]

[3 CONN [f(id; id

0

; id

00

)g=3 CONN]

� DWN : s

DOWN (id)

��������! s[id C�CONN B� id=CONN]

[id C�HOLD CONN B� id=HOLD CONN]

[3 CONN �� id=3 CONN]

- - r�� id is r minus all triples having id as a component

� if Not Connected(id) then D : s

DIAL(id;id

0

)

���������! s

Fig. 3. The three-parts pre-feature

In Fig. 4 we depict a fragment (i.e., just few transitions) of the glts that

together with a model for the data (sets of identi�ers and binary relations over

identi�ers) gives the closed semantics of POTS; it shows the execution of a

standard call between a subscriber id and another subscriber id

0

. In this paper,

to keep the drawings small enough, we report the transition types only when

they are really relevant, and we depict the states by reporting the values of the

relevant attributes.

L
IF

T
(i

d’
)

ACT = BUSY =
TRYING = CONN = ∅

L
IF

T
(i

d)
D

IA
L

(i
d,

id
’)

ACT = { id }
BUSY = TRYING = CONN = ∅

ACT = { id } BUSY = CONN = ∅
TRYING = {(id,id’)}

ACT = { id, id’ } BUSY = TRYING = ∅
CONN = {(id’,id)}

DOWN(id’)

ACT = { id }
BUSY = TRYING = CONN = ∅

D
O

W
N

(i
d)

DOWN(id) ACT = { id’ }
BUSY = TRYING = CONN = ∅

D
O

W
N

(i
d’

)

Fig. 4. A fragment of [[POTS]]

C

The closed semantics is already useful to analyse a pre-feature. For example,

if we try to analyse TP by examining [[TP]]

C

we can see that a subscriber can put

many connections on hold simultaneously; just look at the fragment of [[TP]]

C

reported in Fig. 5. For this reason the e�ect of a switch action is nondeterministic.

Indeed the pre-feature TP has been designed by implicitly assuming that

not exists id

1

; id

2

; id

3

s:t:

id

1

6= id

2

6= id

3

and (id

1

; id

2

); (id

1

; id

3

) 2 HOLD CONN

We can guarantee that the above formula holds if we change the rule about

putting on hold a call as follows

if ((id; id

0

) 2 CONN or (id

0

; id) 2 CONN) and

not exists id

1

s:t: ((id

1

; id) 2 HOLD CONN or (id; id

1

) 2 HOLD CONN) then

H : s

ON HOLD(id;id

0

)

�������������! s[HOLD CONN [f(id; id

0

)g=HOLD CONN]

[CONN � f(id; id

0

); (id

0

; id)g=CONN]

(id,id’), (id,id") ∈ HOLD_CALLS
(id,id’), (id,id") ∉ CONN

(id,id’) ∈ CONN
(id.id") ∉ CONN

O
N

_H
O

L
D

(i
d,

id
’)

(id,id’) ∈ HOLD_CALLS
(id,id’), (id.id") ∉ CONN

.

.

.

O
N

_H
O

L
D

(i
d,

id
")

SWITCH(id)
(id,id’) ∈ CONN

SWITCH(id)
(id,id") ∈ CONN

D
IA

L
(i

d,
id

")

Fig. 5. A fragment of [[TP]]

C

2 Pre-feature Composition and Interaction

2.1 Pre-feature Composition

In our approach adding pre-features is modelled by composition, which has noth-

ing to do with parallel composition of processes (here is where the di�erence w.r.t.

a process-oriented approach comes to light). Indeed in a composition each pre-

feature is seen as a part of a system roughly resulting from the union of the two

parts following the principle \same name { same thing". We can compose two

pre-features (they are composable) only if common names are used coherently

in both.

Precisely, two pre-features PF

1

and PF

2

are composable i�

{ any shared data type is de�ned in the same way;

{ they use the same variables to denote the generic state of the system, the

new values of shared attributes and the arguments of the shared label con-

structors;

{ the attributes with the same name have the same result type;

{ the label constructors with the same name have the same number of argu-

ments, of the same type and in the same order;

{ the auxiliary de�nitions with the same name coincide;

{ for each rule r

1

of PF

1

and r

2

of PF

2

de�ning transitions with the same type

* r

1

and r

2

de�ne transitions using the same label constructor;

* r

1

and r

2

do not share free variables except those denoting the new values

of the attributes and the arguments of the label constructors.

