
,,,,,,

�

�

Introduction and outline

Formally-Driven Friendly Speci�cations of

Concurrent Systems: A Two-Rail Approach

Egidio Astesiano { Gianna Reggio

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a di Genova { Italy

This work has been partially funded by the \Progetto Finalizzato Sistemi Informatici e Calcolo

Parallelo" of C.N.R. (Italy), EEC-HCM Medicis and by Esprit-BRA W.G. n.6112 Compass.

The advertisement of this workshop rightly mentions that \perceived disadvantages

of formal methods are the increased investments and the skills required for their

application". We have experienced these problems in some attempts at applying

a formal method for the speci�cation of concurrent systems together with industry

people. It was realized by both sides that, though the advantages of formal methods

are clear, it is necessary to give much importance, together with appropriate tools,

to the informal presentation of the formalism.

Thus we have experimented an approach where informal and formal speci�cations

proceed in parallel with a rather rigorous matching, following what we call the \two-

rail principle". In other words we propose to make explicit the intermediate stage

between a natural language description and its formal counterpart, in order to favour

the interaction with the client who states the problem in a natural language and to

avoid discouraging the non-specialist in formalities (readers, users and developers),

who have to pass abruptly from natural to formal descriptions.

Notice that the above principle concerns with having at hand both informal

and formal matching speci�cations. Thus it also accommodates the derivation of a

formal method from an existing informal one, which seems to be the predominant

approach in the literature (see e.g. [Hus95]).

Here we present an experience in another direction, which seems to be somewhat

new: how to derive from a formal method a rather rigorous informal counterpart.

Warning: the derivation is referred to the metalevel, the one of methods; when

developing a speci�cation we start with the informal one and then give the matching

formal one (with some feedback) in parallel.

We started with a formal algebraic approach for the speci�cations, at the de-

sign level (speci�cations essentially de�ning one model), of concurrent systems (the

SP Mod SP

Formal models and speci�cations

1 Formally-Driven Informal Speci�cations

SMoLCS approach, see e.g. [AR87, RBM94]), later upgraded to a method for cov-

ering the various phases of the development from requirement to implementation.

The development process is supported by a formal speci�cation language METAL

[PR94], that, together with borrowing from algebraic speci�cation languages var-

ious structuring features, allows, e.g., for temporal and event logic speci�cations

[CR91, Reg93], and is endowed with various software tools.

In our case we soon realized that, being our models for concurrent systems highly

structured, it was possible to provide a simple common guide for structuring both

informal and formal speci�cations, delaying the di�erence (sentences in a natural

language vs. formulae in a logical language) to some last steps of the speci�cation

development. Moreover the schema is common both to the requirement and to the

design speci�cations.

In order to exploit the analogy with program practice guided by a well-structured

language, we have embodied the model-driven structure of the informal and formal

speci�cations, together with a simple step-by-step development model, into a lan-

guage that we call \documentation language". That language guides the production

at every stage of the informal and formal speci�cations, alongside with a natural

description, which represent the interface with the client, who is actually providing

the initial one as a description of the system to build. If we take out just the informal

speci�cations, we are left with a formally-driven method for informal speci�cations,

that could be the principal vehicle for those system engineers who are not trained

in formalities, leaving to the specialists the job of writing the formal speci�cations,

as it is already done in some pilot cases.

In the following section we explain how we derive an informal speci�cation

schema for the formal models and speci�cations and in the other one we present

some signi�cant fragments of the documentation language. For absolute lack of

room no examples are reported here; see, e.g. [AR94] for a complete two-rail spec-

i�cation the problem recently proposed by Lamport and Broy as a common case

study at a Dagsthul Seminar, [BL94].

The key idea is that the structure of our formal models (of the concurrent systems)

de�nes a common structure for formal and informal speci�cations, the di�erence

being delayed until some terminal steps, where the correspondence is based on a

menu of correspondences (often, though not always, formalizable).

We brie
y outline some terminology and the basic concepts of our approach; as

much as possible we will adopt simpli�cations and avoid formalities; full de�nitions

can be found in the references, and many concepts are already well-known.

Our speci�cations are written in the above mentioned METAL. As usual, a spec-

i�cation has a semantics () consisting of a class of models. The models

0

0 0

0

� �

� �

; ;

s; l; s

s l > s s s l

s l > s

Correspondence between formal and informal speci�cations

A product grammar

static structures dynamic

systems

static structure

dynamic system

labelled transition system S L T S

L T

situations

interactions activity

structured or concurrent

simple

active passive

requirement design

Mod SP

are taken in a universe of structures, classi�ed in and

.

