
?

?

f gastes,reggio disi.unige.it

Labelled Transition Logic: An Outline

Technical Report DISI-TR-96-20

Noname Manuscript-Nr.

E. Astesiano and G. Reggio

Summary.

1. Introduction

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a di Genova

Via Dodecaneso, 35 { Genova 16146 { Italy

Fax ++ 39 - 10 - 3536699

@

Work partially supported HCM-EXPRESS and MURST 40%.

(will be inserted by hand later)

In the last ten years we have developed and experimented in a

series of projects, including industry test cases, a method for the speci�cation

of reactive concurrent systems both at the requirement and at the design level.

We present here in outline its main technical features, providing pointers to

appropriate references for more detailed presentations of single aspects and of

the associated tools and reference manuals.

The overall main feature of the method is its logical/algebraic character,

since it extends to labelled transition systems the logical/algebraic speci�cation

method of abstract data types and processes are viewed as data within �rst-

order structures called LT-structures. Some advantages of the approach are the

full integration of the speci�cation of static data and of dynamic elements, which

includes by free higher-order concurrency, and the exploitation of well-explored

classical techniques in many respects, including implementation and tools.

On the other hand the use of labelled transition systems for modelling pro-

cesses, inspired by CCS, allows us to take advantage, with appropriate exten-

sions, of some important concepts, like communication mechanisms and obser-

vational semantics, developed in the area of concurrency around CCS, CSP and

related approaches.

Since the beginning of the 70's the concept of abstract data type, along with its

formalization by means of many-sorted �rst-order structures (algebras), has been

quite inuential in the development of modular and correct software. But soon it

was realized that handling static structures was not enough, since most software

systems are dynamic, in the sense that they deal with structures evolving in time

{

0 0

l

l l

�!

�! � �!

1 2 2 1

1

1

1 2

1

LTL

LTL

LTL

b b b b

l : b b l : b

b l

b b b b b

2 E. Astesiano and G. Reggio

Static and dynamic properties of processes

static dynamic

and frequently also including some form of parallelism, concurrency, reactivity

and distribution. Thus (a little) later on and extensively during the 80's, the

modelization and speci�cation of concurrent systems has become one of the

leading issues both in theory and practice of software development.

This paper addresses the issue of abstract speci�cation of concurrent sys-

tems from a logical (algebraic) viewpoint, which adopts and extends the classi-

cal logical/algebraic method for static data types. Its aim is to outline a rather

comprehensive approach, whose characteristic feature is to see processes and

concurrent systems as dynamic data, i.e. as elements of special dynamic sorts

in a �rst-order structure. As in CCS and other approaches, processes are mod-

elled as labelled transition systems, i.e. nondeterministic automata with labelled

transitions. However, to keep the speci�cation at the abstract level appropriate

of the system to be speci�ed, both states and labels are in general data of a

suitable sort.

In order to support this view we adopt as basic mathematical structure what

we call \LT-structure", i.e. a many-sorted �rst-order structure where some (dy-

namic) sorts, representing processes (states), have both an associate label sort

and a ternary transition predicate, and so correspond to labelled transition sys-

tems.

Notice that an element representing a state in an LT-structure, because of

the associate semantic equivalence, also represents the value of a whole process,

the one with that initial state. Of course syntactically a term (expression) over

some signature will represent such an element; thus our approach belongs to

the family roughly driven by the \state-as-term" idea (CCS, CSP, and so on).

A much di�erent view also of interest and receiving some attention is the one

driven by the \state-as-algebra" idea (see [23, 39] also for references).

Thus, we can use �rst-order logic over LT-structures to specify the properties

on the activity of processes, since such logic includes as atomic formulae the

assertions stating that a process may perform a certain labelled transition; this

is the reason of the name of our formalism\ " (Labelled Transition Logic), i.e.

a logic apt to \speak" about labelled transitions, with the notable characteristic

to be just a particular �rst-order logic.

Because of the view that processes are data, that LT-structures are just

particular �rst-order structures and that is just a �rst-order logic, we can

fully exploit the techniques of logical/algebraic speci�cations, with several ad-

vantages, which constitute distinguishing features of our approach.

The formulae of express both \ " and \ " properties of pro-

cesses. \Static" means properties about the static structure of the processes;

e.g. the axiom \ + = + " requires that the nondeterministic choice

operator + of CCS is commutative. \Dynamic" means properties about the

activity of the processes (properties about the transition predicate); e.g. the

axiom \ " requires that a CCS behaviour should be able to

become performing a transition labelled by .

Notice that static properties help also to express the dynamic ones in a sim-

pler mode; e.g. the unique axiom \ + " completely

characterizes the CCS nondeterministic choice +, since + is commutative

(by the static properties).

�

0

0

{

{

LTL

: : :

� �

�

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 3

Integration of classical abstract data type speci�cations and process speci�ca-

tions

Extension to concurrency of techniques/results of algebraic speci�cation of

abstract data types

requirement speci�cation

Mod

design speci�cation

Mod

implementation

Mod Mod

Since the formulae include those of the �rst-order logic with equality,

they can also be used to express the properties of the data used by the pro-

cesses (e.g., values, messages,); LT-speci�cations allow us to integrate

usual speci�cations of abstract data types with axiomatic speci�cations of

processes. Moreover, since processes themselves are data, we can describe

data types with process components (e.g., functions from and/or into pro-

cesses), systems with di�erent \types" of processes and complex systems

where processes of some type are composed out of processes of other types.

We can extend all well-known results, techniques and methodological prin-

ciples developed in the �eld of abstract data type speci�cation to LT-

speci�cations (and so to the speci�cation of concurrency). As an outstanding

example, we can model the now well established distinction between require-

ment and design speci�cations, with the associated notion of implementation,

following the formalization given in the context of abstract data type spec-

i�cation, as loose and initial speci�cations, with a very general notion of

implementation.

Roughly speaking a de�nes general requirements of

a process/concurrent system for some level of abstraction; a bit more pre-

cisely it requires a process/system to satisfy at least some properties, and

of course all their logical consequences; thus if SP is a requirement spec-

i�cation, then (SP), the models of SP, consists of a variety of usually

non-equivalent models, i.e. models di�ering even for some substantial aspect.

A is meant to describe exactly one process/concurrent

system, for some level of abstraction; the idea is to determine a process/

system as the one which satis�es \all and only" the properties listed in the

speci�cation and their logical consequences. Here an important constraint

concerns the fact that the properties in a design speci�cation have to be

formulated in a way guaranteeing the uniqueness, apart from noninuencial

di�erences, of the system. More formally SP has to be such that (SP)

contains only models considered equivalent.

By we mean the combination of re�nement and realization

(rei�cation), following the implementation notion developed by Wirsing and

Sannella (see e.g. [64]): SP is implemented via by SP , where is a function

transforming speci�cations i� ((SP)) (SP).

However in dealing with concurrent systems there are at least two aspects

whose treatment goes beyond the traditional techniques of logical/algebraic

speci�cations. The �rst concerns the semantics of a process, for which various

notions have been proposed, depending on the observations of interest; in general

those semantics cannot be appropriately characterized by standard techniques

about initial, �nal or classical observational semantics. Some generalized notion

of bisimulation and testing or equivalently the introduction of in�nitary modal

formulae is needed (see [2, 3, 4]).

The second has to do with the inadequacy of �rst-order logic for express-

ing requirements about system behaviour; in general a logic with modalities is

needed, that can take the form of a temporal logic (see Sect. 5).

: : :

: : :

4 E. Astesiano and G. Reggio

{

{

{

2. Models of dynamic elements

LTL

SMoLCS

LTL SMoLCS

LTL SMoLCS

LTL SMoLCS

The paper gives a general outline of the fundamental aspects of an approach

that has been developed, in its di�erent aspects, since 1984 and has now reached

a rather mature stage, also bene�ting of the experience gained in some signi�cant

projects and industrial test cases, as reported in the conclusions. The approach

consists by now of theoretical foundations, the formalism , and the com-

panion methodological software engineering guidelines with reference and user

manuals, a supporting language and some basic automatic tools; this second

part is usually known under the acronym . Here we will only deal with

the basic underlying technical ideas, pointing to the literature for deeper tech-

nical developments, methodological issues and examples of applications, within

a variety of languages.

In Sect. 2 we motivate and present the models, i.e. labelled transition systems

and LT-structures; in Sect. 3 we deal with the design speci�cations, introducing

conditional LT-speci�cations and their semantics. In Sect. 4 an extensive ex-

ample is presented for illustrating the exibility and modularity of the method,

both for accommodating di�erent kinds of parallelism and interactions and for

leaving the door open, via parameterization, to further re�nements. For a variety

of more relevant applications of / , see:

speci�cations of case studies, as in [7, 10, 20, 60, 61];

its usage as a base for formally de�ning other formalisms, e.g. [25], for for-

malizing in a modular way various kinds of higher-order algebraic Petri nets,

[32] for a variant of extended shared Prolog, [5] for object-oriented features;

and for de�ning the semantics of concurrent/parallel programming languages,

as Ada, [1, 9, 12, 14].

The role and location of requirement speci�cations in our framework is briey

illustrated in Sect. 5, with basic concepts and pointers to appropriate references,

and then Sect. 6 shows how the classical notion of implementation may relate

di�erent development steps. Finally in Sect. 7 we discuss the relationship to

other work, and to compare them with / we give some hints on how

to use such other methods to specify the main example in Sect. 4. Here we only

want to point out that / has taken inspiration especially from three

sources: SOS [55] for the use of labelled transition systems and their operational

speci�cations, CCS [49, 50] for the concept of process as labelled transition tree

with various observational semantics, and �nally the Munich algebraic approach

(see e.g. [28]) for a �rst example of an algebraic version of CCS.

The basic notations, de�nitions and results about the �rst-order speci�ca-

tions used in the paper are in Appendix A.

In this paper we use the words \dynamic element" to denote whatever kind

of \thing" evolving along the time, without making any assumption about

other aspects of its behaviour; thus here dynamic elements may be communi-

cating/nondeterministic/ processes, reactive/parallel/concurrent/distributed

systems, software/hardware processes/architectures, but also object-oriented

systems (communities of interacting objects). Moreover, \concurrent dynamic

element" denotes a dynamic element having several subcomponents, which are

themselves dynamic elements.

l

l

l

0

0

0

0

0 0

0 0

0

0

0

0

0

De�nition 1. !

! � � �

2!

��! ut

!

2

!

�!

�!

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 5

; ;

s; l; s

s s

; ;

s s

s s

s s

l l

l

s s s s

<c; lm> c lm

�

�

v; ch v; ch v

ch

x Send x; ch

�

ch Empty =x

x

ch

n; ch

n ch

2.1. Labelled transition systems for modelling dynamic elements

A (shortly) is a triple STATE LABEL ,

where STATE and LABEL are sets, whose elements represent respectively the

and the of the system, and STATE LABEL STATE is

the . A triple is said a and it is usually

denoted by .

STATE LABEL

STATE STATE

capability

transition tree

SEND REC

REC

For modelling dynamic elements we adopt the well-known and accepted tech-

nique which consists in viewing a dynamic element as a labelled transition tree

de�ned by a labelled transition system (see [49] and [56]).

labelled transition system lts ()

states labels

transition relation () transition

A dynamic element D may be represented by an lts ()

and an initial state ; then the states in reachable from

represent the intermediate (interesting) states of the life of D and the transition

relation the possibilities of D of passing from a state to another one. It is

important to note that here a transition has the following meaning: D

in the state has the of passing into the state by performing a

transition whose interaction with the external (to D) world is represented by

the label ; thus contains information on the conditions on the external world

for the capability to become e�ective, and information on the transformation of

such world induced by the execution of the action.

Given an lts we can associate with each state the so called .

Precisely, a transition tree is a tree whose nodes are labelled by states and

whose arcs are decorated by labels. Moreover, in a transition tree the order of

the branches is not considered, two identically decorated subtrees with the same

root are considered as a unique one, and there is an arc decorated by between

two nodes decorated respectively by and i� .

For example, let us consider the processes modelling the components of CA

(a concurrent architecture, see Sect. 4.1). Such processes may be modelled by

an lts whose states are pairs of the form , where is a command and

a local memory state, and whose labels include (in this paper, following the

convention adopted by Milner for CCS, we use \ " to label internal transitions)

and (), () (sending and receiving a value through a channel

by handshaking communication).

A process with command part \ := 0; ()" and empty local mem-

ory is modelled by the transition tree reported in Fig. 1; the �rst transition

labelled by is internal, while the second is a capability which will become ef-

fective only when the process is put in parallel with another one ready to receive

the value 0 on channel ([0] denotes the local memory state where

0 is associated with).

The tree in Fig. 2 represents a process performing an input command on

channel ; it has in�nite capabilities, since it can receive any possible value; the

transition labelled by () will become e�ective only when the process

is in parallel with another one ready to send the value on channel . The tree

in Fig. 3 represents a process performing the nondeterministic choice between

two output commands.

Also concurrent dynamic elements, i.e. structured dynamic elements with

subcomponents which in turn are dynamic elements (examples of concurrent

0

0

0

0

0 0

1 2

1 2

?

?

�

�

��

B

B

BBN

�

�

��

B

B

BBN

Fig. 1.

. . .

. . .

Fig. 2.

Fig. 3.

SEND

Skip

REC REC

Skip
Skip

SEND SEND

Skip Skip

<x Send x; ch ;Empty>

�

<Send x; ch ; Empty =x >

; ch

< ;Empty =x >

<Rec x; ch ; Empty>

; ch ; ch

< ;Empty =x >
< ;Empty =x >

<Send ; ch Send ; ch ; Empty>

; ch ; ch

< ;Empty> < ;Empty>

6 E. Astesiano and G. Reggio

:= 0; ()

() [0]

(0)

[0]

Transition tree associated with a CA process performing an output command

()

(0) (1)

[0]
[1]

Transition tree associated with a CA process performing an input command

(2) + (3)

(2) (3)

Transition tree associated with a CA process performing a nondeterministic choice

0 0 0 0 0 0

Fig. 4.

