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To handle the RPC-Memory Speci�cation Problem we have used the SMoLCS

method for the formal speci�cation of dynamic systems developed by our group

in the last ten years. SMoLCS consists of integrated logic speci�cation formalisms

at di�erent levels of abstraction, from very abstract requirements till detailed de-

signs, with methodological guidelines for supporting the development of a speci�ca-

tion (see e.g. [2, 4, 7], for the theoretical and technical foundations and [11] for the

methodological aspects).

We present in this paper the treatment of two parts of the RPC-Memory Speci-

�cation Problem, corresponding to Sect. 1, 2 and 3 of [6].

The RPC-Memory Speci�cation Problem (see [6]) could be seen as the develop-

ment of a memory component (shortly denoted by from now on) starting with

the initial requirements, corresponding to Sect. 1 and 2 of [6], later re�ned by a

high-level implementation, whose main features are given in Sect. 3 of [6].

We have interpreted Sect. 1 and 2 of [6] as a description of

requirements, since there the activity of is not completely determined; e.g.:

for all 1 the that receives calls and then satis�es them in the reception

order and so on, is an admissible realization.

Here we have a re�nement of the requirements given be-

fore; indeed Sect. 3 of [6] describes in a more precise way by saying to realize

it using a component, a reliable ( ) and, as suggested afterwards

also a . Moreover following the suggestion of [6] we have considered

apart by giving for it a reusable parameterized speci�cation, and then we have

used here a particular instantion.

Now we brie
y list the main problems posed by tackling the RPC-Memory Spec-

i�cation Problem and how they are handled in our formalism.

The components are open dynamic systems, i.e. systems evolving along the time

and interacting with the external (w.r.t. them) environment by receiving procedure

calls and returning results; the idea is to model dynamic systems with labelled tran-

sition systems. Moreover we have also to handle data structures (locations, memory
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values, list of arguments, . . . ); they are modelled by many-sorted �rst-order struc-

tures. The two models are integrated in the so called dynamic structures: just many-

sorted �rst-order structures, also providing for the fact that we have to model dif-

ferent dynamic systems ( , , , . . . ) characterized by di�erent behaviours.

Then we need speci�cations using such models for two di�erent purposes:

for expressing the starting and intermediate requirements on a dy-

namic system; they should determine a class of dynamic structures, all those

formally and abstractly modelling systems having such requirements;

for expressing the abstract architectural design of a dynamic system;

they should determine one dynamic structure, the one formally and abstractly

modelling the designed system.

As for the usual logic speci�cations of abstract data types, a dynamic speci�cation

is a pair ( ), where is a dynamic signature (a particular many-sorted

signature with transition predicates) and is a set of axioms on .

Dynamic speci�cations with loose semantics (i.e. whose semantics is the class of

all -dynamic structures satisfying ) are meant for requirement. Now, �rst-

order logic is adequate for expressing requirements on the data structures as \Init-

Value cannot be a location", but cannot be used to express the requirements on

the behaviour, for example liveness properties, like \ must eventually issue

a return for each call". Thus we have extended �rst-order logic with combinators of

the branching-time temporal logic for expressing properties on the behaviour of the

dynamic systems (see [7, 8]).

To express design speci�cations we need to identify essentially just one model;

to this end we adopt the well-known algebraic approach of the so-called \initial

semantics" (if is a set of positive conditional formulae, then there exists the

initial model of a dynamic speci�cation characterized by \minimal truth", i.e. a

ground atomic formula holds on it i� it is a logical consequence of the axioms in

).

The notion of implementation between classic speci�cations of abstract data

types (see [13]) can be naturally extended to dynamic speci�cations and, e.g., we can

formally de�ne, and then prove, that the speci�cation given in the �rst development

step is a correct implementation of that of the requirements.

Unfortunately such proofs have to be done by hand, since at the moment there are

no tools for helping the veri�cation, except some methodological guidelines; neither

automatic tools (e.g. a model checker, a theorem prover) nor theoretical ones (e.g.

a sound and/or complete deductive system, a re�nement calculus). We have only a

software rapid prototyper for design speci�cations, which helps us to gain con�dence

in the designed system and to detect several errors, just by examining the behaviour

of the speci�ed system (see [1]).

The results of the �rst two steps are presented in Sect. 4 and 6 and the reusable

speci�cation for is presented in Sect. 5. The basis of our speci�cation frame-

work, dynamic speci�cations, are reported in Sect. 2 and the associated development

method for dynamic system is brie
y sketched in Sect. 3. Finally in Sect. 7 we discuss

our solution.
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2 Dynamic Speci�cations (DSPECs)
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2.1 The formal model for dynamic systems

De�nition1.

2.2 Dynamic structures

dynamic system

labelled transition tree

labelled transition system

labelled transition system lts STATE LAB

STATE LAB states

labels STATE LAB STATE transi-

tion relation transition

STATE LAB

STATE STATE

is able

STATE transition tree

(many-sorted, �rst-order) signature S OP PR

S sorts

OP OP operation symbols

PR PR predicate symbols

Dynamic speci�cations, shortly DSPECs, extend the logic (algebraic) speci�cation

of abstract data types, see [13], to the speci�cation of types of dynamic systems. In

this paper, with the term we generically denote systems that are

able to modify their own state during time, so processes and concurrent/reactive/

distributed systems are typical examples.

In the DSPEC approach a dynamic system is modelled by a

de�ned by means of a .

A (shortly ) is a triple ( ),

where and are two sets whose elements are, respectively, the and

the of the system, while represents the

. A triple ( ) belonging to is called a and is usually

written as .

A dynamic system D can be modelled by an lts ( ) and an initial

state . The elements in that can be reached starting from

are the intermediate interesting states in the life of D, while the transition relation

describes the capabilities of D to pass from one intermediate state to another one.

So a transition has the following meaning: D in the state to pass

to the state by performing a transition whose interaction with the external world

is described by the label ; thus provides information both on the conditions on the

external world making e�ective this capability and on the changes in the external

world caused by this transition.

Given an lts, we can associate with each a that

is a labelled tree whose root is decorated by , whose nodes are decorated by

states and whose edges by labels; the structure of the tree is given by means of the

following rule: between two nodes decorated, respectively, by and there exists

an edge labelled by i� . In a transition tree the order of the edges is not

meaningful and two subtrees decorated in the same way and with the same root are

identi�ed.

Concurrent dynamic systems, i.e. dynamic systems having cooperating compo-

nents that are in turn other dynamic systems, can be modelled through particular

ltss obtained by composing other ltss describing such components.

First, we brie
y report the main de�nitions about �rst-order structures.

A is a triple = ( ), where

{ is a set (the set of the );

{ is a family of sets: ( );

{ is a family of sets: ( ).
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�rst-order structure Op Pr

carriers interpretation of the operation symbols inter-

pretation of the predicate symbols

S

Op Op

Pr Pr

Pr Pr

S sort assignment S

X X

X term structure X

X

X

Op OP Op

Op OP Op

Op Op Op OP

Pr Pr PR

X S X

ground terms

nonempty carriers

state label

state label state

dynamic structures

dynamic signature D DS

STATE OP PR

DS STATE dynamic sorts

ds DS lab ds STATE DS

ds lab ds ds PR

dynamic structure D D

D

A is a triple A = ( A )

consisting of the , the and the

. More precisely:

{ if , then A is a set;

{ if : , then :A A A is a function;

{ if : , then A A .

Usually we write ( ) instead of ( ) .

Given a signature with set of sorts , a on is an -indexed

family of sets = .

Given a sort assignment , the T ( ) is the -structure de�ned

as follows, using T to denote T ( ):

{ implies T ;

{ implies T ;

{ T for = 1 and imply ( ) T ;

{ ( ) = ( ) for all ;

{ = for all .

If = for all , then T ( ) is simply written T and its elements are

called .

In this paper we assume that structures have .

An lts can be represented by a �rst-order structure A on a signature with two

sorts, and , whose elements correspond to states and labels of the system,

and a predicate : representing the transition relation. The triple

(A A ) is the corresponding lts. Obviously we can have ltss whose states

are built by states of other ltss (for modelling concurrent dynamic systems); in such

a case we use structures with di�erent sorts corresponding to states and labels and

with di�erent predicates corresponding to transition relations.

In a formal model for dynamic systems we may need to consider data too (for

example, the data manipulated by the dynamic systems such as natural numbers);

to handle these cases our structures may have also sorts that just correspond to data

and not to states or labels of ltss.

The �rst-order structures corresponding to ltss are called and

are formally de�ned as follows.

A is a pair ( ), where:

= ( ) is a signature;

is the set of the , i.e. sorts corresponding to

dynamic systems (states of ltss);

for all there exist a sort (the sort of the labels)

and a predicate : (the transition predicate).

A on (shortly a -dynamic structure) is just a -�rst-

order structure; the term structure ( ) is just ( ), where is a sort

assignment on .



i

ds lab ds

ds ds DS

D

� � � �

� � � �

0

0 0

0

0

� �

0

� �

2

�

2 2 2!