It is easy to see that the three pre-features POTS, ACB and TP introduced

in the previous section are pairwise composable.

Pre-features correspond to partial descriptions of simple systems; thus com-

posing them means to put together the parts given by both to get a new simple

system speci�cation. That is easy for the data part, the attributes, the label con-

structors and the auxiliary de�nitions (just the union of the two parts); while

since rules correspond to partial descriptions of action capabilities we need in

the a mechanism for deciding which rules r

1

of PF

1

and r

2

of PF

2

describe parts

of the same action capability, and thus have to be composed. We assume that

rules de�ning transitions with the same type (shortly rules with the same type)

describe parts of the same action capabilities.

Then the activity part of the composition of the two pre-features contains

the rules of PF

1

with a type not present in PF

2

, those of PF

2

with a type not

present in PF

1

and the pairwise compositions of the rules of PF

1

and of PF

2

with a common type. The pairwise composition of two rules with the same type

just means to make the conjuction of the premises and the union of the attribute

updates (since the two pre-features are composable, the two rules use the same

label constructor, the same variables for the state, for the arguments of the label

constructor and for the new values of the attributes). Note that the composition

of two rules may be a null rule (i.e., a rule which does not generate any transition,

since its premises cannot be satis�ed). Later on, when extending the composition

of pre-features to the composition of pre-features, we will see that in such case

the features are considered incompatible and so cannot be composed.

Most importantly we note that in some sense an anti-frame assumption un-

derlies our concept of pre-feature composition; indeed the fact that a rule of a

pre-feature does not update an attribute does not mean that when we compose

such rule with another one that attribute cannot be updated. For example, a

rule as

if A > B then TT : s

L(y)

����! s[y �A=A]

where the attribute B is not updated, can be composed with the rule

if A > B then TT : s

L(y)

����! s[B � 1=B]

where A is not updated, resulting in

if A > B then TT : s

L(y)

����! s[y �A=A][B � 1=B]

where both A and B are updated.

Notice also that the composition of two pre-features returns another pre-

feature, which can then be further composed with other pre-features.

In the following, we use � to denote the composition operation for pre-

features.

Let us illustrate the concepts introduced so far by means of the composi-

tions of the pre-feature POTS with ACB and with TP respectively; we skip the

composition of ACB with TP since it is not interesting and that of the three

pre-features together for lack of room.

Composing POTS and ACB In this case the two pre-features do not share

any transition type, and so we do not compose any pair of rules. That is ex-

actly what we want; and it is worthwhile to note that this is due to the use of

transition types; for example, if instead we compose rules sharing the same label

constructor, then we would get inappropriate results, e.g., a subscriber may lift

the receiver only if someone has called him back.

Hence POTS�ACB is obtained just by adding the respective parts, keyword

by keyword.

Composing POTS and TP Much more interesting is the composition of POTS

and of TP, which is in Fig. 6, where we have omitted the attribute, interface and

auxiliary part, which are obtained just gluing together those of the respective

single speci�cations.

In this case there are some interesting rule compositions, since the two pre-

features share the transition types DWN and D. Notice how the composition of

the two rules of type DWN puts together the attribute updates; while that of

the rules of type D puts together the premises. In both cases the updates and

the premises are not disjoint but they agree on the common part and so the

compositions are not null rules (both rules update the attribute CONN, and

both rules ask for the subscriber not to be in a binary connection).

Due to the anti-frame assumption the rule of type D of TP can avoid to repeat

the attribute updates (clearly also the conditions) already given in POTS.