A corresponds to the classical concepts of (concrete) data type

and models things like numbers, bar codes, queues, bulletin boards and the like.

Formally a static structure is a many-sorted �rst-order structure (or algebra with

predicates).

A models things like an electric plant, a lift system, a computer

net and the like.

Formally, as in CCS and similar approaches [Mil89], a dynamic system is seen

as a , which is a triple (), where is the set of the

states, the set of the labels and a set of triples (), called transitions, also

written , where and are states and a label. The states model

the (along its evolution) of a dynamic system, the labels the nature of its

possible with the external world and the transitions its possible ,

in the sense that each transition corresponds to an action capability.

A dynamic system may be , when there are (at least

two) component dynamic systems in parallel, and otherwise.

The components of a dynamic systemmay be (dynamic systems) or

(just static structures). Formally the structure of a dynamic system is re
ected in

the structure of its states, that may be be built out of components (either states of

dynamic systems or static data) by a parallel operator.

We distinguish between and speci�cations; requirement spec-

i�cations de�ne general requirements of a product for a certain level of abstraction,

while design speci�cations de�ne essentially one product. Formally the di�erence is

that () consists just of one model (up to isomorphismn) for design speci�ca-

tions, while it may consist of classes of non-isomorphic models in the other case.

In METAL the design speci�cations are always amenable to (dynamic) positive

conditional speci�cations, i.e. �rst-order speci�cations where the axioms are Horn

clauses, guaranteeing the existence of a model (the initial one), which is de�ned on

the basis of logically deducible atoms (equality and elementary predicative asser-

tions).

For requirement speci�cations it is convenient (and often necessary) to use not

only �rst-order logics but also various kinds of temporal logics, for expressing modal-

ities about system behaviours, like eventually, always, etc. For the purposes of the

present paper the kind of language is not much relevant, except that, as we will see,

the kind of formulae used in the formal part determines the schemas of the sentences

in the informal one.

The structure of our models for the ultimate product (a

static structure or a dynamic system) suggests a common structure for formal and

informal speci�cations. In order to favor acceptance by system engineers we exploit

the analogy with programming practice and describe that structure by means of a

0

�

�

j

j

j j

m n m

m m m

i m q

m m m

n

i

j

if and and then

-- -->

+

1 1 1

1 1 1 2 1

1 1

1 1 2 1 1

1

1

2

::=

::=

::=

::=

::=

::=

::=

Informal sentence schemas and line-by-line comments

Formal schema

Informal schema

atomic-condition atomic-condition

state-descr interaction-descr

state-descr

atomic-condition

state-descr interaction-descr

atom x ; : : : ; x : : : atom x ; : : : ; x

st x ; : : : ; x inter x ; : : : ; x st x ; : : : ; x

n i ; : : : ; n atom x ; : : : ; x t t Pr t ; : : : ; t

st x ; : : : ; x st x ; : : : ; x lab x ; : : : ; x

: : :

n i ; : : : ; n

j ;

Prod Stat Str Dyn Sys

Dyn Sys Simple Sys Struct Sys

Simple Sys States Interactions Activity

States Stat Str

Interactions Stat Str

Struct Sys Comp States Interactions Activity

Comp Stat Str Simple Sys Struct Sys

simple grammar, where the nonterminals correspond to the concepts introduced so

far and the productions to our way of structuring things.

The purpose of this grammar is mainly explanatory; a typical use is in courses

teaching the method to system engineers. Here we present it just for understanding

the structure of the documentation language, where that grammar will be instan-

tiated for supporting the various development phases. A typical feature of our

approach is that the grammar is the same for the requirement and the design phase,

which experimentally is proven to be a great simpli�cation.

What we present here is a simpli�ed version, just to give the
avor.

By structuring the

models and the corresponding common grammar, the di�erence between informal

and formal speci�cations is con�ned to the a late stage of detail, when a a natural

language sentence has to be matched by a formula in some logical language. The

correspondence is built depending on the logical language for the formulae and

formalized by a corresponding similar grammar for informal sentences. Below we

give the
avor of the correspondence by considering the schemas for the fragment

of the speci�cations at design level dealing with the activity of a simple system.

A list of positive conditional formulae of the form:

() ()

() () ()

where 0, for = 1 () has form = or (),

(), () are terms of sort state and () is a term

of sort interaction.

A list of sentences having form:

if , and then

the system in the state may perform passing

in the state

where 0, for = 1 is an informal atomic condition,

= 1 2, and are informal sentences describing respec-

tively states and interactions, whose possible forms are determined by the informal

speci�cations of the static structures of the states and of interactions.