2

2!

2!

�

h i

f g

2

2

2 � � 2 2

n

i i i i i

def

n n n n n n n

n n n n n n

p f p f

p f

p

f p f

n n i � s

2 2 1 1 0 0 1 1 2 2

0 0 1 1 2 2

2 2 1 1 0

0 0 1 1 2 2

+1

D

D

D

1 1 +1 +1

1 1 +1 +1

1 1

2.3 A logic for DSPECs

De�nition (Formulae)

formulae

{

� �

;

: : :

: : : d l d l d l d l d l : : :

d l d l d l : : :

: : : d l d l d

d l d l d l : : : d n

i d l d ; l ; d

d d l d

�

� � �

� � � �

� � �

� ; �

l d � ; l; d

d ; l; �

� �

� : : : d l d � d l d l : : :

: : : d l d l d l : : :

� ; � � �

� �

�

� � �

�;

�; � ; ; ;

s

t ; : : : ; t �; s : : : s t T X ; i : : :n

D ds D

PATH ds paths ds

right-bounded

left-bounded

LastS last state

FirstS �rst state

FirstL �rst label

PATH ds right-maximal left-maximal

LastS

FirstS

composition operation

pointed path

LastS FirstS

LastS

FirstS

The set of , denoted by F D X , and the family of the sets of

, denoted by PF D X , on D S OP PR DS and a

sort assignment X are de�ned by multiple induction as follows. For each S and

ds DS :

Pr F D X Pr PR,

Having de�ned dynamic structures as our models for dynamic systems, we now

introduce an appropriate logical formalism for expressing properties about them.

The properties can be subdivided in two classes: properties of the static data,

including the data used for de�ning states and labels, that we brie
y name \static

properties"; and properties on the activity of the dynamic systems, such as liveness

or safety requirements, that we brie
y name \dynamic properties". While �rst-order

logic is su�cient for static properties, for the dynamic ones we enrich it with the

combinators of the past branching-time temporal logic with edge formulae, see [7, 8].

Moreover, since dynamic structures are classi�ed depending on their signature also

the formulae of the logic will be given below depending on a signature.

We give now some technical de�nitions on dynamic structures that will be used

in the following. Let D be a -dynamic structure and a dynamic sort of .

(D ) denotes the set of the for the dynamic systems of sort ,

i.e. the set of all sequences of transitions having form either (1) or or (4) below:

(1)

(2)

(3)

(4) 0

where for all integers , D , D and ( ) . Notice that

both a single state and a single transition may be a path.

If has form either (3) or (4) is said , while if it has form either

(2) or (4) is said .

If is right-bounded, then ( ) denotes the of ; analogously if

is left-bounded, ( ) denotes the of ; while if is left-bounded,

then ( ) denotes the of , if exists, i.e. if is not just a state.

(D ) is ( ) i� either is not right-

bounded (left-bounded) or there do not exist , s.t. ( ( ) )

(( ( )) ).

A is de�ned on paths: =

if = and = then

else unde�ned.

A is a pair s.t. is left-maximal and right-bounded,

is right-maximal and left-bounded and ( ) = ( ); it represents a

complete behaviour for the dynamic system in the state ( ) coinciding with

( ), is the past part and the future part.

formulae ( ) path

formulae ( ) = (( ) )

( ) ( ) : ( ) = 1
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s
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A
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1

A

A

A

1
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D

D
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D

1

D
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{

{
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path formulae

{

{

{

{

{

De�nition (Semantics of formulae)

formulae

{

{

{

{

{

2 2

: � 8 2 2 2

4 2 2 2

2 2 2

h i 2 2 2

U S 2 2
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: � 8 2 2 2

4 h i

h i

4

h i

h i

h i


 U S

!

2

j

h i

h i j

j 2

j

j : 6j

j � 6j j

j 8 2 j

t t �; t ; t T X

� ; � � ; x : � �; � ; � �; ; x

t; � �; t T ; � �;

� x : � �; x � �;

�x : � �; x � �;

� � ; � � �; � ; � �;

� �; � �;

� ; � � ; x : � �; � ; � �; ; x

�

t; � � ; �

t � � ; �

� x :� � ; � �

� � �x : �

� ; � � �

�

� V

t t

V t

x V x

t ; : : : ; t t ; : : : ; t

� V

� V ; V �

� � ; � V

; V; � ; � �

; V t ; : : : ; t t ; : : : ; t

; V t t t t

; V � ; V �

; V � � ; V � ; V �

; V x : � v s x ; V v=x �

F D X

F D X F D X X

F D X X PF D X

PF D X X , F D X

PF D X X , F D X

PF D X PF D X

PF D X PF D X

PF D X PF D X X

D

variable evaluation X

all X X interpretation of

in w.r.t.

Op Op

Let be a D -dynamic structure and a

variable evaluation of X in ; then we de�ne by multiple induction:

{ the validity of a formula in w.r.t. (written ),

{ the validity of a path formula on a pointed path in w.r.t.

(written ),

as follows:

Pr i� Pr

i�

i�

i� either or

i� for each , with sort of ,

= ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

[ ] ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

The formulae of our logic include the usual ones of many-sorted �rst-order logic

with equality; if contains dynamic sorts, they include also formulae built with

the transition predicates. Notice that path formulae are just an ingredient, though

an important one, for building the temporal formulae.

The formula ( ) can be read as \for every path pointed in the state

denoted by , the path formula holds on ". We anchor these formulae to

states, following the ideas in [9]. The di�erence is that we do not model a single

system but, in general, a type of systems, so there is not a single initial state but

several of them, hence the need for an explicit reference to states (through terms)

in the formulae built with .

The formula [ ] holds on the pointed path whenever holds at the

�rst state of , which is also the last state of ; while the formula holds

on the pointed path if is not just a single state and holds at the �rst

label of .

Finally, , and are the so called next, (future) until and (past) since

combinators.

If A is a -structure, a : A is a sort-respecting assign-

ment of values in A to the variables in . If T ( ), the

A is denoted by and given as follows:

{ = ( )

{ ( ) = ( ).

D

D

D D =

D

D =

D = ( ) ( )

D = = =

D = D =

D = D = D =

D = D D [ ] =
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3
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0 00 0 00 0 0 00

0 00 0 00 00 0 00

0 0 0

p f f

;V

p f

p f f

p f f f

p f

f p

p

p f

p f

f

p f f p

p f p f

p f p f p f

p f p f

p f

f p

p f

p f

p f f

;V

p f

D

1 2

1 2 1 2 1 2 2

1 1

1

1 1 1

1

1 1

2 1

1 2

1 2 1 2 1 2 2

2 2

2

2 2 2

2 1

2 2

1

1 2 1 2

def

1 2 1 2 1 2

def

1 2 1 2 1 2

def

D

{

path formulae

{

{

{

{

{

{

{

{

{ true false

{ true

{ P true

P

{

2.4 Dynamic speci�cations

De�nition3.

j 4

h i h i j

h i j j

h i j h i j

h i j U

� h � i j

� 6 h � � i j

h i j S

� h � i j

� 6 h � � i j

h i j 
 h � i j

h i j : h i 6j

h i j � h i 6j h i j

h i j 8 2 h i j

j j

_ ^ 9 �

U

h i j

� h � i j

S

h i j

� h � i j

5 : 4 :

j 5

h i h i j

h i

h i h i h i

�

i�

for each s.t. FirstS ,

i� FirstS

i� FirstL is de�ned and FirstL .

i�

there exist , s.t. , and

for each , s.t. and ,

i�

there exist , s.t. , and

for each , s.t. and ,

i� and FirstS

i�

i� either or

i� for each

is in (written ) i� for all evaluations .

FirstS

DSPEC (dynamic speci�cation) SP D AX

D AX F D X

models SP Mod SP D

AX

; V t; �

� ; � � t ; V; � ; � �

; V; � ; � � x : � ; V � =x �

; V; � ; � �x : � � ; V � =x �

; V; � ; � � �

� � � � � ; V; � � ; � �

� � � � � � � ; V; � � ; � � �

; V; � ; � � �

� � � � � ; V; � ; � � �

� � � � � � � ; V; � � ; � � �

; V; � ; � � � st l � ; V; � st l � ; � �

; V; � ; � � ; V; � ; � �

; V; � ; � � � ; V; � ; � � ; V; � ; � �

; V; � ; � x : � v ; ; V v=x ; � ; � �

� � ; V � V

� � �

; V; � ; � �

� � � � � ; V; � � ; � �

� � �

; V; � ; � �

� � � � � ; V; � ; � � �

t; � t; �

; V t; �

� ; � � t ; V; � ; � �

� x � x : �

� s t t �x : �

l t � t

�;

� �;

�

D = ( )

( ) = D =

D = [ ] D [ ( ) ] =

D = ( ) D [ ( ) ] =

D =

= D =

= = D =

D =

= D =

= = D =

D = = D ( ( )) =

D = D =

D = D = D =

D = D D [ ] =

valid D D = D =

In the above de�nitions we have used a minimal set of combinators; in practice,

however, it is convenient to use other, derived, combinators; we list below those that

we shall use in this paper, together with their semantics.