The anti-frame assumption allows us also to simplify the rule of type DWN

of TP, by dropping the update of the attribute CONN from it; the result of the

composition will be exactly the same as in Fig. 6. Indeed, the simpli�ed rule

DWN : s

DOWN (id)

���������! s[id C�HOLD CONN B� id=HOLD CONN]

[3 CONN �� id=3 CONN]

pre-feature POTS �TP[s] =

data SET(IDENT);REL;REL3

attributes : : : : : :

interface : : : : : :

auxiliary : : : : : :

activity

� if Available(id) then

START : s

LIFT (id)

�������! s[ACT [fidg=ACT]

� if id 62 ACT and (id

0

; id) 2 TRYING then

ANSW : s

LIFT (id)

�������! s[ACT [fidg=ACT]

[TRYING � f(id

0

; id)g=TRYING]

[CONN [f(id; id

0

)g=CONN]

� if id 2 ACT then

DWN : s

DOWN (id)

��������! s[ACT � fidg=ACT]

[BUSY � fidg=BUSY]

[id C�TRYING=TRYING]

[id C�CONN B� id=CONN]

[id C�HOLD CONN B� id=HOLD CONN]

[3 CONN �� id=3 CONN]

� if Allowed(id) and (not Available(id

0

)) and Not Connected(id) then

D : s

DIAL(id;id

0

)

���������! s[BUSY [fidg=BUSY]

� if Allowed(id) and Available(id

0

) and Not Connected(id) then

D : s

DIAL(id;id

0

)

���������! s[TRYING [f(id; id

0

)g=TRYING]

� if (id; id

0

) 2 CONN or (id

0

; id) 2 CONN then

H : s

ON HOLD(id;id

0

)

�������������! s[HOLD CONN [f(id; id

0

)g=HOLD CONN]

[CONN � f(id; id

0

); (id

0

; id)g=CONN]

� if ((id; id

0

) 2 CONN or (id

0

; id) 2 CONN) and (id; id

00

) 2 HOLD CONN then

SW : s

SWITCH (id)

���������! s[(CONN � f(id; id

0

); (id

0

; id)g) [f(id; id

00

)g=CONN]

[(HOLD CONN � f(id; id

00

)g) [f(id; id

0

)g=HOLD CONN]

� if ((id; id

0

) 2 CONN or (id

0

; id) 2 CONN) and (id; id

00

) 2 HOLD CONN then

T : s

THREE WAY (id)

�������������! s[CONN � f(id; id

0

); (id

0

; id)g=CONN]

[HOLD CONN � f(id; id

00

)g=HOLD CONN]

[3 CONN [f(id; id

0

; id

00

)g=3 CONN]

Fig. 6. The composition of POTS and TP

does not assert that CONN cannot modify its value during a transition partly

built by this rule (i.e., by a rule obtained by composing it with another one).

2.2 Pre-Feature Interaction

As already suggested, when organizing a system by features, it is of paramount

importance to have a clear picture of the variations which may occur when

adding features. On the basis of the concepts introduced before, we are able to

single out some basic criteria for reasoning about feature interactions.

Together with many other (but not all) authors by \interaction of pre-feature

PF

2

on PF

1

" (or \PF

2

interacts with PF

1

") we mean that the \part of PF

1

�PF

2

due to PF

1

is not as speci�ed by PF

1

". We assume that \part of PF

1

�PF

2

due

to PF

1

" is the projection on the signature of PF

1

.

We may have di�erent concepts of interaction between pre-features depending

on how we compare [[PF

1

]]

C

with [[PF

1

� PF

2

]]

C

projected on PF

1

; for example

we may consider:

atomic interaction: we compare the set of transitions (corresponding to atomic

activities) of the system described by [[PF

1

]]

C

and of the one described by

[[PF

1

� PF

2

]]

C

projected onto the signature of PF

1

;

behavioural interaction: we compare the behaviour of the system described

by [[PF

1

]]

C

, i.e., the labelled transition tree de�ned by the associated glts,

and of the one described by [[PF

1

� PF

2

]]

C

projected onto the signature of

PF

1

.

Moreover when comparing the transitions/behaviours of two systems we can

look at

{ transition types, attributes and labels (TAL);

{ only attributes and labels (AL);

{ or only labels (L).

It is not interesting to look only at the attributes, since we are considering

reactive (open) systems in a formal framework where the interface of a system

towards the outside world is represented by the labels.

There are various reasons for the transitions/behaviours of [[PF

1

� PF

2

]]

C

projectd onto the signature of PF

1

to be di�erent from those of [[PF

1

]]

C

; e.g.