1
F

1 +1
F

0 0

0 0

0

0

0

0

0

0

0

SEND REC

READ

n n

n;ch n;ch

�

n

�

F

F

� � �

n

�

� � �

n

�

n

� �

m

�

1 1

1

()

1

2

()

2

1 2

1 2

()

p p : : : p p

p p : : : p p : : : p p

p : : : p p : : : p

p p p p

p p p p

p p n

p p

n

p p

�

p p

p p

��! ��! ��! ��!

��! ��! ��! ��! ��! ��! ��!

j j j j j

���������! ��������!

j j j ��! j j j

�������!

j j ��! j j

active components

passive components

bf

bf

pms bf pms bf pms

bf pms bf pms bf

pms bf

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 7

Transition trees associated with two sequential CA processes

dynamic elements are, for example, the CA architecture, see Sect. 4.1, and the

Ada programs, which have as components the tasks, see [9]) may be modelled by

using special lts's built by putting together (several) other lts's, whose transitions

describe the activity of the component dynamic elements. So a dynamic element

has dynamic components, said in the following (for example

the CA processes and the task components of Ada programs); but, in general, it

has also (think for example of the bu�er of CA architecture

and of the shared memory of Ada programs). Here \passive" means that such

components may change their states only as result of some transition of some

active component.

For example, let us consider the CA architecture (see Sect. 4.1). It is a

concurrent dynamic element and it could be modelled by an lts whose states

have the form , where is a multiset of states of

the lts modelling the CA processes (active components), is a value repre-

senting the state of the shared bu�er (passive component), and whose transi-

tions are determined by the transitions of the process components and by the

bu�er state. For instance, if and , then

, where stands for a multiset of pro-

cess states, those not taking part in the transition (handshaking communication

between two processes); and if and is the �rst value available

in a bu�er whose actual content is , then , where

is as above and is the bu�er where has been dropped from.

By associating with a dynamic element D the transition tree having root D we

give an operational semantics: two dynamic elements are operationally equivalent

whenever the associated transition trees are the same, see [49]. However in most

cases such semantics is too �ne, since it takes into account all details of the

dynamic element activity. It may happen that two dynamic elements which

we consider semantically equivalent have associated di�erent transition trees.

A simple case is when we consider the trees associated with two sequential

CA processes (i.e., having only sequential commands) represented by two states

and : they perform only internal activities (i.e., no interactions with the

external world) and thus the associated transition trees (reported in Fig. 4) are

unary trees, with all arcs labelled by . If we consider an input-output semantics,

then the two processes are equivalent i� , are equivalent w.r.t. the input

and , are equivalent w.r.t. the output; the di�erences concerning other

aspects (intermediate states, number of the intermediate transitions, etc.) are

not considered.

From this simple example, we understand also that we can get various inter-

esting semantics on dynamic elements modelled by lts's depending on what we

observe (see e.g. [49, 53]). For instance, consider the well-known strong bisimu-

A

0 0

0

0

0

0

state label

8 E. Astesiano and G. Reggio

De�nition 2.

{

{

{

De�nition 3.

��! � �

!

�

2 2 �

��! � � 2

!

! 2 2

��! � � ��! � �

ut

ut

;

; ;

�;

� ; ;

l ds

l ds

LT� �; LT� � ;

� LT� LT�

� � � � � l ds l �

� l ds � l � �

LT� �; LT�

�

2.2. LT-structures

state label

state label state

An is a pair DS where:

S OP PR is a (many-sorted) �rst-order signature (see Appendix A.1),

DS S (the elements in DS are the , i.e. the sorts correspond-

ing to states of lts's),

for all ds DS there exist a sort - S DS (the sort of the labels) and

a predicate ds - ds PR (the transition predicate).

Given two LT-signatures, say DS and DS , a

is a morphism of �rst-order signa-

tures s.t. for all ds DS ds DS , - - ds and

ds - ds ds - ds ds (i.e. dynamic

sorts with the related label sorts and transition predicates are preserved).

An on DS (shortly -structure) is

a -�rst-order structure.

lation semantics of Park [54] and Milner [49] and the trace semantics [43]. In the

�rst case, two dynamic elements are equivalent i� they have the same associated

transition trees after the states have been forgotten. In the second case, two

dynamic elements are equivalent i� the corresponding sets of traces (streams of

labels), obtained travelling along the maximal paths of the associated transition

trees, are the same. In general, the semantics of dynamic elements depends on

what we are interested to observe: i.e., the semantics of dynamic elements is

observational, in a loose sense for the moment.

An lts can be represented by a (many-sorted) �rst-order structure A, (a concrete

data type) with a signature having two sorts, say and (whose elements

correspond to the states and the labels of the system), and a predicate

:

representing the transition relation (see [28, 6]). The triple (A A) is

the corresponding lts. Clearly, we can handle in this way also lts's modelling con-

current dynamic elements; i.e. lts's where components of the states are in turn

states of other lts's; in these cases we have �rst-order structures with several sorts

corresponding to states and labels, together with the associated transition predi-

cates. The �rst-order structures representing lts's are called \LT-structures" and

are formally de�ned below.

LT-signature ()

= ()

dynamic sorts

:

= () = ()

LT-signature morphism :

: () () = ()

(:) = : () () ()

It is easy to see that LT-signatures and their morphisms form a category.

LT-structure = ()

Since every part of an lts is given as a data structure, we have an important

di�erence w.r.t. the classical use of lts's, where states and labels are elements

of some sets. Here states and labels are just elements of particular sorts in a

�rst-order structure (i.e., particular data types) and so also the dynamic ele-

ments themselves are a data type (each dynamic element is given as its initial

state); thus we can de�ne dynamic elements which can be exchanged as values by

other dynamic elements, dynamic elements and data having dynamic elements

ds

()

1 1

l

h l

n n

tl tl

0

0 0 0

0 0

0 0

0

0 0

0 0

De�nition 4.

Proposition 1.

{

{

Note:

!

ut

! �!

���!

2 2 !

L 2 L L

j

j j 2 L

j j 2 L

j ��! j ��! 2 L

ut

�

LT� h

h

�

h d d

h d h d

d h d

d h

d h d

LT�

LT�

LT�

t t t t

LT�

t ; : : : ; t t ; : : : ; t

td td td td

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 9

Given two -structures, and , an

from into (written) is a homomorphism from into considered

as -�rst-order structures.

ds DS

Let be a class of -structures, be initial in and

denote by the usual notion of validity in �rst-order logic (see Appendix A.1

for a more detailed de�nition). Then:

i� (for all);

for all predicates Pr of ,

Pr i� (Pr for all); thus in

particular i� (for all), i.e. in

each dynamic element has in some sense the minimum amount of activity.

Proof.

concrete dynamic-

data types

as subcomponents (e.g., functions from some data into dynamic elements) may

be stored in memories, and so on. Hence the dynamic elements we model by

LT-structures are potentially \higher-order", in a sense �rst introduced by the

authors in [13] and now well-known because of underlying famous calculi like

-calculus [51, 52] and many others.

Many important applications of the higher-order paradigm have been shown;

for example this approach was used to model Ada tasking (see [9]): the denota-

tion of a task type is a function associating with some parameters the dynamic

element corresponding to the task activity; the action of creating a new task

type takes as parameter such function and as e�ect stores it as a value into the

(shared) environment, and the creation of a new task of that type consists in

adding to the system an instantiation of such function on appropriate parame-

ters.

Since LT-structures are particular �rst-order structures, we take as homomor-

phisms the usual homomorphisms between such structures (see Appendix A.1)

and show that they have good properties.

L L LT-homomorphism

L L : L L L L

Since LT-homomorphisms preserve the truth of predicates, thus they preserve

also the activity of the dynamic elements: if : L L and in L, then

() () in L . In some sense the labelled transition tree associated with

is embedded into the corresponding one of ().

Notice that given L , with , an LT-homomorphism : L L

induces a total synchronous homomorphism of lts's (see e.g. [63]) between the

lts associated with and the one associated with ().

It is easy to see that -structures and LT-homomorphisms form a cate-

gory.

Using the above LT-homomorphisms we can speak of initial elements in a

class of -structures and the following proposition shows their properties.

LI

=

LI = = L = = L

LI = () L = () L

LI = L = L LI

From the properties of initial models in the category of many-sorted

algebras with predicates (see Appendix A.1).

LT-structures introduced before may be regarded as

, i.e. concrete data types of dynamic elements. Assume now that we

want to abstract from the details of the concrete data, concerning the structure

of (the states of) dynamic elements, of the static data and of the behaviour

ut

LT�; LT� �;

LT� �

10 E. Astesiano and G. Reggio

3. LT-speci�cations: design level

De�nition 5.

abstract dynamic-data types

ad-dt's

3.1. LT-speci�cations

LT-speci�cation

A pair AX , where DS is an LT-signature

and AX a set of �rst-order formulae on (i.e., on), is called an

.

design

speci�cations

requirement speci�cations

3.2. A speci�cation language for structured LT-speci�cations

of the dynamic elements. By a procedure well-known in the case of usual data

types (see [64] also for references), we can consider

(shortly), where an ad-dt is an isomorphism class of LT-structures.

In the previous section we have introduced LT-structures; here we tackle the

problem of their speci�cation.

Following the usual logical/algebraic style, we give a signature and then

we describe the relationships holding among operations and predicates of that

signature by means of axioms, obtaining what we call an . In the

past we have also used the names \algebraic transition systems" (e.g. in [6, 13])

and \dynamic speci�cations" (e.g. in [35, 59, 20]) for the same purpose.

() = ()

LT-

speci�cation

The purpose of an LT-speci�cation is to de�ne, by an appropriate seman-

tics, LT-structures, or better isomorphism classes of LT-structures (abstract LT-

structures).

As in the classic case of abstract data type speci�cation, an LT-speci�cation

may determine di�erent abstract LT-structures depending on the chosen seman-

tics; for example we can consider the (isomorphism class of the) initial elements

of the class of the models (initial approach) or the isomorphism class of a partic-

ular model satisfying some observational constraints. Analogously we can also

consider LT-speci�cations with \loose" semantics: i.e., speci�cations which de-

termine a class of abstract LT-structures.

LT-speci�cations determining one abstract LT-structure are called

, since they may be used to de�ne abstractly and formally the

LT-structure describing the complete design of some dynamic elements; while

LT-speci�cations with loose semantics are called , since

they may be used to formally de�ne the requirements on some dynamic elements

by determining the class of all the abstract LT-structures describing dynamic

elements satisfying those requirements.

In this subsection we introduce a (schema of) speci�cation language for writing

LT-speci�cations in a structured and modular way, which allows, if convenient,

to reuse common subparts. A su�ciently powerful language can be obtained by

considering �ve constructs only, along the pattern proposed by Wirsing in [64].

A di�erence with Wirsing's approach is that we follow a loose approach instead

of the ultra-loose. Moreover, the dynamic features add an extra \dimension" to

some of the operators, namely sum and export, as discussed below.

i

0

j

j

def

[[[[

; ; ; Sig

0

0 0 0 0 0

0 0 0 0 0

LT�
i

i i

:::

i

i i i i

1 2 1 2

1 2

1 2

1

1 2 2

1 2

1 2

S

DS

OP

PR

AX

S DS OP PR AX

S OP PR DS

S S DS DS OP OP PR PR AX

S

S

Simple speci�cations

S

Sum of speci�cations

S

S

S

enrich

MOD

MOD

!

�

MOD

MOD

� 2

f j j 2 g

[[f j 2 g [f �! � � j 2 g

� 2 2

f j 2 g

[

2

62 2 2

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 11

SP =

let (()) = ([SP]) in

SP + .

sorts

dsorts

opns

preds

axioms

enrich by sorts dsorts opns preds axioms

S

sorts dsorts opns preds axioms

LT�; LT�

LT�

:

: : : � LT�;

Sig � � LT�

LT�; LT�

�

LT�;

LT�; LT� � �

LT�; LT� �;

� l ds ; ; l ds

;

LT�; LT� i ;

LT� LT� LT� LT� Sig i ;

i LT�

; ; ; srt srt

srt srt srt

srt

loose semantics

LOOSE SP SP EXPR

SP EXPR LOOSE SP

SP EXPR

Mod

S

OP PR DS

AX SP EXPR AX

AX

AX

AX DS

S DS ds DS OP PR ds ds ds DS

SP EXPR SP EXPR

Mod

S OP PR DS S

DS DS S

Here we assume a for our speci�cations, therefore each lan-

guage expression denotes a pair (), where is an LT-signature

and is a class of -structures closed w.r.t. isomorphisms.

Let be the class of all pairs of the above form and

be the set of all language expressions (speci�cation expressions) de�ned below;

then the semantics of the language is given by a function

:

and are de�ned inductively by the rules marked with () below;

where for simplicity we do not distinguish between speci�cations and speci�-

cation expressions, using SP, SP , for both; if = (), we write

() and () for and respectively; and union and containment

of LT-signatures are taken componentwise (and w.r.t. the four components: ,

, and).

Simple (or at) speci�cations are the basic build-

ing blocks, thus:

() () for all LT-signatures and sets of �rst-

order formulae on ;

[()] =

(L L is an -structure and L = for all).

In the examples we shall use the mix�x notation

for the simple LT-speci�cation (), where = () and

= (- : -);

i.e. the canonical sorts and predicates are given implicitly.

The sum is the basic construct for putting spec-

i�cations together to build a larger one.

() SP + SP for all SP SP ;

[SP + SP] =

(L L is an -structure and L ([SP]) for = 1 2),

where = and = ([SP]) for = 1 2, (see

Appendix A.1 for the de�nition of L).

Notice that this construct allows us to specify static and dynamic features

separately (and then combine them). More precisely, let for = 1, 2 be

the LT-signature (()) and be a sort such that: ,

and (hence). Then we may specify the static

structure of the elements of sort in SP and the dynamic one in SP ; when

we consider SP + SP we obtain the wanted speci�cation.