, , , , and , de�ned in the usual way

= (eventually in the future )

D = i�

there exist , s.t. = , and D =

= (some time in the past )

D = i�

there exist , s.t. = , D =

( ) = ( ) (in one case)

D = ( ) i�

there exists s.t. ( ) = and D =

Whenever in there are no free variables of dynamic sort except : [ ] is

abbreviated to [ ], moreover [ = ] is abbreviated to [ ]; analogously and

= are abbreviated respectively to and .

A is a pair = ( ) where

is a dynamic signature and ( ).

The of , ( ), are the -dynamic structures D s.t. the formulae

in are valid in D.

We need to consider two di�erent kinds of DSPECs:
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{

{

t t t t

� : : : � � � � t ; : : : ; t t t

�;

t ; t t t t t

t ; : : : ; t

t ; : : : ; t t ; : : : ; t

t t

t t

t t

t t t t

t t

t t i ; : : : ; n

t ; : : : ; t t ; : : : ; t

t t i ; : : : ; n t ; : : : ; t

t ; : : : ; t

� : : : � � � i ; : : : ; n

�

F

V F

V

V F F x V x

conditional

Pr

Given a DSPEC SP D AX where AX is a set of condi-

tional axioms, then there exists (unique up to isomorphism) initial in Mod SP

characterized by

for all of the same sort i� AX ;

for all Pr PR and all of appropriate sorts

Pr i� AX Pr ;

where denotes provability in the Birkho� sound and complete deductive system for

conditional axioms, whose rules are:

Op Op

Pr

Pr

X X

is where each occurrence of a variable, say , has been replaced by .

SP implemented SP

Mod SP Mod SP

SP SP

SP

for expressing the starting and intermediate requirements of a dy-

namic system; a requirement DSPEC should determine a class of dynamic struc-

tures, all those formally and abstractly modelling systems having such require-

ments; technically the semantics of a requirement DSPEC is the class of its

models (loose semantics);

for expressing the abstract design of a dynamic system, i.e. to abstractly and

formally de�ne the way we intend to design the system; a design DSPEC should

determine one dynamic structure, the one formally and abstractly modelling

the designed system; technically the semantics of a design DSPEC is the initial

element in the class of its models, if any (recall that the initial element is unique

up to isomorphism).

A DSPEC may not have an initial model, since it might contain an axiom like

= = ; so we have to restrict the form of the axioms used in design

speci�cations, by considering only axioms having the following form:

, where and are atoms i.e. either ( ) or = .

= ( )

I ( )

T I = = =

T

I = ( ) ( )

=

=

=

= =

=

= = 1

( ) = ( )

= = 1 ( )

( )

= 1

( )

: T ( )

( ) ( )

A notion of \correct implementation" between DSPECs has been given (see [4])

as follows: a requirement is by with respect to , a function

from speci�cations into speci�cations, i� ( ( )) ( ). The function

describes how the parts of are realized in (implementation as realization);

while implementation as re�nement is obtained by requiring inclusion of the classes

of models. Notice that this de�nition applies whatever the kind of (either re-

quirement or design); in the latter case the class of it models just contains the initial

one and those isomorphic to it.



3.1 Development process
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{

PHASE 1

PHASE 1

PHASE 2 PHASE 1

PHASE 1

3 A Development Process for Dynamic Systems

natural description

shadow spots

border determination

analysis step

correctness veri�cation step

The development process supported by DSPEC consists of di�erent phases from the

presentation of the informal idea of what we have to realize till the coding of the

dynamic system in a programming language. From a phase it is possible to go back

to the previous phases either because some part has been modi�ed or because an

error has been found.

Each phase of the development process is characterized by the production of a

document, having a particular structure, which guides and documents the activities

of the phase.

The development process starts from what we call , i.e. a doc-

ument, given by the client, describing the system to be realized using some natural

language.

During this phase we analyse the dynamic system trying to determine its

essential requirements and after to speci�y them by a requirement DSPEC.

The analysis starts from the natural description; but it may be that in the

natural description there are ambiguities, inconsistencies, or parts whose only

possible interpretation is not sensible; these points, called , should

be reported in a document together with possible choices; if the shadow spots are

too many or too relevant preventing to determine the requirements, the natural

description should be returned to the client to be modi�ed.

The is another part of document of this phase; it gives the

motivations for deciding which parts of the dynamic system have been included

in the speci�cation. That is relevant, because within DSPECs it is not possible

to give requirements on the environment of the speci�ed dynamic system; thus

where to place the border of the dynamic system, i.e. which parts of the outside

environment to specify, depends on the relevance of the requirements about such

parts.

Summarizing, during we have to produce a document consisting of:

the natural description, the border determination, the shadow spots description

and the speci�cation of the requirements, just a requirement DSPEC.

The requirement DSPEC given in is developed through an ap-

propriate number of (development) steps; in each step we make more detailed

the features of the system to realize until its complete de�nition.

A development step is further split in:

an , in which we either re�ne the requirement on the system or

design some of its parts; the result of the analysis is formalized by a DSPEC,

which may be either of kind requirement (when the requirements have been

re�ned), or design (when each part of the system has been designed), or

mixed, i.e. a combination of subspeci�cations of kind design with other of

kind requirement (when only some parts of the system have been designed).

a which veri�es that the speci�cation given at

this step is a correct implementation of the previous one (for the �rst step

of this phase, of the requirement speci�cation of ). Clearly, it may



PHASE 2

PHASE 2

PHASE 3 PHASE 2

PHASE 4 PHASE 3

justi�cation of the

correctness of the step

simple concurrent

kind

3.2 How to write a DSPEC

Simple dynamic system

Basic data structures

States

Interactions

happen that the current speci�cation is wrong (i.e. cannot be a correct im-

plementation), in such cases we have either to redo the current step, or if

instead the error is in the previous steps or in the requirements, to go back

to modify them appropriately.

Summarizing, during a development step of we have to produce a

document consisting of: a natural description saying which choices have been

done in the step, a DSPEC of the appropriate kind and a

.

ends with a step producing a design DSPEC.

If the speci�cation given in the last development step of is pro-

totypable, then we can perform tests on it using the prototyping tool (see [1])

for verifying the consistency between the starting idea of the system (in the nat-

ural description) and the produced design. The rapid prototyper given a design

speci�cation of a dynamic system and a state of such system generates in an

interactive way (parts of) the labelled transition tree starting from such state,

and so allows to analyse the behaviour of the system starting from such state.

If the result of such tests is not satisfactory, we have go back to modify the

previous steps.

If the result of the tests of is satisfactory, the dynamic system

is coded using a programming language following the usual criteria of e�ciency

and correctness.

The development process presented in the previous subsection requires to write down

several DSPECs; here we present some guidelines for writing a DSPEC of a dynamic

system.

First, the dynamic system should be classi�ed in or ; concurrent

systems are those whose activity is determined by the activity of several components,

which are in turn dynamic systems (either simple or concurrent), also of di�erent

types. Thus the guidelines below distinguish between the two cases. Clearly the

classi�cation in simple and concurrent of a system is relative to a step and a simple

system may be re�ned by a concurrent one in the next step.

Determine and specify the data structures used by the dy-

namic system.

Determine and specify the intermediate relevant situations in the life of the

dynamic system (i.e. the states of the lts modelling it) as a data structure, with

a main sort corresponding to such states. Then the main sort is made dynamic.

Determine and specify the interactions of the dynamic system with

the external world (i.e. the labels of the lts modelling it) as a data structure,

whose main sort will be the sort of label associated with the dynamic sort given in

the previous point, and having an operation for each of interactions; these

operations may have several arguments describing the information exchanged

between the system and the external world during each interaction of such kind.
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Activity
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design

Concurrent dynamic system

Basic data structures

Components

States
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ds

st; � st �

� �

cond st; l; st st st st st l

ds lab ds cond st; l; st

Determine and specify the activity of the dynamic system (i.e. the transi-

tions of the lts modelling it) represented by the arrow predicate associated with

the dynamic sort given before.

We have to give the relevant properties on the transitions, which

are usually grouped depending on the kind of the performed interaction.

Let : be an operation representing the interactions

of a certain kind; these properties may express:

on the initial/�nal state of a capability with inter-

action of \ kind " (which reactions we expect from the system after its

execution and what must have happened before):

( ) ( ) ( )

where , . . . , are terms of sort , . . . , respectively, and ,

are terms of sort , is a path formula built with the future temporal

combinators and with the past ones.

for the system to have a transition capability with

interaction of \kind "; these properties are very important in the spec-

i�cation of a reactive system, since they express that the system in some

cases eventually must be able to accept a certain external stimulation.