{ the premises of a rule of PF

1

become more restrictive (conditions on the new

attributes) when it is composed with a rule of PF

2

;

{ a rule of PF

1

when it is composed with one of PF

2

may update attributes

of PF

1

previously not modi�ed (anti-frame assumption);

{ new rules about PF

1

transition types/labels modifying the PF

1

attributes

are added by PF

2

.

{ new rules about new transition types are added by PF

2

with PF

1

labels and

modifying the PF

1

attributes.

Here we do not formally de�ne what is an \interaction", but we just try

to illustrate these di�erent views of interactions using the telephonic features

introduced before.

Interactions between POTS and ACB

POTS and ACB do not atomically TAL interact, since they have disjoint

sets of transition types.

[Int 1] ACB atomically AL interacts with POTS; indeed it is su�cient

to consider the transitions of [[POTS� ACB]]

C

with label constructor LIFT ob-

tained by instantiating the following rule of POTS�ACB (originated fromACB).

if id 62 ACT and Available(id

0

) and (id; id

0

) 2 DIALLED then

ANSW CB : s

LIFT (id)

�������! s[ACT [fidg=ACT]

[DIALLED � f(id; id

0

)g=DIALLED]

[TRYING [f(id; id

0

)g=TRYING]

while no transition of POTS with label LIFT (id) adds more pairs to the attribute

TRYING.

[Int 2] Consider now the fragment of [[POTS�ACB]]

C

reported in Fig. 7.

id ∈ BUSY, not Available(id’)
C

A
L

L
_B

A
C

K
(i

d,
id

’)

Available(id), Available(id’)

D
B

:
IN

T

START: LIFT(id)ANSW_CB: LIFT(id)
(id,id’) ∈ DIALLED

(id,id’) ∉ DIALLED

(id,id’) ∈ CONN

. . .

DOWN(id)
(id,id’) ∈ DIALLED

Fig. 7. A fragment of [[POTS� ACB]]

C

If the system chooses forever the right branch of the behaviour represented

in the picture, then we have that forever the phone of id will ring (in this

speci�cation the telephone of a subscriber id is ringing whenever (id; id

0

) 2

DIALLED); and this is a typical example of interaction in a telephone system.

Technically POTS behaviourally AL interacts with ACB; indeed we have in

[[POTS� ACB]]

C

an in�nite behaviour where forever (id; id

0

) 2 DIALLED and

where in�nitely many times there is a transition labelled by LIFT (id).

[Int 3] If instead the system takes the left branch in the picture, then we

have in [[POTS� ACB]]

C

a behaviour not present in [[POTS]]

C

, where between

a state where id is busy and a state where id and id

0

are connected, there is

always a transition labelled with DIAL(id; id

0

).

Technically ACB behaviourally AL interacts with POTS.

Interactions between POTS and TP

[Int 4] POTS atomically AL interacts with TP; indeed it is su�cient to

consider the transitions labelled by DOWN, which in [[TP]]

C

are present in any

state, while in the composition a subscriber may put down the receiver only if

he is active.

[Int 5] POTS and TP do not behaviourally L interact; indeed TP just adds

new parts of behaviours but using mainly its private labels.

3 Features

3.1 Interaction requirements

It is not true that any case of interaction is negative and must be prohibited.

Consider, for example:

{ a feature for a telephone system which o�ers a discount whenever some

particular toll-free numbers are called (transition types/transitions which

did not change the debt of a user, now decrease it) (TAL and AL atomic

interaction);

{ a feature cutting the telephone service for a subscriber when the debt exceeds

some amount;

{ a feature adding to a lift an external security block mechanism stopping the

cabin to the nearest oor and opening the doors; in some case the lift has

a new possibility of behaviour made by old labels and using old attributes

(AL and L behavioural interaction);

{ a feature adding the possibility of randomly winning a free recharge of a

phonecard; now there are behaviours where the action of recharge is not

preceded by the action pay (TAL behavioural interaction).

Let us consider again the telephone examples at the end of the previous

section.

[Int 1] Good interaction (good means wanted, useful); indeed it is essential to

have these new action capabilities acting di�erently also on the old attributes

and label constructors.