In practice it is often useful to use a derived construct, , de�ned by:

0

0

srt

� srt

LT�

1

1

()

L

L

L

L

def

0

0 0 0 0 � 0

� 0

0

j

12 E. Astesiano and G. Reggio

� 2

2

f j 2 g

� 2

2

� f j 2 g

�

� 2

2

�

f j 2 g

SP EXPR

SP EXPR

Mod

Op Op Op

Pr Pr Pr

SP EXPR

SP EXPR

Mod

ds

ds

DS

ds DS

ds

C SP EXPR

SP EXPR C

C

C

Mod C

C

�

�

�

� Sig LT�

LT� ; LT� �

LT� Sig � LT�

srt LT�

� LT�

� LT�

LT�

LT�

LT�

LT� Sig LT�;

H LT�

H

LT� Sig H

LT� �;

� �

Opns Sig

Sig ;

Renaming

rename with

S rename with

S

S

S

{

{

{

Export

export from

S export from

S S

hide

hide in export from

S

export

Reachable

reach on

S reach on

S

S S

This construct is used to avoid name-clashes when putting

speci�cations together. We shall consider bijective renamings only, represented

by a signature isomorphism (i.e. a bijective signature morphism, see Def. 2).

() SP

for all SP and all LT-signature isomorphisms ;

[SP] =

if is an isomorphism from ([SP]) into then

(L L is an -structure and (L) ([SP]))

else unde�ned,

where if = ([SP]), then L = (L) is the -structure de�ned

by:

L = L for all sorts of ,

= () for all operation symbols of ,

= () for all predicate symbols of .

This construct is used to specify which parts of a speci�cation

(sorts, dynamic sorts, operations and predicates) should be \visible from out-

side". Alternatively, it speci�es which parts should be hidden (namely, the non-

exported ones).

() SP

for all SP and all LT-signatures

[SP] =

if ([SP]), then (L L ([SP]))

else unde�ned.

In the examples we use also the dual construct, , de�ned by:

SP = SP,

where: is a set of sorts, dynamic sorts, operation symbols and predicate sym-

bols and = ([SP]) .

With these constructs we can act on a dynamic sort, say , in two ways: we

can hide completely (as in the classical setting); or hide its dynamic features

only (this can be obtained, when using , by taking = () where

appears in but not in and does not contain the label sort and the

transition predicate for).

This construct is used to restrict the models of a speci�cation

to those term-generated (i.e. reachable); here we consider a more general con-

struct which allows us to restrict the models to those \partially term-generated",

i.e. where some of the operations act as \constructors".

() SP

for all SP and all sets of operation symbols

[SP] =

if (([SP])), then

(([SP]) L L ([SP]) and L is -generated)

else unde�ned.

(see Appendix A.1 for the de�nition of \ -generated")

�

n �

n n

0 0 0 0

0 0 0 0

l l l l l

m m

�

ut

2 j `

2 2

j `

`

ut

SP

1 2 SP 1 2 1 2

1

SP 1 1

HCCS

spec

enrich by

sorts

dsorts

opns

axioms

LT�;

LT�;

LT� �; � ; ;

t ; t T t t t t

t ; : : : ; t T

t ; : : : ; t t ; : : : ; t

1 2 2 1 1 2 3 1 2 3

1 2 2 1 1 2 3 1 2 3

1

1

1 2

1

1

1

1 2

1

2

1

OUT()

1

2

IN()

2

1 2

1 2

!

!

!

!

!

� !

k � !

k k k k k k k

��! ��! � ��! ��! � k ��! k

�������! ^ �����! � k ��! k

message

beh

message

beh message

OUT IN message

Nil beh

beh beh

beh beh beh

Nil

Nil

De�nition 6.

Example 3.1.

End example

Proposition 2.

{

{

Example 3.2.

End example

Mi int

Mb

� l beh

; l beh

: l beh

;

b b b b b b b b b b

b b b b b

b b b b b b b b b b b b

l : b b b b b b b b b b b b b

b b b b b b b b

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 13

HCCS =

INT

:

:

: -

: -

:

: -

+ :

(1) + = + (+) + = + (+)

(2) + = + =

(3) = () = () =

(4) +

(5)

3.3. Conditional LT-speci�cations

A is an LT-speci�cation CAX ,

where CAX is a set of conditional formulae (see Appendix A.1).

CAX

DS S OP PR

There exists (initial) in Mod characterized by:

for all of the same sort i� CAX ;

for all Pr PR and all of appropriate sorts

Pr i� CAX Pr ;

where denotes �rst-order provability (see in Appendix A.1 a sound and com-

plete deductive system for conditional formulae).

Proof.

CAX

At the design level we consider only conditional LT-speci�cations, since they

admit initial models with interesting properties.

conditional LT-speci�cation ()

We give a conditional LT-speci�cation for a simple concurrent

calculus, more or less the �nite higher-order Milner's CCS.

INT is the usual algebraic speci�cation of integers. The axioms 1, 2 and 3 express

static properties of the behaviours; while 4, 5 express dynamic properties of the

behaviours by de�ning their transitions.

In the following let SP denote a generic conditional LT-speci�cation (),

where = () and = ().

I (SP)

I = = =

I = () ()

See [41].

Since all axioms of HCCS are conditional formulae, there exists

I .

Note that the second part of Prop. 2 holds in particular for the predicates

corresponding to the transition relations; thus the transitions of the dynamic

elements represented by the initial model of an LT-speci�cation are just the

ones logically deducible from the set of axioms .

0

i

i

i

i

i

ds

ds

ds

0

0

0 0

0

00

0

0

0 0

0 0

14 E. Astesiano and G. Reggio

SP

SP SP SP

=1

=1 1

=1

STAT(SP)
SP

=1

=1

{

{

Weakly separated

Strongly separated

ds

DS ds

CAX

Pr Pr

static axiom

dynamic axiom

CAX CAX

CAX

f g ! !

��!

�!

^ ��! ^ � �! 2 !

^ �

^ � ��!

� f g

!

!

��!

�!

^ ��! ^ � �! 2

!

^ ��! � �!

l ds

i

l

i

l

i ;:::;n i

l

i

l

i ;:::;n i m

i ;:::;n i

t

l ds

i

l

i

l

i ;:::;n i

l

i

l

i ;:::;n i

l

i

l

l ds

; ;

s s i ; : : : ; n

s s

cond

s s cond s s

cond

� � � t t t ; : : : ; t

� t t

LT�;

; ;

s s i ; : : : ; n

s s

cond

s s cond s s

cond

s s s s :

cond

The above remark suggests another way to characterize I . Consider for

simplicity the case of speci�cations with only one dynamic sort, say (i.e.,

=). Then I determines the lts: ((I) (I)

-

), with de�ned

by the inductive rules

= 1

for all , where does not appear

in .

In the case of conditional LT-speci�cations the di�erence between static and

dynamic axioms can be made more precise:

, where has form either = or () with

di�erent from the transition predicate is a , while

is a .

If static and dynamic axioms are separated, then we can have another charac-

terization of the initial model. There are two interesting cases.

The transition predicate does not appear in the static

axioms. Assume

STAT(SP) = (dynamic axioms in)

and SI = I (which exists); then I determines the lts: (SI SI

-

),

with de�ned by the inductive rules

= 1

for all dynamic axioms , where

does not appear in . The di�erence with the general case is that here the

static data may be de�ned separately from the transition relation; notice that

now the metavariables of the inductive rules range over the quotients determined

by the static axioms (carriers of SI).

The static axioms are as for weakly separated and

the dynamic axioms have form

Here there is no side condition , and so we can forget the algebraic structure

of SI and only consider the two sets SI and SI

-

.

Clearly the above facts hold also for LT-speci�cations with several dynamic

sorts: they determine a family of labelled transition systems whose transition

relations are de�ned by analogous (multiple) inductive systems.

1

2

n

P

P

P

.

.

.

Fig. 5.

'

&

$

%

�

�

�

�

�

�

�

�

�

4. A non-toy example

-

�

�

�

�

�

�

�

�

�

�

�

�

�

�1

�

�

�

�

�

�

��

�

�

�

?

6

4.1. The concurrent architecture CA

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 15

BUFFER

reading/writing/

testing the bu�er

broadcasting communication

handshaking

communication

The schematic structure of CA

To show the modularity and the possibility of giving speci�cations of dynamic

elements with very di�erent characteristics of our approach we consider a sim-

ple, but non-toy, example of concurrent system with several features, frequently

present in systems of interest, as di�erent kinds of cooperation between processes

and di�erent kinds of parallelism.

CA is a concurrent architecture with process components interacting both

by handshaking communication, broadcasting communication and by writing/

reading a shared bu�er.

Below, we informally describe the structure of CA and graphically represent

it in Fig. 5, where the ovals represent the active components, the rectangles the

passive ones and the arrows the cooperations among the various components.

CA consists of a variable number of processes and a bu�er shared among

them; \variable" means that processes may terminate and new processes may

be created.

The process components have the following features.

Processes communicate among them by exchanging messages in a syn-

chronous mode through channels (handshaking communication) and by reading/

writing messages on the bu�er; moreover the processes could also communicate

with the world outside CA (consisting of similar architectures) sending and re-

ceiving messages in a broadcasting mode; messages are simply values. The values

handled by processes may be: integers, booleans, Pascal-like arrays of values, but

also the processes themselves are values (that allows e.g. that a process may be

received by another one, stored in the local memory and used afterwards for

creating a new component of the architecture).

Each process has a (private) local memory and its activity is given by a

sequence of commands de�ned by the following pattern rules.

1 2
n

1 2 1 2

. . .

Fig. 6.

j j

j j j j

j

j j

j

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

' ' $

Is Empty

BSend BRec

Skip

4.2. Speci�cation of CA processes

c Write x Read x x

Send x; ch Rec x; ch x x

Start x

c c c c

seq c

x ch seq c

16 E. Astesiano and G. Reggio

CA CA CA

broadcasting communication

The schematic structure of CA NET

::= () () () (1)

() () () () (2)

() (3)

; + (4)

- (5)

where , and - are respectively the nonterminals for variables, channel

identi�ers and sequential commands.

A CA process may: write the value of a variable on the bu�er; read a value

from the bu�er assigning it to a variable; test if the bu�er is empty assigning

the result of the test to a variable (1); exchange messages through the channels

in a handshaking way and with the world outside CA in a broadcasting way (2);

create a new process stored in a variable (recall that processes may be values) (3);

perform the sequential composition of two commands and nondeterministically

choose between two commands (4); execute sequential commands not further

speci�ed (i.e. commands which require neither interactions with other processes,

nor with the bu�er, nor with the world outside CA) (5).

The bu�er is organized as an unbounded queue. We assume that only the

testings of the bu�er may be performed simultaneously with other kind of ac-

cesses (readings and writings).

The processes perform their activity in a completely free parallel mode except

for the synchronous interactions required by handshaking communications and

the assumptions on simultaneous bu�er accesses.

A CA NET architecture consists of several instances of CA in parallel, which

interact by exchanging messages in a broadcasting mode (see Fig. 6). In this

case the various components of the net perform their activity in a completely

free parallel mode.

We specify the CA processes introduced in the previous subsection by a design

LT-speci�cation PROC (thus with initial semantics and so corresponding to one

abstract LT-structure, i.e. to one lts) in a structured way, by giving �rst the

�

n

n

1

1

| {z }

0 0

0

0

value

proc

proc

n

n

n n m n

n m

n n

n n

n n
m

n

times

1

1

1 1 +1

1

1 2 3 1 2 3 1 2 2 1

1

Emi Emb Emp

; : : : ; Sel

s

s s

Seq : : : Seq

!

!

!

!

f � � ! j � g

f ! j � g

f j � � � g

f j � g

f

j � g

f j � � � g

!

� !

!

� !

!

!

spec

enrich by

sorts

opns

axioms

spec

enrich by

sorts

opns

axioms

value proc

Error value

value

value

proc value

value value value

value value

Error

Error Error Error

Error Error

Error Error

Write Read Is Empty BSend BRec Start

Send Rec

Skip

Skip

;

Emi int

Emb bool

Emp

; : : : ; : : : n

Sel n

Sel v ; : : : ; v ; : : : ; v v m; n m

Sel v ; : : : ; v n > m

Sel ; Sel Emi i

Sel Emb b ; Sel Emp p n

v ; : : : ; v ; ; v ; : : : ; v m; n m

command

; ; ; ; ; vid command

; vid chid command

command

; command command command

Seq : : : command

: : :

Seq : : : command

c c c c c c c c c c c c

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 17

VALUE =

INT + BOOL

:

:

:

:

[]: 2

: 1

([]) = 2 1

([]) = 2

() = (()) =

(()) = (()) = 1

[] = 2 1

COMMAND =

VID + CHID

:

:

:

; + :

:

:

; (;) = (;); ; = + = +

The speci�cation VALUE may be considered a case of \draft speci�cation", i.e. a speci�-

cation which does not fully determine a signi�cant (w.r.t. the application) abstract data type

(in our case it has too many models), but it is useful to split the presentation of the �nal

speci�cation (in this case that of the CA processes) in a nice and sensible way, making it more

readable.

speci�cation of the values handled by the processes, VALUE, and then those of

the states and of the labels of the lts, PROC STATE and PROC LAB.

The values handled by the CA processes are integers, booleans and Pascal-

like arrays of values, but also the processes themselves are values.

where INT and BOOL are the usual speci�cations of integers and booleans,

, , the operations embedding the basic values into the sort

and [], the array values constructors and selectors respectively.

In this speci�cation we do not require anything on the sort ; thus the

carrier of such sort in the models of VALUE may be whatever; however this is

not a problem, since when VALUE will be used in the following to build up the

CA process speci�cation, in any model the sort will have the right elements

(recall that if SP and SP have both a sort , then the sum SP + SP will have

one sort with the properties required by SP and those by SP ; moreover if is

static in SP and dynamic in SP it will be dynamic in the sum, see Sect. 3.2).

The states of the lts modelling the CA processes are pairs consisting of the

command to be executed and of the content of the local memory.

The speci�cations VID (variable identi�ers) and CHID (channel identi�ers) are

not further detailed here, since they are not relevant; , , are the

operations de�ning the sequential commands.

�

=

x

p

p

c c

0 0 0 0

0 0 0 0

proc

CREATE Seed

Skip

lm x

v

v

lm x ;ch

v;ch

lm x

v

p

p

lp lp

lp lp

�

spec rename with

spec

enrich by

dsorts

opns

spec

enrich by

axioms

WRITE(())

READ()

IS EMPTY()

SEND(())

REC()

B SEND(())

B REC()

START()

CREATE()

1

1

1 2

1

2

1

1

1 2

1

1

value Error

proc

proc

Seed proc

Write Skip

Read Skip

Is Empty Skip

Send Skip

Rec Skip

BSend Skip

BRec Skip

Start Skip

Seed

� !