These properties may have various forms:

( ) ( ( ) )

(the system has (immediately) a capability to do such interaction)

( ) ( ( ) )

(in any case the system will eventually perform such interaction)

( ) ( [ ( ( ) ) ])

(in any case the system will eventually have the capability to do such

interaction)

where , . . . , are terms of sort , . . . , respectively, and is a

term of sort .

i.e. properties that are not related to the oc-

currence of particular interactions but refer to a whole behaviour. Their

structure is simply ( ), where is a term of dynamic sort; e.g. may

express a property, i.e. has form ( ) ( ).

We have to de�ne the system transitions by giving a set of conditional

axioms of the form: ( ) , where , , are terms of

sort and respectively, and ( ) is a conjunction of atoms;

recall that the only transitions of the speci�ed system are those which can

be proved by the given axioms by using the deductive system of Prop. 4.

As in the simple case.

Determine and specify following these same guidelines the compo-

nents of the concurrent system, which are in turn dynamic systems.

As in the simple case, but now they are de�ned by putting together the

states of the components.

As in the simple case.
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4 Requirement Speci�cation ( )

Activity

requirement

design

3.3 Speci�cation presentation

� l; l ; : : : ; l c c : : : c c

st c ; : : : ; c st c ; : : : ; c

l l l c c c c

st c ; : : : ; c st c ; : : : ; c

c c

Determine and specify the activity of the dynamic system, the transitions,

by considering also the activities (transitions) of its components.

As for the simple case, the only di�erence is that not only the

system can perform transitions, but also its components.

We have to de�ne the system transitions by giving a set of conditional

axioms of the form:

( )

( ) ( ),

where , . . . , , ,are terms of label sorts, , . . . , , , . . . , are variables

of sort states of the components and ( ) ( ( )) is a term

denoting a state of the concurrent system where the components are in the

states , . . . , respectively. Notice that the above constraints on the form

of axioms ensure that only the interactions of the component transitions are

relevant for the composition, and so that interactions really represent the

transition interfaces.

To be able to present in a sensible way the speci�cations produced during the de-

velopment process, a speci�cation language for DSPEC, METAL see [10], has been

developed with a precise \friendly" syntax (e.g. no esoteric symbols but mnemonic

keywords) and with facilities for helping to write down complex and large spec-

i�cations. The constructs of METAL will be brie
y explained when used in the

speci�cations of the RPC-Memory Speci�cation Problem, by comments enclosed by

[ and ].

Furthermore, each formal DSPEC is accompanied by a strictly correspondent

informal speci�cation (natural language text following a particular structure). In

this paper these informal speci�cations are presented as line-by-line comments of

the formal ones, but it is also possible to give as �rst those informal speci�cations,

present and discuss them with the client and after derive from them the formal

counterpart, see [3]. Notice the strict correspondence between the informal text and

the corresponding formal part.

It is also possible to associate a graphical presentation, both with the formal and

the informal speci�cations, to improve their readability; to give the 
avour we report

some of the diagrams associated with RPC-Memory Speci�cation Problem, see e.g.

Fig. 1.

To give the requirements on corresponds to of the development pro-

cess associated with DSPECs (see Sect. 3), and means to determine which are all

processes described by Sect. 1 and 2 of [6]; i.e. to de�ne the class of all dynamic

structures modelling such processes by using a requirement DSPEC.

Below we report the documents produced during this phase together with some

comments. The formal speci�cations are written using the speci�cation language
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Natural description

Border determination

Basic data structures

Universe of the values

cn

requirement

sort

cn

cn

cn

ax

pr

ax

ax

ax

ax

end

italic font

universe of the values either arguments or return values of the procedures

value initially contained in the locations

value returned by a successful Write call

exceptional values

BadArg and MemFailure are di�erent

checks whether a universe element is a memory value/a location

a universe element cannot be both a memory value and a location

Init Value is a memory value while Write End is not so

BadArg and MemFailure are neither memory values nor locations

METAL, see [10], while the corresponding informal speci�cations are reported as

line-by-line comments and typed using the .

Sect. 1 and 2 of [6].

The universe of consists of itself and of the other

components; moreover within a component there are several processes in parallel

calling the 's procedures. In the natural description there is a requirement on

such processes: they cannot start a new procedure call before to have terminated

any previous ones (by receiving a result). Since this property will be used to de�ne

, the border of the speci�ed dynamic system should enclose all components;

however in this report to save space we consider it to enclose exactly .

The basic data structures part contains the speci�cations

of those data structures used by the dynamic system.

[ METAL o�ers a textual notation for all signature

items (sorts, operations, predicates and axioms) plus a special notation for constants

( ), which are the zero-ary operations; \if . . . then . . . " is just the syntax for the

conditional logic combinator. ]

UNIVERSE =

universe

Init Value: universe

Write End: universe

BadArg, MemFailure: universe

not BadArg = MemFailure

Is MemVal, Is Loc: universe

not (Is MemVal(u) and Is Loc(u))

Is MemVal(Init Value) and not Is MemVal(Write End)

not (Is MemVal(BadArg) or Is MemVal(MemFailure))

not (Is Loc(BadArg) or Is Loc(MemFailure) )
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Process identi�er

requirement sort end

Calls use

use

design

use

sort

op

op

pr

ax

ax

end

Interactions

requirement

use

op

op

pr

ax

ax

end

PID =

pid

[ \ " is the METAL construct for modularly building speci�cations; below

UNIVERSE means that the CALL speci�cation has all sorts, operations and

predicates of UNIVERSE with the properties expressed in UNIVERSE. ]

CALL =

UNIVERSE

call

Write: universe universe - call

Read: universe - call

Correct: call

if Is Loc(u) and Is MemVal(u ) then Correct(Write(u,u ))

if Is Loc(u) then Correct(Read(u))

MC INTERACT =

CALL, PID

RECEIVE: call pid - lab mc

RETURN: universe pid - lab mc

No Concern: lab mc pid

No Concern(RECEIVE(c,pi),pi ) i� not pi = pi

No Concern(RETURN(u,pi),pi ) i� not pi = pi

identi�ers of the processes (in some other components) originally issuing the calls

calls of the procedures

takes two universe elements and returns a Write call

takes a universe element and returns a Read call

checks if a call is correct

if the �rst argument is a location and the second a memory value, then a Write

call is correct

if the argument is a location, then a Read call is correct

to receive a call and a process identi�er (of the process in some other component

that has originally issued the call)

to return a result and a process identi�er (of the process in some other component

that �nally will get the result)

auxiliary predicate

checks if an interaction does not concern a given process identi�er
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requirement

use

dsort

op

ax

end

Activity

requirement

use

ax

ax

returns the content of a location in a given state

the content of a location is a memory value

** 1 **

if receives a non-correct call and pi, then

in any case it will perform interactions non-concerning pi until

will return either BadArg or MemFailure and pi

** 2 **

if receives a correct call Read(u) and pi, then

in any case it will perform interactions non-concerning pi until

either will return the content of u and pi

or will return MemFailure and pi

Notice that here we have used a requirement DSPEC for the interactions, since

we only know that has at least the above interactions, but we do not know

completely such interactions.

[ The METAL construct \ mc: { { " declares \mc" to be a dy-

namic sort and implicitly also the associated sort of labels (\lab mc") and transition

predicate \ { { : mc lab mc mc". ]

MC STATE =

UNIVERSE

mc: { {

Cont: mc universe - universe

if Is Loc(u) then Is MemVal(Cont(mc,u))

[ Below \. . . in any case . . . ", \until", \since" and \next" are the METAL

syntaxes for the combinators of the temporal logic ( ), , and ,

introduced in Sect. 2.3. ]

MC =

MC INTERACT, MC STATE

if not Correct(c) and mc { RECEIVE(c,pi) { mc then

mc in any case No Concern(y,pi) until

( u = BadArg or u = MemFailure) and RETURN(u,pi)

if mc { RECEIVE(Read(u),pi) { mc and Correct(Read(u)) then

mc in any case No Concern(y,pi) until

( ( exists u : [ Cont(x,u) = u ] and next RETURN(u ,pi) )

or RETURN(MemFailure,pi) )
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if mc { RECEIVE(Write(u,u ),pi) { mc and Correct(Write(u,u )) then

mc in any case No Concern(y,pi) until

( [ Cont(x,u) = u ] and next

( No Concern(y,pi) until

RETURN(Write End,pi) ) )

or RETURN(MemFailure,pi)

if mc { RETURN(BadArg,pi) { mc then

mc in any case No Concern(y,pi) since

exists c: not Correct(c) and y = RECEIVE(c,pi)

if mc { RETURN(MemFailure,pi) { mc then

mc in any case No Concern(y,pi) since

exists c: y = RECEIVE(c,pi)

if mc { RETURN(Write End,pi) { mc then

mc in any case No Concern(y,pi) since

exists u, u : Correct(Write(u,u )) and

y = RECEIVE(Write(u,u ),pi)

if mc { RETURN(u,pi) { mc and Is MemVal(u) then

mc in any case No Concern(y,pi) since

exists u : Correct(Read(u)) and y = RECEIVE(Read(u),pi)