[Int 2] This is really a bad unwanted interaction.

[Int 3] Good interaction.

[Int 4] Luckily the POTS interaction corrects a kind of error in TP, where not

lifted receivers may be put down.

Thus we are naturally led to add to a pre-feature speci�cation a set of con-

straints describing explicitly which interactions are good and which are not. We

call those constraints interaction requirements.

How to express the interaction requirements ?

We choose to use logic formulae expressing the wanted properties of the

transitions/behaviours of the composition of the feature with any other one.

Now the problem is to choose an \appropriate" logic. We suggest to �nd a logic

able to discipline the interaction (of some kind): for all pre-features PF

1

, PF

2

s.t. PF

2

interacts with PF

1

there exists a formula of the logic � s.t. [[PF

1

]]

C

satis�es � and [[PF

1

� PF

2

]]

C

does not satisfy �.

For example, atomic TAL interaction can be disciplined by the following

subset of �rst-order formulae.

atomic safety formulae

if tt : s

l

��! s

0

then cond

where tt , s, l, s

0

are variables of the appropriate types, cond is a �rst-order

formula on tt , s, l and s

0

, built using only the signature of the basic data

structures, the operations extracting the value of the attributes from the

states and the label constructors.

atomic liveness formulae

if cond then (9tt :)(9l :)(9s

0

:)tt : s

l

��! s

0

where tt , s, s

0

, l and cond as above, and any of the existential quanti�cations

may be omitted.

Also in these formulae we abbreviate A(s), where A is an attribute name, to A

and A(s

0

) to A

0

.

Instead, atomicAL interaction may be disciplined by the subset of the safety

and liveness atomic formulae, where tt does not occur in cond and is always

existentially quanti�ed.

The most used interaction requirements just impose that a part of a pre-

feature is protected in some way by the interactions of the other features; in

the telephone examples we just need to require that a transition type/an at-

tribute/a label constructor of a feature cannot be modi�ed by any added feature,

shortly it is \stable". Such particular requirements may be expressed by using

atomic safety formulae, see below; but for sake of clarity we will simply write

\: : : is stable.

A is stable requires that any added feature cannot change the way the attribute

A is updated. If the rules of the feature in which the attribute A is updated

are

if cond

j

then TT

j

: s

l

j

��! s[v

j

=A]::: (j = 1; : : : ; k)

A is stable stands for

if tt : s

l

��! s

0

and A 6= A

0

then case

1

or : : : or case

k

where case

j

is the existential closure w.r.t. all variables di�erent from l, v

j

,

s of

cond

j

and tt = TT

j

and l = l

j

and A

0

= v

j

:

L is stable requires that any added feature cannot change the e�ects/the block-

ing conditions on the feature attributes of transitions labelled by L and the

possibility of transitions labelled by L to have some type of that feature. If

the rules of the feature in which the label constructor L appears are

if cond

j

then TT

j

: s

L(y

1

;:::;y

n

)

��������! s[v

j

1

=A

1

] : : : (j = 1; : : : ; k)

L is stable stands for

if tt : s

L(y

1

;:::;y

n

)

��������! s

0

then case

1

or : : : or case

k

where case

j

is the existential closure w.r.t. all variables di�erent from y

1

,

: : : , y

n

, v

j

1

, : : : , s of

cond

j

and tt = TT

j

and A

0

1

= v

j

1

and : : : :

TT is stable requires that any added feature cannot change how the transitions

with type TT use the feature attributes and label constructors. If the rules

of the feature in which TT appears are

if cond

j

then TT : s

L(y

1

;:::;y

n

)

��������! s[v

j

1

=A

1

] : : : (j = 1; : : : ; k)

TT is stable stands for

if TT : s

L(y

1

;:::;y

n

)

��������! s

0

then case

1

or : : : or case

k

where case

j

is the existential closure w.r.t. all variables di�erent from y

1

,

: : : , y

n

, v

j

1

, : : : , s of

cond

j

and A

0

1

= v

j

1

and : : : :

As examples, we report below the expanded version of the stability interac-

tion requirement TO CALL is stable for the pre-feature ACB of Fig. 2.