!

������������!

��������!

�����������!

�������������!

��������!

������������!

��������!

� ��������!

���������!

��! � ��!

��! � ��!

� ��!

18 E. Astesiano and G. Reggio

LMEM = MAP(VID VALUE) []

PROC STATE =

COMMAND + LMEM

:

:

PROC =

PROC STATE + PROC LAB

(1) ()

(2) () []

(3) () []

(4) ()

(5) () []

(6) ()

(7) () []

(8) () = () ()

(9)

(10) ; ;

(11) +

(12) ()

; vid; ; ; lmem=map

< ; > command lmem

< x ; lm> < ; lm>

< x ; lm> < ; lm v=x >

< x ; lm> < ; lm v=x >

< x; ch ; lm> < ; lm>

< x; ch ; lm> < ; lm v=x >

< x ; lm> < ; lm>

< x ; lm> < ; lm v=x >

lm x Emp p < x ; lm> < ; lm>

p

<c ; lm> <c ; lm > <c c ; lm> <c c ; lm >

<c ; lm> <c ; lm > <c c ; lm> <c ; lm >

: : : <Seq : : : ; lm> < : : : ; : : : >

: : :

The parametric speci�cation MAP (�nite maps) is given in Appendix A.2.

The labels of the lts modelling the CA processes are de�ned by the speci�ca-

tion PROC LAB and are in correspondence with the executions of the concurrent

commands; except which corresponds to the executions of the sequential com-

mands. For simplicity we do not report the speci�cation PROC LAB; however

it is not di�cult to deduce its complete de�nition by looking at the axioms of

PROC.

Finally, in the speci�cation PROC we give the activity of the CA processes,

by axiomatically de�ning the transitions of the lts modelling them.

Above \ ()" and \ []" denote respectively the selection of the associate

element and the map updating operation of the speci�cation MAP (see Ap-

pendix A.2).

The axioms 1, 2, 3 de�ne the writing, reading and testing the emptiness

of the bu�er; 4, 5 the handshaking communications and 6, 7 the broadcasting

communications outside CA. The axiom 8 de�nes the creation of a new process

de�ned by the value contained in the local variable (if it has type). The

axiom 9 de�nes the capability of a new process of being created represented by a

transition, labelled by (), of the process into the initial state of

the newly created process . The axioms 10, 11 de�ne the sequential composition

and the nondeterministic choice; notice that these two axioms are su�cient since

\;" is associative, ; = and \+" is commutative (from the static axioms

1 2 2 1 1 2 3 1 2 3

!

� !

!

!

�

�

!

!

� !

Empty Put

F irst Get

spec

enrich by

sorts

opns

preds

axioms

spec

enrich by

sorts

opns

axioms

4.3. Speci�cation of CA

The active components

The passive component

The labels

bu�er

bu�er

value bu�er bu�er

bu�er value

bu�er bu�er

Is Not Empty bu�er

Error

Is Not Empty bf bf bf

Is Not Empty bf bf bf

Is Not Empty bf

BS BR value

Empty

Put

F irst

Get

F irst Empty F irst Put v; Empty v

F irst Put v; F irst

Get Empty Empty Get Put v; Empty Empty

Get Put v; Put v; Get

Put v;

l ca

� l ca

; l ca

l ca l ca l ca

l l l l l l l l l l

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 19

BUFFER =

VALUE

:

:

:

:

:

(1) () = (()) =

(2) () (()) = ()

(3) () = (()) =

(4) () (()) = (())

(5) (())

CA LAB =

VALUE

-

: -

: -

& : - - -

& = & (&) & = & (&)

in COMMAND). Several axioms having the form 12, not further detailed here,

de�ne the sequential commands.

We formally de�ne the lts modelling CA by the LT-speci�cation CA SPEC given

below; also in this case we give it in a structured way, �rst, active and passive

components, then states, labels and �nally transitions.

The active components of CA are the process and are

described by the LT-speci�cation PROC given in subsection 4.2.

The passive component of CA is the bu�er, in this case

a queue; its states are given by the following (static) speci�cation of an abstract

data type.

The operation denotes the empty queue, is the operation for adding

a value on the queue and , those for getting and dropping the �rst

element from a queue.

The labels of the lts modelling CA keep trace of the values either sent

to or received from the external world by broadcasting communications during

every transition; thus we have

>���

1 2

1 2

The activity

No B Access

0 0

0 0

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

0 0

0 0
0

0 0
0

0
0

0
0

�

�

v

v

False

False

True
True

v
v

v;ch v;ch

�

p p

�

v
v

v
v

l l

l == l

l

l

spec

enrich by

sorts

opns

preds

axioms

spec

enrich rename with by

dsorts

opns

preds

axioms

1 2 2 1 1 2 3 1 2 3

1 2 1 2

READ()

READ()

IS EMPTY()

IS EMPTY()

IS EMPTY()
IS EMPTY()

WRITE()
WRITE()

1

REC()

1

2

SEND()

2

1 2

1 2

1

START()

1

2

CREATE()

2

1 2

1 2

B SEND()
B SEND()

B REC()
B REC()

1

1

1

2

2

1 2

1 2

1

Out()

1

�

; ; ; ;

==

lab

l == l l == l l == l == l l == l == l

� v

v v

l l l == l

; proc mset=mset

ca

proc mset ca

l ca

> ca ca

p p p > p

p p F irst v p > p Get

p p p > p

p p p Empty > p Empty

p p p > p Put v;

p p p p p p > p p

p p p p p p > p p

p p p > p

p p p > p

> l >

>

>

� � v � v �

v �

20 E. Astesiano and G. Reggio

AUX =

VALUE

:

:

:

:

= () = ()

() (())

(()) (())

() () ()

CA SPEC =

MSET(PROC) [] + BUFFER + CA LAB + AUX

:

: -

:

(1)

(2) () = ()

(3) ()

(4)

(5) ()

(6)

(7)

(8)

(9)

(10) ()

(11)

(12) () = (()) = (()) =

(()) =

!

!

� !

^ �

j � !

!

��� � �

��! � j ��� j

��������! ^ � j ������ j

��������������! ^ � j ����������� j

��������������! � j ����������� j

��������! � j ������� j

��������! ^ ���������! � j j ��� j j

��������! ^ ���������! � j j ��� j j

���������! � j ������� j

��������! � j ������� j

j ��� j ^ ^ j ��� j �

j j ����� j j

j ��� j � j j �����! j j

aux

aux

WRITE READ IS EMPTY B SEND B REC value aux

aux aux aux

No B Access

No B Access No B Access IS EMPTY

No B Access B SEND No B Access B REC

No B Access No B Access No B Access

proc

bu�er

Out aux

aux

bf bf

bf bf bf

Is Not Empty bf bf bf

bf bf

bf bf

bf bf

bf bf

bf bf

pms bf pms bf No B Access pms bf pms bf

pms pms bf pms pms bf

pms bf pms bf pms pms bf pms pms bf

Out Out WRITE Out READ

Out IS EMPTY

The transitions of the lts modelling CA (i.e. the CA activity) are

modularly de�ned by �rst giving some \partial moves" of groups of processes,

corresponding to sets of process synchronous cooperations (i.e. sets of process

transitions which must be performed together) that in turn may be performed

together; then these partial moves are used to give the CA transitions. The

partial moves are still formalized as labelled transitions (de�ned by an auxiliary

predicate) whose labels contain information on the bu�er accesses

performed in the move and on the communications with the external world

(de�ned by the speci�cation AUX given below). is a predicate

checking whether a partial move does not involve a bu�er access (either reading

or writing it).

Below MSET is the parametric speci�cation of �nite multiset reported in

Appendix A.2.

1

�

l

0

0

1 2 1 2

2

2

1

1 1

1 1

1

LTL SMoLCS

j j

j j j ��! j j j

j ��� j

v

v

v

v

True False

p p p p

p p p

>

Emp

: : :

Out B SEND BS Out B REC BR

Out Out Out

Error bf

bf bf

v v v v

l == l l l

F irst Empty F irst Put v; v

Get Put v; Get Empty Empty

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 21

(()) = () (()) = ()

() = () & ()

() = (()) =

(()) = () =

READ

WRITE

IS EMPTY IS EMPTY

Seed pms bf

Seed pms bf pms bf pms

pms bf pms bf

pms

Out

4.4. Speci�cation of variants of CA

Values

value

proc

Bu�er

The axiom 1 states that each process internal action capability becomes a partial

move; the axiom 2 that an action capability of form () becomes a partial

move only if the �rst available element of the bu�er is ; the axiom 5 that an

action capability of form () always becomes a partial move putting

the value on the bu�er and the axioms 3, 4 that an action capability of form

() [()] becomes a partial move i� the bu�er

is empty [not empty].

Handshaking communication is a partial move involving two processes: the

one which sends the message and the one which receives it (axiom 6).

The axiom 7 de�nes the creation of a new process; note that in each appli-

cation of this axiom is equal to and to ; then we have

= , where is a multiset of process

states. The axioms 8 and 9 state that the action capabilities corresponding to

broadcasting communications, can always become partial moves. The axiom 10

states that each partial move \ " not involving a bu�er

access (either reading or writing it) may be performed together with whatever

other group of partial moves; as a consequence we have that a bu�er access

cannot be performed together with another bu�er access. The axiom 11 says

that each group of partial moves may become a transition of CA; notice that

here is the set of the process components which do not take part in the

transition (recall that CA is a free parallel system); the associated interaction

with the external world is given by the broadcasting communications present in

such transition (formalized by the operation de�ned by the axioms 12).

In this subsection, to show the modular features of / we give some

hints on how modi�cations of the assumptions on CA reported in Sect. 4.1 may

be reected in the speci�cation CA SPEC by changing some of its parts; ([15]

presents the speci�cations of a full set of CA variations).

If the values handled by the processes are modi�ed, then it is su�cient

to replace the speci�cation VALUE with another one having the static sort

(e.g. array-like values may be replaced with LISP-like lists).

For example, to drop the higher-order features of CA it is su�cient to drop

the sort and the operation from the original speci�cation VALUE.

If the bu�er component of the architecture is modi�ed, then it is su�cient

to replace the speci�cation BUFFER with another one whose signature includes

that of the original BUFFER.

For example, if the bu�er becomes an unbounded stack, then we replace the

axioms 1, , 4 of BUFFER with:

;

Out

1

()

1

0

0

0

0

lt

lt

>

lt � v v v v v

�

0

0 0 0

0 0

0 0 0 0 0

0 0 0 0

j ��� j � j j ������! j j

2 f g

v v

n

v

n

n

�

n

m

�

m

n
n

m

�

n

n

m

�

n

�

n

n

�

n

1 2 1 2

B SEND()

1

B REC()

1

B REC()

+1

+1

1 +1

1 +1

1

1

1

1

spec

enrich rename with by

dsorts

opns

preds

axioms

^ �

!

��! � �

f ���������! ^ ��������! ^ ^ ��������! ^

��! ^ ^ ��! �

j j j j j j j ��! j j j j j j j

j � g

f ��! ^ ^ ��! � j j j ��! j j j

j � g

22 E. Astesiano and G. Reggio

(()) = ()

(()) = () =

(()) = () =

()

(())

(())

() () ()

CA NET SPEC =

MSET(CA SPEC) []

:

:

(1)

0

(2)

1

Bu�er access

No B Access

Parallel activity

pms bf pms bf pms pms bf pms pms bf

B SEND B REC WRITE READ IS EMPTY

4.5. LT-speci�cation of CA NET

bf bf

Error

No B Access

No B Access B SEND

No B Access B REC

No B Access No B Access No B Access

ca net

ca net

lab-ca net

ca net lab-ca net ca net

cms cms

cms cms

Put v; Put v ; Put v;

F irst Put v; Empty v F irst Empty

Get Put v; Empty Empty Get Empty Empty

�

v

v

l l l == l

; ca =mset

�

c c c c : : : c c

c c : : : c c

c c : : : c c : : : c c c : : : c c : : : c

n; m

c c : : : c c c : : : c c : : : c

n

while if it becomes a cell which can contain at most one value, then the new

axioms are

If the assumptions on the allowed simultaneous bu�er accesses

are modi�ed, then it is su�cient to change the axioms de�ning the auxiliary

predicate of AUX.

For example, if also the testing of the bu�er is considered an access, then the

new axioms are

Instead, if the assumptions on how the processes perform their

activities in parallel are modi�ed, then it is su�cient to change the axiom 11.

For example, if the CA becomes an interleaving system, then the axioms

replacing 11 are:

for all terms , (), (), (), (), () .

We formally de�ne CA NET with the LT-speci�cation CA NET SPEC given

below.

The active components of CA NET are a multiset of (a variant of) CA ar-

chitectures described by the LT-speci�cation CA SPEC given either in subsec-

tion 4.3 or 4.4; while CA NET has no passive components. Since CA NET is

a closed system (no interactions with the external world) its transitions are all

labelled by . In CA NET only one broadcasting communication may be per-

formed at each time, while there are no restrictions on the internal activities of

the component architectures, so its activity is simply de�ned below.

!

!

!

LT�;

LT�

LT�

LT�

; ; ; l proc

� l proc

spec

dsorts

sorts

opns

proc

value

Value proc value

WRITE READ OUT IN value

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 23

PROC REQ =

:

: -

: -

cms

5.1. First-order LT-speci�cations

AX AX

Mod

Static requirements,

Dynamic requirements,

5. LT-speci�cations: requirement level

Example 5.1. Requirements on concurrent architectures

The axiom 1 states that each architecture may send a value by a broad-

casting communication, which may be received by whatever number of other

architectures (also none), while other architectures (also none) perform internal

activities. The axiom 2 states that whatever number of architectures (at least

one) may perform internal activities. In both cases, is the multiset (possibly

empty) of the architectures which stay idle.

Notice that a CA architecture may also perform several broadcasting com-

munications simultaneously; but these capabilities will never become e�ective in

this kind of CA NET.

An LT-speci�cation (see Def. 5) with loose semantics is a way to specify

(abstract) requirements about dynamic elements formally modelled by LT-

structures.