** 3 **

if receives a correct call Write(u,u ) and pi, then

in any case it will perform interactions non-concerning pi until

either will change the content of u to u and after

will perform interactions non-concerning pi until

will return Write End and pi

or will return MemFailure and pi

** 4 **

if returns BadArg and pi, then

in any case it has performed interactions non-concerning pi since

has received a non-correct call and pi

** 5 **

if returns MemFailure and pi, then

in any case it has performed interactions non-concerning pi since

has received a call and pi

** 6 **

if returns Write End and pi, then

in any case it has performed interactions non-concerning pi since

has received a correct write call and pi

** 7 **

if returns a memory value and pi, then

in any case it has performed interactions non-concerning pi since

has received a correct read call and pi
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5 The Reusable Speci�cation of

** 8 **

if changes the content of a location u to u , then

in any case for some pi

it has performed interactions non-concerning pi since

has received a correct call Write(u,u ) and pi

if mc { y { mc and (not Cont(mc,u) = u ) and Cont(mc ,u) = u then

mc in any case exists pi:

( No Concern(y,pi) since

y = RECEIVE(Write(u,u ),pi) and Correct(Write(u,u )) )

For and any other dynamic system appearing in the RPC-Memory Speci�-

cation Problem, together with the obvious properties about reacting to stimuli, as

1, 2 and 3, we have considered also a set of properties which may be termed \no

unsolicited reactions", as 4, . . . , 8 (i.e. properties requiring that some activities of a

system can be present only as reactions to previously received stimuli).

The points listed below are not very clear in the natural description

of ; for each of them we report also how we have settled it.

{ Which are the available locations in a memory component? We have chosen that

all locations are available.

{ Are properties 4, . . . , 7 necessary? We have opted for yes.

{ Are the locations subject to failures?, i.e. can they change their content by

themselves? We have opted for no (property 8).

{ Can MemFailure be returned as result of a non-correct call? We have opted for

yes.

The structure of the speci�cation of the requirements is graphically reported

in Fig. 1; there square boxes correspond to speci�cations of data structures and

rounded boxes to dynamic systems; enclosure of boxes corresponds to the fact that

a speci�cation uses another speci�cation. The small letters enclosed by parenthesis

near data structure names are used to denote generic elements of such structures.

Finally the arrows leaving the box correspond to the interactions; \. . . "

means that may have other interactions

In this section we give the speci�cation of the parametric simple system correspond-

ing to , to be (re)used in the speci�cation of the implementation of . From

Sect. 3 of [6] we have that the parameter is a data structure corresponding to the

procedure names; for simplicity, in the following we take instead as parameter a data

structure corresponding to the universe of values, the process identi�ers, the calls

and the remote calls.
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The acceptable actual parameters

requirement

use

sort

sort

cn

sort

op

op

op

pr

ax

ax

RECEIVE(c,pi)

RETURN(u,pi)

. . . . . .

UNIVERSE (u) PID (pi) CALL (c)

UNIVERSE

The requirement speci�cation of

the essential properties of the parameter

universe of the values either arguments or results of the procedures

exceptional values

procedure names

given a procedure name returns the number of its arguments

an exception and a procedure name are universe values

check if a universe element is a list of length n

if a universe element is a list with length n and with length m, then n is equal to m

exceptions and procedure names are not list

Clearly not any data structure may be used

to instantiate ; the properties on the acceptable ones are given by the following

speci�cation. An actual parameter is acceptable i� its signature contains all items

of the signature of PAR with the properties expressed by the axioms of PAR.

PAR =

NAT

universe

exception

BadCall, RPCFailure: exception

proc

ArgNum: proc - nat

E: exception - universe

P: proc - universe

Is List: universe nat

if Is List(u,n) and Is List(u,m) then n = m

not Is List(E(e),n) and not Is List(P(p),n)
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ax
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ax
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Interactions

generic

generic

design

use

op

op

op

pid

rcall

; : universe universe - rcall

exists u, u : rc = u ; u

if u ; u = u1 ; u1 then u = u1 and u = u1

Remote Correct: rcall

Remote Correct(u,u ) i�

exists p: u = P(p) and Is List(u , ArgNum(p))

call

Call: rcall - call

The interactions of the reusable are given by a parametric spec-

i�cation. [ is the keyword for introducing the formal parameter X (a spec-

i�cation), while PAR expresses which are the correct actual ones. ]

RPC P INTERACT =

X: PAR

X, PID

RECEIVE REM: rcall pid - lab rpc

RETURN REM: universe pid - lab rpc

SEND: call pid - lab rpc

identi�ers of the processes (in some other components) originally issuing the calls

remote calls received by

the remote calls are made by two universe elements (the procedure name and the

list of the arguments)

checks if a remote call is correct

a remote call is correct i�

u is a procedure name p and u a list whose length is the number of arguments of p

calls of the procedures

transforms a remote call into the corresponding call

to receive (from the sender) a remote call and an identi�er (of the process in some

other component that has originally issued the call)

to return (to the sender) a result (of a remote call) and an identi�er (of the

process in some other component that �nally will get the result)

to send a call (to the receiver) and an identi�er (of the process in some other

component that has originally issued the call)
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to receive a (call) result (from the receiver) and an identi�er (of the process in

some other component that �nally will get the result)

** R1 **

if receives a correct remote call rc and pi, then

in any case it will eventually

either send the call corresponding to rc and pi

or return RPCFailure and pi

** R2 **

if receives a non-correct remote call rc and pi, then

in any case it will eventually return BadCall and pi

** R3 **

if receives a result u and pi, then

in any case it will eventually

return either u or RPCFailure and pi

RECEIVE CALL RES: universe pid - lab rpc

We have no requirements on the states of the reusable .

RPC P STATE = rpc: { {

In this case we have also a kind of properties, that may be termed \accep-

tance vitality", as R7 and R8 (i.e. properties requiring that the system must surely,

at certain points, have the capabilities to receive stimuli; these properties e.g. avoids

that the forever stopped system is a correct implementation.

[ Below \eventually" is the METAL syntax for the combinator of the temporal logic

, introduced in Sect. 2.3. ]

RPC P =

X: PAR

RPC P INTERACT(X), RPC P STATE

if rpc { RECEIVE REM(rc,pi) { rpc' and Remote Correct(rc) then

rpc' in any case eventually

( SEND(Call(rc),pi)

or RETURN REM(E(RPCFailure),pi) )

if rpc { RECEIVE REM(rc,pi) { rpc' and not Remote Correct(rc) then

rpc' in any case eventually RETURN REM(E(BadCall),pi)

if rpc { RECEIVE CALL RES(u,pi) { rpc' then

rpc' in any case eventually

((u = u or u = E(RPCFailure)) and RETURN REM(u ,pi) )
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if rpc { SEND(c,pi) { rpc' then

rpc' in any case

not exists c': y = SEND(c',pi) since

exists rc: c = Call(rc) and y = RECEIVE REM(rc,pi)

if rpc { RETURN REM(u,pi) { rpc' and not(u = RPCFailure) then

rpc' in any case

not exists u : y = RETURN REM(u ,pi) since

RECEIVE CALL RES(u,pi)

if rpc { RETURN REM(RPCFailure,pi) { rpc' then

rpc' in any case

not exists u : y = RETURN REM(u ,pi) since

( exists u : y = RECEIVE CALL RES(u ,pi)

or exists rc: y = RECEIVE REM(rc,pi) )

rpc in any case eventually

[ forall rc, pi: exists rpc': x { RECEIVE REM(rc,pi) { rpc' ]

rpc in any case eventually

[forall u, pi: exists rpc': x { RECEIVE CALL RES(u,pi) { rpc']

** R4 **

if sends a call c and pi, then

in any case it

has not sent any other calls with pi since

has received a remote call corresponding to c and pi

** R5 **

if returns a result u di�erent from RPCFailure and pi, then

in any case it

has not returned any other results with pi since

has received u and pi

** R6 **

if returns RPCFailure and pi, then

in any case it

has not returned any other results with pi since

(either has received some result and pi

or has received some remote call and pi)

** R7 **

in any case will eventually

reach a state where may receive any remote call

** R8 **

in any case will eventually

reach a state where may receive any result
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6 Development (First Step of )

RECEIVE(c,pi)

RETURN(u,pi)

INT

UNIVERSE (u)

VALUE LOCATION EXCEPTION PROC

PID (pi) CALL (c)

UNIVERSE

REMOTE CALL

UNIVERSE

The requirement speci�cation of (First Step of )

Here we consider a re�nement of the requirements on , given in Sect. 4, following

what said in Sect. 3 of [6]; there is implemented by using a component,

a reliable ( ) and, as suggested afterwards, also a . Moreover, al-

ways following [6], the component is given by instantiating a reusable process,

whose parameterized speci�cation has been given apart in Sect. 5. Notice that in

this development step a simple system has been re�ned into a concurrent one.