if tt : s

l

��! s

0

and TO CALL 6= TO CALL

0

then

(exists id; id

0

s:t: id 2 BUSY and (not Available(id

0

)) and tt = CB and

l = CALL BACK (id; id

0

) and TO CALL

0

= TO CALL [f(id; id

0

)g)

or

(exists id; id

0

s:t: (id; id

0

) 2 TO CALL and Available(id) and Available(id

0

)

and tt = ANSW CB and l = INT and TO CALL

0

= TO CALL� f(id; id

0

)g

and DIALLED

0

= DIALLED [f(id; id

0

)g))

3.2 Feature Speci�cations

According to the preliminary discussion, a feature speci�cation is a pair consist-

ing of a pre-feature speci�cation and a set of interaction requirements. If F is a

feature, then PF will denote its pre-feature part.

Now we have to provide a semantics not only taking into account the in-

teraction requirements, but also supporting the composition operation, where

what we call \anti-frame assumption" is playing a major role. Indeed we have

to express the fact that F is a \partial description" of a system, which will re-

sult in the end, possibly after the addition of other features. To this end we

introduce the rather novel concept of open semantics, which is the class of all

simple systems (glts's modelling them) having at least all parts speci�ed by F.

These systems may have more data, attributes, label constructors and transition

types than those of F, and di�erent transitions; technically, their signature is an

extension of the signature of F. Thus the open semantics of F, denoted by [[F]]

O

,

is the class of all glts over some extension of the signature of PF, satisfying the

interaction requirements plus some default requirements enforcing that the ba-

sic activity de�ned by the rules is respected modulo an anti-frame assumption

concerning the possible update of the attributes.

The default constraint corresponding to an activity rule of the form

if cond then TT : s

L(y

1

;:::;y

m

)

���������! s[x

1

=A

1

] : : : [x

k

=A

k

]

is

if cond then exists s

0

s:t:

A

1

(s

0

) = x

1

and : : : and A

k

(s

0

) = x

k

and TT : s

L(y

1

;:::;y

m

)

���������! s

0

.

Notice that, because of the default requirements, either a feature speci�cation

F is inconsistent (no models, i.e., [[F]]

O

= ;) or [[PF]]

C

2 [[F]]

O

.

Neither the closed nor the open semantics are su�cient, each one, to qualify

the semantics of a feature speci�cation. The complete semantics of a consis-

tent feature speci�cation F, denoted by [[F]], is the pair formed by the closed

and the open semantics; all inconsistent speci�cations are obviously considered

semantically equivalent (meaningless).

The notion of composition is easily carried over to feature speci�cations. Two

consistent feature speci�cations, say F

1

and F

2

, with composable pre-feature

parts PF

1

and PF

2

, are compatible i� [[PF

1

� PF

2

]]

C

2 [[F

1

]]

O

\[[F

2

]]

O

. Intuitively

this means that not only both interaction requirements parts are satis�ed (and

thus they are not inconsistent), but also that the activity rules of the two were

not conicting (both default requirements are satis�ed). Then the composition

F

1

�F

2

is consistent and thus also [[PF

1

� PF

2

]]

C

2 [[F

1

� F

2

]]

O

. It is not di�cult

to see that the composition is well-de�ned w.r.t. the semantics: if [[F

1

]] = [[F

1

0

]]

then [[F

1

� F

2

]] = [[F

1

0

� F

2

]].

Now we show how to transform the pre-features for the telephone systems

introduced before into features, by adding appropriate interaction requirements.

POTS as a feature A telephone system is intended to have the following basic

properties

{ if a subscriber lifts the receiver, then he must become active,

{ a subscriber can put down the receiver only if he is active, and then becomes

inactive

and is designed assuming that they hold; so we impose that any added feature

preserves them, by the following two safety formulae.

if tt : s

LIFT (id)

�������! s

0

then id 2 ACT

0

if tt : s

DOWN (id)

���������! s

0

then id 2 ACT and not id 2 ACT

0

As an example, we give in Fig. 8 a fragment of an element ALARM of

[[POTS]]

O

di�erent from [[POTS]]

C

, corresponding to extend POTS with a tele-

phone alarm clock service.