Indeed let SP = (), where is a set of �rst-order formulae on

, be an LT-speci�cation, then the class of the abstract (i.e. isomorphism

classes of) -structures contained in (SP) formally de�nes all dynamic

elements satisfying the requirements expressed by SP.

The common and relevant requirements can be distinguished as follows.

i.e. about the structure of the dynamic elements, of their

active/passive components and of the handled data; they are expressed by

the form of the LT-signature (e.g. how many types of dynamic elements

there are and how they are put together to build a concurrent dynamic ele-

ment) and by the static axioms (e.g. the parallel combinator is commutative,

the order of the active components does not matter).

i.e. about the activity of the dynamic elements; they

are expressed by the static axioms about the label data, corresponding to

requirements on their interactions with their external world, see Sect. 2.1 for

the role of labels (e.g. no interaction with the external world is formalized

by saying that there is just one constant label) and by the dynamic axioms

(about labelled transitions), i.e. in which the transition predicates appear

(e.g., a dynamic element in a certain state has just two capabilities of moving

to two other states or it cannot have some capabilities).

Here we show how to formalize abstract requirements on classes of concurrent

architectures similar to CA, see Sect. 4, by means of �rst-order LT-speci�cations

with loose semantics. Also in this case we proceed in a modular way, by giving

�rst the requirements on the component processes and after on how they coop-

erate.

1 1

lp

lc

lp

0 0

0

0 0 0 0

End example

0 0

0 0

0 0 0 0

0 0 0 0

p p

lp

lc
lp

lc

lc

8 6 9 ��!

6 ^ 6 9 j ��! �

6 9 j ^ ��!

1 2 3 4

OUT(Value()) IN(Value())

1

1

1

l proc

p : p ; lp : p p

Broken lc; c : c

; p; p ; lp : p p p

Value

proc bu�er

bf pms bf

pms pms pms

5.2. More expressive logic

axioms

spec

reach

enrich rename with by

dsorts

sorts

opns

axioms

on

�

6 6 6 6

�

������������! _ �����������! � 9 ��!

!

j � !

6 9 j ��! � 6 9 j ^ ��!

6 9 ��! j �

6 9 j ��!

f j � ! ; !

f g ! j � ! g

Value Value

WRITE READ OUT IN

WRITE WRITE

READ OUT IN

proc

bu�er

bu�er

bu�er

pms bf pms pms pms

pms bf bf

pms

bu�er

24 E. Astesiano and G. Reggio

(1) () = () =

(2) () = () = () = () =

(3) () = () =

analogous axioms for

(4)

CA REQ =

MSET(PROC REQ) []

:

:

(1) () (=)

(2) () =

(3)

: , : ,

: , :

p p p p

v v v v �

v v v v

: : : ; ; : : :

p p p p lp; p : p p

; proc mset=mset

ca

Empty;Broken

proc mset ca

lc; c : c ; p; p ; lp : p p p

c; lc : c Empty

c; lc : Broken c

proc mset ca proc mset

proc proc mset proc mset proc mset proc mset

The above speci�cation requires that the processes can at least perform �ve

di�erent kinds of actions (described by the various operations of sort -)

using values which may be the same processes (by the operation). The

axiom 4 states that only non-stopped processes can be communicated.

The reachability combinator formalizes a requirement on the structure of the

architectures; precisely, \there are several active components of the same sort

and a passive component of sort ". The axioms of the parametric

speci�cation MSET (see Appendix A.2) formalize that the order of the process

components is not relevant. No deadlocks are allowed in the speci�ed architec-

tures (axiom 1). Initially the bu�er must be empty (axiom 2). The broken bu�er

stops the whole system (axiom 3).

From the axioms of CA REQ we can prove (using usual �rst-order stu�)

that the axioms 1 and 3 imply , i.e., that all processes

are terminated, which makes the above speci�cation not very interesting. So we

can replace axiom 1 with

(1) (=)

(=)

no deadlocks are allowed in normal situations (when the bu�er is ok).

First-order logic allows to express only few requirements on dynamic elements,

similar to those given in Ex. 5.1, as properties of the static parts (e.g. on the

labels of the processes), limited properties on the concurrent structure (e.g. the

order of the process components of an architecture is not relevant) and limited

properties on the activity of the dynamic elements (e.g. a terminated process

cannot be communicated). A great number of more interesting and relevant

properties, as the following one, cannot be expressed.

1 1

�

�

�

p p

lp

lc l

LTL

LTL

LTL

(()) (())

1

1

pms pms

pms pms

OUT Value IN Value

0 0 00 00

0 0

0 0 0 0 0

0

0

6. Implementation of LT-speci�cations

4

4

������������! _ ����������! � 4 6 9 ��!

4 9 j

4 j 9 j

6 9 ��! ^ ^ 2 � 6 9 �!

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 25

Broken

Are Sub dset Are Sub d

dset

d

: : :

p p p p p ; �x: p ; lp:x p

p

c; �x : : x Empty

mp Broken; �x : : x Broken

c ; lc : c c dset Are Sub c d dset d ; l : d d

1. only processes that in any case will terminate may be communicated;

2. during each possible computation each architecture eventually will reach a

situation where the bu�er is empty;

3. the broken bu�er cannot be repaired (i.e. if the bu�er becomes , then

it cannot change its state anymore);

4. no deadlocks are allowed but without �xing the structure of the architectures

(i.e. we want to give a speci�cation with admits, as models, for example, both

architectures with and without passive components).

First-order may be extended in various ways to cope with properties

like the above ones (including classical safety/liveness properties and abstract

properties on the concurrent structure).

For what concerns dynamic properties, [34, 35] present an integration of the

combinators of branching-time temporal logic in for expressing the safety/

liveness properties; while [59, 18] propose a new logic based on the concept of

\abstract event" for expressing overall properties on the activity of the dynamic

elements (e.g. a certain activity, not necessarily atomic [i.e. consisting of one

state/transition], will be eventually followed by the sequential composition of two

other non-atomic activities), and [33] shows an integration with the permission/

obligation combinators of the deontic logic.

Instead, for the \structural properties" entity speci�cations have been pro-

posed (see [58, 16]) where it is possible to express properties on the concurrent/

distributed structure by using a special predicate \ " s.t. \ "

is true whenever (a set of dynamic elements) are all the active (dynamic)

components of (a dynamic element).

Using the variants proposed in the papers quoted above, the properties

1, , 4 may be formalized as follows, where , are the usual temporal

combinators \eventually" and \always" including the present and is the CTL-

style temporal combinator \for all paths". Notice that, since here we are handling

types of dynamic elements, the formulae built by are anchored to a term

of dynamic sort (representing the element to whom the temporal property is

referring).

1 () ([])

(a process is terminating i� in each case it will reach a �nal situation).

2 ([=])

3 ([=])

4 ()

We extend to the case of LT-speci�cations the well-known general notion of

implementation for algebraic speci�cation of abstract data types due to Sannella

and Wirsing (see [64]); we have chosen this notion since it has been proved well

adequate in the case of usual static speci�cations.

Let SP and SP be two classical logical/algebraic speci�cations; when is SP

implemented by SP ? There are, at least, two criteria to consider:

�

n

1 2

1

1

f

l l

n

l

n

l

n

0

0

0

0

0

0

0

0

0

0

0

1 1 1

1

1 1

1

1 2 2 3 1

{

{

De�nition 7.

{

{

{

26 E. Astesiano and G. Reggio

�

���

� ut

��! ^ ��! ^ ^ ����! �)

�!)

���

f

f

f

f

f

f

LT�; LT� ;

f

LT� LT�

f >

f

f

f

f

s s s s : : : s s s s

f

f >

implemented by with respect to

Mod Mod

Let AX and AX be two LT-

speci�cations (either design or requirement) and a function from speci�cations

with signature into speci�cations with signature de�ned by compos-

ing speci�cation operations as those of Sect. 3.2.

(written) i�

Mod Mod .

implementing means re�ning, thus SP must be a re�nement of SP, i.e.

\things" not �xed in SP are made precise in SP by adding further require-

ments;

implementing means realizing the data and the operations abstractly speci-

�ed in SP, by using the data and the operations of SP .

Formally, we have that SP is SP , a function

from speci�cations into speci�cations, i� ((SP)) (SP).

The function describes how the parts of SP are realized in SP (imple-

mentation as realization); while implementation as re�nement is obtained by

requiring inclusion of the classes of models.

Clearly not all speci�cation functions are acceptable; for example if is

the constant function returning SP we have a kind of trivial implementation.

However, the de�nition above includes as particular cases the various de�nitions

proposed in the literature. Usually is a combination of the various operations

for structuring speci�cations proposed in Sect. 3.2. When is a composition of a

renaming, an enrichment with derived operations and predicates, an export and

an enrichment with axioms, we have the so called implementation by rename-

enrich-restrict-identify of [37, 38]; which corresponds, within the framework of

abstract data types, to Hoare's idea of implementation of concrete data types.

The above de�nition, when used in our setting, yields a reasonable notion of

implementation for LT-speci�cations.

SP = () SP = ()

SP is implemented by SP via SP SP

((SP)) (SP)

If we impose some conditions on the function we get particular types of

implementations; for example:

does not add axioms de�ning the transition predicates of SP ; then we

have a \static implementation", which concerns just the static parts of the

speci�cation (for example, either the data handled by the dynamic elements

or the states and the labels of the lts modelling them);

rede�nes the transitions of SP by composing them sequentially, i.e. by

adding axioms like

==

(transition predicate in SP and = transition predicate in SP); we

have an \action re�ning implementation", because the transitions of the dy-

namic elements of SP are realized by sequences of transitions in SP .

does not change dynamic sorts into static ones: we have a \dynamism-

preserving" implementation.

Once we have de�ned a notion of implementation, it is interesting to study

its relations with the speci�cation structure. We limit ourselves to implementa-

tions where is the identity function, using for this the notation SP SP

f

f

chan; value

spec

sorts

0

0 0

0 00

0

00 0 00

0

0

0

0

0

0

0

0

0

���

���

��� ���

���

���

�

���

���

���

���

��� ut

�

! !

�

>

> f

> >f

>

>

LT� Sig �

>

>

LT� > LT�

� > �

>

f f

; l proc

v v v v

v v v v

Emp

f

f

x; ch

ca

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 27

BEH =

C C

Broken bu�er OUT IN value

Broken bf bf Error

SEND OUT B SEND OUT

REC IN B REC IN

Value

Send

value proc

Fact 6.1.

export from export from

rename with rename with

reach on reach on

Example 6.1. Implementations of

{

{

(notice that in this case SP and SP must have the same signature). This is

not a restriction: from the properties of we can derive properties about

, because is de�ned as a combination of the structuring operations;

indeed, SP SP i� SP (SP). It is easy to verify the following

1. is a partial order (i.e. it is reexive, antisymmetric and transitive).

2. All speci�cation operators are monotonic w.r.t. : if SP, SP , SP

are speci�cations, (SP), is a signature isomorphism and

SP SP , then

SP + SP SP + SP ;

SP SP ;

SP SP ;

SP SP .

CA REQ

We consider some implementations of the requirement LT-speci�cation CA REQ

(with the axiom 1) introduced in Ex. 5.1, since there is no room to introduce

completely new and more interesting examples.

First, notice that CA SPEC is not one of its correct (reasonable) implemen-

tations. Indeed, let de�ne a function over speci�cations s.t. (CA SPEC) is

given:

by saying how the various things present in CA REQ are realized using those

of CA SPEC:

by enriching CA SPEC with the operations

: , : -

de�ned by the axioms

= , for all including an value,

() = (), () = (),

() = (), () = ()

by renaming as ;

by hiding all operations and sorts present in CA SPEC and not in CA REQ

(so the signatures of (CA SPEC) and CA REQ are equal).

Then, we have to check if the axioms of CA REQ hold in (CA SPEC).

Unfortunately, the axiom 1 (requiring the absence of deadlocks when the bu�er

is not broken) does not hold, since all states of CA having only one process

component with command part () are deadlock situations.

Not even PROC is a correct implementation of PROC REQ, since in PROC

whatever process may be communicated outside by either handshaking or broad-

casting communications.

Now, we give a design LT-speci�cation describing a particular concurrent

system similar to Milner's SCCS having all properties required by the speci�-

cation CA REQ . In such speci�cation the elements of various sorts (static and

dynamic) as , and are completely de�ned; moreover also the activity

of the dynamic elements is fully de�ned. As usual, �rst we give the speci�cation

of active components, BEH, and after of the whole system, SYSTEM.

0

!

!

End example

0 0

0 0

0 0

0 0 0 0

0 0

0 0

0 0

Emb

; l proc

b b

Empty

Emc ch Emc ch

l l

� l l

�

ch ch

ch ch

ch ch

ls ls

dsorts

opns

axioms

spec

enrich rename with by

sorts

dsorts

opns

axioms

beh proc beh value Value

READ WRITE value

OUT IN

Working

Working

Working

OUT(()) IN(())

1

1

1 2

1

TAU

1

OUT()

1

2

IN()

2

1 2

TAU

1 2

1

OUT()

1

1

OUT()

1

1

IN()

1

1

IN()

1

1

1

1

1

TAU

28 E. Astesiano and G. Reggio

:

:

:

: -

: -

:

? ! :

+ : (comm., assoc., id:)

:

! ?

+

SYSTEM =

MSET(BEH) []

:

:

: -

: -

!

!

!

!

!

!

� !

� !

!

������������! ����������!

��! � ��!

��! ��! � ��!

!

j � !

!

!

��! � j ����! j

�������! ^ ������! � j j ����! j j

�������! � j �������! j

������! � j ������! j

j ��! j � j j ��! j j

j ����! j

Alpha;Beta; : : : chan

Emb

Emc chan

; l beh

� l beh

; chan

�

ch b b ch b b

b b b b b

� b � b b b � b b

; proc mset=mset

status

system

; status

proc mset status system

l system

; l system

b b b b

b b b b b b b b

b b b b

b b b b

mb mb mb mb mb mb

mb mb

beh

beh value

value

OUT IN value

Nil beh

beh beh

beh beh beh Nil

beh beh

beh

Working Broken

TAU

IN OUT value

Working Working

Working Working

Working Working

Working Working

Working Working Working Working

Working Broken

BEH is an implementation of PROC REQ; indeed it is su�cient to re-

name into and : into ; to add the operations

: - and to hide all operations which are not needed

in PROC REQ. Then all properties de�ned by the PROC REQ axioms are sat-

is�ed, since BEH behaviours never communicate other behaviours outside (no

transition labelled by either () or () will ever performed).