As said in Sect. 3 a development step should produce, other than a speci�cation,

a natural description of the performed development and a justi�cation of the cor-

rectness of such step; furthermore the speci�cation should be structured following

the system structure, as graphically reported in Fig. 2. There the components are

represented by enclosing the rounded boxes corresponding to them into that of the

whole system.

Sect. 3 of [6] plus the following assumptions on which are the processes composing

the implementing system.
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requirement

sort

cn

end

requirement sort end

enum end

enum end

design

use

sort

cn

op

ax
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end

memory values

value initially contained in the locations

locations

exceptional values

procedure names

given a procedure name returns the number of its arguments

The implementation consists of three processes: , and handling

the communication with outside . receives from outside the calls of the

procedures and after forwards them to . Furthermore it receives the results

of the calls from ; if such results are di�erent from RPCFailure, then after it

will return them outside , otherwise either it retries to send to the call that

has originated the result or it will return a MemFailure exception; surely for each

call it will return a result eventually.

The assumption on the activity of the processes calling the procedures \they

cannot start a new procedure call before to have terminated any previous ones (by

receiving a result)" is used to give this implementation of , since it implies that it

is not possible to have two outstanding calls issued by the same process; so it allows

to use the process identi�er to uniquely identify the outstanding calls (there is at

most one outstanding call originally issued by a process).

The data structure de�ned in this part will be available to all components of the

system.

Here, the universe values are of di�erent kinds, as memory values, locations,

exceptions, procedure names, which are given by separate speci�cations as follows.

VALUE =

value

Init Value: value

LOCATION =

location

EXCEPTION =

exception: BadArg MemFailure BadCall RPCFailure

[ srt: Id1 . . . Idn is a METAL shortcut denoting the speci�cation of a

data structure with just the sort srt, whose elements are exactly Id1, . . . , Idn. ]

PROC =

NAT

proc

Write, Read: proc

ArgNum: proc - nat

ArgNum(Read) = 1

ArgNum(Write) = 2
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end

Process identi�er

requirement sort end

universe of the values either arguments or results of the procedures of or of its

components

a memory value, a location, an exception and a procedure name are universe values

value returned by a successful Write call

lists of values

empty list

adds a value to a list

given a list returns its length

a list of values is a value

check whether a universe element is a list of a given length

check whether a universe element is not RPCFailure

identi�ers of the processes (in some other components) originally issuing the calls

UNIVERSE =

VALUE, LOCATION, EXCEPTION, PROC

universe

V: value - universe

L: location - universe

E: exception - universe

P: proc - universe

Write End: universe

list

Empty List: list

: universe list - list

Length: list - nat

Length(Empty List) = 0

Length(u ls) = Length(ls) + 1

LS: list - universe

Is List: universe nat

if n = Length(ls) then Is List(LS(ls), n)

Is Not RPCFailure: universe

Is Not RPCFailure(L(l))

Is Not RPCFailure(V(v))

Is Not RPCFailure(P(p))

Is Not RPCFailure(LS(ls))

Is Not RPCFailure(E(BadArg))

Is Not RPCFailure(E(MemFailure))

Is Not RPCFailure(E(BadCall))

PID =

pid
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design
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Remote calls

design

use

sort

op

pr

ax

end

Components of

The reliable memory component

ax

calls of the procedures

remote calls received by

the remote calls are made by two universe elements (the procedure name and the

list of the arguments)

checks if a remote call is correct

if u is a list whose length is the number of arguments of p, then

a remote call consisting of p and u is correct

CALL =

UNIVERSE

call

Write: universe universe - call

Read: universe - call

REMOTE CALL =

UNIVERSE

rcall

; : universe universe - rcall

Remote Correct: rcall

if Is List(u, ArgNum(p)) then Remote Correct(P(p),u)

is a concurrent system with three components, which in turn are other dy-

namic systems: , and .

MC' is a speci�cation of the memory component de�ned as in Sect. 4, except

that now the basic data structures universe of values and calls are those speci�ed

in this development step; clearly the axioms have to be slightly changed to use the

new data; e.g. axiom 1 becomes

if not Correct(c) and mc { RECEIVE(c,pi) { mc then

mc in any case No Concern(y,pi) until

( RETURN(E(BadArg),pi) or RETURN(E(MemFailure),pi) )
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RPC

RPC

requirement

use

ax

ax

end

The remote procedure caller

The actual parameter

** RM1 **

cannot return MemFailure

** RM2 **

in any case will eventually

reach a state where may receive any call

PID

(pi)

CALL

(c)

REMOTE CALL

(rc)

UNIVERSE

(u)

RECEIVE REM(rc,pi)

RETURN REM(u,pi)

SEND(c,pi)

RECEIVE CALL RES(u,pi)

The speci�cation of

RMC =

rename sort mc to rmc in MC'

not rmc { RETURN(E(MemFailure),pi) { rmc

rmc in any case eventually

[(forall c, pi: exists x : x { RECEIVE(c,pi) { x )

Axiom RM1 requires the reliability; while axiom RM2, an acceptance vitality

property, is needed to use to build the implementation of ; indeed it avoids

that a process which will be never able to receive a call may be chosen to realize

.

Also in this case the structure of the spec-

i�cation is graphically reported in Fig. 3; there the square boxes enclosed in the

rounded box corresponding to represent the basic static structures of used

by .

The speci�cation APAR, used to instantiate the parametric speci�cation RPC P

to get the speci�cation of , de�nes the data used by such process, precisely the

universes of values, the process identi�ers, the calls and the remote calls.
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The clerk

Interactions

design

use

sort

op

op

PID

(pi)

CALL

(c)

REMOTE CALL

(rc)

UNIVERSE

(u)

RECEIVE CALL(c,pi)

RETURN RESULT(u,pi)

FORWARD(rc,pi)

RECEIVE RESULT(u,pi)

The speci�cation of

transforms a remote call into the corresponding call

the used for implementing

to receive (from outside ) a call and an identi�er (of the process in some other

component that has originally issued the call)

to return (outside ) a result and an identi�er (of the process in some other

component that �nally will get the result)

APAR =

UNIVERSE, PID, CALL, REMOTE CALL

Call: rcall - call

Call( P(Read) ; LS(u Empty List) ) = Read(u)

Call( P(Write) ; LS(u u Empty List) ) = Write(u,u )

RPC = RPC P(APAR)

The above speci�cation is correct, since APAR is a correct parameter for RPC P,

i.e. its signature includes that of PAR and the axioms of PAR hold in APAR.

Also in this case the structure of the speci�cation is graphically

reported in Fig. 4.

We precisely know the interactions of with its external world,

and so we use a design speci�cation for them.

CLERK INTERACT =

PID, CALL, REMOTE CALL, UNIVERSE

lab clerk

RECEIVE CALL: call pid - lab clerk

RETURN RESULT: universe pid - lab clerk



0 0

0 0

0

0

RPC

RPC

CLERK

>

>

>

>

< >

< >

< >

< >

>

< >

op

op

end

States

requirement dsort end

Activity

requirement

use

op

ax

ax

pr

ax

ax

FORWARD: rcall pid - lab clerk

RECEIVE RESULT: universe pid - lab clerk

CLERK STATE = clerk: { {

CLERK =

CLERK INTERACT, CLERK STATE

Remote: call - rcall

Remote(Read(u)) = P(Read) ; LS(u Empty List)

Remote(Write(u,u )) = P(Write) ; LS(u u Empty List)

Is Last Call: clerk call pid

Is Last Call(cl,c,pi) i�

cl in any case

not exists c : y = RECEIVE CALL(c ,pi) since

RECEIVE CALL(c,pi)

if cl { RECEIVE CALL(c,pi) { cl then

cl in any case eventually

FORWARD(Remote(c),pi)

to forward (to ) a remote call and an identi�er (of the process in some other

component that has originally issued the call)

to receive (from ) a result (of a remote call) and an identi�er (of the process

in some other component that �nally will get the result)

auxiliary operation, given a call returns the corresponding remote call

auxiliary predicate

given a clerk state cl, a process identi�er pi and a call c, checks if c is the last

call received with pi in cl (notice that it is also the only outstanding one

concerning pi)

in any case cl

has not received another call and pi since

has received c and pi

** C1 **

if receives a call c and pi, then

in any case it will eventually

forward the remote call corresponding to c and pi
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if Is Not RPCFailure(u) and cl { RECEIVE RESULT(u,pi) { cl then

cl in any case eventually RETURN RESULT(u,pi)

if cl { RECEIVE RESULT(RPCFailure,pi) { cl then

cl in any case eventually

( exists c: y = FORWARD(Remote(c),pi) and

Is Last Call(cl ,c,pi)

or RETURN RESULT(E(MemFailure),pi) )

if cl { FORWARD(rc,pi) { cl then

exists c: rc = Remote(c) and

cl in any case

( not exists rc : FORWARD(rc ,pi) since

( RECEIVE CALL(c,pi)

or ( RECEIVE RESULT(RPCFailure,pi) and

Is Last Call(cl ,c,pi) ) ) )

if cl { RETURN RESULT(u,pi) { cl and not(u = MemFailure) then

cl in any case

( not exists u : y = RETURN RESULT(u ,pi) since

exists c: y = RECEIVE CALL(c,pi) ) and

( not exists u : y = RECEIVE RESULT(u ,pi) since

RECEIVE RESULT(u,pi) )