+

�

0

0

� �

�

-

-

-

-

PHASE 1

::=

::= .

2 Documentation Language

PHASE 1

PHASE 2

PHASE 1 PHASE

2

PHASE 1

SP

is implemented via by SP

Mod SP Mod SP

Nat Descr

Shadow Spots

Inf Spec

Border Determ

Form Spec

Nat Descr

Prod Doc Prod Name Doc Ph1 Doc Ph2

Doc Ph1 Prod Name

Nat Descr

Border Determ Inf Spec Shadow Spots

Form Spec

The speci�cation structure presented in the previous section guides and is incor-

porated into a language supporting the development process, that we call docu-

mentation language (DOC METAL, in this case), since its purpose is to produce a

document for each stage of the development. The document includes also various

aside comments.

Clearly here the emphasis is not on the adopted development process, which is a

simple one, but on the way the speci�cation structure and the development phases

contribute to a language supporting companion informal and formal speci�cations.

We start with a purely requirement phase (), followed by many steps

of the second phase (), where each step is an implementation of the previ-

ous one, so that the corresponding document has to include a part concerning the

veri�cation of the implementation.

By implementation we mean the combination of re�nement and realization, fol-

lowing the implementation notion developed by Wirsing and Sannella [Wir90]:

, where is a function transforming speci�cations i�

(()) ().

Actually that notion has proven to be quite useful in many concrete case studies.

The following are some signi�cant fragments of DOC METAL.

All documents have a common structure, di�erent from that of the

ones.

The above structure corresponds to the following structuring of the tasks during

.

Analysis

Formalization

is a natural language text describing the product to be realized, it

is produced by the client and does not follow any format. It is included in the

document and cannot be modi�ed by the developers, since it represents the starting

point of the development.

The analysis task consists of examining the natural description trying �rst to

understand if the product is either a static structure or a dynamic system; after the

activity goes on di�erently in the two cases; and also the format of the produced

informal speci�cation is di�erent.

+

- - -

j j

j j

PHASE 2

PHASE 2

PHASE 1

PHASE 1

PHASE 2 step

::=

::= . : Informal Speci�cation

[]

::= . : Informal Speci�cation

[]

Components

::=

::= . .

Border Determ

Shadow Spots

States Inf Spec Interactions Inf Spec

Activity Inf Spec

Nat Descr

Inf Spec Form Spec Verif

Nat Descr

Inf Spec Stat Str Inf Spec Simple Sys Inf Spec Struct Sys Inf Spec

Simple Sys Inf Spec Prod Name

Basic Stat Str Inf Spec

States Inf Spec Interactions Inf Spec Activity Inf Spec

Struct Sys Inf Spec Prod Name

Basic Stat Str Inf Spec

Comp Inf Spec

States Inf Spec Interactions Inf Spec Activity Inf Spec

Comp Inf Spec Stat Str Inf Spec Simple Sys Inf Spec Struct Sys Inf Spec

Doc Ph2 Prod Name Num

Nat Descr

Inf Spec Form Spec Verif

gives the motivations for deciding what parts of the product

have been included in the speci�cation, i.e. how it has been determined the border

of the product. An important feature of our method is that it is not possible to

give requirements on the structure and on the behaviour of anything external to the

speci�ed product. Thus the choice of where to place the border, i.e. which parts

of the outside world to specify, depends on the relevance of the requirements about

such parts (e.g. if a user of a system can perform at most 100 times a certain activity,

then this condition should be taken into account by specifying also the users, since

the developed system is ok only with such user).

reports those parts of the product that for some reason cannot

be completely de�ned starting from the natural description or whose only possible

interpretation consistent with the natural description does not seem very sound.

They may be errors in the natural description or features which must be investigated

in the following developments or aspects of the product which are underde�ned since

they are not relevant.

The schema of the informal speci�cations follows the structure of the products:

The basic static structures part contains the informal speci�cations of those static

structures used by the dynamic system, whose use it is not localized in a particular

subpart. The role of the other three parts ,

and is clear; the �rst two are just static structures.

The above structure of the documents corresponds to the following struc-

turing in tasks of the activity during a step.

Analysis

Formalization Veri�cation

Here describes using the natural language which choices have been

done in this step for the development of the product.

The analysis task in this case consists in trying to express the new product

obtained by following the development choices reported in the natural description,

but starting from the speci�cation given in the step before; thus, e.g., here we

have no to classify the product, since that it is already reported in the previous

PHASE 2

Conclusion

Acknowledgments.