SYSTEM is an implementation of CA REQ; indeed after making the appro-

priate renamings (including into), enrichments and hidings we

get a new speci�cation where all axioms of CA REQ are satis�ed, thus whose

models are included into the models of CA REQ; the axiom 1 holds since no

behaviour activity may be blocked when the status is ; the axiom 2

holds since there are no initial states and the axiom 3 holds since all axioms

of SYSTEM de�ning transitions require the status to be equal to .

The above example is a case where the implementing dynamic elements have

exactly the same concurrent structure of the implemented ones. However, the

notion of implementation of Def. 7 does not imply that restriction, as the re-

quirement LT-speci�cation CA REQ2, given below, shows, where the elements

f

!

jjj � !

���

jjj

> f

agent

proc

proc proc

agent

agent

agent

: : :

proc

7.1. Generalities

LTL SMoLCS

LTL SMoLCS

LTL SMoLCS

spec

enrich by

dsorts

opns

axioms

7. Relationship with other approaches

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 29

CA REQ2 =

CA REQ

:

:

of sort are implemented by groups of other processes interacting between

them.

In this case CA REQ CA REQ2, where is just the hiding of the

dynamic sort and of the operation .

In the following we briey discuss the relationship of / with other

methods for the speci�cation of concurrent systems.

The nice idea of modelling processes with labelled transition systems, adopted

by / , has been especially advocated by G. Plotkin and R. Milner in

their landmark papers [55, 56, 49] on SOS and CCS. Indeed, our method can be

seen as a generalization of some very nice features of CCS and SOS, but there

are many major di�erences.

SOS provides indeed a method of de�ning systems; however it is not speci�-

cally targeted at concurrent systems and thus does not provide any support for

structural concurrent speci�cations. Hence an SOS speci�cation of a concurrent

system may be not driven by its concurrent structure. For example, in [56] a

binary parallel operator gives the structure of a CSP program, while the true

concurrent structure is that of an unordered group of processes (i.e., a set);

and [46] presents an SOS semantics for a subset of Ada, where the handshaking

communication between two tasks (concurrent activity) and the raising of an

exception within a task (sequential activity) are modelled in the same way, since

there is no way to explicitly distinguish the concurrent and the sequential com-

binators. Finally, clearly SOS does not provide any means for abstract algebraic

speci�cations; in particular it is not possible to de�ne static axioms, which have

been proved so useful and are becoming more and more popular (see [6] for a

�rst appearance and [48] for further strong motivations).

Note also that / is very di�erent from all speci�cation methods

based on some particular language, say CL, with a �xed set of primitives for

concurrency, where the speci�cation of a system S is a program of CL \corre-

sponding" to S. Those methods work well whenever the concurrent features of

S are similar to those of CL; otherwise we have a kind of translation. Consider,

for example, specifying a system, say SHM, where the processes interact only

by accessing a shared memory and using CCS as speci�cation language (where

processes interact only by handshaking communication along channels); then

the speci�cation of SHM is a CCS program where some process simulates the

shared memory, and so in the end we have more a kind of implementation, than

an (abstract) speci�cation. Using our approach, instead, the concurrent features

of a system are de�ned directly, and not implemented by other constructs.

30 E. Astesiano and G. Reggio

LTL SMoLCS

LTL LTL

LTL SMoLCS LTL

In the literature there are other methods using logical/algebraic techniques

for the speci�cation of concurrency (for a more detailed review see [17]); note

that here we consider \methods" and not particular instances of algebraic spec-

i�cation of concurrent systems (e.g., an algebraic de�nition of an ACP calculus,

see [24]).

Most of the known methods aim at providing algebraic speci�cations of the

static structures used by processes; among them LOTOS [44] and various ver-

sions of \algebraic" Petri nets (see e.g. [62]); all use a �xed concurrent language

(CCS, CSP) or a �xed concurrent structure (Petri nets) integrated with abstract

data type speci�cations.

A nice method which gives some support also for specifying di�erent com-

munication schemas is PSF [47], built around some variation (among the many)

of ACP; in particular, di�erently from original ACP, it adopts a transition se-

mantics approach as in CCS. It provides a rich toolset, it is limited to design

speci�cations and does not exploit the idea of process as data, for example to

deal with higher-order concurrency.

The apparently closest approach to ours is the \Rewriting Logic" (shortly

RL) of Meseguer [48], see [21] for an extensive study of the relationship between

the two formalisms. RL speci�cations roughly correspond to the subset of the

conditional LT-speci�cations where the transitions are not labelled, the static

and the dynamic axioms are completely separated and the axioms for closing

transitions by congruence, transitivity and reexivity (here the name \rewrit-

ing") are assumed. To be precise, the RL models do not correspond just to

(�rst-order versions) of plain transition systems, but to systems whose transi-

tions are decorated by \proofs", i.e. descriptions of how the transitions has been

deduced by the speci�cation axioms; and such proofs can be interpreted as de-

scriptions of how the system components have determined such moves (they can

be used e.g. to speak about fairness). But this interesting feature of RL has never

been exploited in its applications, and whenever such additional information on

transitions are needed, we can encompass them also in / by de�ning

the data type of the proofs and using a 4-ary transition predicate instead of a

ternary one. Moreover in RL there is no provision for observational semantics

and it is di�cult to see how that can be achieved. Indeed the absence of labels

and the propagation of moves by congruence, which are a considerable simpli�-

cation giving the RL a special pleasant look, are a major drawback with respect

to modularity and the de�nition of sensible observational semantics. Essentially,

as it was remarked by many people, it seems that RL can work well only for

non-structured closed systems and with the use of its support language Maude,

which is well structured and enjoys a very e�cient implementation.

It is worthwhile to note also that Meseguer claims that RL is an universal

formalism for concurrency, since any other one can be subsumed by RL, but

it is better to say that it can be coded in it in some way; this is true also for

, indeed in [21] we present a tricky coding of transition predicates into

the arrows of RL by putting, in some sense, the labels within the states. This is

a technical/formal relationship, but from the point of view of the speci�cation

method it means that we have to think of the system to be speci�ed following

the / paradigm, give an speci�cation and at the end code it in

RL.

In various papers, e.g. [26, 27], and projects M. Broy has developed since

1983 an approach to the formal speci�cation of concurrent systems which is a

LTL SMoLCS

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 31

combination of algebraic speci�cations, streams, predicate logic and functional

programming. The basic models are dataow architectures and the structuring

primitives are those typical for dataows (which can be elegantly obtained as de-

rived operators, because of the speci�cation formalism and its semantics). How-

ever any other kinds of concurrent architectures and of communication mech-

anisms have to be simulated. Whenever the architecture is more or less of the

dataow style, the speci�cations are very elegant and convenient also for proving

properties.

We now mention two approaches that only at a �rst sight seems to deal with

the same issue, but are very di�erent in the aims (and in the techniques). TLA,

L. Lamport's Temporal Logic of Actions [45], is a very nice approach trying to

deal with the various phases of development within one logical formalism, so

that implementation is just logical implication. However it does not address the

speci�cation of data types and is more suited for the speci�cation of concurrent

and parallel programs and algorithms, than of large systems, where di�erent

implementation phases are needed, with much di�erent signatures. There the

notion of implementation as implication within one logic formalism cannot be

exploited any more. Moreover, another major distinction is \typing" which, ab-

solutely needed in modular development of systems, is less important in the

speci�cation of algorithms and small systems and thus absent for purpose in

TLA. UNITY, by Chandy and Misra [31] o�ers a kind of standard program-

ming language for describing sequential nondeterministic processes, a temporal

logic for express properties on them, a way to modularly compose the speci�ca-

tions out of simpler ones, and a deductive system for proving properties about

the speci�ed process, also following the modular structure of the speci�cation.

Forgetting still existing problems in the formal de�nition of the various parts,

UNITY is essentially apt to handle nondeterministic closed systems; the authors

explicitly claim that they want to abstract w.r.t. the concurrent/parallel aspects

of the system, e.g. as how many are the component processes and in which way

they cooperate, and so on; for them such aspects must be considered only in

successive implementation phases. Notice also that neither TLA nor UNITY

have a notion of process as an agent, which have to be recovered by a kind of

simulation. Apart from making a di�erence with / , this seems to

constitute a major di�culty for using TLA and UNITY with an overall object

oriented approach.

Finally we close the section again emphasizing that recently some attention

has been given to a complete di�erent viewpoint, where the states of a dynamic

system are modelled as algebras, which change the structure in their evolutions.

Clearly, the basic idea corresponds to the \evolving algebras" of Gurevich [42];

notice however that \evolving algebras" is essentially an approach for providing

operational semantics of programming languages and does not support at all

abstract speci�cations of systems nor data. A theoretical foundation of the state-

as-algebra approach, based on notion of d-oid, the extension of the notion of

algebra to the dynamic one, has been developed by Astesiano and Zucca in [23,

22]; but speci�cation issues have not yet been tackled. The issue of speci�cation

has been addressed by Dauchy and Gaudel [36]; moreover a kind of manifesto

supporting the approach and building up especially on previous work in [23, 36]

has been issued by Ehrig and Orejas in [39]. However the topic is not ripe yet to

assess the potentialities of the state-as-algebra approach, especially in connection

�n n

: : :

LTL SMoLCS

32 E. Astesiano and G. Reggio

7.2. Specifying CA using other approaches

TLA

one

one

UNITY

with the issue of concurrency (perhaps easier to tackle within the state-as-term

approach).

In all cases below, the length and the complexity of the resulting speci�cations

are comparable with the / one; the only di�erence is that in some

cases the text of the speci�cation written in the chosen formalism is shorter,

but relevant information have to be added apart using natural language and/or

mathematical notations (e.g. also in CCS and TLA we have to describe which

are the used values).

Each TLA speci�cation is about one system starting in some initial state,

thus we have no way to compare two di�erent CA's and see e.g. whether they are

equivalent w.r.t. the broadcasting communications performed. As a consequence

we cannot handle the higher-order features of CA.

In TLA no notion of process (component of the system) is provided, and so

a CA process will be described in a speci�cation by a set of variables recording

its relevant information. Thus the creation of a new process should result in

\allocating" new variables, and that cannot be done. There could be a tricky

way to overcome this problem by giving a speci�cation with an in�nite number

of variables and of actions (there are variables for all possible processes) plus

extra boolean variables saying if a process is alive or not and creation will result

in making one more process alive.

For this reason, we cannot give TLA speci�cation for CA (also if the

command for creating new processes is dropped); instead we have to give

TLA speci�cation for the CA with process, for each 1.

Since in TLA there is no notion of type, the various data used in CA

(booleans, integers, arrays, local memories, commands,) should be consid-

ered in the documentation when describing the values of the used variant of

TLA.

The TLA speci�cation of one CA may be structured in parts following its

concurrent structure: a part for each process and one for the bu�er; the connec-

tion among these parts is given by \interface variables" (i.e. variables used in

more than one part). In CA we have di�erent kinds of cooperations among the

CA components; in TLA each of them is simulated by using a bunch of variables

as bu�ers and as semaphores for handling the access to such bu�ers; so we have

a kind of low level description of such cooperations.

Finally notice that since there are no combinators for terms representing

processes or actions, there is no possibility of using structural induction.

Similar remarks and restrictions can be done when trying to use

UNITY, the only di�erence is that instead of \actions" we have the alterna-

tives of a guarded command.

>���

LTL SMoLCS

LTL

LTL SMoLCS

LTL SMoLCS

LTL SMoLCS

CCS/ACP/LOTOS

Rewriting Logic

Stream processing functions

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 33

No way to handle the higher-order concurrent features (un-

less we upgrade to higher-order CCS and the like).

In general each CA process and the bu�er can be described by a more or

less complex behaviour in the chosen language (e.g. the local memory will be

simulated by a behaviour); the data used in CA can be algebraically speci�ed

in LOTOS or described apart in the other cases (clearly we are considering only

the variants of the above calculi with value passing).

The cooperation among the processes and the bu�er can be simulated by

using the constructs of the chosen language; clearly this part may be simple

or di�cult depending on the CA variant and on the chosen language: e.g. it is

di�cult to simulate the broadcast communication in CCS, while it can be done

easily in LOTOS. Generally speaking, the cooperation mechanisms have to be

simulated (implemented) by those proper of the target formalism, thus loosing

abstraction compared to / .

For what concerns Rewriting Logic (shortly RL) we can proceed

in two ways:

Coding: in [21] we show how to code a subclass of speci�cations into RL;

our CA speci�cation after changing some details (e.g. transforming the aux-

iliary transition relation into RL basic arrows on a di�erent sort,

just a copy of the system states) is in such class; so we have also an RL

speci�cation of CA. Clearly such speci�cation has been obtained by using

the ideas, techniques and methods of / without any reference to

RL; but now e.g. we can use some prototyping tools of RL on it.

Following the ideas, techniques and methods of RL: We can follows what we

have done for / ; but we have to prevent the application of the

closure rules (at least that of congruence); thus we have to write only the

axioms for the transitions of the system states, using neither the process

transitions nor those corresponding to auxiliary actions (notice that, e.g.,

if we de�ne a transition for one process, such transition may �re when the

process is used as a value and thus preventing to handle the higher-order

features).

The speci�cation of the interleaving variant of CA may be done in a rea-

sonable way; but we have problems for free parallelism or for the execution

policy where several accesses to the bu�er may be done simultaneously; in

such cases we have to write in�nite rewriting rules, one for each possible

combination of activities of any group of process components.

A fair premise: the CA example has been chosen to

illustrate the features of the / approach and, since its structure is

not easily amenable to a data ow structure, we cannot exploit the best features

of stream processing functions, which is very elegant and convenient on data

ow architectures.

No immediate way to handle higher-order concurrent features.

Each component (processes and bu�er) can be simulated by a stream pro-

cessing function and the streams can be used to connect such components and

thus to simulate the cooperations among them. The problem is to control the

y

LTL

8. Conclusion

34 E. Astesiano and G. Reggio

activity in such components, e.g. in the interleaving case or when we have a

mutual exclusion on some kinds of bu�er access. The only way to handle this

point is to put up an auxiliary controller process which schedules the activities

of the components.