ACT = BUSY = TRYING = CONN = ∅
TIME = 7.00 TO_WAKE_UP = {(id,7.00)}

IN
T

ACT = BUSY = CONN = ∅
TRYING = {(ALARM,id)}
TIME = 7.01 TO_WAKE_UP = {(id,7.00)}

IN
T

ACT = BUSY = CONN = ∅
TRYING = {(ALARM,id)}
TIME = 7.02 TO_WAKE_UP = {(id,7.00)}

W
K

:
L

IF
T

(i
d)

ACT = {id} BUSY = TRYING = ∅
CONN = { (ALARM,id)}
TIME = 7.03 TO_WAKE_UP = {(id,7.00)}

WK: LIFT(id)

ACT = { id} BUSY = TRYING = ∅
CONN = { (ALARM,id)}
TIME = 7.02 TO_WAKE_UP = {(id,7.00)}

Fig. 8. A fragment of ALARM

ALARM has new attributes (the time and the list of the subscribers to be

waken up with the corresponding time), new label constructors (INT correspond-

ing to internal activity, i.e., null interaction with the external world) and new

transitions (those labelled by INT and those of type WK).

ACB as a feature We �rst impose on ACB a set of rather standard interaction

requirements, listed below, saying that in some sense the use of the attributes,

label constructors and transition types for handling of the automatic call back

cannot be rede�ned by a compatible feature. Clearly compatible features may

extend the stable labels and transition types to act on new attributes; e.g., if we

consider a billing feature, then an automatic call back may increase the bill.

TO CALL is stable

CALL BACK is stable

CB is stable

DIALLED is stable

ANSW CB is stable

ACB is stable

If instead we want to discipline the interaction with POTS [Int 2] (see

Sect. 2.2), then we introduce also the interaction requirement

if tt : s

LIFT (id)

�������! s

0

and (id; id

0

) 2 DIALLED then tt = ANSW CB.

But now POTS and ACB considered as features are not compatible anymore,

due to the last interaction requirement. If we need to compose them, then we

have to modify one of the two; in this case it seems sensible to add to ACB some

rules expressing that transition of type START and ANSW can be done only by

subscribers that have not automatically called some other one, as

if not exists id

0

s:t: (id; id

0

) 2 DIALLED then

START : s

LIFT (id)

�������! s

0

if not exists id

0

s:t: (id; id

0

) 2 DIALLED then

ANSW : s

LIFT (id)

�������! s

0

TP as a feature To get a feature we add to TP the following interaction

requirements:

SWITCH is stable

THREE WAY is stable

ON HOLD is stable

We do not make stable the attributes HOLD CONN and 3 CONN , since it

is sensible that can be used by other features, e.g., to handle urgent calls which

automatically make a running call put on hold.

It is easy to see that the feature TP is compatible with POTS.

4 Conclusion and Related Work

We have illustrated a rather general framework for feature-oriented development.

Somewhat di�erently than in other approaches, our aim is to provide a exible

discipline for handling features, more than just checking the interactions. The

exibility is provided by factorizing the speci�cation development: features in

isolation as pre-features with closed semantics, composition of pre-features and

analysis of the variety of interactions, interaction requirements, and �nally full

feature speci�cations with open and complete semantics. We have also intro-

duced some novel concepts like open semantics with the underlying anti-frame

assumption, which we believe is a key issue in combining features.

In another paper [2] we provide the technical details (formal de�nitions,

properties).

The approach we have presented can be used at two levels: one, method-

ological, which can be rei�ed also using other technical formalisms, and another

which adopts and exploits some speci�c technique [1]. We plan to turn the sec-

ond level into a formalism for handling interactions within the COFI initiative

(see [8] and http://www.brics.dk/Projects/CoFI).

In our opinion the general framework should be adapted to the particular

domain-speci�c application, as it is supported by the work of P. Zave on tele-

phone systems [12].

It is worthwhile mentioning that the useful graphical representations are

really possible not only for the simple examples considered in the paper; indeed

there is a way of presenting graphically design speci�cations for reactive and

concurrent systems (see [10]), which is adjustable to the case of features, as

we plan to do in some further work. As for the automatic generation of the

graphical representations, it does not seem out of the state-of-the-art, though

not yet explored by us.