** C2 *

if u is not RPCFailure and receives u and pi, then

in any case it will eventually return result u and pi

** C3 **

if receives RPCFailure and pi, then

in any case it will eventually

either forward the remote call corresponding to

the last call received with pi and pi

or return result MemFailure and pi

** C4 **

if forwards a remote call rc and pi, then

there exists a call c s.t. rc is its corresponding remote call and

in any case it

has not forwarded any remote call with pi since

either has received c and pi

or has received RPCFailure and pi and

c is last call received with pi

** C5 **

if returns a result u di�erent from MemFailure and pi, then

in any case it

has not returned any result with pi since

it has received a call and pi and

has not received any other result and pi since

it has received u and pi
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** C6 **

if returns the result MemFailure and pi, then

in any case it

has not returned any result with pi since

it has received a call with pi and

has not received any other result with pi since

it has received RPCFailure and pi

** C7 **

if receives a call c and pi, then

in any case it will eventually return a result

** C8 **

in any case will eventually

reach a state where may receive any result

to receive a call and a process identi�er (of the process in some other component

that has originally issued the call)

to return a result and a process identi�er (of the process in some other component

that �nally will get the result)

to perform an internal action

if cl { RETURN RESULT(MemFailure,pi) { cl then

cl in any case

( not exists u : y = RETURN RESULT(u ,pi) since

exists c: y = RECEIVE CALL(c,pi) ) and

( not exists u : y = RECEIVE RESULT(u ,pi) since

RECEIVE RESULT(RPCFailure,pi) )

if cl { RECEIVE CALL(c,pi) { cl then

cl in any case eventually exists u: y = RETURN RESULT(u,pi)

cl in any case eventually

[ forall u, pi: exists cl : x { RECEIVE RESULT(u,pi) { cl ]

In this development step we precisely �x the interactions of with its external

world, and so we use a design speci�cation for them; notice that now has one

interaction not present in the requirement speci�cation (INT).

MC INTERACT =

CALL, PID

lab mc

RECEIVE: call pid - lab mc

RETURN: universe pid - lab mc

INT: lab mc
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In this development step we also precisely �x the intermediate states of ;

they are just given by the states of its three components, and so we use a design

speci�cation for them.

MC STATE =

RPC, CLERK, RMC

mc: { {

: rmc rpc clerk - mc

The requirements on the activity of in this development step are di�erent

from those on its components; indeed here we have to express properties on the

activity of a concurrent dynamic system, relating the fact that a component perform

an action with the fact that another component performs another action (e.g. saying

that if forwards a remote call, such call must be received by ). Thus we

need a kind of \distributed" temporal logic, with combinators for saying e.g. that

a component of a concurrent system will eventually perform some action. Since we

know the distributed structure of (it has three components) we can use the logic

presented in Sect. 2.3; indeed the following path formula

exists rmc, rpc, cl, rmc , rpc , cl :

[ x = rmc rpc cl ] and next [ x = rmc rpc cl and rpc { lp { rpc ]

holds on a path of whenever in the �rst transition of such path the component

has performed a transition labelled by lp; in the following such formula will be

simply written as RPC: lp . Clearly, we have to assume that the formula

if rpc { lp { rpc and rpc { lp' { rpc then lp = lp'

is satis�ed by the speci�cation; but this requirement is not problematic, because

any speci�cation of a dynamic system without this property may be transformed into

another one with such property and behaving equivalently.

Analogous abbreviations can be de�ned for the and components,

written RMC: lm and CLERK: lc respectively.

[ Below \some time" is the METAL syntax for the combinator of the temporal logic

, introduced in Sect. 2.3. ]
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MC CLERK

CLERK MC

MC =

MC STATE, MC INTERACT

mc in any case if l then

(exists lc: CLERK: lc ) or

(exists lp: RPC: lp ) or

(exists lm: RMC: lm )

if exists cl , lc: cl { lc { cl then

cl rpc rmc in any case eventually exists lc : CLERK: lc

if exists rpc , lp: rpc { lp { rpc then

cl rpc rmc in any case eventually exists lp : RPC: lp

if exists rmc , lm: rmc { lm { rmc then

cl rpc rmc in any case eventually exists lm : RMC: lm

mc in any case

if RECEIVE(c,pi) then CLERK: RECEIVE CALL(c,pi)

mc in any case

if CLERK: RECEIVE CALL(c,pi) then RECEIVE(c,pi)

The activity of is fully determined by those of its components

** 1' **

in any case if performs an action, then

at least one of the components performs an action

cannot stop its components forever

** 2' **

if can perform some action, then

in any case it will eventually perform some action

** 3' **

if can perform some action, then

in any case it will eventually perform some action

** 4' **

if can perform some action, then

in any case it will eventually perform some action

takes care of the interactions of with the external world

** 5' **

in any case

if receives a call and pi, then receives them

** 6' **

in any case

if receives a call and pi, then receives them
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mc in any case

if RETURN(u,pi) then CLERK: RETURN RESULT(u,pi)

mc in any case

if CLERK: RETURN RESULT(u,pi) then RETURN(u,pi)

mc in any case

if INT then

( ( not exists u, pi: CLERK: RETURN RESULT(u,pi) ) and

( not exists c, pi: CLERK: RECEIVE CALL(c,pi) ) )

mc in any case

if CLERK: FORWARD(rc,pi) then

eventually RPC: RECEIVE REM(rc,pi)

mc in any case

if RPC: RECEIVE REM(rc,pi) then

some time CLERK: FORWARD(rc,pi)

mc in any case

if RPC: RETURN REM(u,pi) then

eventually CLERK: RECEIVE RESULT(u,pi)

** 7' **

in any case

if returns a result and pi, then returns them

** 8' **

in any case

if returns a result and pi, then returns them

** 9' **

in any case

if performs an internal action, then

neither returns a result nor receives a call

Cooperation between and

** 10' **

in any case

if forwards a remote call and pi, then

will eventually receive them

** 11' **

in any case

if receives a remote call and pi, then

some time has forwarded them

** 12' **

in any case

if returns a result and pi, then

will eventually receive them
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** 13' **

in any case

if receives a result and pi, then

some time has returned them

Cooperation between and

** 14' **

in any case

if sends a call and pi, then

will eventually receive them

** 15' **

in any case

if receives a call and pi, then

some time has sent them

** 16' **

in any case

if returns a result and pi, then

will eventually receive them

** 17' **

in any case

if receives a result and pi, then

some time has sent them

mc in any case

if CLERK: RECEIVE RESULT(u,pi) then

some time RPC: RETURN REM(u,pi)

mc in any case

if RPC: SEND(c,pi) then

eventually RMC: RECEIVE(c,pi)

mc in any case

if RMC: RECEIVE(c,pi) then

some time RPC: SEND(c,pi)

mc in any case

if RMC: RETURN(u,pi) then

eventually RPC: RECEIVE CALL RES(u,pi)

mc in any case

if RPC: RECEIVE CALL RES(u,pi) then

some time RMC: SEND(c,pi)

Notice that property 10' implicitly requires also that will eventually have

the capability to receive a remote call; but that is already ensured by the

properties (axiom R7), so the speci�cation of is \conservative" w.r.t. that of
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. Similarly, the properties 12', 14' and 16' require that some component must

have some action capabilities, but such capabilities are already ensured by axioms

C8, RM2 and R8.

The check of the correctness of the development step follows the speci�cation

structure, so �rst we consider the basic data structures, then states, interactions

and �nally the properties on the activity. To improve the readability in the following

we will add the su�x either 1 or 2 to the names of the speci�cations to distinguish

those de�ned in the requirement phase (Sect. 4) and those in this development step.

The signatures of UNIVERSE1 and of UNIVERSE2 are di�erent; thus we have

to add to UNIVERSE2

Init Value: universe

BadArg, MemFailure: universe

Is MemVal, Is Loc: universe

de�ned by the axioms

Init Value = V(Init Value)

BadArg = E(BadArg)

MemFailure = E(MemFailure)

Is MemVal(V(v))

Is Loc(L(lc))

and to hide all symbols not present in UNIVERSE1.