Looking back at our presentation two main features of our approach clearly

emerge, distinguishing it from other approaches.

First, it supports full integration of the speci�cations of static data and

dynamic elements, taking the strong view that processes are themselves data; as

a consequence we get higher-order concurrency by free. The support is provided

both at the design level by classical logical (algebraic) speci�cation techniques,

and at the requirement level, where models are LT-structures (particular �rst-

order structures). Considering processes as data and thus allowing complete

freedom in the speci�cation of the communication mechanisms and cooperation

policy, is a distinguishing feature w.r.t. LOTOS, for example.

Second, the speci�cation of processes is intended to be driven by the labelled

transition system model, in the sense that what we specify as concurrent be-

haviour are the states, the labels and the transitions. In this respect we follow

strictly CCS, where �rst the transition semantics is de�ned [49]; indeed as a

most signi�cant example, the rules of transition semantics of CCS are an LT-

speci�cation for CCS. To mention a di�erent viewpoint, we can take the classical

ACP speci�cations (see [24]) where the algebraic laws of the various operations

are de�ned, but the labelled transition model remains in the background; this

amounts to take the CCS algebraic laws, which are theorems, and turn them

into axioms, which then encode also some form of observational semantics. We

have found in many experiences that the transition driven approach, quite oper-

ational, is well suited to the system engineer intuition, while the algebraic laws

de�ning the operations are suitable and nice either when referring to a single

language into which the speci�cations are coded, or when the laws are intu-

itive, like the commutativity and associativity of the parallel operator and of

the nondeterministic choice of CCS.

Third, the transitions are expressed by predicates and thus are completely

within �rst-order logic, contrary, e.g., to Rewriting Logic, where the transition

arrow is at the meta-level.

The outlined approach has been developed since 1984 mainly by the au-

thors, (see [13, 11, 57]) with an important contribution of M. Wirsing in the

early stages (see [6]); later on other people contributed to some related aspects,

notably A. Giovini (93) for the observational semantics [4] and F. Morando for

the development of a rapid prototyping system [40, 8]. The idea of conditional

was the core of [6], where its speci�cations were called algebraic transi-

tion systems; the concept of higher-order concurrency was explored in [13] and

its semantics foundations laid down in [2] and generalized in [4]. Requirement

LT-speci�cations have been dealt with especially in [34, 35, 59, 18] and some

methodological aspects have been addressed in [19].

A notable feature of our approach is that its development has been motivated

throughout the various phases by some concrete experimental problems. The

original approach addressing the design phases was developed in connection with

: : :

LTL

LTL

LTL

LTL

Acknowledgement.

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 35

We want to acknowledge the role of many people in the development of

the presented approach, starting with Martin Wirsing, and then the other members of the

Genova group involved in the CNet and in the Ada projects (especially Alessandro Giovini,

Elena Zucca and Franco Mazzanti), Franco Morando for the toolset, and the ENEL people

cooperating in the development of the cases studies: Ernani Crivelli and Valeria Filippi.

and applied to the speci�cation of a prototype Campus Net, in the project CNET

[7]. Then the approach was extended to deal with semantic issues of languages

with concurrent features and applied to give the �rst complete formal de�nition

of Ada, within an EEC-MAP project (see e.g. [12, 1, 9]). Finally, in a four years

long project partially supported by ENEL (the National Electricity Company

of Italy), two test cases have been addressed, which have been inuential for

the requirement phase and methodological aspects, discussed jointly with the

people on the industry side. The case studies concern the speci�cation of a

hydro-electric system [60] and of a high-voltage station for the distribution of

the electric power [61].

Looking back at our ten-years experience we cannot deny the general di�-

culty of putting formal methods into practice. We are now convinced that it is

essential to have at hand a semiformal approach, where corresponding semifor-

mal and formal speci�cations proceed in parallel, following what we have called

a \two-rail approach" [19]. Moreover, but that is already well-known, software

tools are essential in all phases, from editing to veri�cation. What we have at

hand in our method is still insu�cient; in particular we are now looking for

tools also allowing graphical representations (which however cannot replace the

textual ones, especially for big speci�cations).

There is also another more basic research aspect coming out of our experi-

ence, which has to deal with metaformalism.

Each of the papers cited at the end of Sect. 5.2 presents a particular feature

to be added to the basic (as temporal/deontic combinators, abstract events,

entities); these features are mutually consistent, i.e. we can have a complete for-

malism including all of them. However in most applications only few of them are

needed (e.g. the industrial case study of [61] requires an entity speci�cation with

temporal logic, while that of [60] only the temporal logic features). In some other

cases, instead, it is su�cient to incorporate the simpler linear-time temporal logic

combinators, or, when many properties are about failures and fault-tolerance,

deontic-logic combinators. Moreover, here we have presented many-sorted total

, i.e. where each LT-structure is a particular total many-sorted �rst-order

structure, while for some other applications partial/order-sorted structures are

more adequate (depending on the features of the static parts).

The above considerations make clear that we may have a whole family of

's, where each instance is appropriate for some kind of applications; so using

the fact that all of them are institutions, in [30, 29] we have tried to develop

appropriate operations having institutions as arguments and results (each one

more or less corresponds to add a feature, as temporal-logic combinators, entities,

) for being able to modularly de�ne the right variant of we need, and

then to use it for the speci�cation of dynamic elements.

�

�

0

1

1

1

1

1

n

n

n

n

i n

�

�

S S

S

S Op OP Pr PR

2 2

2

2 2 2

0 0

0 0

j

0

0

1 1

A A

1

A

1

A

A

1 1

A

1

()

1 1

()

A

A

36 E. Astesiano and G. Reggio

f g 2

f g 2

ut

� � ! 2 � �

2

f g f g f g

2

� � ! � � !

� � � � �

2 ut

2 2

2 2

2 2

2

2

; 2

; 2

2 !

ut

2

w;s w ;s w;s

w w w

n s :::s ;s n

s :::s

s s

s

n s s s

n s s

n n

�

s � s

�;s � s

i � s s :::s ;s

n � s

T X

n n

T X

s � �

�

;V

�

s s

A. Logical/algebraic speci�cations

De�nition 8.

{

{

{

De�nition 9.

{

{

{

De�nition 10.

{

{

{

{

{

De�nition 11.

{

{

� ; ;

w s

w

s : : : s s s : : : s

� �

; ;

s

s : : : s s : : :

s : : : s : : :

a ; : : : ; a a ; : : : ; a

�

X � T X �

x X x T X

T X

t T X i ; : : : ; n

t ; : : : ; t T X

t ; : : : ; t t ; : : : ; t

X s T X T

� t T X V X

X

t V t t

t

�

� ; ; � �

s

(many-sorted) �rst-order signature signature

= ()

sorts)

operation sym-

bol arity target

predicate symbol

arity

We write : for , : for

.

�rst-order structure structure

A = (A)

carriers interpretations of the operation symbols

interpretations of the predicate symbols

A

: : A A A

: A A

() ()

term structure ()

()

()

() = 1

() ()

() = ()

=

= ()

ground terms

A () : A variable evaluation

A all

interpretation of in A w.r.t.

In this paper we assume that structures have (as this

applies to term structures as well, thus we have an implicit assumption on sig-

natures: that they contain \enough constants symbols").

A

= () A

B

B = A

A.1. Basic notions

A (shortly, a) is a

triple S OP PR , where

S is a set (the set of the ;

OP is a family of sets: OP ; Op OP is an

(of and);

PR is a family of sets: PR ; Pr PR is a (of

).

Op Op OP Pr

Pr PR

A - (shortly a -) is a triple

Op Pr

consisting of the , the and the

; i.e.:

if S , then is a set;

if Op , then Op is a (total) function;

if Pr , then Pr .

Usually we write Pr instead of Pr .

Given a signature and an S-indexed family of sets of variables

, the on and X , , is the -structure de�ned as follows:

implies ;

Op OP implies Op ;

for and Op OP imply

Op ;

Op Op for all Op OP;

Pr for all Pr PR.

If for all S , then is simply written and its elements are

called .

If is a -structure, and is a ,

i.e. a sort-respecting assignment of values in to the variables in , then

the , denoted by , is de�ned as usual; if is

a ground term, then we use the notation .

nonempty carriers

Let be a -structure.

If S OP PR is a subsignature of , then denotes the -

structure de�ned as follows:

for all S ,

0

C

S

n

n

1

1

0

0

0

2

0

0

0 0 00

00

0 0

0

0

0 0

0

0

{

{

{

{

{

{

De�nition 12.

{

{

De�nition 13.

B A

B A

()

A

A

A

1

B

1

A

1

B

1

=1 1 2

1

1

1

1

1

1 1

1

1

=1 1

2

2

2 2 ;

2 ! 2

f j 2 g

f j 2 g

; �

2 2 2 ut

! f g

2 !

2

2 ut

j

j j

2

j

^ �

2

^ �

`

ut

s s

�
s

V;

s � s

s s

s s s

s n s s n

n s s n

i ;:::;n i i

n i �

n

n

n

n

n n

n

n

i ;:::;n i n

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 37

�

s Rsorts a

s Rsorts V t T

t a

Rsorts s s

Sorts

s s

� Sorts ; ; �

s a t T a t

� h

h h h

s h

h a ; : : : ; a h a ; : : : ; h a

a ; : : : ; a h a ; : : : ; h a

�

�

; V � �

V � � ; V �

V

� � �

�

�

� � � � t t

t ; : : : ; t t T

t t

t t

t t

t t t t

t t

t t : : : t t

t ; : : : ; t t ; : : : ; t

t ; : : : ; t t t : : : t t

t ; : : : ; t

� � � : : :�

�

�

� t=x

� �

=

=

A -generated

() A =

() : A ()

=

() =

()

() (())

A term-generated

A () =

A B homomorphism A

B :A B total =

:A B

(()) = (() ())

() (() ())

-structures and homomorphisms form a category.

First-order logic and the interpretation of its formulae on a -structure A is

de�ned as usual. We write A = when the interpretation of the formula in

A w.r.t. yields true; then is in A (written A =) whenever A =

for all evaluations .

A -structure A is a of a set of formulae on i� for all

A = .

A is a �rst-order formula on and having form

, where , are , and an atom has form either = or

(), with predicate symbol and ().

=

=

=

= =

=

= =

() = ()

() = =

()

[]

Op Op for all Op OP ,

Pr Pr for all Pr PR .

If C is a set of operation symbols of , then is C i� for all

C , for all , there exists X a family of variables s.t. X

for all C , a variable evaluation X and X

s.t. ; where:

C there exists Op C with result sort ,

C =

there exists Op C having either as argument or as result sort ,

C is the signature C C ().

If is OP-generated, then it is said ; in such cases for all

S , there exists s.t. .

If and are -structures, a from into

(written) is a family of functions where for all

S and

for all Op OP Op Op ;

for all Pr PR: if Pr , then Pr .

valid

model AX AX

conditional formula X

atoms

Pr Pr X

The Birkho� deductive system for a set of conditional formulae

CAX, sound and complete w.r.t. the models of CAX, consists of the axioms

CAX and of the following rules.

REF SYM TRANS

CONG1

Op Op

CONG2

Pr

Pr

MP SUB

If can be proved using the Birkho� system for CAX, then we write CAX .

n

n n

n

n n

n n

1

1 1

1

1 1

1 1

0 0

0 0 0

0 0 0

1 2 2 1

1 2 3 1 2 3

; !

f g !

j � !

j ;

j j

j j j j

De�nition 14.

Proposition 3.

spec

enrich by

sorts

opns

axioms

C 2 C C

2 C ! ut

� C

j j 2 C

j j 2 C

�

j `

j ` ut

f g j j f g j j

38 E. Astesiano and G. Reggio

MSET(ELEM) =

ELEM

:

:

:

=

=

() = ()

; elem

mset

mset

elem mset

mset mset mset

ms ms

ms ms ms ms

ms ms ms ms ms ms

�

�

t t t t t t

� t : : : t

t ; : : : ; t t ; : : : ; t

t t t t t t

� t : : : t

t ; : : : ; t t ; : : : ; t

t : : : t t : : : t

A initial

A :A A

I

I = = A = = A

I = () A = () A

I

I = = =

I = () ()

Usually a term of the form is simply written .

Let be a class of -structures. is said in if for

every there exists one and only one homomorphism .

If is initial in , then:

for all terms , , i� for all

for all predicates Pr in and all terms , , ,

Pr i� Pr for all .

If CAX is a set of conditional formulae, then there exists initial in the class

of the models of CAX characterized by:

for all terms , , i� CAX

for all predicates Pr in and all terms , , ,

Pr i� CAX Pr .

A.2. Prede�ned parametric speci�cations

Finite multisets

10

0 0 0

!

� � !

� !

�

Finite maps

spec

enrich by

sorts

opns

axioms

; index; Eq; ; elem;

map

map

= map elem index map

map index elem

i

m e=i i e

i Eq i False m e=i i m i

Error

Error

Ada: Managing the Transition, Proc. of the

Ada-Europe International Conference, Edimburgh, 1986,

Proc. STACS'88 (Symposium on Theoretical Aspects of Computer Science)

Proc. of 18-eme Ecole de Printemps en Informatique

Theorique, Semantique du Parallelism

T.C.S.

Algebraic Methods: Theory, Tool and Applications

Proc. TAPSOFT'85, Vol. 1

A Broad Perspective of Current Developments, Proc.

ICS'85 (ACM International Computing Symposium)

Proc. of TAPSOFT '95

Proc.

of the Workshop on The Analysis of Concurrent Systems, Cambridge, 1983

Mathematical Models for the Semantics of Parallelism, Proc. Advanced School

on Mathematical Models of Parallelism, Roma, 1986

IBM Journal of Research and Development

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 39

MAP(INDEX ELEM) =

ELEM+ INDEX

[]:

[]:

():

[]() =

[]() =

= []() = ()

1. E. Astesiano, A. Giovini, F. Mazzanti, G. Reggio, and E. Zucca. The Ada Challenge

for New Formal Semantic Techniques. In

, pages 239{248. UniversityPress,

Cambridge, 1986.