Verif

implementation function

a proof (justi�cation)

speci�cation. Notice that now there is no the part about the border determination,

since it cannot change along the development, except in case of error.

But now the (informal/formal) speci�cations, of the whole product or of its

parts, may be also design. In general in the �rst steps of they are still

requirement, while in the last step they are all design; in the intermediate steps some

parts may be at requirement level and others at design level, since the development

of some parts may be speedy than that of other ones.

The parts contains a justi�cation that the formal speci�cation of the prod-

uct given at this step is a correct implementation of the formal speci�cation of the

previous step; it follows the modular structure of the product re
ected in the formal

speci�cation, and consists of two parts:

{ an , i.e. a description of how the parts of the speci�ed

product) has been realized in the new one.

{ that each property expressed in the old speci�cation,

where the old parts have been replaced by the corresponding new ones using

the implementation function, is valid in the new one. The check is done using

the properties of the new speci�cation.

We have sketched some basic ideas of a method for developing concurrent systems,

that combines formal and informal speci�cations, in the sense that a schema for

informal speci�cations is driven by the formal method. The approach is presented

as an experience, since it comes out of a project where some signi�cant test cases

have been developed jointly with people from industry. Actually we have produced

a rather extensive guide for the developers on the basis of the mentioned approach;

the guide extends the formal/informal correspondence to much deeper levels and

includes many informal comments for the developer.

We are aware that much more should be done for obtaining a method which

hides formalities at any possible level, though being �rmly based on them. But,

before exploring further this direction, we feel that we should raise the question of

the value and
exibility of the \two-rail principle", well outside our own experience.

For example it is unclear to us whether in all cases the correspondence between

model structure and speci�cation structure is applicable. Moreover, depending on

the development model, the structure may change in the various phases.

Also we do not underestimate the importance of graphical notations; their exact

role within the two-rail approach has still to be understood. It is also clear that

our approach can be combined with the methods supporting the development pro-

cess, like the one by Souqui�eres and L�evy [SL93], which supports the building of

speci�cations.

We want to acknowledge the bene�t of many discussions

and comments by Valeria Filippi and Ernani Crivelli of ENEL-CRA, Milano.

References

Mathematical Models for the Semantics of Parallelism, Roma, 1986

Proc. MFCS'91

Recent Trends in Data Type Speci�cation

Communication and concurrency

Re-

cent Trends in Data Type Speci�cation

Proc. of International Symposium on Requirements Engineering RE'93

Handbook of Theoret. Comput.

Sci.

[AR87] E. Astesiano and G. Reggio. An outline of the SMoLCS approach. In

, num-

ber 280 in L.N.C.S. Springer Verlag, 1987.

[AR94] E. Astesiano and G. Reggio. A case study in friendly speci�cations of

concurrent systems (Lamport & Broy's speci�cation problem presented

at the Dagsthul seminar \Speci�cation and re�nement of reactive sys-

tems { A case study"). Technical Report DISI{TR{94{21, Dipartimento

di Informatica e Scienze dell'Informazione { Universit�a di Genova, Italy,

1994.

[BL94] M. Broy and L. Lamport. Speci�cation problem. Distributed to the

partecipants of the Dagsthul Seminar on \Speci�cation and Re�nement

of Reactive Systems: A case Study", 1994.

[CR91] G. Costa and G. Reggio. Abstract dynamic data types: a temporal logic

approach. In , number 520 in L.N.C.S. Springer Verlag,

1991.

[Hus95] H. Hussmann. Axiomatic speci�cation of large information systems: Ex-

periences and consequences. In ,

number 906 in L.N.C.S. Speringer Verlag, 1995.

[Mil89] R. Milner. . Prentice Hall, London, 1989.

[PR94] F. Parodi and G. Reggio. Metal: a metalanguage for SMoLCS. Tech-

nical Report DISI{TR{94{13, Dipartimento di Informatica e Scienze

dell'Informazione { Universit�a di Genova, Italy, 1994.

[RBM94] G. Reggio, D. Bertello, and A. Morgavi. The reference manual for the

SMoLCS methodology. Technical Report DISI{TR{94{12, Dipartimento

di Informatica e Scienze dell'Informazione { Universit�a di Genova, Italy,

1994.

[Reg93] G. Reggio. Event logic for specifying abstract dynamic data types. In

, number 655 in L.N.C.S. Springer

Verlag, 1993.

[SL93] J. Souqui�eres and N. L�evy. Description of speci�cation and developments.

In .

IEEE Computer Society, Los Alamitos, CA, 1993.

[Wir90] M. Wirsing. Algebraic speci�cations. In

, volume B. Elsevier, 1990.