This modi�cation of UNIVERSE2 can be expressed as a function from speci�-

cations into speci�cations, see at the end of Sect. 2.4. Then it is very easy to verify

that all axioms of UNIVERSE1 hold in the modi�ed version of UNIVERSE2.

Similarly we can see that CALL2 is a correct implementation of CALL1. In this

case we have to add to CALL2 the predicate

Correct: call

de�ned by the axioms

Correct(Write(L(lc),V(v)))

Correct(Read(L(lc))).

PID2 coincides with PID1.

To see that MC STATE2 is a correct implementation of MC STATE1 we have

to add to MC STATE2 the operation

Cont: mc universe - universe

de�ned by

Cont(cl rpc rmc) = Cont(rmc)

and to hide the operation .

To see that MC INTER2 is a correct implementation of MC INTER1 we have

to add to MC INTER2 the constant INT: lab mc.
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For lack of room we only report the proof that axiom 1 holds in MC2; those for

the other axioms are analogous.

By axiom 5', if 2 performs RECEIVE(c,pi) with c non correct, then

performs RECEIVE CALL(c,pi).

By axiomsC1, 2' and 1', will eventually performFORWARD(Remote(c),pi).

By axiom 10', will eventually perform RECEIVE REM(Remote(c),pi).

Since Remote(c) is correct as remote call, by axioms 3', 2' and R1 we have two

possible cases:

1. will eventually perform SEND(c,pi).

By axiom 14', will eventually perform RECEIVE(c,pi).

Since c is not correct, by axiom 1 will eventually perform RETURN(u,pi),

with u either equal to E(BadArg) or to E(MemFailure).

By axiom 16', will eventually perform RECEIVE CALL RES(u,pi).

By axioms R3 and 3', we have two possible cases:

(a) will eventually perform RETURN REM(u,pi).

By axiom 12', will eventually perform RECEIVE RESULT(u,pi).

By axiomC2 and 2', will eventually perform RETURN RESULT(u,pi).

By axiom 8', 2 will perform RETURN(u,pi).

OK

(b) will eventually perform RETURN REM(E(RPCFailure),pi)

By axiom 12', will eventually perform

RECEIVE RESULT(E(RPCFailure),pi).

By axiom C3 we have two cases:

i. will eventually perform RETURN RESULT(E(MemFailure),pi).

By axiom 8', 2 will perform RETURN(E(MemFailure),pi).

OK

ii. will eventually perform FORWARD(Remote(c),pi).

Then the proof goes on as from the beginning; axiom C7 prevents the

case in which forever the second alternative is taken; thus a result will

be returned eventually.

OK

2. will eventually perform RETURN REM(E(RPCFailure),pi).

As in 1b.

OK

We have still to prove that before returning the right result 2 does not per-

form any other interaction concerning pid; that follows from the properties of the

various components prohibiting \unsolicited reactions" as R4, R5, C4 and C5 and

by property 1' ensuring that all transitions of 2 are due to transitions of its

components.

Here we try to present the main features of our solution of RPC-Memory Speci�ca-

tion Problem, highlighting the positive and negative aspects.
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Second development step

Third and last development step

Prototyping of the developed system

Structured/modular speci�cation

Uniform treatment of speci�cations at di�erent levels

Adequacy to the RPC-Memory Speci�cation Problem

exactly

The speci�cations presented in this paper are struc-

tured and modular, moreover their structures correspond to the structures of the

speci�ed systems; that allows also the possibility of reusing speci�cation parts (see,

e.g. the parameterized component).

The speci�cations of the sys-

tem at di�erent levels of abstraction, in our terminology requirement and design

speci�cations, have the same structure and the speci�cation language treats simi-

larly the common parts (the only di�erence is in the form of the axioms and in the

intended semantics of the speci�cations).

One of the relevant feature of

our solution is that it takes into account all parts and aspects of the RPC-Memory

Speci�cation Problem (Sect. 1, 2, and 3 of [6]); so we have formalized RPC-

Memory Speci�cation Problem, except for the \shadow spots" and without having

to extend/modify the method. For example:

is seen as an \open" system interacting with its external environment;

the non-concurrent aspects, as those about the data used by the components,

have been considered;

reusable (parameterized) parts, as the , may be speci�ed including the prop-

erties on the parameters;

concurrent/distributed systems, as the �rst re�nement of [6], are explicitly han-

dled.

In [6] further development steps were considered (see Sect. 4); but there (real)

time aspects were involved and so we have not considered them. Indeed, in SMoLCS

there are no special features for handling the (real) time aspects, so the speci�cation

about this part is not standard. It can be done under the assumption that the

duration of all atomic actions of all components is given using a common discrete

time unit. If this assumption is sensible, then SMoLCS speci�cations may handle

the timed features (see, e.g. [12], which presents the speci�cation of a controller of

a system performing various checks each 5, 30, . . . minutes).

Instead, also in order to show how our method works at the later stages of the

development, in [5] we have worked out, making some particular choices, two further

development steps.

We start to design the system speci�ed in Sect. 6 by

assuming that its components cooperate by synchronous message exchange and

that perform their activities in a free independent way (i.e. there are no overall

constraints on them).

We fully design the three components of the

system speci�ed above, , and , and so we get a complete design,

i.e. a complete de�nition, of the that we have worked out.

The determined above has been tested

by using the prototyping tools, see [1].
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RMC

No overspeci�cation

Readability

Long speci�cation text

About \correctness", \validation", . . .

Our speci�cation expresses only what is contained in the RPC-

Memory Speci�cation Problem text in [6]; no need to embed in the speci�cation

other features, like particular kind of message exchange between the components

of a system and particular kinds of scheduling of the activity of such components.

On the contrary, the features that one usually forgets to mention when describing

a system, since they seem obvious but are not guaranteed by default, are explicitly

expressed by our speci�cation (e.g. the point that the memory cells may or may not

fail). Moreover each feature is directly expressed in the speci�cation, and not by

means of either a coding or a low level implementation.

We think that our solution is rather readable due to the two-rail approach

(informal and formal speci�cations), to the structuring of the speci�cation, and to

the syntactic richness and friendliness of the metalanguage METAL (e.g. distributed

in�x syntax, absence of \esoteric" symbols).

Our speci�cation, to have the advantages listed in the pre-

vious points, is long, and in some sense also complex (that is due mainly to the

presence of some overhead, as the typed nature of the metalanguage, which requires

an explicit declaration of all used symbols). Such unpleasantness may be overcome

by using interactive editors/browers, and using the speci�cation structure as a basis

for giving a hypertext version of the documents produced during the development;

so to be able, e.g. to drop the informal comments/formulae just by a click of the

mouse.

Our method is still much un�nished and

lacking in this respect, since we do not have a standard proof assistant. We have

plans for establishing a friendly connection with some general tool for associated

proofs, like PVS.

Here we brie
y summarize what we have done for what concerns the general

problem of correctness/validation using the supports (e.g. software tools) o�ered by

the SMoLCS methodology to help this task.

We have a parser and a type checker for the SMoLCS speci�cation language

METAL; and so we have �rst controlled the static correctness of our speci�cations

detecting some errors concerning a conceptual confusion between \calls" and \remote

calls". We have �xed them, by introducing two distinct data structures for calls and

for remote calls.

After we have tried to see if our design speci�cation given in was correct

w.r.t. the requirements given in , i.e. to give the \correctness justi�cation

part". The methodology does not o�er either software tools (as theorem provers and

model checkers) or theoretical ones (as sound and complete deductive systems for the

used logics and re�nement calculi). The proof has to be done by hand and presented

using the natural language, as it usually done for proving a theorem of analysis. We

have done this proof, which is brie
y reported in Sect. 6, detecting some errors.

Our speci�cation of (see Sect. 4) allows that the memory component may

refuse to receive calls forever; but such kind of component cannot work as part of

the implementation. This point has been solved by adding property RM2 to the

speci�cation of , see Sect. 6.
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Another error found during the proof is the following. The �rst version of the

speci�cation required that in case of incorrect calls the exception RPCFailure

cannot be returned, while the implementation may return RPCFailure for any call.

We have simply �xed it by changing the requirements on .

Harder has been to prove the correctness of the further development steps, but

in such case we have heavily used the rapid prototyper to analyze the behaviour of

the design system. We have immediately found that there were several problems in

earlier versions, mainly deadlocks, due to and to .

That means, have we got any bene�ts by

using SMoLCS to develop ? Also in this case SMoLCS presents the bene�ts

already found in previous applications:

it obliges the client to clarify a lot its idea of the system to be developed. In this

case all shadow spots are questions for the client; e.g. it is relevant the point

about the failures. Furthermore these questions may be discussed with the client

using only the informal part of the speci�cation.

it helps to validate the implementation; we have found several errors in a �rst

version of the implementation, also without tools for automatizing the proof.

We warmly thank Stefano Ferrua for helping to prove the cor-

rectness of the implementation.
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