Together with improving the graphical representation, our ongoing work aims

�rst of all at dealing with features for structured systems, i.e. systems made of

subsystems; in other words we want to have at hand both component and feature

modularity.

Recently some papers trying to study features and their interactions on a

formal ground have started to appear, but none of them presents something

similar to our \interaction requirements"; moreover it seems that the role of

concepts like anti-frame assumption and open semantics, not even in an implicit

form, has not been noted.

Among them we recall [3], presenting feature speci�cations based on logical

formulae conceptually similar to our rules, but their idea of \feature composi-

tion" and of \interaction" is really less exible than our (e.g., using our termi-

nology transitions are composed only when have the same label, and interaction

is just atomic). In e.g., [4] Bredereke, trying to give a formal view of features

and interactions, considers the importance of the behavioural aspects. Also [5]

presents a formal based treatment of features for telecommunication systems,

but at a more concrete level (i.e. more oriented towards the implementation)

and so it is di�cult it to fully relate to our work.

Prehofer considers both methodological aspects as in [9] and formal aspects,

as in [6], where he presents an approach based on transition systems (diagrams);

but di�erently from our work, for him to add a feature to a system means to

re�ne graphically a part of the diagram specifying it. It is interesting to note that

our framework may o�er a formal counterpart to part of his work in [9] including

the \lifters", i.e. feature modi�ers for helping to resolve feature interactions.

References

1. E. Astesiano and G. Reggio. Labelled Transition Logic: An Outline. Technical

Report DISI{TR{96{20, DISI { Universit�a di Genova, Italy, 1996.

2. E. Astesiano and G. Reggio. Feature Interaction: Prevention Is Better than De-

tection: A Formal Modular Support for Feature Speci�cation and Interaction Han-

dling. Technical Report DISI{TR{98{14, DISI { Universit�a di Genova, Italy, 1998.

3. J. Blom, R. Bol, and L. Kempe. Automatic Detection of Feature Interactions

in Temporal Logic. Technical Report 95/61, Department of Computer Systems,

Uppsala University, 1995.

4. J. Bredereke. Formal Criteria for Feature Interactions in Telecommunications Sys-

tems. In J. Norgaard and V. B. Iversen, editors, Intelligent Networks and New

Technologies. Chapman & Hall, 1996.

5. M. Faci and L. Logrippo. Specifying Features and Analyzing their Interactions

in a LOTOS Environment. In L.G. Bouma and H. Velthuijsen, editors, Feature

Interactions in Telecommunications Systems (Proc. of the 2nd International Work-

shop on Feature Interactions in Telecommunications Systems, Amsterdam), pages

136{151. IOS Press, 1994.

6. C. Klein, C. Prehofer, and B. Rumpe. Feature Speci�cation and Re�nement with

State Transition Diagrams. In P. Dini, editor, Fourth IEEE Workshop on Feature

Interactions in Telecommunications Networks and Distributed Systems. IOS-Press,

1997.

7. R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.

8. P.D. Mosses. CoFI: The Common Framework Initiative for Algebraic Speci�cation

and Development. In M. Bidoit and M. Dauchet, editors, Proc. TAPSOFT '97,

number 1214 in Lecture Notes in Computer Science, pages 115{137, Berlin, 1997.

Springer Verlag.

9. C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In Proceed-

ings of ECOOP'97, number 1241 in Lecture Notes in Computer Science. Springer

Verlag, Berlin, 1997.

10. G. Reggio and M. Larosa. A Graphic Notation for Formal Speci�cations of Dy-

namic Systems. In J. Fitzgerald and C.B. Jones, editors, Proc. FME 97 - Indus-

trial Applications and Strengthened Foundations of Formal Methods, number 1313

in Lecture Notes in Computer Science. Springer Verlag, Berlin, 1997.

11. P. Zave. Feature interactions and formal speci�cations in telecommunications.

Computer, 26(8):20{29, 1993.

12. P. Zave. Calls considered harmful and other observations: A tutorial on telephony.

In T. Margaria, editor, Second International Workshop on Advanced Intelligent

Networks '97, 1997.