2. E. Astesiano, A. Giovini, and G. Reggio. Generalized Bisimulation in Relational Speci�-

cations. In ,

number 294 in Lecture Notes in Computer Science, pages 207{226. Springer Verlag, Berlin,

1988.

3. E. Astesiano, A. Giovini, andG. Reggio. Processes as DataTypes: Observational Semantics

and Logic. In I. Guessarian, editor,

, number 469 in Lecture Notes in Computer Science,

pages 1{20. Springer Verlag, Berlin, 1990.

4. E. Astesiano, A. Giovini, and G. Reggio. Observational Structures and their Logic. ,

96:249{283, 1992.

5. E. Astesiano, A. Giovini, G. Reggio, and E. Zucca. An Integrated Algebraic Approach to

the Speci�cation of Data Types, Processes and Objects. In M. Wirsing and J.A. Bergstra,

editors, , number 394 in Lecture Notes

in Computer Science, pages 91{116. Springer Verlag, Berlin, 1989.

6. E. Astesiano, G.F. Mascari, G. Reggio, and M. Wirsing. On the Parameterized Algebraic

Speci�cation of Concurrent Systems. In H. Ehrig, C. Floyd, M. Nivat, and J. Thatcher,

editors, , number 185 in Lecture Notes in Computer Science,

pages 342{358. Springer Verlag, Berlin, 1985.

7. E. Astesiano, F. Mazzanti, G. Reggio, and E. Zucca. Formal Speci�cation of a Concurrent

Architecture in a Real Project. In

, pages 185{195. North-Holland, Am-

sterdam, 1985.

8. E. Astesiano, F. Morando, and G. Reggio. The SMoLCS Toolset. In P.D. Mosses,

M. Nielsen, and M.I. Schwartzbach, editors, , number 915 in Lec-

ture Notes in Computer Science, pages 810{811. Springer Verlag, Berlin, 1995.

9. E. Astesiano, C. Bendix Nielsen, N. Botta, A. Fantechi, A. Giovini, P. Inverardi, E. Karlsen,

F. Mazzanti, J. Storbank Pedersen, G. Reggio, and E. Zucca. The Draft Formal De�nition

of Ada. Deliverable, CEC MAP project: The Draft Formal De�nition of ANSI/STD 1815A

Ada, 1986.

10. E. Astesiano and G. Reggio. On the Speci�cation of the Firing Squad Problem. In

, number 207

in Lecture Notes in Computer Science, pages 137{156. Springer Verlag, Berlin, 1985.

11. E. Astesiano and G. Reggio. An Outline of the SMoLCS Approach. In M. Venturini Zilli,

editor,

, number 280 in Lecture Notes in

Computer Science, pages 81{113. Springer Verlag, Berlin, 1987.

12. E. Astesiano and G. Reggio. Direct Semantics of Concurrent Languages in the SMoLCS

Approach. , 31(5):512{534, 1987.

Proc. TAPSOFT'87, Vol. 1

System Development and Ada, Proc. of CRAI Workshop on Software Factories

and Ada, Capri 1986

Proc. FME'93: Industrial-

Strength Formal Methods

Recent Trends in Data Type Speci�cation

Proc. of

Seventh International Workshop on Software Speci�cation and Design (IWSSD-7)

Mathematical

Structures in Computer Science

Journal of Computer

and System Sciences

Process Algebra

Recent Trends in Data Type

Speci�cation

Proc. TAPSOFT'85, Vol. 1

Information Processing Letters

Acta Informatica

Algebraic Methodology and Software Technology (AMAST'93)

Recent Trends in Data Type Speci�cation

Parallel Program Design: a Foundation

Acta-Informatica Proceeding of

ESOP'92

40 E. Astesiano and G. Reggio

13. E. Astesiano and G. Reggio. SMoLCS-Driven Concurrent Calculi. In H. Ehrig, R. Kowal-

ski, G. Levi, and U. Montanari, editors, , number 249 in Lecture

Notes in Computer Science, pages 169{201. Springer Verlag, Berlin, 1987.

14. E. Astesiano and G. Reggio. The SMoLCS Approach to the Formal Semantics of Pro-

gramming Languages { A Tutorial Introduction. In A.N. Habermann and U. Montanari,

editors,

, number 275 in Lecture Notes in Computer Science, pages 81{116.

Springer Verlag, Berlin, 1987.

15. E. Astesiano and G. Reggio. A Structural Approach to the Formal Modelization and

Speci�cation of Concurrent Systems. Technical Report PDISI-92-01, DISI, Universit�a di

Genova, Italy, 1992.

16. E. Astesiano and G. Reggio. A Metalanguage for the Formal Requirement Speci�cation of

Reactive Systems. In J.C.P. Woodcock andP.G. Larsen, editors,

, number 670 in Lecture Notes in Computer Science. Springer

Verlag, Berlin, 1993.

17. E. Astesiano and G. Reggio. Algebraic Speci�cation of Concurrency (invited lecture). In

M. Bidoit and C. Choppy, editors, , number 655

in Lecture Notes in Computer Science, pages 1{39. Springer Verlag, Berlin, 1993.

18. E. Astesiano and G. Reggio. Specifying Reactive Systems by Abstract Events. In

. IEEE

Computer Society, Los Alamitos, CA, 1993.

19. E. Astesiano and G. Reggio. Formally-Driven Friendly Speci�cations of Concurrent Sys-

tems: A Two-Rail Approach. Technical Report DISI{TR{94{20, DISI { Universit�a di

Genova, Italy, 1994. Presented at ICSE'17-Workshop on Formal Methods, Seattle April

1995.

20. E. Astesiano and G. Reggio. A Dynamic Speci�cation of the RPC-Memory Problem.

Lecture Notes in Computer Science. Springer Verlag, Berlin, 1996. To appear.

21. E. Astesiano and G. Reggio. On the Relationship between Labelled Transition Logic and

Rewriting Logic. Technical Report DISI{TR{96{19, DISI { Universit�a di Genova, Italy,

1996.

22. E. Astesiano and E. Zucca. D-oids: a Model for Dynamic Data Types.

, 5(2):257{282, 1995.

23. E. Astesiano and E. Zucca. A Free Construction of Dynamic Terms.

, 52(1):143{156, 1996.

24. J.C.M. Baeten and W.P. Weijland. . Cambridge University Press, Cam-

bridge, 1990.

25. M. Bettaz and G. Reggio. A SMoLCS Based Kit for De�ning the Semantics of High-Level

Algebraic Petri Nets. In H. Ehrig and F. Orejas, editors,

, number 785 in Lecture Notes in Computer Science, pages 98{112. Springer-

Verlag, Berlin, 1994.

26. M. Broy. Speci�cation and Top Down Design of Distributed Systems. In H. Ehrig,

C. Floyd, M. Nivat, and J. Thatcher, editors, , number 185 in

Lecture Notes in Computer Science, pages 4{28. Springer Verlag, Berlin, 1985.

27. M. Broy. Predicative Speci�cations for Functional Programs Describing Communicating

Networks. , 25:2, 1987.

28. M. Broy and M. Wirsing. Partial Abstract Types. , 18:47{64, 1982.

29. M. Cerioli andG. Reggio. AlgebraicOriented Institutions. InM. Nivat, C. Rattray, T. Rus,

and G. Scollo, editors, ,

Workshops in Computing. Springer Verlag, London, 1993.

30. M. Cerioli and G. Reggio. Institutions for Very Abstract Speci�cations. In H. Ehrig and

F. Orejas, editors, , number 785 in Lecture Notes

in Computer Science, pages 113{127. Springer-Verlag, Berlin, 1994.

31. M. Chandy and J. Misra. . Addison-Wesley, 1988.

32. X-J. Chen and C. Montangero. Compositional Re�nements in Multiple Blackboard Sys-

tems. , 32(5):459{476, 1995. A short version appeared in

, Lecture Notes in Computer Science n. 582, Springer, 1992.

d

Recent

Trends in Data Type Speci�cation

Proc. MFCS'91

T.C.S.

Proc. International Workshop Is-Core'93, Hannover Septem-

ber 1993

Proc. MFCS'81

T.C.S.

Bulletin

of the EATCS

Proc. ALP'92

Proc.

TAPSOFT'87, Vol. 2

Bulletin of the EATCS

Communicating Sequential Processes

Proc. AC Ada Tech. and Tutorial Conference

Proc. TAPSOFT'89, Vol. 2

T.C.S.

A Calculus of Communicating Systems

Communication and Concurrency

T.C.S.

Proc. 5th GI Conference

Proc. IFIP TC 2-

Working conference: Formal description of programming concepts

Una Metodologia per la Speci�ca di Sistemi e Linguaggi Concorrenti

Labelled Transition Logic: An Outline Technical Report DISI-TR-96-20 41

33. E. Coscia and G. Reggio. Deontic Concepts in the Algebraic Speci�cation of Dynamic

Systems: The Permission Case. In M. Haveraaen, O. Owe, and O.-J. Dahl, editors,

, number 1130 in Lecture Notes in Computer Science,

pages 161{182. Springer Verlag, Berlin, 1996. 11th Workshop on Speci�cation of Abstract

Data Types joint with the 8th general COMPASS workshop. Oslo, Norway, September

1995. Selected papers.

34. G. Costa and G. Reggio. Abstract Dynamic Data Types: a Temporal Logic Approach. In

A. Tarlecki, editor, , number 520 in Lecture Notes in Computer Science,

pages 103{112. Springer Verlag, Berlin, 1991.

35. G. Costa and G. Reggio. Speci�cation of Abstract DynamicDataTypes: A Temporal Logic

Approach. , 173, 1997. To appear.

36. P. Dauchy and M.C. Gaudel. Implicit State in Algebraic Speci�cations. In U. W. Lipeck

and G. Koschorreck, editors,

, 1993.

37. H.D. Ehrich. On the Realization and Implementation. In , number 118 in

Lecture Notes in Computer Science, pages 271{280. Springer Verlag, Berlin, 1981.

38. H. Ehrig, H.J. Kreowski, B. Mahr, and P. Padawitz. Algebraic Implementation of Abstract

Data Types. , 20:209{263, 1982.

39. H. Ehrig and F. Orejas. Dynamic Abstract Data Types: An Informal Proposal.

, (53), 1994.

40. A. Giovini, F. Morando, and A. Capani. Implementation of a Toolset for Prototyping

Algebraic Speci�cations of Concurrent Systems. In , number 632 in Lecture

Notes in Computer Science, pages 335{349. Springer Verlag, Berlin, 1992.

41. J. Goguen and J. Meseguer. Models and Equality for Logic Programming. In

, number 250 in Lecture Notes in Computer Science, pages 1{22.

Springer Verlag, Berlin, 1987.

42. Y. Gurevich. Evolving Algebras, a Tutorial Introduction. ,

(43):264{284, 1991.

43. C.A.R. Hoare. . Prentice Hall, London, 1985.

44. I.S.O. LOTOS { A Formal Description Technique Based on the Temporal Ordering of

Observational Behaviour. IS 8807, International Organization for Standardization, 1989.

45. L. Lamport. The Temporal Logic of Actions. Technical Report 79, Digital, Systems

Research Center, Palo Alto, California, 1991.

46. Wei Li. An Operational Semantics of Multitasking and Exception Handling in Ada. In

. ACM Press, 1982.

47. S. Mauw and G.J. Veltink. An Introduction to PSF . In J. Diaz and F. Orejas, editors,

, number 352 in Lecture Notes in Computer Science, pages 272

{ 285. Springer Verlag, Berlin, 1989.

48. J. Meseguer. Conditional Rewriting as a Uni�ed Model of Concurrency. , 96:73{

155, 1992.

49. R. Milner. . Number 92 in Lecture Notes in

Computer Science. Springer Verlag, Berlin, 1980.

50. R. Milner. . Prentice Hall, London, 1989.

51. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes - Part I. Technical

Report ECS-LFCS-89-85, LFCS-University of Edinburgh, 1989.

52. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes - Part II. Technical

Report ECS-LFCS-89-86, LFCS-University of Edinburgh, 1989.

53. R. De Nicola and M. Hennessy. Testing Equivalence for Processes. , 34:181{205,

1984.

54. D. Park. Concurrency and Automata on In�nite Sequences. In ,

number 104 in Lecture Notes in Computer Science. Springer Verlag, Berlin, 1981.

55. G. Plotkin. A Structural Approach to Operational Semantics. Lecture notes, Aarhus

University, 1981.

56. G. Plotkin. An operational semantics for CSP. In D. Bjorner, editor,

, pages 199{223. North-

Holland, Amsterdam, 1983.

57. G. Reggio. . Ph. D.

Thesis, Universit�a di Genova-Pisa-Udine, 1988. In italian.

a

Recent Trends in Data Type Speci�cation

Recent Trends in Data Type Speci�cation

T.C.S.

Handbook of Theoret.

Comput. Sci.

cljour1

42 E. Astesiano and G. Reggio

58. G. Reggio. Entities: an Institution for Dynamic Systems. In H. Ehrig, K.P. Jantke,

F. Orejas, and H. Reichel, editors, , number 534

in Lecture Notes in Computer Science, pages 244{265. Springer Verlag, Berlin, 1991.

59. G. Reggio. Event Logic for Specifying Abstract Dynamic Data Types. In M. Bidoit and

C. Choppy, editors, , number 655 in Lecture

Notes in Computer Science, pages 292{309. Springer Verlag, Berlin, 1993.

60. G. Reggio and E. Crivelli. Speci�cation of a Hydroelectric Power Station: Revised Tool-

Checked Version. Technical Report DISI{TR{94{17, DISI { Universit�a di Genova, Italy,

1994.

61. G. Reggio, A. Morgavi, and V. Filippi. Speci�cation of a High-Voltage Substation. Tech-

nical Report PDISI-92-12, DISI { Universit�a di Genova, Italy, 1992.

62. W. Reisig. Petri Nets and Algebraic Speci�cations. , 80:1{34, 1991.

63. G. Winskel and M. Nielsen. Models for Concurrency. Technical Report 492, DAIMI PB,

1992.

64. M. Wirsing. Algebraic Speci�cations. In J. van Leeuwen, editor,

, volume B, pages 675{788. Elsevier, 1990.

This article was processed by the author using the LT

E

X style �le from Springer-Verlag.

